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Abstract

This work follows [10] and gives a logical translation of semantics in the case of abstract
argumentation frameworks using recursive attacks. These semantics, proposed in [7, 8]
for recursive argumentation frameworks, are defined using a notion of “structure” in
place of the notion of “extension” classically used in Dung’s abstract argumentation
framework.
So, in this report, as it has been done in [10] for classical argumentation frameworks,
we show that the logical translation proposed in [10] also allows the computation of
structures in the case of recursive argumentation frameworks.
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Chapter 1

Introduction

The main feature of an argumentation framework is the ability to deal with incomplete and / or con-
tradictory information, especially for reasoning [16, 2]. Moreover, argumentation can be used to
formalize dialogues between several agents by modeling the exchange of arguments in, e.g., negoti-
ation between agents [3]. An argumentation framework (AF) consists of a collection of arguments
interacting with each other through a relation reflecting conflicts between them, called attack. The
issue of argumentation is then to determine acceptable sets of arguments (i.e., sets able to defend
themselves collectively while avoiding internal attacks), called extensions, and thus to reach a co-
herent conclusion. Another form of analysis of an AF is the study of the particular status of each
argument, this status is based on membership (or non-membership) in the extensions. Formal frame-
works have greatly eased the modeling and study of AF. In particular, the framework of [16] allows
completely abstracting the concrete meaning of the arguments and relies only on binary interactions
that may exist between them.

AF have been extended along different lines. For instance, bipolar AF (BAF) correspond to AF
with a second kind of interaction, the support relation. This relation represents a positive interaction
between arguments and has been first introduced by [17, 25]. Several variants of the support relation
have been introduced according to different interpretations of the support (deductive support [5],
necessary support [19, 20], evidential support [21, 22]). Recent work have emphasized the central
role of the necessary support [11, 23, 24].
AF have been also extended so as to take into account interactions between arguments and other
interactions. A first version has been introduced by [18], then studied in [4] under the name of
AFRA (Argumentation Framework with Recursive Attacks). This version describes abstract argu-
mentation frameworks in which the interactions can be either attacks between arguments or attacks
from an argument to another attack. In this case, as for the bipolar case, a translation of an AFRA
into an equivalent AF can be defined by the addition of some new arguments and the attacks they
produce or they receive. A generalization of AFRA has been proposed in [13] in order to take into ac-
count supports on arguments or on interactions. These frameworks are called ASAF (Attack-Support
Argumentation Frameworks). And, once again, a translation of an ASAF into an equivalent AF is
proposed by the addition of arguments and attacks. More recently, alternative acceptability semantics
have been defined in a direct way for argumentation frameworks with recursive attacks [7, 8].

The subject of the current report is to propose a logical description of argumentation frameworks
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with recursive interactions. We think that a logical formalization will be helpful for justifiying the
introduction of all the new attacks described above. Moreover, a logical formalization enables to
take advantage of logical tools for computing semantics. This logical point of view was inspired by
works in bioinformatics (see [15, 1]). In this domain, we can find metabolic networks that describe
the chemical reactions of cells; these reactions can be negative (inhibition of a protein) or positive
(production of a new protein) and they can depend on other proteins or other reactions. A translation
from metabolic networks to classical logic has been proposed in [1]. This translation allows for the
use of automated deduction methods for reasoning on these networks. A very preliminary work has
been done for adapting this approach to argumentation frameworks (see [9]).
In this new work, we restrict our study to argumentation frameworks with only attacks (recursive or
not) and propose a new logical vision of argumentation frameworks. So, the interactions correspond-
ing to the notion of support will not be considered (this case is left for future work).

Context. Two different cases are considered in this work:

The case called “classic”: we study Dung’s argumentation frameworks (D-frameworks), de-
noted by AF, where only attacks between arguments (simple attacks, see Definition 1 on
page 5) can be found;

The case called “recursive”: we study argumentation frameworks, where there exist arguments,
attacks between arguments and attacks between an argument and another attack, (called recur-
sive attacks, see Definition 4 on page 6). These frameworks will be called recursive argumen-
tation frameworks and denoted by RAF.

According to the considered case (classic or recursive), there exist two ways for weakening an attack:

either by weakening the source of the attack (this is possible in both cases),

or because the attack is the target of another attack (this is possible only in the recursive case).

This leads to propose the notions of “grounded attack” and “valid attack” ([6]). The notion of
grounded attack is about the source of the attack and the notion of valid attack is about the link
between the source and the target of the attack (i.e. the role of the interaction itself).
Moreover, in [6], the recursive argumentation framework is translated into a D-framework, using the
addition of meta-arguments. This translation allows taking into account the notion of grounded (resp.
valid) attack in the computation of the extensions of the resulting framework.

Contents:

1. The main notions about abstract argumentation are given in Chapter 2 on page 5, including the
definitions of semantics for recursive frameworks.

2. In Chapter 3 on page 19, we propose a formal description of the argumentation framework
in terms of first-order logic formulae: our aim is to give a formal explicit description of the
meaning attached to an attack, and so of the notions of accepted argument, grounded or valid
attack, independently of any argumentation semantics. The proposed formal language is able
to into account recursive attacks.
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3. Then, using the language described in the previous chapter, a formalisation of argumentation
semantics is given in Chapter 4 on page 21. Our aim is first to give a logical description of
the principles that govern the semantics for recursive frameworks, then to characterize these
semantics in logical terms.

4. In Chapter 5 on page 25, semantics for recursive frameworks are illustrated on various exam-
ples.

5. Finally, Chapter 6 on page 49 outlines comparisons between the different methods proposed
in this report for defining semantics of recursive argumentation frameworks.
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Chapter 2

Background on abstract argumentation

This chapter gives the definitions of different kinds of abstract argumentation framework (D-framework,
bipolar framework, recursive framework) and the associated semantics.

2.1 Different abstract argumentation frameworks

The classic case concerns argumentation frameworks with only one kind of interaction: attacks be-
tween arguments.

Def. 1 (AF) A Dung’s argumentation framework, or D-framework for short, (AF) is a tuple 〈A,R〉,
where

A is a finite and non-empty set of arguments,

R ⊆ A×A is a relation representing attacks over arguments, called attack relation.

A first generalization takes into account an additional kind of interaction: supports between argu-
ments.

Def. 2 (BAF) A bipolar argumentation framework (BAF) is a tuple 〈A,Ratt,Rsup〉, where

A is a finite and non-empty set of arguments,

Ratt ⊆ A×A is a relation representing attacks over arguments, called attack relation and

Rsup ⊆ A×A is a relation representing supports over arguments, called support relation.

It is assumed that Ratt ∩Rsup = ∅.

Another possible extension concerns recursive interactions (support or attack), i.e. from an argument
to either another argument or another interaction [14].

Def. 3 (ASAF) An Attack-Support Argumentation Framework (ASAF) is a tuple 〈A, Ratt, Rsup〉
where
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A is a set of arguments,

Ratt is a subset of A× (A ∪Ratt ∪Rsup) corresponding to a set of attacks, and

Rsup is a subset of A× (A∪Ratt ∪Rsup) corresponding to a set of supports. Note that Rsup is
assumed to be irreflexive and transitive.

It is assumed that Ratt ∩Rsup = ∅.

We propose an alternative formalisation in which each interaction is labelled.1

Def. 4 (RAF) A recursive argumentation framework (RAF) is a tuple 〈A, Ratt, Rsup, s, t〉 where

A is a set of arguments,

Ratt (resp. Rsup) is a set disjunct from A, representing attack (resp. support) names,

s is a function from (Ratt ∪Rsup) to A, mapping each interaction to its source,

t is a function from (Ratt ∪Rsup) to (A ∪Ratt ∪Rsup) mapping each interaction to its target.

It is assumed that Ratt ∩Rsup = ∅.

Note that a D-framework can be recovered as a particular case of a RAF as follows. Given any D-
framework AF = 〈A,R〉, we may obtain its corresponding recursive argumentation framework RAF
= 〈A, Ratt, Rsup, s, t〉 by defining

a set of attack names Ratt = {α(a,b)|(a, b) ∈ R}

a set of support names Rsup = ∅

the functions s (resp. t) as s(α(a,b)) = a (resp. t(α(a,b)) = b).

Similarly, a BAF can be recovered as a particular case of a RAF, where t is a mapping from (Ratt ∪
Rsup) to A.

In the remainder of this paper, we do not consider the support relation. So we consider either an AF,
or a RAF with Rsup = ∅ (in that case, the set representing attacks will be denoted by R).

That means, we consider a 4-tuple 〈A, R, s, t〉 where

A is a set of arguments (denoted by a, b, . . .) and R is a set disjunct from A, representing
attack names (denoted by greek letters),

s is a function from R to A, mapping each interaction to its source,

t is a function from R to (A ∪R) mapping each interaction to its target.

1Another formalisation is also given in [6]: A labelled ASAF (LASAF) is a 5-uple 〈A, Ratt, Rsup, V , L〉 where A is
a set of arguments, Ratt ⊆ A × (A ∪Ratt ∪Rsup) is an attack relation, Rsup ⊆ A × (A ∪Ratt ∪Rsup) is a support
relation, V is a set of labels (denoted by greek letters) and L is a bijection from R ⊆ (Ratt ∪Rsup) to V .
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In the particular case of an AF, t is a mapping from R to A.

For each of these argumentation frameworks, we will use a graphical representation defined as fol-
lows.

In the case of an AF, an attack (a, c) ∈ R will be represented by two vertices a, c and an edge from
a to c.

a c

In the case of a RAF, an attack named α (with s(α) = a and t(α) = c ∈ A) being the target of an
attack β with s(β) = b will be represented as:

a α c

β

b

In the following, the graphical representation of an argumentation framework will be denoted by G.
For convenience, given a RAF = 〈A, R, s, t〉, we will often also use G to denote the RAF.

2.2 Argumentation semantics for AF

In the following, we recall the definitions of the standard semantics. Note that these definitions only
concern Dung’s abstract argumentation frameworks (with simple attacks). It is important to note
that no semantics has been clearly defined in the other cases, i.e. when supports and/or recursive
interactions exist (some suggestions have been done but there exists no consensus about them).

In the extension-based approach, a semantics specifies requirements that a set of arguments should
satisfy. These requirements have been extensively analysed in [BG07]. There are three basic require-
ments, corresponding to three principles for semantics:

An extension is a set of arguments that “can stand together”. This corresponds to the conflict-
free principle.

An extension is a set of arguments that “can stand on its own”, namely is able to counter all the
attacks it receives. This corresponds to the concept of defence and leads to the admissibility
principle.

Reinstatement is a kind of dual principle. If an extension defends an argument, this argument
is reinstated by the extension and should belong to the extension.

We give below the formal definitions.

Def. 5 (Basic concepts used in extension-based semantics) Let AF = 〈A,R〉 and S ⊆ A.
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S is conflict-free if and only if there are no arguments a, b ∈ S, such that aRb.

a ∈ A is acceptable with respect to S (or equivalently S defends a) if and only if ∀b ∈ A such
that bRa, ∃c ∈ S such that cRb.

S is admissible if and only if S is conflict-free and each argument in S is acceptable with
respect to S.

Standard extension-based semantics are classically defined as follows:

Def. 6 (AF extensions in standard semantics) Let AF = 〈A,R〉 and S ⊆ A.

S is a naive extension of AF if and only if it is a maximal (with respect to ⊆) conflict-free set.

S is a preferred extension of AF if and only if it is a maximal (with respect to ⊆) admissible
set.

S is a complete extension of AF if and only if S is admissible and each argument which is
acceptable with respect to S belongs to S.

S is a stable extension of AF if and only if it is conflict-free and ∀a 6∈ S, ∃b ∈ S such that bRa.

Most of the standard semantics can be alternatively defined using the characteristic function F .

Def. 7 (Extensions defined by F) Let AF = 〈A,R〉 and S ⊆ A.

The characteristic function of AF is defined by: F(S) = {a ∈ A such that a is acceptable with
respect to S}.

S is admissible if and only if S is conflict-free and S ⊆ F(S).

S is a complete extension of AF if and only if it is conflict-free and a fixed point of F .

S is the grounded extension of AF if and only if it is the minimal (with respect to⊆) fixed point2

of F .

S is a preferred extension of AF if and only if it is a maximal (with respect to ⊆) complete
extension if and only if it is a maximal conflict-free fixed point of F .

Note that due to Definition 6 the complete semantics is based on both principles of admissibility
and resinstatement. Moreover, as the grounded extension, the preferred extensions and the stable
extensions are also complete extensions, the grounded (resp. preferred, stable) semantics satisfies
the admissibility and reinstatement principles.

2It can be proved that the minimal fixed point of F is conflict-free.
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2.3 Argumentation semantics for BAF

Handling support and attack at an abstract level has the advantage to keep genericity and to give an
analytic tool for studying complex attacks and new semantics considering both attack and support
relations, among others. However, the drawback is the lack of guidelines for choosing the appropriate
definitions and semantics depending on the application. Several variants of the support relation have
been proposed according to different interpretations of the support. In the following we consider
the necessary support, which can also be used for handling recursive attacks, as shown later. This
kind of support was initially proposed in [20] with the following interpretation: If cRsupb then the
acceptance of c is necessary to get the acceptance of b, or equivalently the acceptance of b implies the
acceptance of c. Suppose now that aRattc. The acceptance of a implies the non-acceptance of c and
so the non-acceptance of b. Also, if cRsupa and cRattb, the acceptance of a implies the acceptance
of c and the acceptance of c implies the non-acceptance of b. So, the acceptance of a implies the
non-acceptance of b. These constraints relating a and b are enforced by adding new complex attacks
from a to b:

Def. 8 ([20] Extended attack) Let 〈A,Ratt,Rsup〉 and a, b ∈ A. There is an extended attack from a
to b iff

either (1) aRattb;

or (2) a1Ratta2Rsup . . .Rsupan, n ≥ 3, with a1 = a, an = b;

or (3) a1Rsup . . .Rsupan, and a1Rattap, n ≥ 2, with an = a, ap = b.

Consider the following graphical notations:

the simple edges represent attacks,

the double edges represent supports.
The following figures illustrate the cases 2 and 3 of Definition 8:

Case 2: a c . . . b Case 3:

c b

. . . a

Among the frameworks proposed in [12] for handling necessary supports, we focus on the one en-
coding the following interpretation: If cRsupb, “the acceptance of c is necessary to get the acceptance
of b” because “c is the only attacker of a particular attacker of b”:

Def. 9 ([12] MAF associated with a BAF) Let 〈A, Ratt, Rsup〉 be a BAF with Rsup being a set
of necessary supports. Let An = {Ncb|(c, b) ∈ Rsup} and Rn = {(c,Ncb)|(c, b) ∈ Rsup} ∪
{(Ncb, b)|(c, b) ∈ Rsup}. The tuple 〈A ∪ An,Ratt ∪ Rn〉 is the meta-argumentation framework
(MAF3) associated with the BAF.

Note that a MAF is a D-framework, so any Dung’s semantics can be applied.

3In [12], it is called a MAS (meta-argumentation system).
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2.4 Argumentation semantics for recursive frameworks

Let us recall that we restrict the presentation to recursive frameworks without any support relation.

As in the bipolar case, there is no consensus about semantics for recursive frameworks. Concerning
an ASAF, at least four distinct methods exist. The first third ones ([4, 13, 6]) consist in a translation
of the original ASAF into an AF (in which all Dung’s semantics can be reused) whereas the last one
([14]) gives direct definitions for ASAF semantics without using a translation into an AS.

More recently ([7, 8]), acceptability semantics have been defined for a RAF, where an extension is
composed of a set of arguments and a set of attacks.

Note that if supports are removed, an ASAF exactly corresponds to an AFRA. So in this section, the
expressions “ASAF without support” or “AFRA” may be used indifferently.

2.4.1 Method of [4]

The proposed translation uses the notion of defeat defined as follows:4

Def. 10 ([4] Defeat in ASAF without support) Let 〈A,R〉 be an ASAF without support. Let α, β ∈
R. Let X ∈ A ∪R.

α directly defeats X iff X is the target of α.

α indirectly defeats β iff the target of α is an argument that is the source of β.

Then, a translation of an ASAF into an AF is provided:

Def. 11 ([4] AF associated with an ASAF) Let 〈A,R〉 be an ASAF without support. The AF asso-
ciated with this ASAF is 〈A′,R′〉 defined by:

A′ = A ∪R,

R′ = {(X, Y ) s.t. X ∈ R, Y ∈ A ∪R and X directly or indirectly defeats Y }.

The previous notions are illustrated on the following example:

ASAF Associated AF

a α c

δ β

d b

δ d

a α c

b β

4In [4], the argumentation framework with recursive attacks is called AFRA.
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For instance, α directly defeats c, β directly defeats α and δ indirectly defeats α.

The following points seem counterintuitive:

there is no attack between a and c (more generally, no argument from A can be an attacker in
the associated AF of the ASAF),

there is no link between a and α (more generally, there is no link between an attack and its
source); that is surprizing since, without a, the attack α does not exist.

2.4.2 Method of [13]

The translation from an ASAF into an AF follows two steps:5

1. First, the ASAF is turned into a BAF with necessary support.

2. Then, this BAF is turned into an AF by adding extended attacks.

Here, we restrict the definitions of [13] to ASAF without support.

Def. 12 ([13] BAF associated with ASAF) The following schemas describe the encoding of attacks
(attacked or not):

ASAF Associated BAF

a α c

δ β

d b

δ d

a α c

b β

Given the BAF associated with the ASAF, the second step followed in [13] is to create an AF by
adding complex attacks, namely Case 2 - extended attacks (see Def. 8):

Def. 13 ([13] AF associated with BAF and ASAF) Let 〈A,Ratt,Rsup〉 be the BAF associated with
a given ASAF. The pair 〈A′,R′〉, where A′ = A and R′ = Ratt ∪ {(a, b)| there is a sequence a1 Ratt

a2 Rsup . . .Rsup an, n ≥ 3, with a1 = a, an = b} is the AF associated with the BAF and the ASAF.

For instance (in this case the attack from δ to α is added following Definition 13):

5In [13], the argumentation framework contains recursive attacks and supports, so the definitions are more complex
in order to take into account supports.
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ASAF Associated BAF Associated AF

a α c

δ β

d b

δ d

a α c

b β

δ d

a α c

b β

Note that it has been proved in [13] that in case of ASAF without support, the approaches developed
in [4] and [13] were equivalent.

2.4.3 Method of [6]

The proposed translation consists in encoding recursive interactions into a MAF in two steps:6

1. First, the ASAF is turned into a BAF with necessary support (exactly in the same way as done
in [13]).

2. Then, this BAF is turned into an MAF following Definition 9 on page 9.

Here, we restrict the definitions of [6] to ASAF without support.

Def. 14 ([6] Encoding of labelled attacks) The following schemas describe the encoding of a la-
belled attack (attacked or not):

ASAF Associated BAF Associated MAF

a α c

δ β

d b

δ d

a α c

b β

δ Ndδ d

a Naα α c

b Nbβ β

Note that 3 new notions are also defined in [6] for characterizing interactions:

the validity of an interaction α encodes the fact that α can or cannot be affected by interactions
on it;

the groundness of an interaction α encodes the link between α and its source;

6In [6], the argumentation framework is called LASAF and contains recursive attacks and supports, so the definitions
are more complex in order to take into account supports.
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the activation of an interaction α = its validity + its groundness; in this case, α can be taken
into account for determining the status of its target.

Note that the Nij code the ground-links, i.e. the links between the source of an interaction and the
interaction.

2.4.4 Method of [14]

The first idea is similar to the one developed in [4]: introducing a notion of defeat. As done above,
we only give the definitions corresponding to ASAF without support, i.e. the definitions relied to the
notion of unconditional defeat.7

There are two cases of unconditional defeats: the first case corresponds to conflicts already captured
by the attack relation of the ASAF (called direct defeats), the second case (called indirect defeat)
captures the intuition that attacks are strictly related to their source, as in [4].

Def. 15 ([14] Defeats) Let 〈A,R〉 be an ASAF without support, α, β ∈ R and X ∈ A ∪R.

Direct defeat α directly defeats X , noted α d-def X , iff the target of α is X .

Indirect defeat α indirectly defeats β, noted α i-def β, iff α d-def the source of β.

Unconditional defeat α unconditionally defeatsX , noted α u-def X , iff α d-def X or α i-def X .

Then a redefinition of the main concepts used in argumentation semantics is given:

Once again we restrict the definitions of [14] to ASAF without support.

Def. 16 ([14] Main semantics concepts for semantics) Let 〈A,R〉 be an ASAF without support,
S ∈ A ∪R.

Conflict-Freeness S is conflict-free iff: @α,X ∈ S s.t. α u-def X .

Acceptability Let X ∈ A ∪ R, X is acceptable wrt S iff: ∀α ∈ R s.t. α u-def X , ∃β ∈ S s.t.
β u-def α.

Then, from these new notions of conflict-freeness and acceptability as in Dung’s definitions, it is
possible to redefine all standard semantics.

Even if this approach is methodologically distinct from the one of [4], in the case of an ASAF without
support, the same results are obtained.

7In [14], the argumentation framework contains recursive attacks and supports so the definitions are more complex in
order to take into account supports.
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2.4.5 Method of [7, 8]

In [7, 8], alternative acceptability semantics are defined, where the notion of extension (set of ar-
guments) is replaced by a pair of a set of arguments and a set of attacks, called a “structure”. The
intuition is the fact that two arguments may be conflicting depends on the validity of the attack be-
tween them. So it would not be sound to give a definition of a set of arguments being conflict-free,
independently of a set of attacks. More generally, the classic role of attacks in defeating arguments
will be played by a subset of attacks, which is extension dependent, and represents the valid attacks
with respect to the extension.

For the rest of this section, we consider a given recursive argumentation framework without support
RAF = 〈A, R, s, t〉.

Def. 17 ([7]) A structure on RAF is a pair U = (S,Γ) such that S ⊆ A and Γ ⊆ R.

Intuitively, we are interested in structures U = (S,Γ) such that S contains arguments that are ac-
cepted “owing to” U and Γ contains attacks which are valid “owing to” U . The precise meaning of
“owing to” will depend on the considered semantics.

In the following, we recall the main notions used in semantics about structures that are defined in [7].

For that purpose, we define the set of arguments (resp. attacks) that are “defeated” (resp. “inhibited”)
wrt a given structure.

Def. 18 ([7]) Given U = (S,Γ) a structure on RAF = 〈A, R, s, t〉. Let a ∈ A and α ∈ R.

a is defeated wrt (S,Γ) iff ∃β ∈ Γ such that s(β) ∈ S and t(β) = a,

α is inhibited wrt (S,Γ) iff ∃β ∈ Γ such that s(β) ∈ S and t(β) = α.

Def(U) (resp. Inh(U)) will denote the set of arguments (resp. attacks) that are defeated (resp.
inhibited) wrt the structure U .

Conflict-free structures The minimal requirement for a structure (S,Γ) is that two arguments of
S cannot be related by an attack of the structure, and similarly there cannot be an attack grounded
in S and whose target is an element of Γ. In other words, a structure is conflict-free if no argument
(resp. attack) of the structure is defeated (resp. inhibited) wrt the structure:

Def. 19 ([7]) A structure U = (S,Γ) on RAF is conflict-free iff S∩Def(U) = ∅ and Γ∩ Inh(U) =
∅.

Note that for any Γ ⊆ R, the structure (∅,Γ) is conflict-free. The same holds for AF, where an
empty set of arguments is always conflict-free. Moreover for any S ⊆ A the structure (S,∅) is
conflict-free.
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Admissible structures As done for conflict-freeness, the definition of an argument a being accept-
able wrt a set of arguments S should be relative to a set of attacks:

Def. 20 ([7]) Given a structure U = (S,Γ) on RAF. Let a ∈ A and α ∈ R.

a is acceptable wrt U iff ∀β ∈ R such that t(β) = a, either β ∈ Inh(U) or s(β) ∈ Def(U).

α is acceptable wrt U iff ∀β ∈ R such that t(β) = α, either β ∈ Inh(U) or s(β) ∈ Def(U).

Acc(U) will denote the set containing all acceptable arguments and attacks wrt U .

In other words, x ∈ A ∪R is acceptable wrt a structure U = (S,Γ) iff for each attack β ∈ R such
that t(β) = x, there exists γ ∈ Γ with s(γ) ∈ S and t(γ) ∈ {β, s(β)}.
Then admissible structures can be defined as follows:

Def. 21 ([7]) A structure U = (S,Γ) on RAF is admissible iff it is conflict-free and ∀x ∈ (S ∪ Γ), x
is acceptable wrt U .

Remark Let α ∈ R with t(α) = b ∈ A. If α and s(α) are unattacked, there is no admissible
structure U = (S,Γ) such that b ∈ S.

Similarly, let γ ∈ R with t(γ) = β ∈ R. If γ and s(γ) are unattacked, there is no admissible
structure U = (S,Γ) such that β ∈ Γ.

Complete structures Following the definitions of standard semantics in Dung’s frameworks, com-
plete structures are defined as admissible structures which contain all the arguments (resp. attacks)
that are acceptable wrt the structure:

Def. 22 ([7]) A structure U = (S,Γ) on RAF is complete iff it is conflict-free and Acc(U) = S ∪ Γ.

Note that each complete structure must contain all the unattacked arguments and all the unattacked
attacks.

Stable structures In Dung’s framework, stable extensions are defined as conflict-free extensions
that attack external arguments. It can be proved that stable extensions are also admissible and even
complete extensions. In [7], a definition of stable structures is provided that preserves the same
relation between semantics:

Def. 23 ([7]) A structure U = (S,Γ) on RAF is stable iff it is conflict-free and satisfies :

1. ∀a ∈ A \ S, a ∈ Def(U) and

2. ∀α ∈ R \ Γ, α ∈ Inh(U).
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Preferred structures The definition of preferred structures requires the definition of the following
order relation: Let U = (S,Γ) and U ′ = (S ′,Γ′) be structures on RAF. We write U ⊆ U ′ iff
(S ∪ Γ) ⊆ (S ′ ∪ Γ′). We say that the structure U is ⊆-maximal iff every structure U ′ that satisfies
U ⊆ U ′ also satisfies U ′ ⊆ U . Similarly, we say that U is ⊆-minimal iff every structure U ′ that
satisfies U ′ ⊆ U also satisfies U ⊆ U ′.

Def. 24 A structure U = (S,Γ) on RAF is preferred iff it is a ⊆-maximal admissible structure.

It has been proved in [7] that every complete structure is admissible, every preferred structure is also
complete and every stable structure is also preferred.

Grounded structure In Dung’s framework, the grounded structure is defined as the ⊆-minimal
complete extension. It is unique.
In a similar way, we could study the ⊆-minimal complete structures. The following results hold:

Prop. 1 Let U = (S,Γ) be a structure such that Acc(U) ⊆ S ∪ Γ. The following assertions are
equivalent:

1. U is a ⊆-minimal conflict-free structure satisfying Acc(U) ⊆ S ∪ Γ

2. U is a ⊆-minimal complete structure

Prop. 2 There is only one ⊆-minimal structure which is conflict-free and satisfies Acc(U) ⊆ S ∪ Γ.

So we may define:

Def. 25 The grounded structure on RAF is the ⊆-minimal conflict-free structure U = (S,Γ) satisfy-
ing Acc(U) ⊆ S ∪ Γ.

D-structures The notion of structure can be strengthened so that we obtain a conservative gen-
eralization of Dung’s frameworks for the conflict-free, admissible, complete, stable and preferred
definitions. It is worth to note that in Dung’s frameworks, every attack is considered as valid, in the
sense that it may affect its target. The following definition strengthens the notion of structure by
adding a condition on attacks that will force every acceptable attack to be valid.

Def. 26

1. A d-structure on RAF is a structure U = (S,Γ) such that (Acc(U) ∩R) ⊆ Γ.

2. A conflict-free (resp. admissible, complete, preferred, stable) d-structure is a conflict-free
(resp. admissible, complete, preferred, stable) structure which is also a d-structure.

It follows from Definition 22 on the previous page that every complete (resp. stable, preferred)
structure is a d-structure. However it is not the case for admissible and conflict-free structures.
Indeed, as a direct consequence of Definition 26, we have that each conflict-free d-structure must
contain all the unattacked attacks.
In order to establish the conservative generalization of Dung’s semantics, we need to:
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define what it means for a set of arguments to be an extension of a RAF,

establish a correspondence between a RAF in which no attack targets another attack, and a
D-framework.

First, a set of arguments S ⊆ A is said to be a conflict-free (resp. admissible, complete, stable,
preferred) extension of RAF iff there is some Γ ⊆ R such that (S,Γ) is a d-structure of RAF.
Then, let us consider a particular RAF in which no attack targets another attack, called a non-
recursive RAF. In other words, a non-recursive RAF is such that t is a mapping from R to A. It
is easy to build a D-framework associated with some non-recursive RAF.
Let RAF = 〈A, R, s, t〉 be non recursive. The D-framework associated with RAF is denoted by
RAFD and defined as 〈A, {(s(α), t(α))/α ∈ R} 〉.
In the case of a non-recursive RAF, as no attack is attacked, every d-structure U = (S,Γ) satisfies
Γ = R.
The conservative generalization of Dung’s semantics has been proved in [7, 8] according to the fol-
lowing result: A set of arguments S is a conflict-free (resp. admissible, complete, stable, preferred)
extension of some non-recursive RAF iff S is conflict-free (resp. admissible, complete, stable, pre-
ferred) wrt the D-framework RAFD.
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Chapter 3

Logical description of a recursive framework

[10] proposes a logical description of an argumentation framework, that allows an explicit repre-
sentation of arguments, attacks (being themselves possibly attacked) and their properties (accepted
argument, attacked argument, valid attack, . . . ). Let G denote a recursive argumentation framework,
Σ(G) will denote the set of first-order logic formulae describing G.

3.1 Vocabulary

The following unary predicate symbols are used: Acc, NAcc, V al, Attack, Argument1 and the
following unary functions symbols : T , S, with the following meaning:

Acc(x) (resp. NAcc(x)) means “x is accepted” (resp. “x cannot be accepted”), when x denotes
an argument

V al(α) means “α is valid when α denotes an attack

Attack(x) means “x is an attack”

Argument(x) means “x is an argument”

T (x) (resp. S(x)) denotes the target (resp. source) of x, when x denotes an attack

The binary equality predicate is also used. Note that the quantifiers ∃ and ∀ range over some domain
D. To restrict them to subsets of D, bounded quantifiers will be also used:

(∀x ∈ E)(P (x)) means (∀x)(x ∈ E → P (x)) or equivalently (∀x)(E(x)→ P (x)).

So we will use:

(∀x ∈ Attack)(Φ(x)) (resp. (∃x ∈ Attack)(Φ(x)))

and (∀x ∈ Argument)(Φ(x)) (resp. (∃x ∈ Argument)(Φ(x))).
1Here, we only give a simplified version that does not explicitly represent the notions of grounded and active attacks,

since in [6, 10] an attack is grounded iff its source is accepted and an attack is active iff it is grounded and valid.
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3.2 Properties

The properties introduced in [10] can be partitioned into two sets:

the properties describing the general behaviour of an attack, possibly recursive, in an argu-
mentation framework, i.e. how an attack interacts with arguments and other attacks related to
it.

and the properties encoding the specificities of the current argumentation framework.

Using the vocabulary defined in Section 3.1 on the previous page, the general properties can be
expressed by the following set of first-order formulae:

(1) ∀x ∈ Attack(∀y ∈ Attack((V al(y) ∧ (T (y) = x) ∧ Acc(S(y))→ ¬V al(x)))

(2) ∀x ∈ Argument(∀y ∈ Attack((V al(y) ∧ (T (y) = x) ∧ Acc(S(y))→ NAcc(x)))

(3 ∀x ∈ Argument(NAcc(x)→ ¬Acc(x))

(4) ∀x(Attack(x)→ ¬Argument(x))

(5) ∀x(Argument(x) ∨ Attack(x))

Concerning the logical encoding of specificities of the RAF, we have the following set of formulas:

(6) (S(α) = a) ∧ (T (α) = b) for all α ∈ R with s(α) = a and t(α) = b

(7) ∀x(Argument(x)↔ (x = a1) ∨ . . . ∨ (x = an))

(8 ∀x(Attack(x)↔ (x = α1) ∨ . . . ∨ (x = αm))

(9) ai 6= aj for all ai, aj ∈ A with i 6= j

(10) αi 6= αj for all αi, αj ∈ R with i 6= j

The logical theory Σ(G) corresponding to G consists of the above 10 formulae.

Note that we assume that the argumentation framework is finite, with A = {a1, . . . an} and R =
{α1, . . . , αm}. Moreover, in the following, we will write sα (resp. tα) in place of S(α) (resp. T (α))
for simplicity.
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Chapter 4

Logical formalization of semantics in a RAF

[10] considers the basic principles used for defining semantics (conflict-freeness, defence, reinstate-
ment, stability) and gives a logical expression for each of these principles, thus leading to add for-
mulas to the base Σ(G) and producing new bases.

4.1 Logical encoding of semantics

Conflict-freeness In presence of recursive attacks, the conflict-freeness principle is reformulated
in [10] as follows (one for arguments and one for attacks):

If there is a valid attack between two arguments, they cannot be jointly accepted.

If there is an attack from an accepted argument to an attack, these attacks cannot be both valid.

Due to the formulae encoding an attack α in the base Σ(G), these properties are already expressed
in Σ(G).

Defence [10] reformulates the defence principle as follows (one for arguments and one for attacks):

An attacked argument may be accepted only if for each attack against it, either the source or
the attack itself is in turn attacked by a valid attack from an accepted argument.

An attack may be valid only if for each attack against it, either the source or the attack itself is
in turn attacked by a valid attack from an accepted argument.

These properties are expressed by the following formulae:

(11) ∀α ∈ Attack (
Acc(tα)
→ (∃β ∈ Attack

(tβ ∈ {sα, α}1 ∧ V al(β) ∧ Acc(sβ))) )

1Strictly speaking, should be written as follows : tβ = sα ∨ tβ = α.
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(12) ∀α ∈ Attack (∀δ ∈ Attack (
((δ = tα) ∧ V al(δ))
→ (∃β ∈ Attack

(tβ ∈ {sα, α} ∧ V al(β) ∧ Acc(sβ))) ))

These formulae are added to the base Σ(G), thus producing the base Σd(G).

Reinstatement The reinstatement principle is reformulated in [10] as follows (one for arguments
and one for attacks):

An argument must be accepted provided that, for each attack against it, the source or the attack
itself is in turn attacked by a valid attack from an accepted argument.

An attack may be valid provided that for each attack against it, either the source or the attack
itself is in turn attacked by a valid attack from an accepted argument.

These properties are expressed by the following formulae:

(13) ∀c ∈ Argument (
(∀α ∈ Attack (tα = c
→ (∃β ∈ Attack

(tβ ∈ {sα, α} ∧ V al(β) ∧ Acc(sβ)))))
→ Acc(c) )

(14) ∀δ ∈ Attack (
(∀α ∈ Attack (tα = δ
→ (∃β ∈ Attack

(tβ ∈ {sα, α} ∧ V al(β) ∧ Acc(sβ)))))
→ V al(δ) )

These formulae are added to the base Σ(G), thus producing the base Σr(G).

Stability The stability property is reformulated in [10] as follows (one for arguments and one for
attacks):

If an argument is not accepted, it must be attacked by a valid attack from an accepted argument.

If an attack is not valid, it must be attacked by a valid attack from an accepted argument.

These properties are expressed by the following formulae:

(15) ∀c ∈ Argument (
¬Acc(c)
→ (∃β ∈ Attack

((tβ = c) ∧ V al(β) ∧ Acc(sβ))) )
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(16) ∀α ∈ Attack (
¬V al(α)
→ (∃β ∈ Attack

((tβ = α) ∧ V al(β) ∧ Acc(sβ)) )

These formulae are added to the base Σ(G), thus producing the base Σs(G).

4.2 Characterizing semantics for a RAF

Our purpose is to propose characterizations of the structures in different semantics in terms of models
of the bases Σ(G), Σd(G), Σr(G), Σs(G) following the same method that is used in the classical case
(see [10]).

Let I be an interpretation of a set of formulae Σ of the language introduced in Section 3.1 on page 19.
Let us define:

SI = {x ∈ A|I(Acc(x)) = true}

ΓI = {x ∈ R|I(V al(x)) = true}

Moreover, let I be a model of Σ:

I is a ⊆-maximal model of Σ iff there is no model I ′ of Σ such that (SI ∪ ΓI) ⊂ (SI′ ∪ ΓI′)

I is a ⊆-minimal model of Σ iff there is no model I ′ of Σ such that (SI′ ∪ ΓI′) ⊂ (SI ∪ ΓI)

Let G denote the RAF 〈A, R, s, t〉. We have the following characterizations:

Prop. 3 Let U = (S,Γ) a structure on G.

1. U is conflict-free if and only if ∃I model of Σ(G) such that SI = S and ΓI = Γ.

2. U is admissible if and only if ∃I model of Σd(G) such that S = SI and ΓI = Γ.

3. U is complete if and only if ∃I model of Σd(G) ∪ Σr(G) such that S = SI and ΓI = Γ.

4. U is a stable structure if and only if ∃I model of Σs(G) such that SI = S and ΓI = Γ.

5. U is a preferred structure if and only if ∃I ⊆-maximal model of Σd(G) such that SI = S and
ΓI = Γ.

6. U is the grounded structure if and only if S = SI and ΓI = Γ where I is a ⊆-minimal model
of Σr(G).2

2Note that it also holds that U is the grounded structure iff S = SI and ΓI = Γ where I is a ⊆-minimal model of
Σd(G) ∪ Σr(G). Considering Σd(G) ∪ Σr(G) instead of Σr(G) might be useful from a computational point of view,
when searching for minimal models.
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Then we consider characterizations of d-structures. We recall that d-structures are particular struc-
tures in which acceptable attacks are forced to be valid. So, we consider the base Σ(G) augmented
with the formula that expresses the reinstatement principle for attacks, that is the formula (14) (de-
noted by Φatt

r (G) ):

(∀δ ∈ Attack)(((∀α ∈ Attack)(tα = δ → (∃β ∈ Attack)(tβ ∈ {sα, α} ∧ V al(β) ∧ Acc(sβ))))→
V al(δ)).

Thus, we obtain the following characterizations:

Prop. 4 Let U = (S,Γ) a structure on G.

1. U is a conflict-free d-structure if and only if ∃I model of Σ(G) ∪ {Φatt
r (G)} such that SI = S

and ΓI = Γ.

2. U is an admissible d-structure if and only if ∃I model of Σd(G)∪{Φatt
r (G)} such that S = SI

and ΓI = Γ.
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Chapter 5

Examples with recursivity (ASAF)

The following examples are extracted from [10] in which they are numbered from 14 to 25.

5.1 Example 14 issued from [10]

Ex. 14

a α b

β

c

Σ(G) = {
(V al(β) ∧ Acc(c))→ ¬V al(α)
(V al(α) ∧ Acc(a))→ NAcc(b)
NAcc(b)→ ¬Acc(b)

}

Σd(G) = Σ(G) ∪ { Acc(b)→ (V al(β) ∧ Acc(c))
¬V al(α)

}

Σr(G) = Σ(G) ∪ {

Acc(a)
Acc(c)
(V al(β) ∧ Acc(c))→ Acc(b)
V al(β)

}

Σs(G) = Σ(G) ∪ {

Acc(a)
¬Acc(b)→ (V al(α ∧ Acc(a))
Acc(c)
¬V al(α)→ (V al(β) ∧ Acc(c))
V al(β)

}

Then using Proposition 3 on page 23, the computation of the models gives the following results:

25



Type of
structure

Type of model Computed structures

Conflict-
free

model of Σ(G) (∅,∅) ({b},∅) ({c},∅) ({b, c},∅) (∅, {α}) ({b}, {α})
({c}, {α}) ({b, c}, {α}) (∅, {α, β}) (∅, {β}) ({b}, {β})
({c}, {β}) ({b, c}, {β}) ({b}, {α, β}) ({a}, {α, β}) ({a},∅)
({a, b},∅) ({a, c},∅) ({a, b, c},∅) ({a}, {α}) ({a, c}, {α})
({a}, {β}) ({a, b}, {β}) ({a, c}, {β}) ({a, b, c}, {β})

Naive ⊆-maximal model of
Σ(G)

({b, c}, {α}) ({b}, {α, β}) ({a}, {α, β}) ({a, c}, {α})
({a, b, c}, {β})

Admissible model of Σd(G) (∅,∅) ({c},∅) (∅, {β}) ({c}, {β}) ({b, c}, {β}) ({a}, {β})
({a},∅) ({a, c},∅) ({a, c}, {β}) ({a, b, c}, {β})

Preferred ⊆-maximal model of
Σd(G)

({a, b, c}, {β})

Grounded ⊆-minimal model of
Σr(G)

({a, b, c}, {β})

Complete model of Σd(G) ∪
Σr(G)

({a, b, c}, {β})

Stable model of Σs(G) ({a, b, c}, {β})
Then, from Definition 26 on page 16 and Proposition 4 on page 24, we obtain:

Φatt
r (G) = V al(β)

Semantics D-structures
Admissible (∅, {β}), ({a}, {β}), ({c}, {β}),({a, c}, {β}), ({b, c}, {β}), ({a, b, c}, {β})

Stable ({a, b, c}, {β})
Complete ({a, b, c}, {β})

Moreover, the following table gives the extensions obtained with [6] or [4, 13] (concerning only
arguments and interactions given in the initial framework):

Semantics Extensions
Grounded {a, b, c, β}
Preferred {a, b, c, β}

Stable {a, b, c, β}
Complete {a, b, c, β}
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5.2 Example 15 issued from [10]

Ex. 15

a α b

β

Σ(G) = {
(V al(β) ∧ Acc(b))→ ¬V al(α)
(V al(α) ∧ Acc(a))→ NAcc(b)
NAcc(b)→ ¬Acc(b)

}

Σd(G) = Σ(G) ∪ { Acc(b)→ V al(β)
V al(α)→ Acc(a)

}

Σr(G) = Σ(G) ∪ { Acc(a)
V al(β)

}

Σs(G) = Σ(G) ∪ {

Acc(a)
¬Acc(b)→ (V al(α) ∧ Acc(a))
V al(β)
¬V al(α)→ (V al(β) ∧ Acc(b))

}

Then using Proposition 3 on page 23, the computation of the models gives the following results:

Type of
structure

Type of model Computed structures

Conflict-
free

model of Σ(G) (∅,∅) ({b},∅) (∅, {α}) ({b}, {α}) (∅, {α, β}) (∅, {β})
({b}, {β}) ({a}, {α, β}) ({a},∅) ({a, b},∅) ({a}, {α})
({a}, {β}) ({a, b}, {β})

Naive ⊆-maximal model of
Σ(G)

({b}, {α}) ({a}, {α, β}) ({a, b}, {β})

Admissible model of Σd(G) (∅,∅) (∅, {β}) ({b}, {β}) ({a}, {β}) ({a},∅) ({a}, {α})
({a}, {α, β}) ({a, b}, {β})

Preferred ⊆-maximal model of
Σd(G)

({a, b}, {β}) ({a}, {α, β})

Grounded ⊆-minimal model of
Σr(G)

({a}, {β})

Complete model of Σd(G) ∪
Σr(G)

({a}, {β}) ({a, b}, {β}) ({a}, {α, β})

Stable model of Σs(G) ({a, b}, {β}) ({a}, {α, β})

Then, from Definition 26 on page 16 and Proposition 4 on page 24, we obtain:

Semantics D-structures
Admissible (∅, {β}), ({a}, {β}), ({b}, {β}), ({a}, {α, β}), ({a, b}, {β})

Stable ({a}, {α, β}), ({a, b}, {β})
Complete ({a}, {β}), ({a}, {α, β}), ({a, b}, {β})
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Moreover, the following table gives the extensions obtained with [6] or [4, 13] (concerning only
arguments and interactions given in the initial graph):

Semantics Extensions
Grounded {a}
Preferred {a, b, β} {a, α}

Stable {a, b, β} {a, α}
Complete {a} {a, b, β} {a, α}
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5.3 Example 16 issued from [10]

Ex. 16

a α b

β

d δ c

Σ(G) = {

(V al(β) ∧ Acc(c))→ ¬V al(α)
(V al(α) ∧ Acc(a))→ NAcc(b)
NAcc(b)→ ¬Acc(b)
(V al(δ) ∧ Acc(d))→ NAcc(c)
NAcc(c)→ ¬Acc(c)

}

Σd(G) = Σ(G) ∪ {
Acc(b)→ (V al(β) ∧ Acc(c))
¬Acc(c)
V al(α)→ (V al(δ) ∧ Acc(d))

}

Σr(G) = Σ(G) ∪ {

Acc(a)
Acc(d)
(V al(β) ∧ Acc(c))→ Acc(b)
V al(β)
V al(δ)
(V al(δ) ∧ Acc(d))→ V al(α)

}

Σs(G) = Σ(G) ∪ {

Acc(a)
Acc(d)
¬Acc(c)→ (V al(δ) ∧ Acc(d))
¬Acc(b)→ (V al(α) ∧ Acc(a))
V al(β)
V al(δ)
¬V al(α)→ (V al(β) ∧ Acc(c))

}

Then using Proposition 3 on page 23, the computation of the models gives the following results:
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Type of
structure

Type of model Computed structures

Conflict-
free

model of Σ(G) 89 structures

Naive ⊆-maximal model of
Σ(G)

({b, c, d}, {α}) ({b, c}, {α, δ}) ({b, d}, {α, β, δ})
({a, d}, {α, β, δ}) ({a, c, d}, {α}) ({a, b, c, d}, {β})
({a, c}, {α, δ}) ({a, b, c}, {β, δ}) ({a, b, d}, {β, δ})

Admissible model of Σd(G) 20 structures (only 6 contain β and δ)
Preferred ⊆-maximal model of

Σd(G)
({a, d}, {α, β, δ})

Grounded ⊆-minimal model of
Σr(G)

({a, d}, {α, β, δ})

Complete model of Σd(G) ∪
Σr(G)

({a, d}, {α, β, δ})

Stable model of Σs(G) ({a, d}, {α, β, δ})

Then, from Definition 26 on page 16 and Proposition 4 on page 24, we obtain:

Semantics D-structures
Admissible (∅, {β, δ}), ({a}, {β, δ}), ({d}, {β, δ}), ({d}, {α, β, δ}),

({a, d}, {β, δ}), ({a, d}, {α, β, δ})
Stable ({a, d}, {α, β, δ})

Complete ({a, d}, {α, β, δ})

Moreover, the following table gives the extensions obtained with [6] or [4, 13] (concerning only
arguments and interactions given in the initial graph):

Semantics Extensions
Grounded {a, d, α, δ}
Preferred {a, d, α, δ}

Stable {a, d, α, δ}
Complete {a, d, α, δ}
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5.4 Example 17 issued from [10]

Ex. 17

d δ a α b

β

c

Σ(G) = {

(V al(β) ∧ Acc(c))→ ¬V al(α)
(V al(α) ∧ Acc(a))→ NAcc(b)
NAcc(b)→ ¬Acc(b)
(V al(δ) ∧ Acc(d))→ NAcc(a)
NAcc(a)→ ¬Acc(a)

}

Σd(G) = Σ(G) ∪ {
¬Acc(a)
Acc(b)→ ((V al(β) ∧ Acc(c)) ∨ (V al(δ) ∧ Acc(d)))
¬V al(α)

}

Σr(G) = Σ(G) ∪ {

Acc(d)
Acc(c)
((V al(β) ∧ Acc(c)) ∨ (V al(δ) ∧ Acc(d)))→ Acc(b)
V al(β)
V al(δ)

}

Σs(G) = Σ(G) ∪ {

Acc(d)
Acc(c)
¬Acc(a)→ (V al(δ) ∧ Acc(d))
¬Acc(b)→ (V al(α) ∧ Acc(a))
V al(β)
V al(δ)
¬V al(α)→ (V al(β) ∧ Acc(c))

}

Then using Proposition 3 on page 23, the computation of the models gives the following results:
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Type of
structure

Type of model Computed structures

Conflict-
free

model of Σ(G) 89 structures

Naive ⊆-maximal model of
Σ(G)

({b, c, d}, {α, δ}) ({b, c, d}, {β, δ}) ({b, d}, {α, β, δ})
({a}, {α, β, δ}) ({a, c, d}, {α}) ({a, d}, {α, β})
({a, b, c, d}, {β}) ({a, c}, {α, δ}) ({a, b, c}, {β, δ})

Admissible model of Σd(G) 23 structures (only 7 contain β and δ)
Preferred ⊆-maximal model of

Σd(G)
({b, c, d}, {β, δ})

Grounded ⊆-minimal model of
Σr(G)

({b, c, d}, {β, δ})

Complete model of Σd(G) ∪
Σr(G)

({b, c, d}, {β, δ})

Stable model of Σs(G) ({b, c, d}, {β, δ})

Then, from Definition 26 on page 16 and Proposition 4 on page 24, we obtain:

Semantics D-structures
Admissible (∅, {β, δ}), ({c}, {β, δ}), ({d}, {β, δ}), ({b, c}, {β, δ}), ({b, d}, {β, δ}),

({c, d}, {β, δ}), ({b, c, d}, {β, δ})
Stable ({b, c, d}, {β, δ})

Complete ({b, c, d}, {β, δ})

Moreover, the following table gives the extensions obtained with [6] or [4, 13] (concerning only
arguments and interactions given in the initial graph):

Semantics Extensions
Grounded {c, d, δ, β, b}
Preferred {c, d, δ, β, b}

Stable {c, d, δ, β, b}
Complete {c, d, δ, β, b}
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5.5 Example 18 issued from [10]

Ex. 18

d δ a α b

β

e γ c

Σ(G) = {

(V al(β) ∧ Acc(c))→ ¬V al(α)
(V al(α) ∧ Acc(a))→ NAcc(b)
NAcc(b)→ ¬Acc(b)
(V al(δ) ∧ Acc(d))→ NAcc(a)
NAcc(a)→ ¬Acc(a)
(V al(γ) ∧ Acc(e))→ NAcc(c)
NAcc(c)→ ¬Acc(c)

}

Σd(G) = Σ(G) ∪ {

¬Acc(a)
¬Acc(c)
Acc(b)→ ((V al(β) ∧ Acc(c)) ∨ (V al(δ) ∧ Acc(d)))
V al(α)→ (V al(γ) ∧ Acc(e))

}

Σr(G) = Σ(G) ∪ {

Acc(d)
Acc(e)
((V al(β) ∧ Acc(c)) ∨ (V al(δ) ∧ Acc(d)))→ Acc(b)
V al(β)
V al(δ)
V al(γ)
(V al(γ) ∧ Acc(e))→ V al(α)

}

Σs(G) = Σ(G) ∪ {

Acc(d)
Acc(e)
¬Acc(a)→ (V al(δ) ∧ Acc(d))
¬Acc(b)→ (V al(α) ∧ Acc(a))
¬Acc(c)→ (V al(γ) ∧ Acc(e))
V al(β)
V al(δ)
V al(γ)
¬V al(α)→ (V al(β) ∧ Acc(c))

}

Then using Proposition 3 on page 23, the computation of the models gives the following results:

33



Type of
structure

Type of model Computed structures

Conflict-
free

model of Σ(G) 317 structures

Naive ⊆-maximal model of
Σ(G)

17 structures

Admissible model of Σd(G) 50 structures (only 9 contain β, δ and γ)
Preferred ⊆-maximal model of

Σd(G)
({b, d, e}, {α, δ, β, γ})

Grounded ⊆-minimal model of
Σr(G)

({b, d, e}, {α, δ, β, γ})

Complete model of Σd(G) ∪
Σr(G)

({b, d, e}, {α, δ, β, γ})

Stable model of Σs(G) ({b, d, e}, {α, δ, β, γ})

Then, from Definition 26 on page 16 and Proposition 4 on page 24, we obtain:

Semantics D-structures
Admissible (∅, {β, δ, γ}), ({d}, {β, δ, γ}), ({b, d}, {β, δ, γ}), ({e}, {β, δ, γ}), ({e}, {α, β, δ, γ}),

({d, e}, {β, δ, γ}), ({d, e}, {α, β, δ, γ}), ({b, d, e}, {β, δ, γ}), ({b, d, e}, {α, β, δ, γ})
Stable ({b, d, e}, {α, β, δ, γ})

Complete ({b, d, e}, {α, β, δ, γ})

Moreover, the following table gives the extensions obtained with [6] or [4, 13] (concerning only
arguments and interactions given in the initial graph):

Semantics Extensions
Grounded {b, d, e, δ, γ}
Preferred {b, d, e, δ, γ}

Stable {b, d, e, δ, γ}
Complete {b, d, e, δ, γ}
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5.6 Example 19 issued from [10]

Ex. 19

a α b

d δ β

c

Σ(G) = {

(V al(β) ∧ Acc(c))→ ¬V al(α)
(V al(δ) ∧ Acc(d))→ ¬V al(β)
(V al(α) ∧ Acc(a))→ NAcc(b)
NAcc(b)→ ¬Acc(b)

}

Σd(G) = Σ(G) ∪ {
Acc(b)→ (V al(β) ∧ Acc(c))
¬V al(β)
V al(α)→ (V al(δ) ∧ Acc(d))

}

Σr(G) = Σ(G) ∪ {

Acc(a)
Acc(c)
Acc(d)
(V al(β) ∧ Acc(c))→ Acc(b)
V al(δ)
(V al(δ) ∧ Acc(d))→ V al(α)

}

Σs(G) = Σ(G) ∪ {

Acc(a)
Acc(c)
Acc(d)
¬Acc(b)→ (V al(α) ∧ Acc(a))
V al(δ)
¬V al(α)→ (V al(β) ∧ Acc(c))
¬V al(β)→ (V al(δ) ∧ Acc(d))

}

Then using Proposition 3 on page 23, the computation of the models gives the following results:
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Type of
structure

Type of model Computed structures

Conflict-
free

model of Σ(G) 89 structures

Naive ⊆-maximal model of
Σ(G)

({b, d}, {α, β}) ({b, c, d}, {α, δ}) ({b}, {α, β, δ})
({a}, {α, β, δ}) ({a, d}, {α, β}) ({a, b, c, d}, {β})
({a, b, c, d}, {δ}) ({a, c, d}, {α, δ}) ({a, b, c}, {β, δ})

Admissible model of Σd(G) 20 structures (only 12 contain δ)
Preferred ⊆-maximal model of

Σd(G)
({a, c, d}, {α, δ})

Grounded ⊆-minimal model of
Σr(G)

({a, c, d}, {α, δ})

Complete model of Σd(G) ∪
Σr(G)

({a, c, d}, {α, δ})

Stable model of Σs(G) ({a, c, d}, {α, δ})

Then, from Definition 26 on page 16 and Proposition 4 on page 24, we obtain:

Semantics D-structures
Admissible (∅, {δ}), ({a}, {δ}), ({c}, {δ}), ({d}, {δ}) ({d}, {α, δ}), ({a, c}, {δ}),

({a, d}, {δ}), ({a, d}, {α, δ}), ({c, d}, {δ}), ({c, d}, {α, δ}),
({a, c, d}, {δ}), ({a, c, d}, {α, δ})

Stable ({a, c, d}, {α, δ})
Complete ({a, c, d}, {α, δ})

Moreover, the following table gives the extensions obtained with [6] or [4, 13] (concerning only
arguments and interactions given in the initial graph):

Semantics Extensions
Grounded {a, c, d, δ, α}
Preferred {a, c, d, δ, α}

Stable {a, c, d, δ, α}
Complete {a, c, d, δ, α}
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5.7 Example 20 issued from [10]

Ex. 20

a α b

e γ d δ β

c

Σ(G) = {

(V al(β) ∧ Acc(c))→ ¬V al(α)
(V al(δ) ∧ Acc(d))→ ¬V al(β)
(V al(α) ∧ Acc(a))→ NAcc(b)
NAcc(b)→ ¬Acc(b)
(V al(γ) ∧ Acc(e))→ NAcc(d)
NAcc(d)→ ¬Acc(d)

}

Σd(G) = Σ(G) ∪ {

Acc(b)→ (V al(β) ∧ Acc(c))
¬Acc(d)
V al(α)→ (V al(δ) ∧ Acc(d))
V al(β)→ (V al(γ) ∧ Acc(e))

}

Σr(G) = Σ(G) ∪ {

Acc(a)
Acc(c)
Acc(e)
(V al(β) ∧ Acc(c))→ Acc(b)
V al(δ)
V al(γ)
(V al(δ) ∧ Acc(d))→ V al(α)
(V al(γ) ∧ Acc(e))→ V al(β)

}

Σs(G) = Σ(G) ∪ {

Acc(a)
Acc(c)
Acc(e)
¬Acc(b)→ (V al(α) ∧ Acc(a))
¬Acc(d)→ (V al(γ) ∧ Acc(e))
V al(δ)
V al(γ)
¬V al(α)→ (V al(β) ∧ Acc(c))
¬V al(β)→ (V al(δ) ∧ Acc(d))

}

Then using Proposition 3 on page 23, the computation of the models gives the following results:
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Type of
structure

Type of model Computed structures

Conflict-
free

model of Σ(G) 317 structures

Naive ⊆-maximal model of
Σ(G)

17 structures

Admissible model of Σd(G) 44 structures (only 14 contain δ and γ)
Preferred ⊆-maximal model of

Σd(G)
({a, b, c, e}, {β, γ, δ})

Grounded ⊆-minimal model of
Σr(G)

({a, b, c, e}, {β, γ, δ})

Complete model of Σd(G) ∪
Σr(G)

({a, b, c, e}, {β, γ, δ})

Stable model of Σs(G) ({a, b, c, e}, {β, γ, δ})

Then, from Definition 26 on page 16 and Proposition 4 on page 24, we obtain:

Semantics D-structures
Admissible (∅, {δ, γ}), ({a}, {δ, γ}), ({c}, {δ, γ}), ({a, c}, {δ, γ}) ({e}, {δ, γ}), ({e}, {β, δ, γ}),

({a, e}, {δ, γ}), ({a, e}, {β, δ, γ}), ({c, e}, {δ, γ}), ({c, e}, {β, δ, γ}),
({a, c, e}, {δ, γ}), ({a, c, e}, {β, δ, γ}), ({b, c, e}, {β, δ, γ}), ({a, b, c, e}, {β, δ, γ})

Stable ({a, b, c, e}, {β, δ, γ})
Complete ({a, b, c, e}, {β, δ, γ})

Moreover, the following table gives the extensions obtained with [6] or [4, 13] (concerning only
arguments and interactions given in the initial graph):

Semantics Extensions
Grounded {a, c, e, γ, β, b}
Preferred {a, c, e, γ, β, b}

Stable {a, c, e, γ, β, b}
Complete {a, c, e, γ, β, b}
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5.8 Example 21 issued from [10]

Ex. 21

a α b

β δ

c

Σ(G) = {

(V al(β) ∧ Acc(c))→ ¬V al(α)
(V al(δ) ∧ Acc(b))→ ¬V al(β)
(V al(α) ∧ Acc(a))→ NAcc(b)
NAcc(b)→ ¬Acc(b)

}

Σd(G) = Σ(G) ∪ {
Acc(b)→ (V al(β) ∧ Acc(c))
V al(α)→ (V al(δ) ∧ Acc(b))
V al(β)→ (V al(α) ∧ Acc(a))

}

Σr(G) = Σ(G) ∪ {

Acc(a)
Acc(c)
(V al(β) ∧ Acc(c))→ Acc(b)
V al(δ)
(V al(δ) ∧ Acc(b))→ V al(α)
(V al(α) ∧ Acc(a))→ V al(β)

}

Σs(G) = Σ(G) ∪ {

Acc(a)
Acc(c)
¬Acc(b)→ (V al(α) ∧ Acc(a))
V al(δ)
¬V al(α)→ (V al(β) ∧ Acc(c))
¬V al(β)→ (V al(δ) ∧ Acc(b))

}

Then using Proposition 3 on page 23, the computation of the models gives the following results:
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Type of
structure

Type of model Computed structures

Conflict-
free

model of Σ(G) 45 structures

Naive ⊆-maximal model of
Σ(G)

({b}, {α, β}) ({b, c}, {α, δ}) ({a}, {α, β, δ}) ({a, b, c}, {β})
({a, b, c}, {δ}) ({a, c}, {α, δ}) ({a, c}, {β, δ})

Admissible model of Σd(G) (∅,∅) ({c},∅) (∅, {δ}) ({c}, {δ}) ({a}, {δ}) ({a},∅)
({a, c},∅) ({a, c}, {δ})

Preferred ⊆-maximal model of
Σd(G)

({a, c}, {δ})

Grounded ⊆-minimal model of
Σr(G)

({a, c}, {δ})

Complete model of Σd(G) ∪
Σr(G)

({a, c}, {δ})

Stable model of Σs(G) None

Then, from Definition 26 on page 16 and Proposition 4 on page 24, we obtain:

Semantics D-structures
Admissible (∅, {δ}), ({a}, {δ}), ({c}, {δ}), ({a, c}, {δ})

Stable @
Complete ({a, c}, {δ})

Moreover, the following table gives the extensions obtained with [6] or [4, 13] (concerning only
arguments and interactions given in the initial graph):

Semantics Extensions
Grounded {a, c}
Preferred {a, c}

Stable @
Complete {a, c}
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5.9 Example 22 issued from [10]

Ex. 22

a α b

β δ

c

Σ(G) = {

(V al(β) ∧ Acc(c))→ ¬V al(α)
(V al(α) ∧ Acc(a))→ NAcc(b)
NAcc(b)→ ¬Acc(b)
(V al(δ) ∧ Acc(b))→ NAcc(c)
NAcc(c)→ ¬Acc(c)

}

Σd(G) = Σ(G) ∪ {
Acc(b)→ (V al(β) ∧ Acc(c))
Acc(c)→ (V al(α) ∧ Acc(a))
V al(α)→ (V al(δ) ∧ Acc(b))

}

Σr(G) = Σ(G) ∪ {

Acc(a)
(V al(β) ∧ Acc(c))→ Acc(b)
(V al(α) ∧ Acc(a))→ Acc(c)
V al(β)
V al(δ)
(V al(δ) ∧ Acc(b))→ V al(α)

}

Σs(G) = Σ(G) ∪ {

Acc(a)
¬Acc(b)→ (V al(α) ∧ Acc(a))
¬Acc(c)→ (V al(δ) ∧ Acc(b))
V al(β)
V al(δ)
¬V al(α)→ (V al(β) ∧ Acc(c))

}

Then using Proposition 3 on page 23, the computation of the models gives the following results:
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Type of
structure

Type of model Computed structures

Conflict-
free

model of Σ(G) 45 structures

Naive ⊆-maximal model of
Σ(G)

({b, c}, {α}) ({b}, {α, β, δ}) ({a}, {α, β, δ}) ({a, b, c}, {β})
({a, c}, {α, δ}) ({a, c}, {β, δ}) ({a, b}, {β, δ})

Admissible model of Σd(G) (∅,∅) (∅, {β}) (∅, {β, δ}) (∅, {δ}) ({a}, {β, δ}) ({a},∅)
({a}, {β}) ({a}, {δ})

Preferred ⊆-maximal model of
Σd(G)

({a}, {β, δ})

Grounded ⊆-minimal model of
Σr(G)

({a}, {β, δ})

Complete model of Σd(G) ∪
Σr(G)

({a}, {β, δ})

Stable model of Σs(G) None

Then, from Definition 26 on page 16 and Proposition 4 on page 24, we obtain:

Semantics D-structures
Admissible (∅, {β, δ}), ({a}, {β, δ})

Stable @
Complete ({a}, {β, δ})

Moreover, the following table gives the extensions obtained with [6] or [4, 13] (concerning only
arguments and interactions given in the initial graph):

Semantics Extensions
Grounded {a}
Preferred {a}

Stable @
Complete {a}
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5.10 Example 23 issued from [10]

Ex. 23

b

a α δ

β

c

Σ(G) = {
(V al(β) ∧ Acc(c))→ ¬V al(α)
(V al(δ) ∧ Acc(b))→ ¬V al(β)
(V al(α) ∧ Acc(a))→ ¬V al(δ)

}

Σd(G) = Σ(G) ∪ {
V al(α)→ (V al(δ) ∧ Acc(b))
V al(β)→ (V al(α) ∧ Acc(a))
V al(δ)→ (V al(β) ∧ Acc(c))

}

Σr(G) = Σ(G) ∪ {

Acc(a)
Acc(b)
Acc(c)
(V al(δ) ∧ Acc(b))→ V al(α)
(V al(α) ∧ Acc(a))→ V al(β)
(V al(β) ∧ Acc(c))→ V al(δ)

}

Σs(G) = Σ(G) ∪ {

Acc(a)
Acc(b)
Acc(c)
¬V al(α)→ (V al(β) ∧ Acc(c))
¬V al(β)→ (V al(δ) ∧ Acc(b))
¬V al(δ)→ (V al(α) ∧ Acc(a))

}

Then using Proposition 3 on page 23, the computation of the models gives the following results:
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Type of
structure

Type of model Computed structures

Conflict-
free

model of Σ(G) 33 structures

Naive ⊆-maximal model of
Σ(G)

(∅, {α, β, δ}) ({b, c}, {α, δ}) ({a, b, c},∅) ({a, b}, {α, β})
({a, c}, {β, δ})

Admissible model of Σd(G) (∅,∅) ({b},∅) ({c},∅) ({b, c},∅) ({a, c},∅) ({a},∅)
({a, b},∅) ({a, b, c},∅)

Preferred ⊆-maximal model of
Σd(G)

({a, b, c},∅)

Grounded ⊆-minimal model of
Σr(G)

({a, b, c},∅)

Complete model of Σd(G) ∪
Σr(G)

({a, b, c},∅)

Stable model of Σs(G) None

Then, from Definition 26 on page 16 and Proposition 4 on page 24, we obtain:

Semantics D-structures
Admissible (∅,∅), ({a},∅), ({b},∅), ({c},∅), ({a, b},∅), ({a, c},∅), ({b, c},∅), ({a, b, c},∅)

Stable @
Complete ({a, b, c},∅)

Moreover, the following table gives the extensions obtained with [6] or [4, 13] (concerning only
arguments and interactions given in the initial graph):

Semantics Extensions
Grounded {a, b, c}
Preferred {a, b, c}

Stable @
Complete {a, b, c}
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5.11 Example 24 issued from [10]

Ex. 24

b

a α β

Σ(G) = { (V al(β) ∧ Acc(b))→ ¬V al(α)
(V al(α) ∧ Acc(a))→ ¬V al(β)

}

Σd(G) = Σ(G) ∪ { V al(α)→ Acc(a)
V al(β)→ Acc(b)

}

Σr(G) = Σ(G) ∪ { Acc(a)
Acc(b)

}

Σs(G) = Σ(G) ∪ {

Acc(a)
Acc(b)
¬V al(α)→ (V al(β) ∧ Acc(b))
¬V al(β)→ (V al(α) ∧ Acc(a))

}

Then using Proposition 3 on page 23, the computation of the models gives the following results:

Type of
structure

Type of model Computed structures

Conflict-
free

model of Σ(G) (∅,∅) ({b},∅) (∅, {α}) ({b}, {α}) (∅, {α, β}) (∅, {β})
({b}, {β}) ({a}, {α}) ({a},∅) ({a, b},∅) ({a, b}, {α})
({a}, {β}) ({a, b}, {β})

Naive ⊆-maximal model of
Σ(G)

(∅, {α, β}) ({a, b}, {α}) ({a, b}, {β})

Admissible model of Σd(G) (∅,∅) ({b},∅) ({b}, {β}) ({a, b}, {β}) ({a},∅) ({a, b},∅)
({a}, {α}) ({a, b}, {α})

Preferred ⊆-maximal model of
Σd(G)

({a, b}, {β}) ({a, b}, {α})

Grounded ⊆-minimal model of
Σr(G)

({a, b},∅)

Complete model of Σd(G) ∪
Σr(G)

({a, b},∅) ({a, b}, {α}) ({a, b}, {β})

Stable model of Σs(G) ({a, b}, {β}) ({a, b}, {α})

Then, from Definition 26 on page 16 and Proposition 4 on page 24, we obtain:

Semantics D-structures
Admissible (∅,∅), ({a},∅), ({a}, {α}), ({b},∅), ({b}, {β}), ({a, b},∅), ({a, b}, {α}), ({a, b}, {β})

Stable ({a, b}, {α}), ({a, b}, {β})
Complete ({a, b},∅), ({a, b}, {α}), ({a, b}, {β})

Moreover, the following table gives the extensions obtained with [6] or [4, 13] (concerning only
arguments and interactions given in the initial graph):
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Semantics Extensions
Grounded {a, b}
Preferred {a, b, α}, {a, b, β}

Stable {a, b, α}, {a, b, β}
Complete {a, b}, {a, b, α}, {a, b, β}
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5.12 Example 25 issued from [10]

Ex. 25

a α

Σ(G) = { (V al(α) ∧ Acc(a))→ }
Σd(G) = Σ(G) ∪ { V al(α)→ Acc(a) }
Σr(G) = Σ(G) ∪ { Acc(a) }

Σs(G) = Σ(G) ∪ { Acc(a)
V al(α)

}

Then using Proposition 3 on page 23, the computation of the models gives the following results:

Type of
structure

Type of model Computed structures

Conflict-
free

model of Σ(G) (∅,∅) (∅, {α}) ({a},∅)

Naive ⊆-maximal model of
Σ(G)

(∅, {α}) ({a},∅)

Admissible model of Σd(G) (∅,∅) ({a},∅)
Preferred ⊆-maximal model of

Σd(G)
({a},∅)

Grounded ⊆-minimal model of
Σr(G)

({a},∅)

Complete model of Σd(G) ∪
Σr(G)

({a},∅)

Stable model of Σs(G) None

Then, from Definition 26 on page 16 and Proposition 4 on page 24, we obtain:

Semantics D-structures
Admissible (∅,∅), ({a},∅)

Stable @
Complete ({a},∅)

Moreover, the following table gives the extensions obtained with [6] or [4, 13] (concerning only
arguments and interactions given in the initial graph):

Semantics Extensions
Grounded {a}
Preferred {a}

Stable @
Complete {a}
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Chapter 6

Comparative analysis

In this chapter, we compare the different methods presented above for defining semantics of recursive
argumentation frameworks. Three kinds of methods have been considered:

Translation methods: These methods, described in [6] or [4, 13], consist in a translation of the
original framework into a D-framework, with the addition of meta-arguments representing the
initial interactions and new interactions concerning them.

Note that, even if the added arguments and interactions are not exactly the same in both meth-
ods, it seems that the resulting extensions are the same considering only the elements belonging
to the initial graph. This equivalence remains to be formally proved.

Direct method: This method, described in [7, 8], defines structure-based semantics, in a way similar
to the definition of extension-based semantics, using structures in place of extensions.

Logical method: This method describes semantics in terms of models of a logical encoding of the
argumentation framework.

First, we show that the direct method and the logical method are equivalent. Then we compare the
translation methods with the direct method (or equivalently the logical method).

6.1 Comparison between the logical method and the direct method

Prop. 3 on page 23 and Prop. 4 on page 24 give an exact characterization of structure-based semantics
in terms of logical models. More precisely, the table 6.1 on the next page synthetizes the links be-
tween particular interpretations1 I and properties of the associated sets SI = {x ∈ A|I(Acc(x)) =
true} and ΓI = {x ∈ R|I(V al(x)) = true}.

1I is an interpretation of a set of formulae Σ of the language introduced in Section 3.1 on page 19.
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I (SI ,ΓI) Number of Prop.
model of Σ(G) conflict-free structure 3.1
model of Σd(G) admissible structure 3.2

⊆-maximal model of Σd(G) preferred structure 3.5
⊆-minimal model of Σr(G) grounded structure 3.6
model of Σd(G) ∪ Σr(G) complete structure 3.3

model of Σs(G) stable structure 3.4
model of Σ(G) ∪ {Φatt

r (G)} conflict-free d-structure 4.1
model of Σd(G) ∪ {Φatt

r (G)} admissible d-structure 4.2

with Φatt
r (G)

def
≡ (∀δ ∈ Attack)(((∀α ∈ Attack)(tα = δ → (∃β ∈ Attack)(tβ ∈
{sα, α} ∧ V al(β) ∧ Acc(sβ))))→ V al(δ)).

Table 6.1: Models vs structures

6.2 Comparison between the direct/logical method and the trans-
lation methods

The examples presented in Chapter 5 show the grounded (resp. preferred, complete, stable) struc-
tures, and the grounded (resp. preferred, complete, stable) extensions obtained by a translation
method. Note that in the case of the method using MAF ( [6]), these extensions are restricted to
the arguments and interactions appearing in the original framework (the meta-arguments of the form
Nij were hidden).
It can be noticed that, for each semantics (grounded, preferred, complete, stable):

There is a one-to-one correspondence between the structures and the extensions.

For each structure, the structure and the corresponding extension contain exactly the same
arguments of A.

For each structure, the structure contains (at least) the interactions of R that belong to the
corresponding extension. However, the structure may contain other interactions (see Ex. 15 on
page 27).

Indeed, following definitions given in [6] or [4, 13], an interaction belonging to an extension
is valid and grounded. Whereas, in a structure U = (S,Γ), Γ contains all the attacks that are
valid wrt U , whether grounded or not.

This difference is illustrated on Ex. 15 on page 27: ({a}, {α, β}) is a preferred structure, as β
is valid since it is unattacked. However, the corresponding extension {a, α} does not contain
β since its source b does not belong to the extension.

In the following, we pursue these comparisons with formal results.

6.2.1 Translation method of [4, 13]

Let us recall that in case of ASAF without support, the approaches proposed in [4] and [13] are
equivalent.
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I EI
model of Σ(G) ⇒ AFRA-conflict-free
model of Σd(G) ⇒ AFRA-admissible

⊆-maximal model of Σd(G) ⇒ AFRA-preferred
model of Σd(G) ∪ Σr(G) ⇒ AFRA-complete

model of Σs(G) ⇒ AFRA-stable

Table 6.2: From models to AFRA-extensions

E IE
AFRA-conflict-free ⇒ model of Σ(G)
AFRA-admissible ⇒ model of Σ(G)

closed AFRA-admissible ⇒ model of Σd(G)
AFRA-preferred ⇒ ⊆-maximal model of Σd(G)
AFRA-complete ⇒ model of Σd(G) ∪ Σr(G)

AFRA-stable ⇒ model of Σs(G)

Table 6.3: From AFRA-extensions to models

In [7, 8], a formal correspondence has been established between semantics proposed in [4] and the
structure-based semantics. Then, using propositions 3 on page 23 and 4 on page 24, comparisons
can be drawn between the logical method and the addition method given in [4].
Let I be an interpretation, SI = {x ∈ A|I(Acc(x)) = true}, ΓI = {x ∈ R|I(V al(x)) = true}
and EI = SI ∪ {x ∈ ΓI |s(x) ∈ SI}, the table 6.2 synthetizes the correspondences from particular
interpretations I to AFRA-extensions of [4].
Moreover, correspondences can be established in the other direction. Let E be an AFRA-extension,
consider the structure (SE ,ΓE) with SE = E ∩ A and ΓE = (E ∩ R) ∪ X , X being the set of
attacks that are not AFRA-acceptable wrt E only because of attacks towards their source. Consider
an interpretation IE such that SIE = SE and ΓIE = ΓE . The table 6.3 synthetizes the correspondences
from AFRA-extensions of [4] to particular interpretations I.
For more details about these correspondences, the reader is invited to refer to [7, 8].

6.2.2 Translation method of [6]

In this section, the comparison between the logical method and the method of [6] is conducted in two
steps:2

1. first, structure-based semantics are compared with MAF semantics and vice-versa;

2. then we can use the above results (the comparison between the logical method and the di-
rect method) for concluding about the comparison between the logical method and the MAF
semantics.

Moreover, let us recall that we restrict the approches of [6] to frameworks without support.
2Note that another way could be to study the links between AFRA and MAF semantics.
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6.2.2.1 Preliminary results

Following Def. 14 on page 12, we define the MAF associated with a given RAF.

Def. 27 Let 〈A,R, s, t〉 be a RAF without support. The associated MAF is 〈A′,R′〉 with:

A′ = A ∪R ∪ {Ns(α)α|α ∈ R} (this last subset will be denoted by N),

R′ = {(s(α), Ns(α)α)|α ∈ R} ∪ {(Ns(α)α, α)|α ∈ R} ∪ {(α, t(α))|α ∈ R}.

Ex. 19 (cont’d) In the case when recursive attacks are encoded with meta-arguments, as in [6], the
graph is turned into:

a Naα α b

c Ncβ β

d Ndδ δ

The following properties of 〈A′,R′〉 directly follow from the above definition:

Observation 1

1. There are only three types of attacks in R′: either from A to N, or from N to R, or from R to
A ∪R.

2. ∀Naα ∈ N, Naα is involved in only two attacks belonging to R′: (a,Naα) and (Naα, α).

3. ∀α ∈ R, s(α) is the only attacker of Ns(α)α and so the only defender of α against Ns(α)α.

4. ∀a ∈ A, a is unttacked in the RAF iff a is unattacked in the MAF.

5. ∀α ∈ R, α is always attacked in the MAF.

Then it can be easily proved that:

Prop. 5 Let 〈A,R, s, t〉 be a RAF without support and 〈A′,R′〉 its associated MAF. Let S ⊆ A′ be
a conflict-free set of 〈A′,R′〉.

1. Let a ∈ A. S ∪ {a} is also conflict-free iff @α ∈ S s.t. t(α) = a and @Naα ∈ S.

2. Let β ∈ R. S∪{β} is also conflict-free iff t(β) 6∈ S andNs(β)β 6∈ S and @α ∈ S s.t. t(α) = β.
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In the following, given a RAF without support 〈A,R, s, t〉, and its associated MAF 〈A′,R′〉, we
establish correspondences between the structure-based semantics of the RAF and the semantics of
the MAF 〈A′,R′〉.
So, for each semantics, starting with a given structure of the RAF, we build a corresponding extension
of the MAF. Then we consider the opposite case, starting from a MAF extension and building a
corresponding structure. For that purpose, we need the following notations:

Notation 1 (From RAF structures to MAF extensions) Given U = (S,Γ) a structure of the RAF:

E ′U denotes the set S ∪ {α ∈ Γ s.t. s(α) ∈ S}.

EU denotes the set E ′U ∪ {Ns(α)α s.t. s(α) 6∈ S and s(α) ∈ Def(U)}.

In other words, E ′U is made of the arguments of S and the attacks of Γ whose source belongs to S.
EU is obtained from E ′U by adding the elements Ns(α)α of N such that α 6∈ E ′U and Ns(α)α is defended
by E ′U .3 The following properties directly follow from the above notation and from Observation 1 on
the facing page:

Observation 2 Let a ∈ A and α ∈ R,

1. If α is acceptable wrt EU in the MAF, then s(α) ∈ (EU ∩A) = S.

2. a ∈ Def(U) if and only if EU attacks a in the MAF.

3. α ∈ Inh(U) if and only if EU ∩R attacks α in the MAF.

For the opposite case, we also need the following notations:

Notation 2 (From MAF extensions to RAF structures) Given some set E ⊆ A′:

Ea (resp. Er, En) denotes the set E ∩A (resp. E ∩R, E ∩N).

Considering the structure U ′
E = (Ea, Er), ΓE denotes the set Er ∪ {α 6∈ Er s.t. α ∈ Acc(U ′

E)
and s(α) 6∈ Ea}.

UE denotes the structure (SE ,ΓE) where SE = Ea.

Indeed, ΓE contains the attacks that belong to E and also the attacks that do not belong to E but are
acceptable wrt U ′

E , even if they are not acceptable wrt E , because of their source. Intuitively, this is
due to the fact that an attack α cannot be acceptable wrt E if s(α) 6∈ E , whereas this is not a problem
for structure-based semantics.
Note that ΓE \ Er could be defined in terms of E as follows: α ∈ ΓE \ Er iff ∀β ∈ R s.t. (β, α) ∈ R′,
∃γ ∈ Er s.t. s(γ) ∈ Ea and either (γ, β) ∈ R′ or (γ, s(β)) ∈ R′.
The following example illustrates the previous notations:

Ex. 26 Consider the RAF depicted by the following figure:

3This last condition will be mandatory for proving acceptability and admissibility.
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a α b β c

The associated MAF is represented by the following graph:

a Naα α b Nbβ β c

Consider the structure U = ({a, c}, {α, β}) in the RAF. β belongs to Γ, but its source (b) does not
belong to S. So, E ′U = {a, c, α} and EU = {a, c, α,Nbβ}.
Consider the set E = {a, α,Nbβ} in the MAF. U ′

E = ({a}, {α}). β is acceptable wrt U ′
E; so ΓE =

{α, β} and UE = ({a}, {α, β}).

6.2.2.2 Conflict-freeness

Concerning the mapping from conflict-free RAF structures to conflict-free MAF sets, we have:

Prop. 6 Let U = (S,Γ) be a conflict-free structure of the RAF.

1. E ′U is conflict-free in the MAF 〈A′,R′〉.

2. EU is conflict-free in the MAF 〈A′,R′〉.

And conversely, we have:

Prop. 7 Let E be a conflict-free subset in the MAF 〈A′,R′〉.

1. U ′
E is a conflict-free structure of the RAF.

2. UE is a conflict-free structure of the RAF.

6.2.2.3 Admissibility

The following proposition gives a correspondence from RAF structures to MAF sets concerning the
notion of acceptability:

Prop. 8 Let U = (S,Γ) be a conflict-free structure of the RAF. Let a ∈ A and α ∈ R.

1. If a is acceptable wrt U in the RAF, then a is acceptable wrt EU in the MAF 〈A′,R′〉.

2. If α is acceptable wrt U in the RAF, and s(α) ∈ S, then α is acceptable wrt EU in the MAF
〈A′,R′〉.
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Note that the second result of the above proposition does not hold if we drop the condition s(α) ∈ S,
as shown on the following example:

Ex. 26 (cont’d) Consider the conflict-free structure U = ({a, c}, {α}). We have EU = {a, c, α,Nbβ}.
β is acceptable wrt U since it is not attacked in the RAF. However, β is not acceptable wrt EU in the
MAF, since b does not belong to EU .

Note also that Proposition 8 does not hold if we replace EU by E ′U .

Ex. 26 (cont’d) Let U = ({a, c}, {α}). We have E ′U = {a, c, α}. c is acceptable wrt U . However, c
is not acceptable wrt E ′U in the MAF.

And finally, the following proposition shows the link between admissible structures of the RAF and
admissible extensions of its associated MAF:

Prop. 9 Let U = (S,Γ) be an admissible structure of the RAF. Then EU is an admissible extension
of the MAF 〈A′,R′〉.

Conversely, Ex. 26 on page 53 illustrates how acceptability differs when going from MAF to RAF:

Ex. 26 (cont’d) Consider the set E = {a, α,Nbβ} in the MAF. U ′
E = ({a}, {α}). β is acceptable wrt

U ′
E , whereas it is not acceptable wrt E since b 6∈ E .

Indeed, from a given admissible extension E of the MAF, several admissible structures can be ob-
tained that contained the arguments of E ∩A and the attacks of E ∩R. The following proposition
shows two such admissible structures.

Prop. 10 Let E be an admissible extension of the MAF 〈A′,R′〉.

1. U ′
E is an admissible structure of the RAF.

2. UE is an admissible structure of the RAF.

6.2.2.4 Complete semantics

Concerning the correspondence from complete RAF structures to complete MAF extensions, the
following proposition holds:

Prop. 11 Let U = (S,Γ) be a complete structure of the RAF. Then EU is a complete extension of the
MAF 〈A′,R′〉.

Conversely, we have:

Prop. 12 Let E be a complete extension of the MAF 〈A′,R′〉. Then UE is a complete structure of the
RAF.

Moreover, we also have a one to one correspondence for complete semantics:

Prop. 13 Let 〈A,R, s, t〉 be a RAF without support and 〈A′,R′〉 its associated MAF. The following
assertions hold:

1. If U is a complete structure of the RAF, then UEU = U .

2. If E is a complete extension of the MAF, then EUE = E .

55



6.2.2.5 Stable semantics

Concerning the correspondence from stable RAF structures to stable MAF extensions, the following
proposition holds:

Prop. 14 Let U = (S,Γ) be a stable structure of the RAF. Then EU is a stable extension of the MAF
〈A′,R′〉.

Conversely, we have:

Prop. 15 Let E be a stable extension of the MAF 〈A′,R′〉. Then UE is a stable structure of the RAF.

6.2.2.6 Preferred semantics

Concerning the correspondence from preferred RAF structures to preferred MAF extensions, the
following proposition holds:

Prop. 16 Let U = (S,Γ) be a preferred structure of the RAF. Then EU is a preferred extension of the
MAF 〈A′,R′〉.

Conversely, we have:

Prop. 17 Let E be a preferred extension of the MAF 〈A′,R′〉. Then UE is a preferred structure of
the RAF.

6.2.2.7 Grounded semantics

Concerning the correspondence from the grounded RAF structure to the grounded MAF extension,
the following proposition holds:

Prop. 18 Let U = (S,Γ) be the grounded structure of the RAF. Then EU is the grounded extension
of the MAF 〈A′,R′〉.

Conversely, we have:

Prop. 19 Let E be the grounded extension of the MAF 〈A′,R′〉. Then UE is the grounded structure
of the RAF.

6.2.2.8 Synthesis

The correspondences between RAF and MAF are synthetized in Tables 6.4 on the facing page and 6.5
on the next page.
Then using the correspondences between RAF and MAF, we can establish a comparison between
the logical method and the method of [6]. This comparison is synthetized in Tables 6.6 on the facing
page and 6.7 on page 58.
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U EU Number of Prop.
conflict-free structure ⇒ conflict-free set 6
admissible structure ⇒ admissible set 9
preferred structure ⇒ preferred extension 16
grounded structure ⇒ grounded extension 18
complete structure ⇒ complete extension 11

stable structure ⇒ stable extension 14
with EU = S ∪ {α ∈ Γ s.t. s(α) ∈ S} ∪ {Ns(α)α s.t. s(α) 6∈ S and s(α) ∈ Def(U)}

Table 6.4: From RAF structures to MAF extensions

E UE Number of Prop.
conflict-free set ⇒ conflict-free structure 7
admissible set ⇒ admissible structure 10

preferred extension ⇒ preferred structure 17
grounded extension ⇒ grounded structure 19
complete extension ⇒ complete structure 12

stable extension ⇒ stable structure 15
with UE = (SE ,ΓE) with SE = E ∩A and ΓE = (E ∩R) ∪ {α 6∈ (E ∩R) s.t.

α ∈ Acc(E ∩A, E ∩R) and s(α) 6∈ E ∩A})

Table 6.5: From MAF extensions to RAF structures

I EI
model of Σ(G) ⇒ conflict-free set
model of Σd(G) ⇒ admissible set

⊆-maximal model of Σd(G) ⇒ preferred extension
⊆-minimal model of Σr(G) ⇒ grounded extension
model of Σd(G) ∪ Σr(G) ⇒ complete extension

model of Σs(G) ⇒ stable extension
with SI = {x ∈ A|I(Acc(x)) = true}, ΓI = {x ∈ R|I(V al(x)) = true} and

EI = SI ∪ {α ∈ ΓI s.t. s(α) ∈ SI} ∪ {Ns(α)α s.t. s(α) 6∈ SI and s(α) ∈ Def(SI ,ΓI)}

Table 6.6: From models to MAF extensions
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E IE
conflict-free set ⇒ model of Σ(G)
admissible set ⇒ model of Σd(G)

preferred extension ⇒ ⊆-maximal model Σd(G)
grounded extension ⇒ ⊆-minimal model of Σr(G)
complete extension ⇒ model of Σd(G) ∪ Σr(G)

stable extension ⇒ model of Σs(G)
with IE is such that SIE = SE and ΓIE = ΓE , that is:

∀x ∈ A, IE(Acc(x)) = true iff x ∈ (E ∩A) and
∀x ∈ R, IE(V al(x)) = true iff x ∈ (E ∩R) ∪

{α 6∈ (E ∩R) s.t. α ∈ Acc(E ∩A, E ∩R) and s(α) 6∈ E ∩A}

Table 6.7: From MAF extensions to models
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Chapter 7

Proofs

7.1 Proofs of Section 2.4.5

Proof of Prop. 1 on page 16:

⇒ Assume that U is conflict-free and ⊆-minimal among the conflict-free structures satisfying Acc(U) ⊆
S ∪ Γ.

First, we prove that U is a complete structure. Indeed we just have to prove that S ∪ Γ ⊆ Acc(U).
If it is not the case, there is x ∈ S ∪ Γ such that x 6∈ Acc(U). Consider the structure U ′ = (S′,Γ′)
obtained by removing x from U . As U ′ ⊂ U , it is easy to see thatAcc(U ′) ⊆ Acc(U), so x 6∈ Acc(U ′).
As Acc(U) ⊆ S ∪ Γ, we have Acc(U ′) ⊆ S ∪ Γ. From x 6∈ Acc(U ′), we deduce that Acc(U ′) ⊆
S ∪ Γ \ {x} = S′ ∪ Γ′. That is in contradiction with the fact that U is a ⊆-minimal conflict-free
structure satisfying Acc(U) ⊆ S ∪ Γ. So, we have proved that S ∪ Γ ⊆ Acc(U), and so U is complete.

It remains to prove that U is ⊆-minimal complete. Assume that there is a complete structure U ′ =
(S′,Γ′) strictly included in U . As U ′ is conflict-free and satisfies Acc(U ′) ⊆ S′ ∪ Γ′, there is a
contradiction with the assumption on U .

⇐ Let U be a ⊆-minimal complete structure. Assume that there exists U ′ = (S′,Γ′) a conflict-free structure
strictly included in U and satisfying Acc(U ′) ⊆ S′∪Γ′. Without loss of generality we may assume that
U ′ is minimal. From the first part of the proof, we know that U ′ is complete. So there is a contradiction
with the fact that U is a ⊆-minimal complete structure.

�

Proof of Prop. 2 on page 16: Assume that there are two different⊆-minimal conflict-free structures satisfying
Acc(U) ⊆ S ∪Γ, let U1 = (S1,Γ1) and U2 = (S2,Γ2). Let us denote by U1 ∩U2 the structure (S1 ∩S2,Γ1 ∩
Γ2). As U1 and U2 are different and minimal, the structure U1 ∩ U2 is strictly included in U1 and also in
U2. Then, it is easy to see that Acc(U1 ∩ U2) ⊆ Acc(U1) ∩ Acc(U2). So, by hypothesis on U1 and U2,
Acc(U1 ∩ U2) ⊆ (S1 ∪ Γ1) ∩ (S2 ∪ Γ2). As a set of arguments and a set of attacks are disjoint, we have
(S1 ∪ Γ1) ∩ (S2 ∪ Γ2) = (S1 ∩ S2) ∪ (Γ1 ∩ Γ2). So, Acc(U1 ∩ U2) ⊆ (S1 ∩ S2) ∪ (Γ1 ∩ Γ2). Moreover, the
structure U1 ∩ U2 is conflict-free. So we obtain a contradiction with the fact that U1 (and U2) is a ⊆-minimal
conflict-free structure satisfying Acc(U) ⊆ S ∪ Γ. �
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7.2 Proofs of Section 4.2

Proof of Prop. 3 on page 23:

1. Let us recall that Σ(G) includes formulae (1, 2, 3).

⇒ Assume that the structure U = (S,Γ) is conflict-free. Let us define an interpretation I of Σ(G) as
follows :
- For all x ∈ A ∪R, I(Argument(x)) = true if and only if x ∈ A and I(Attack(x)) = true if
and only if x ∈ R
- For all x ∈ A, I(Acc(x)) = true if and only if x ∈ S and I(NAcc(x)) = true if and only if
I(Acc(x)) = false.
- For all x ∈ R, I(V al(x)) = true if and only if x ∈ Γ.
We have SI = S and ΓI = Γ. It remains to prove that I is a model of Σ(G).
Obviously I satisfies Formula (3).
If I does not satisfy Formula (2), there exist x ∈ A and α ∈ R such that t(α) = x, I(V al(α)) =
true, I(Acc(s(α))) = true and I(NAcc(x)) = false.
In other words, α ∈ Γ, s(α) ∈ S and x ∈ S. That is in contradiction with (S,Γ) being conflict-
free.
If I does not satisfy Formula (1), there exist α, β ∈ R such that t(α) = β, I(V al(α)) = true,
I(Acc(s(α))) = true and I(V al(β)) = true.
In other words, α, β ∈ Γ and s(α) ∈ S. That is in contradiction with (S,Γ) being conflict-free.
It follows easily that I is a model of Σ(G).

⇐ Let I be a model of Σ(G). We prove that the structure (SI ,ΓI) is conflict-free.
If it is not the case, either there exist a, b ∈ SI and α ∈ ΓI with s(α) = a and t(α) = b, or there
exist α, β ∈ ΓI with s(α) ∈ SI and t(α) = β.
In the first case, Formula (2) is falsified. In the second case, Formula (1) is falsified. That is in
contradiction with I being a model of Σ(G).

2. Let us recall that Σd(G) includes formulae (11, 12).

⇒ Assume that the structure U = (S,Γ) is admissible. Due to the proof of the first item, ∃I model of
Σ(G) with SI = S and ΓI = Γ and such that:

∀x ∈ S, I(Acc(x)) = true and I(NAcc(x)) = false;
∀x ∈ A \ S, I(Acc(x)) = false and I(NAcc(x)) = true.
For all x ∈ R, I(V al(x)) = true if and only if x ∈ Γ

We have to prove that I satisfies formulae (11, 12). Let us first consider formula (11). Let α ∈ R
and x ∈ A such that x = tα and I(Acc(x)) = true. That means that x ∈ S. As U is an
admissible structure, we know that x is acceptable wrt U . So there exists β ∈ Γ with sβ ∈ S and
tβ = sα or tβ = α. So we have I(Acc(sβ)) = true and I(V al(β)) = true. We have proved that
I satisfies formula (11). Similarly, it is easy to prove that I satisfies formulae (12).

⇐ Let I be a model of Σd(G). We have to prove that the structure UI = (SI ,ΓI) is admissible.
As Σd(G) contains Σ(G), from the first item, we know that the structure (SI ,ΓI) is conflict-free.
Assume that x ∈ SI is the target of an attack α. From formula (11) and I(Acc(x)) = true, it
follows that there is β ∈ R with tβ = sα or tβ = α, and I(Acc(sβ)) = true and I(V al(β)) =
true. That means that sβ ∈ SI and β ∈ ΓI . So either α ∈ Inh(UI) or sα ∈ Def(UI). We
have proved that x is acceptable wrt UI . Similarly it is easy to prove that each attack of ΓI is
acceptable wrt UI .
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3. Let us recall that Σr(G) includes formulae (13, 14).

⇒ Assume that the structure U = (S,Γ) is complete. Due to the proof of the second item, ∃I model
of Σd(G) with SI = S and ΓI = Γ and such that:

∀x ∈ S, I(Acc(x)) = true and I(NAcc(x)) = false;
∀x ∈ A \ S, I(Acc(x)) = false and I(NAcc(x)) = true.
For all x ∈ R, I(V al(x)) = true if and only if x ∈ Γ

We have to prove that I satisfies formulae (13, 14). Let us first consider formula (13). Let c ∈ A
such that (∀α ∈ Attack)(tα = c → (∃β ∈ Attack)(tβ ∈ {sα, α} ∧ V al(β) ∧ Acc(sβ))) is
satisfied by I. We have to prove that I(Acc(c)) = true. If I satisfies (∀α ∈ Attack)(tα =
c → (∃β ∈ Attack)(tβ ∈ {sα, α} ∧ V al(β) ∧ Acc(sβ))), ∀α ∈ R s.t. tα = c, ∃β ∈ R
s.t. I(V al(β)) = true and I(Acc(sβ)) = true and tβ = sα or tβ = α. In other words, due to
the definition of I, ∀α ∈ R s.t. tα = c, ∃β ∈ Γ s.t. sβ ∈ S and tβ = sα or tβ = α. That
exactly means that ∀α ∈ R s.t. tα = c, sα ∈ Def(U) or α ∈ Inh(U), or in other words that
c ∈ Acc(U). As U is complete, it follows that c ∈ S, so we obtain I(Acc(c)) = true. Similarly,
it is easy to prove that I satisfies formula (14).

⇐ Let I be a model of Σd(G) ∪ Σr(G). We know that the structure (SI ,ΓI) is admissible.
It remains to prove that each x ∈ A (resp. x ∈ R) which is acceptable wrt (SI ,ΓI) belongs to SI
(resp. ΓI). In other words, we have to prove that each x ∈ A (resp. x ∈ R) which is acceptable
wrt (SI ,ΓI) satisfies I(Acc(x)) = true (resp. I(V al(x)) = true). That follows easily from the
fact that I satisfies formula (13) (resp. (14)) instantiated with c = x (resp. δ = x).

4. Let us recall that Σs(G) includes formulae (15, 16).

⇒ Assume that the structure (S,Γ) is stable. Due to the proof of the first item, ∃I model of Σ(G) with
SI = S and ΓI = Γ and such that:

∀x ∈ S, I(Acc(x)) = true and I(NAcc(x)) = false;
∀x ∈ A \ S, I(Acc(x)) = false and I(NAcc(x)) = true.
For all x ∈ R, I(V al(x)) = true if and only if x ∈ Γ

We have to prove that I satisfies formulae (15, 16). Let us first consider formula (15). Let c ∈ A
s.t. I(¬Acc(c)) = true. It means that c ∈ A \ S. As U is stable, we have that c ∈ Def(U).
So there exists β ∈ Γ s.t. tβ = c and sβ ∈ S. Then we have that I(V al(β)) = true and
I(Acc(sβ)) = true which proves that I satisfies formula (15). Similarly, it is easy to prove that
I satisfies formula (16).

⇐ Let I be a model of Σs(G). As Σs(G) contains Σ(G), from the first item, we know that the structure
(SI ,ΓI) is conflict-free. Then the fact that I satisfies formulae (15, 16) enables to prove that the
structure (SI ,ΓI) satisfies the two following conditions: ∀a ∈ A\SI , a is defeated wrt (SI ,ΓI),
and ∀α ∈ R \ ΓI , α is inhibited wrt (SI ,ΓI). So the structure (SI ,ΓI) is stable.

5. Let I be an interpretation of a set of formulae Σ. Let UI denote the structure (SI ,ΓI). It is easy to
see that I is a ⊆-maximal model of Σ iff the structure UI is ⊆-maximal among all the structures of the
form UJ = (SJ ,ΓJ ), where J denotes an interpretation of Σ. Then taking Σ = Σd(G), it follows
that the preferred structures correspond to the structures UI where I is a ⊆-maximal model of Σd(G).

6. Let I be an interpretation of a set of formulae Σ. Let UI denote the structure (SI ,ΓI). It is easy to see
that I is a⊆-minimal model of Σ iff the structure UI is⊆-minimal among all the structures of the form
UJ , where J denotes an interpretation of Σ. In particular, it holds for Σ = Σr(G).

61



From the third item of the current proof, it holds that I satisfies formulae (13, 14) if and only if
Acc(UI) ⊆ (SI ∪ ΓI). By definition, (see Definition 25) the grounded structure is the ⊆-minimal
conflict-free structure U = (S,Γ) satisfying Acc(U) ⊆ S ∪ Γ. It follows that the grounded structure
corresponds to the structure UI where I is a ⊆-minimal model of Σr(G).

�

Proof of Prop. 4 on page 24: Let U = (S,Γ) be a conflict-free structure. Let us consider the model I of
Σ(G) defined in the first item of the proof of Proposition 3. We have S = SI and Γ = ΓI . Let us prove that
I satisfies formula (14) iff Acc(UI) ∩R ⊆ ΓI . Then, from this result and Proposition 3, it will follow easily
that U is a conflict-free (resp. admissible) d-structure iff ∃I model of Σ(G) ∪ {Φatt

r (G)} such that SI = S
and ΓI = Γ.

Formula (14) (or Φatt
r (G)) writes:

(∀δ ∈ Attack)(((∀α ∈ Attack)(tα = δ → (∃β ∈ Attack)(tβ ∈ {sα, α}∧V al(β)∧Acc(sβ))))→ V al(δ))

1. Assume that I satisfies formula Φatt
r (G). Let δ ∈ Acc(UI) ∩ R. If δ is not attacked, the formula

(∀α ∈ Attack)(tα = δ → (∃β ∈ Attack)(tβ ∈ {sα, α} ∧ V al(β) ∧ Acc(sβ))) is trivially true. So,
V al(δ) must also be satisfied by I. That means δ ∈ ΓI . If δ is attacked, as δ ∈ Acc(UI), for each α
attacking δ, either α ∈ Inh(UI) or s(α) ∈ Def(UI). So, for each α attacking δ, there is β ∈ ΓI such
that s(β) ∈ SI and t(β) ∈ {α, s(α)}. In other words, for each α attacking δ, there is β ∈ R such that
I satisfies the formulae V al(β), Acc(sβ) and tβ ∈ {α, sα}. So, V al(δ) must also be satisfied by I.
That means δ ∈ ΓI .

2. Assume that Acc(UI) ∩ R ⊆ ΓI . Let us prove that I satisfies formula Φatt
r (G). Let δ be an attack

such that I satisfies the formula (∀α ∈ Attack)(tα = δ → (∃β ∈ Attack)(tβ ∈ {sα, α} ∧ V al(β) ∧
Acc(sβ))). Then for each attack α attacking δ, there is an attack β such that I satisfies the formula
tβ ∈ {sα, α}∧V al(β)∧Acc(sβ). As I satisfies V al(β)∧Acc(sβ) means that β ∈ ΓI and s(β) ∈ SI ,
we have that δ ∈ Acc(UI) ∩ R. By hypothesis Acc(UI) ∩ R ⊆ ΓI , so δ ∈ ΓI and then I satisfies
V al(δ). We have proved that I satisfies formula Φatt

r (G).

�

7.3 Proofs of Section 6

Proof of Prop. 5 on page 52: It follows directly from Definition 27 and Observation 1. �

The following lemmas are used in the proofs of the other propositions of Section 6 on page 49.

Lemma 1 Let E be an admissible extension of the MAF 〈A′,R′〉.

1. If E ∩R contains α, then E contains s(α).

2. If E contains Ns(α)α then E ∩R attacks s(α).

3. Moreover, if E is complete the equivalence holds: E containsNs(α)α if and only if E∩R attacks
s(α).
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Proof of Lem. 1 on the facing page: Let Ns(α)α ∈ N. Due to the definition of R′ (see Def. 27),
the only attack to Ns(α)α is the attack (s(α), Ns(α)α).

1. As E is admissible, α is acceptable wrt E . As s(α) is the only defender of α againstNs(α)α,
s(α) must belong to E .

2. If E is admissible and contains Ns(α)α, Ns(α)α is acceptable wrt E so E must attack s(α).
Due to the definition of R′ again (see Def. 27), this attack comes from E ∩R.

3. If E is complete and E ∩R attacks s(α) then Ns(α)α is acceptable wrt E . So Ns(α)α must
belong to E .

�

Lemma 2 Let U = (S,Γ) be a structure. Let U ′ be the structure(S, EU ∩R). It holds that Acc(U)
= Acc(U ′).

Proof of Lem. 2: By definition EU ∩ R = {α ∈ Γ s.t. s(α) ∈ S}). Let x ∈ A ∪ R. By
definition, x ∈ Acc(U) if and only if for each attack β ∈ R such that t(β) = x, there exists
γ ∈ Γ with s(γ) ∈ S and t(γ) ∈ {β, s(β)}. Obviously, γ ∈ Γ with s(γ) ∈ S is equivalent to
γ ∈ EU ∩R with s(γ) ∈ S. So x ∈ Acc(U) if and only if x ∈ Acc(U ′). �

Lemma 3 Let U = (S,Γ) be a structure, EU be the associated extension of the MAF, and UEU =
(SEU ,ΓEU ) be the structure associated with the extension EU . The following assertions hold:

1. SEU = S

2. If U is an admissible structure, then Γ ⊆ ΓEU

3. If (Acc(U) ∩R) ⊆ Γ, then ΓEU ⊆ Γ

4. If U is a complete structure, then Γ = ΓEU

Proof of Lem. 3:

1. By definition of UEU we have SEU = EU ∩A. By definition of EU , we have EU ∩A = S.

2. By definition, ΓEU = (EU ∩R) ∪ {α 6∈ (EU ∩R) s.t. α ∈ Acc((EU ∩A), (EU ∩R)) and
s(α) 6∈ (EU ∩A)}. Note that by definition, (EU ∩A) = S and (EU ∩R) = {γ ∈ Γ with
s(γ) ∈ S}. And from Lemma 2, we have Acc((EU ∩A), (EU ∩R)) = Acc(U).
Let α ∈ Γ. If s(α) ∈ S, α ∈ (EU ∩R) so α ∈ ΓEU . If s(α) 6∈ S, as U is admissible, we
have α ∈ Acc(U), so α belongs to the second part of ΓEU .

3. Assume that (Acc(U) ∩R) ⊆ Γ. Let α ∈ ΓEU . If α ∈ (EU ∩R) ⊆ Γ, we have α ∈ Γ.
If α 6∈ (EU ∩R), by definition of ΓEU , we have α ∈ Acc(U). Due to the assumption, it
follows that α ∈ Γ.

4. The proof follows directly from the above items of this lemma.

�

Lemma 4 Let E be an extension of the MAF. Let UE be its associated structure and EUE be the MAF
extension associated with UE . The following assertions hold:
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1. EUE ∩A = E ∩A

2. EUE ∩R ⊆ E ∩R

3. If E is admissible, then EUE ∩R = E ∩R

4. If E is admissible, then E ∩N ⊆ EUE ∩N

5. If E is complete then EUE ∩N = E ∩N

Proof of Lem. 4 on the previous page: By definition, UE = (SE ,ΓE) with SE = Ea = E ∩A,
Er = E ∩R, and ΓE = Er ∪ {α 6∈ Er s.t. α ∈ Acc(Ea, Er) and s(α) 6∈ Ea}.
Then, EUE is such that EUE ∩ A = SE , EUE ∩ R = {α ∈ ΓE such that s(α) ∈ SE}, and
EUE ∩N = {Ns(α)α s.t. s(α) 6∈ SE and s(α) ∈ Def(UE)}.

1. Obviously, EUE ∩A = E ∩A.

2. By definition of ΓE , if α ∈ ΓE with s(α) ∈ SE = Ea then α ∈ Er. So, EUE ∩R ⊆ Er.
3. Assume that E is admissible. Let α ∈ Er. From Lemma 1, we have s(α) ∈ Ea. As Er ⊆ ΓE

it follows that α ∈ ΓE and s(α) ∈ Ea. So α ∈ EUE ∩R. From the above item we conclude
that EUE ∩R = Er.

4. Assume that E is admissible. LetNs(α)α ∈ E∩N. From Lemma 1, we know that Er attacks
s(α). So there exists β ∈ Er that attacks s(α). From Lemma 1 again, we have s(β) ∈ E .
So, s(α) is attacked by β ∈ Er ⊆ ΓE with s(β) ∈ Ea. That means that s(α) ∈ Def(UE).
Moreover, as E is conflict-free, s(α) 6∈ Ea. It follows that Ns(α)α ∈ EUE ∩N.

5. Assume that E is complete. Let Ns(α)α ∈ EUE ∩N. By definition, s(α) 6∈ SE = Ea and
s(α) ∈ Def(SE ,ΓE). So there exists β ∈ ΓE with s(β) ∈ Ea such that β attacks s(α). By
definition of ΓE it follows that β ∈ Er. Then from Lemma 1, we conclude that E contains
Ns(α)α. Then from the above item of this lemma, as E is also admissible, we conclude that
EUE ∩N = E ∩N.

�

Lemma 5 Let E and E ′ be two complete extensions of the MAF such that E ⊆ E ′ then UE ⊆ UE ′ .

Proof of Lem. 5: By definition, UE = (SE ,ΓE) with SE = Ea = E ∩ A, Er = E ∩ R, and
ΓE = Er ∪ {α 6∈ Er s.t. α ∈ Acc(Ea, Er) and s(α) 6∈ Ea}.
First, we have Ea ⊆ E ′a and Er ⊆ E ′r. Then, due to Lemma 1, as E (resp. E ′) is admissible,
s(α) 6∈ Ea (resp. s(α) 6∈ E ′a) implies that α 6∈ Er (resp. α 6∈ E ′r). So it is enough to prove that:
{α ∈ Acc(Ea, Er) such that s(α) 6∈ Ea} ⊆ E ′r ∪ {α ∈ Acc(E ′a, E ′r) such that s(α) 6∈ E ′a}.
Furthermore, we have Acc(Ea, Er) ⊆ Acc(E ′a, E ′r) so it is enough to show that: For each α ∈
Acc(Ea, Er) such that s(α) 6∈ Ea, either α ∈ E ′r or s(α) 6∈ E ′a.
Assume that the contrary holds. So there is α ∈ Acc(Ea, Er) such that α 6∈ E ′r, s(α) 6∈ Ea and
s(α) ∈ E ′a. As E ′ is a complete extension of the MAF, α is not acceptable wrt E ′. Moreover, as
s(α) ∈ E ′a, α is defended by E ′ against its attacker Ns(α)α. So there must exist another attacker
of α, say β, such that E ′ does not attack β. That implies that Ns(β)β 6∈ E ′, and from Lemma 1
that E ′ does not attack s(β). So E ′ attacks neither β, nor s(β); this fact will be denoted by (*).
Moreover, as α ∈ Acc(Ea, Er), either β ∈ Inh(Ea, Er) (Case 1), or s(β) ∈ Def(Ea, Er) (Case
2). It follows that there is γ ∈ Er ⊆ E ′r with s(γ) ∈ Ea such that t(γ) = β in Case 1 (resp.
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t(γ) = s(β) in Case 2). So E ′r attacks β in Case 1 (resp. s(β) in Case 2), which is in contradiction
with the fact (*).

�

Lemma 6 Let U and U ′ be two conflict-free structures such that U ⊆ U ′ then EU ⊆ EU ′ .

Proof of Lem. 6: By definition, U being the structure (S,Γ), EU = S ∪ {α ∈ Γ s.t. s(α) ∈
S} ∪ {Ns(α)α s.t. s(α) 6∈ S and s(α) ∈ Def(U)}.
First, we have S ⊆ S′ and {α ∈ Γ s.t. s(α) ∈ S} ⊆ {α ∈ Γ′ s.t. s(α) ∈ S′}. So it is enough to
prove that (EU ∩N) ⊆ (EU ′ ∩N).
Let x = Ns(α)α ∈ EU ∩N. As U ⊆ U ′, we have Def(U) ⊆ Def(U ′). So s(α) ∈ Def(U ′).
Hence, as U ′ is a conflict-free structure, it is impossible to have s(α) ∈ S′. So x = Ns(α)α ∈
EU ′ ∩N.

�

Proof of Prop. 6 on page 54: Let U = (S,Γ) be a conflict-free structure of the RAF.

1. Assume that E ′U = S ∪ {α ∈ Γ s.t. s(α) ∈ S} is not conflict-free in the MAF 〈A′,R′〉. Due to
Observation 1, the only possible conflict comes from an attack of the form (α, t(α)) with α ∈ (E ′U ∩Γ)
and t(α) ∈ E ′U (i.e. t(α) ∈ S ⊆ A or t(α) ∈ (E ′U ∩ Γ) ⊆ R). Moreover, for α ∈ (E ′U ∩ Γ) we have
s(α) ∈ S; so, t(α) is either defeated (if t(α) ∈ A) or inhibited (if t(α) ∈ R) wrt U . And so there is a
contradiction with U being conflict-free.

2. Assume that EU = E ′U ∪{Ns(α)α s.t. s(α) 6∈ S and s(α) ∈ Def(U)} is not conflict-free. From the first
part of the proof, the only possible conflict comes from an attack from S to (EU ∩N) or from (EU ∩N)
to (EU ∩ Γ).
In the first case, there is an attack of the form (s(α), Ns(α)α) with s(α) ∈ S and Ns(α)α ∈ (EU ∩N).
However, for Ns(α)α ∈ (EU ∩N), we have s(α) 6∈ S. So there is a contradiction about s(α).
In the second case, there is an attack of the form (Ns(α)α, α) withNs(α)α ∈ (EU ∩N) and α ∈ (EU ∩Γ).
However, for α ∈ (EU ∩ Γ), we have s(α) ∈ S so there is a contradiction with Ns(α)α ∈ (EU ∩N).

�

Proof of Prop. 7 on page 54:

1. Assume that U ′
E = (Ea, Er) is not a conflict-free structure of the RAF. So either Ea ∩ Def(U ′

E) 6= ∅
(Case 1) or Er ∩ Inh(U ′

E) 6= ∅ (Case 2).
In Case 1, ∃a ∈ Ea, β ∈ Er s.t. s(β) ∈ Ea and t(β) = a. So, due to Def. 27, we have (β, a) ∈ R′. That
is in contradiction with E being conflict-free in the MAF.
In Case 2, ∃α ∈ Er, β ∈ Er s.t. s(β) ∈ Ea and t(β) = α. So, due to Def. 27, we have (β, α) ∈ R′.
That is in contradiction with E being conflict-free in the MAF.

2. Assume that UE = (Ea,ΓE) is not a conflict-free structure of the RAF. So either Ea ∩ Def(UE) 6= ∅
(Case 1) or ΓE ∩ Inh(UE) 6= ∅ (Case 2).
Let us recall that ΓE = Er ∪ {α 6∈ Er s.t. s(α) 6∈ Ea and α ∈ Acc(U ′

E)}.
In Case 1, ∃a ∈ Ea, β ∈ ΓE s.t. s(β) ∈ Ea and t(β) = a. Due to the definition of ΓE , as s(β) ∈ Ea,
we have β ∈ Er. So we are back to the first part of the proof (Case 1) and we get a contradiction with E
being conflict-free in the MAF.
In Case 2, ∃α ∈ ΓE , β ∈ ΓE s.t. s(β) ∈ Ea and t(β) = α. Due to the definition of ΓE , as s(β) ∈ Ea, we
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have β ∈ Er. Due to the first part of the proof (Case 2), we cannot have α ∈ Er. So we have s(α) 6∈ Ea
and α ∈ Acc(U ′

E). From the second condition, it follows that β ∈ Inh(U ′
E) or s(β) ∈ Def(U ′

E).
However, s(β) ∈ Ea, and β ∈ Er. Moreover U ′

E = (Ea, Er) is a conflict-free structure, due to the first
part of the proof. So we obtain a contradiction.

�

Proof of Prop. 8 on page 54:

1. Let a be acceptable wrtU in the RAF. We have to prove that a is acceptable wrt EU in the MAF 〈A′,R′〉.
If a is not attacked in the MAF, it is trivially acceptable wrt EU . So, let us assume that a ∈ A is attacked
in the MAF. Due to Observation 1, there is α ∈ R with (α, a) ∈ R′, or in other words α ∈ R with
t(α) = a. So there are also in R′ the attacks (s(α), Ns(α)α) and (Ns(α)α, α).
As a is acceptable wrt U in the RAF, either α ∈ Inh(U), or s(α) ∈ Def(U). It means that ∃β ∈ Γ s.t.
s(β) ∈ S and t(β) ∈ {α, s(α)}. So β ∈ (EU ∩ Γ).
If t(β) = α then (β, α) ∈ R′ and we have that EU attacks α.
If t(β) = s(α) then s(α) ∈ Def(U) and, since U is assumed to be conflict-free, we have s(α) 6∈ S; so
we can prove that Ns(α)α ∈ (EU ∩N). And then EU attacks α.

2. Let α be acceptable wrt U in the RAF, with s(α ∈ S. We have to prove that α is acceptable wrt EU in
the MAF 〈A′,R′〉.
α ∈ R is always attacked in the MAF 〈A′,R′〉. Due to Observation 1, we have to consider two kinds
of attack, namely an attack of the form (Ns(α)α, α) and an attack of the form (γ, α) with γ ∈ R.
In the first case, as it is assumed that s(α) ∈ S, we have s(α) ∈ EU . As we also have the attack
(s(α), Ns(α)α) in R′, we conclude that EU attacks Ns(α)α.
In the second case, as α is acceptable wrt U in the RAF, γ ∈ Inh(U), or s(γ) ∈ Def(U). It means that
∃β ∈ Γ s.t. s(β) ∈ S and t(β) ∈ {γ, s(γ)}. So β ∈ (EU ∩ Γ). As done in the first part of the proof, we
prove that EU attacks γ.

�

Proof of Prop. 9 on page 55: Let U = (S,Γ) be an admissible structure of the RAF.
From Prop. 6, EU is conflict-free in the MAF 〈A′,R′〉.
It remains to prove that ∀x ∈ EU , x is acceptable wrt EU . Three cases must be considered for x:

1. Let x ∈ EU ∩A. So x ∈ S. As U is admissible, x is acceptable wrt U . From Prop. 8, it follows that x
is acceptable wrt EU in the MAF.

2. Let x ∈ EU ∩R. As U is admissible, and x ∈ Γ, x is acceptable wrt U . Moreover from the definition
of EU we have s(x) ∈ S. So Prop. 8 applies and we conclude that x is acceptable wrt EU in the MAF.

3. Let x ∈ EU ∩N. So x has the form Ns(α)α with s(α) 6∈ S and s(α) ∈ Def(U).
The only possible attack to x is from s(α). As s(α) ∈ Def(U), ∃β ∈ Γ s.t. s(β) ∈ S and t(β) = s(α).
From the definition of EU , it follows that β ∈ EU and then that EU attacks s(α). SoNs(α)α is acceptable
wrt EU in the MAF.

Hence we have proved that EU is an admissible extension of the MAF 〈A′,R′〉. �

Proof of Prop. 10 on page 55: Let E be an admissible extension of the MAF 〈A′,R′〉.

1. From Prop. 7, U ′
E is a conflict-free structure of the RAF.

It remains to prove that ∀x ∈ (Ea ∪ Er), x is acceptable wrt U ′
E . If x is unattacked in the RAF, then it is

obviously acceptable wrt U ′
E . Otherwise two cases must be considered for x:
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(a) Let x ∈ Ea. Assume that x is attacked by α ∈ R. We have to prove that either α ∈ Inh(U ′
E) or

s(α) ∈ Def(U ′
E).

The attack α is encoded in the MAF with the three following attacks in R′: (s(α), Ns(α)α),
(Ns(α)α, α) and (α, x).
As E is assumed to be admissible, E attacks α. So either Ns(α)α ∈ E (Case 1), or Er attacks α
(Case 2). Moreover, due to Lemma 1, Case 1 also implies that Er attacks s(α).
So there exists β ∈ Er s.t. β attacks s(α) in Case 1 (resp. β attacks α in Case 2). As E is
admissible, E defends β against Ns(β)β (Observation 1). So s(β) ∈ Ea. That fact with β ∈ Er
prove that s(α) ∈ Def(U ′

E) (resp. α ∈ Inh(U ′
E)).

(b) Let x ∈ Er. Assume that x is attacked by α ∈ R. We have to prove that either α ∈ Inh(U ′
E) or

s(α) ∈ Def(U ′
E). We can do exactly the same reasoning as for the first case (x ∈ Ea).

So we have proved that the structure U ′
E is admissible.

2. From Prop. 7, UE is a conflict-free structure of the RAF.
It remains to prove that ∀x ∈ (Ea ∪ ΓE), x is acceptable wrt UE . We recall that ΓE = Er ∪ {α 6∈ Er s.t.
α ∈ Acc(U ′

E)}.
From the first part of the proof, U ′

E is admissible. So ∀x ∈ (Ea ∪ Er), x is acceptable wrt U ′
E and then

wrt UE . It remains to consider x ∈ ΓE \ Er. In that case, due to the definition of ΓE , x ∈ Acc(U ′
E) so x

is acceptable wrt UE .

So we have proved that the structure UE is admissible.

�

Proof of Prop. 11 on page 55: Let U = (S,Γ) be a complete structure of the RAF. Let us recall that
EU = S ∪ {α ∈ Γ s.t. s(α) ∈ S} ∪ {Ns(α)α s.t. s(α) 6∈ S and s(α) ∈ Def(U)}.
By definition, U is an admissible structure and satisfies Acc(U) ⊆ S ∪ Γ. From Proposition 9, we have that
EU is an admissible extension of the MAF 〈A′,R′〉. So it remains to prove that ∀x ∈ A′, if x is acceptable
wrt EU , then x ∈ EU .
Three cases must be considered for x:

1. Let x ∈ A being acceptable wrt EU . Assume that x 6∈ EU . Then x 6∈ S and so x 6∈ Acc(U), due to the
assumption on U . x 6∈ Acc(U) means that there is β ∈ R with t(β) = x and such that β 6∈ Inh(U)
and s(β) 6∈ Def(U); this fact will be denoted by (*). So we have the attack (β, x) in the MAF.
As x is acceptable wrt EU , we know that EU attacks β in the MAF. So, either Ns(β)β ∈ EU (Case 1), or
there exists γ ∈ (EU ∩R) that attacks β (Case 2).
In Case 1, by definition of EU , s(β) ∈ Def(U), which is in contradiction with the fact (*). In Case 2,
by definition of EU , we have γ ∈ Γ and s(γ) ∈ S. So β ∈ Inh(U), which is in contradiction with the
fact (*).
So we have proved that x must belong to EU .

2. Let α ∈ R being acceptable wrt EU . From Observation 2, it follows that s(α) ∈ S. Now, assume that
α 6∈ EU . By definition of EU , it follows that α 6∈ Γ and so α 6∈ Acc(U), due to the assumption on U .
The rest of the proof is analogous to the proof of the first item. α 6∈ Acc(U) means that there is β ∈ R
with t(β) = α and such that β 6∈ Inh(U) and s(β) 6∈ Def(U); this fact will be denoted by (*). So we
have the attack (β, α) in the MAF.
As α is acceptable wrt EU , we know that EU attacks β in the MAF. So, either Ns(β)β ∈ EU (Case 1), or
there exists γ ∈ (EU ∩R) that attacks β (Case 2).
In Case 1, by definition of EU , s(β) ∈ Def(U), which is in contradiction with the fact (*). In Case 2,
by definition of EU , we have γ ∈ Γ and s(γ) ∈ S. So β ∈ Inh(U), which is in contradiction with the
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fact (*).
So we have proved that α must belong to EU .

3. Let x ∈ N being acceptable wrt EU . x has the form Ns(α)α. As s(α) is the only attacker of x, we know
that EU attacks s(α) in the MAF. So there exists β ∈ EU ∩R with (β, s(α)) ∈ R′. By definition of EU ,
we have β ∈ Γ and s(β) ∈ S. Hence s(α) ∈ Def(U). As U is conflict-free, it implies that s(α) 6∈ S.
So we have Ns(α)α ∈ EU ∩N.

�

Proof of Prop. 12 on page 55: Let E be a complete extension of the MAF 〈A′,R′〉. Let us recall that
UE = (Ea,ΓE), where ΓE = Er ∪ {α 6∈ Er s.t. α ∈ Acc(U ′

E) and s(α) 6∈ Ea}, and U ′
E = (Ea, Er)

By definition, E is an admissible extension of the MAF and ∀x ∈ A′, if x is acceptable wrt E , then x ∈ E .
From Proposition 10, we have that UE is an admissible structure. So it remains to prove that Acc(UE) ⊆
Ea ∪ ΓE . Two cases must be considered:

1. Let a ∈ A ∩ Acc(UE). Assume that a 6∈ Ea. As E is a complete extension of the MAF, a is not
acceptable wrt E . So there exists an attack (β, a) in R′ such that E does not attack β. That implies that
Ns(β)β 6∈ E , and from Lemma 1 that E does not attack s(β). So E attacks neither β, nor s(β); this fact
will be denoted by (*).
Moreover, as a ∈ Acc(UE), either β ∈ Inh(UE) (Case 1), or s(β) ∈ Def(UE) (Case 2). It follows that
there is γ ∈ ΓE with s(γ) ∈ Ea such that t(γ) = β in Case 1 (resp. t(γ) = s(β) in Case 2). These
conditions on γ and the definition of ΓE imply that γ must belong to Er. So we have that E attacks β in
Case 1 (resp. s(β) in Case 2). Hence we obtain a contradiction with the fact (*) and consequently we
have proved that a ∈ Ea.

2. Let α ∈ R ∩ Acc(UE). Assume that α 6∈ ΓE . It follows that α 6∈ Er and either s(α) ∈ Ea or
α 6∈ Acc(U ′

E). Let us successively consider the two cases.

(a) Assume that α 6∈ Er and s(α) ∈ Ea. As E is a complete extension of the MAF, α is not acceptable
wrt E . As s(α) ∈ Ea, α is defended by E against its attacker Ns(α)α. So there must exist another
attacker of α, say β, such that E does not attack β. That implies that Ns(β)β 6∈ E , and from
Lemma 1 that E does not attack s(β). So E attacks neither β, nor s(β); this fact will be denoted
by (*).
Moreover, as α ∈ Acc(UE), either β ∈ Inh(UE) (Case 1), or s(β) ∈ Def(UE) (Case 2). It
follows that there is γ ∈ ΓE with s(γ) ∈ Ea such that t(γ) = β in Case 1 (resp. t(γ) = s(β) in
Case 2). These conditions on γ and the definition of ΓE imply that γ must belong to Er. So we
have that E attacks β in Case 1 (resp. s(β) in Case 2). Hence we obtain a contradiction with the
fact (*).

(b) It remains to consider the case when α 6∈ Er, s(α) 6∈ Ea and α 6∈ Acc(U ′
E). Let us recall that U ′

E
is the structure (Ea, Er). α 6∈ Acc(U ′

E) implies that α is attacked in the RAF by β ∈ R such that
β 6∈ Inh(U ′

E) and s(β) 6∈ Def(U ′
E); this fact will be denoted by (**).

Moreover, as α ∈ Acc(UE), either β ∈ Inh(UE) (Case 1), or s(β) ∈ Def(UE) (Case 2). It
follows that there is γ ∈ ΓE with s(γ) ∈ Ea such that t(γ) = β in Case 1 (resp. t(γ) = s(β)
in Case 2). These conditions on γ and the definition of ΓE imply that γ must belong to Er. So
we have that β ∈ Inh(U ′

E) in Case 1 (resp. s(β) ∈ Def(U ′
E) in Case 2). Hence we obtain a

contradiction with with the fact (**).

So we have proved that α must belong to ΓE .
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�

Proof of Prop. 13 on page 55:

1. The proof follows directly from Lemma 3.

2. The proof follows directly from Lemma 4.

�

Proof of Prop. 14 on page 56: Let U = (S,Γ) be a stable structure of the RAF. By definition, U is a conflict-
free structure that satisfies: A \ S ⊆ Def(U) and R \ Γ ⊆ Inh(U). First, from Proposition 6, we have that
EU is conflict-free in the MAF 〈A′,R′〉. Then, we have to prove that ∀x ∈ A′ \ EU , x is attacked by EU .
Three cases must be considered for x:

1. Let x ∈ A \ EU . Then x ∈ A \ S. By assumption on U , it follows that x ∈ Def(U) and from
Observation 2 it follows that EU attacks x.

2. Let α ∈ R \ EU . Then either α 6∈ Γ (Case 1), or α ∈ Γ and s(α) 6∈ S (Case 2).
In Case 1, as U is a stable structure, α ∈ Inh(U) and from Observation 2 it follows that EU attacks α.
In Case 2, as U is a stable structure, s(α) ∈ Def(U). Moreover, s(α) 6∈ S, so Ns(α)α ∈ EU ∩N. As
(Ns(α)α, α) ∈ R′, we conclude that EU attacks α.

3. Let x ∈ N \ EU . x has the form Ns(α)α with s(α) ∈ S or s(α) 6∈ Def(U). Note that, as U is stable, if
s(α) 6∈ Def(U) then s(α) ∈ S. Then, if s(α) ∈ S, as (s(α), Ns(α)α) ∈ R′ and S ⊆ EU , we conclude
that EU attacks x.

So we have proved that EU is a stable extension of the MAF.

�

Proof of Prop. 15 on page 56: Let E be a stable extension of the MAF 〈A′,R′〉. First, from Prop. 7, we
have that UE is a conflict-free structure of the RAF. Then, we have to prove that A \ Ea ⊆ Def(UE) and
R \ ΓE ⊆ Inh(UE).

1. Let x ∈ A \ Ea. As E is stable, E attacks x. As x ∈ A all the attackers of x belong to R. So there is
α ∈ Er that attacks x. Note that α ∈ ΓE by definition of ΓE .
Moreover, as E is a stable extension of the MAF, E is admissible. As α is attacked byNs(α)α, E contains
the only attacker of Ns(α)α, that is s(α). So s(α) ∈ Ea. By definition, α ∈ Er and s(α) ∈ Ea imply that
x ∈ Def(U ′

E). As ΓE contains Er it follows that we also have x ∈ Def(UE).

2. Let α ∈ R \ ΓE . It follows that α 6∈ Er and either s(α) ∈ Ea or α 6∈ Acc(U ′
E). Let us successively

consider the two cases.

(a) Assume that α 6∈ Er and s(α) ∈ Ea. As E is stable, E attacks α. As E is conflict-free and contains
s(α), it follows that Ns(α)α 6∈ E . So there exists β ∈ Er that attacks α.
Moreover, as E is a stable extension of the MAF, E is admissible. As β is attacked by Ns(β)β ,
E contains the only attacker of Ns(β)β , that is s(β). So s(β) ∈ Ea. By definition, β ∈ Er and
s(β) ∈ Ea imply that α ∈ Inh(U ′

E). As ΓE contains Er it follows that we also have α ∈ Inh(UE).

(b) It remains to consider the case when α 6∈ Er, s(α) 6∈ Ea and α 6∈ Acc(U ′
E). Let us recall that U ′

E
is the structure (Ea, Er). α 6∈ Acc(U ′

E) implies that α is attacked in the RAF by β ∈ R such that
β 6∈ Inh(U ′

E) and s(β) 6∈ Def(U ′
E); this fact will be denoted by (*).

If s(β) 6∈ Ea, from the first part of this proof, it follows that s(β) ∈ Def(U ′
E). That is in
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contradiction with the fact (*). So we have s(β) ∈ Ea.
If β 6∈ ΓE , as s(β) ∈ Ea, from the first item of the second part of this proof, it follows that
β ∈ Inh(U ′

E). That is in contradiction with the fact (*). So we have β ∈ ΓE .
By definition, s(β) ∈ Ea, β ∈ ΓE and β attacks α imply that α ∈ Inh(UE).

In both cases, we have proved that α ∈ Inh(UE).

�

Proof of Prop. 16 on page 56: Let U be a preferred structure. By definition, U is a ⊆-maximal admissible
structure. Moreover U is a complete structure. So, from Proposition 11, EU is a complete extension of the
MAF.
Assume that EU is not a preferred extension of the MAF. Then there exists E ′ an admissible extension of the
MAF that strictly contains EU . It can be assumed that E ′ is a ⊆-maximal admissible extension of the MAF. So
E ′ is preferred and thus complete.
From Lemma 5, it follows that UEU ⊆ UE ′ . From Proposition 13, we have UEU = U . So, U ⊆ UE ′ . As U is
preferred, it follows that U = UE ′ .
From Proposition13 again, EUE′ = E ′ so EU = E ′. That is in contradiction with the assumption that E ′ strictly
contains EU . Hence, we have proved that EU is a preferred extension of the MAF.

�

Proof of Prop. 17 on page 56: Let E be a preferred extension of the MAF. By definition, E is a ⊆-maximal
admissible extension. Moreover E is a complete extension. So, from Proposition 12, UE is a complete structure
of the RAF.
Assume that UE is not a preferred structure of the RAF. Then there exists U ′ an admissible structure that
strictly contains UE . It can be assumed that U ′ is a ⊆-maximal admissible structure of the RAF. So U ′ is
preferred and thus complete (as proved in [7]).
From Lemma 6, it follows that EUE ⊆ EU ′ . From Proposition 13, we have EUE = E . So, E ⊆ EU ′ . As E is
preferred, it follows that E = EU ′ .
From Proposition 13 again, UEU′ = U ′ so UE = U ′.
That is in contradiction with the assumption that U ′ strictly contains UE . Hence, we have proved that UE is a
preferred structure.

�

Proof of Prop. 18 on page 56: Let U = (S,Γ) be the grounded structure of the RAF. By definition, U is the
⊆-minimal complete structure. From Proposition 11, EU is a complete extension of the MAF. Assume that
there is E ′ a complete extension that is strictly included in EU . From Lemma 5, we have UE ′ ⊆ UEU . As
UEU = U , due to Proposition 13, we have UE ′ ⊆ U . From Proposition 12, UE ′ is a complete structure, so by
assumption on U it follows that UE ′ = U . Hence, EUE′ = EU , and from Proposition 13 again, E ′ = EU . That
is in contradiction with the fact that E ′ is strictly included in EU . So we have proved that EU is a ⊆-minimal
complete extension of the MAF, or in other words the grounded extension of the MAF. �

Proof of Prop. 19 on page 56: Let E be the grounded extension of the MAF. By definition, E is the⊆-minimal
complete extension. From Proposition 12, UE is a complete structure of the RAF. Assume that there is U ′ a
complete structure that is strictly included in UE . From Lemma 6, we have EU ′ ⊆ EUE As EUE = E , due to
Proposition 13, we have EU ′ ⊆ E . From Proposition 11, EU ′ is a complete extension, so by assumption on E it
follows that EU ′ = E . Hence, UEU′ = UE , and from Proposition 13 again, U ′ = UE . That is in contradiction
with the fact that U ′ is strictly included in UE . So we have proved that UE is a ⊆-minimal complete structure
of the RAF, or in other words is the grounded extension of the RAF.

�
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