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Abstract

The purpose of this work is to study a generalisation of Dung’s ab-
stract argumentation frameworks that allows representing recursive
attacks, that is, a class of attacks whose targets are other attacks.
We do this by developing a theory of argumentation where the classic
role of attacks in defeating arguments is replaced by a subset of them,
which is extension dependent and which, intuitively, represents a set
of “valid attacks” with respect to the extension. The studied theory
displays a conservative generalisation of Dung’s semantics (complete,
preferred and stable) and also of its principles (conflict-freeness, ac-
ceptability and admissibility). Furthermore, despite its conceptual
differences, we are also able to show that our theory agrees with the
AFRA interpretation of recursive attacks for the complete, preferred
and stable semantics.
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1 Introduction
Argumentation has become an essential paradigm for Knowledge Representa-
tion and, especially, for reasoning from contradictory information [1, 10] and for
formalizing the exchange of arguments between agents in, e.g., negotiation [2].
Formal abstract frameworks have greatly eased the modelling and study of argu-
mentation. For instance, a Dung’s argumentation framework (AF) [10] consists
of a collection of arguments interacting with each other through an attack rela-
tion, enabling to determine “acceptable” sets of arguments called extensions.

A natural generalisation of Dung’s argumentation frameworks consists in
allowing high-order attacks that target other attacks. Here is an example in the
legal field, borrowed from [3].

Example 1. The lawyer says that the defendant did not have intention to kill
the victim (Argument b). The prosecutor says that the defendant threw a sharp
knife towards the victim (Argument a). So, there is an attack from a to b. And
the intention to kill should be inferred. Then the lawyer says that the defendant
was in a habit of throwing the knife at his wife’s foot once drunk. This latter
argument (Argument c) is better considered attacking the attack from a to b,
than argument a itself. Now the prosecutor’s argumentation seems no longer
sufficient for proving the intention to kill. This example is represented as a
recursive framework in Fig. 1.

a b

c

Figure 1: An acyclic recursive framework

Another example, borrowed from [4, 8], will be taken as a running example.

Example 2. Suppose Bob is making decisions about his Christmas holidays, and
is willing to buy cheap last minute offers. He knows there are deals for travelling
to Gstaad (g) or Cuba (c). Suppose that Bob has a preference for skiing (p) and
knows that Gstaad is a renowned ski resort. However, the weather service reports
that it has not snowed in Gstaad (n). So it might not be possible to ski there.
Suppose finally that Bob is informed that the ski resort in Gstaad has a good
amount of artificial snow, that makes it anyway possible to ski there (a). The
different attacks are represented on Fig. 2. �

A semantics for these classes of recursive frameworks has been first intro-
duced in [13] in the context of preferences in argumentation frameworks, and
latter studied in [4] under the name of AFRA (Argumentation Framework with
Recursive Attacks). This version describes abstract argumentation frameworks
in which the interactions can be either attacks between arguments or attacks
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Figure 2: Bob’s dilemma: arguments are in circle and attacks in square.

from an argument to another attack. A translation of an AFRA into an AF is
defined by the addition of some new arguments and the attacks they produce
or they receive. Note that AFRA have been extended in order to handle recur-
sive support interactions together with recursive attacks [8, 9]. However, when
supports are removed, these approaches go back to AFRA.

A similar work is described in [7] using the addition of meta-arguments that
enable to encode the notions of “grounded attack” and “valid attack”. The
notion of grounded attack is about the source of the attack and the notion of
valid attack is about the link between the source and the target of the attack
(i.e. the role of the interaction itself). Despite the intuitive results obtained by
these approaches regarding complete, stable or grounded extensions, it somehow
changes the role that attacks play in Dung’s frameworks.

Example 3. Consider the argumentation framework corresponding to Fig. 3.
According to Dung’s theory, this framework has three conflict-free sets: ∅, {a}

a α b

Figure 3: A simple Dung’s framework

and {b}. On the other hand, {a, b} is a conflict-free set according to AFRA
because the attack α is not in the set. In fact, in AFRA, such an argumentation
framework can be turned into an AF by converting α into a new argument as
in Fig. 4. In this new framework, it is easy to observe that {a, b} is considered

a α b

Figure 4: AF framework for AFRA of Fig. 3

conflict-free in AFRA because there is no attack between a and b. In some
sense, the connection between an attack and its source has been lost. As another
example of this behaviour, the set {α, b} is not AFRA-conflict-free despite the
fact that the source of α, the argument a, is not in the set. �
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In this paper, we study an alternative semantics for argumentation frame-
works with recursive attacks based on the following intuitive principles:
P1 The role played in Dung’s argumentation frameworks by attacks in de-

feating arguments is now played by a subset of these attacks, which is
extension dependent and represents the “valid attacks” with respect to
that extension.

P2 It is a conservative generalisation of Dung’s framework for the definitions
of conflict-free, admissible, complete, preferred, and stable extensions.

For instance, in the proposed semantics, the conflict-free extensions of the frame-
work of Fig. 3 are precisely Dung’s conflict-free extensions: ∅, {a} and {b}.
Besides, as we will see later, the attack α is valid with respect to all three ex-
tensions because it is not the target of any attack. It is worth noting that,
despite its conceptual difference with respect to AFRA, we are able to prove an
one-to-one correspondence between our complete, preferred and stable exten-
sions and the corresponding AFRA extensions, in which the set of “acceptable”
arguments are the same. This offers an alternative view for the semantics of
recursive attacks that we believe to be closer to Dung’s intuitive understanding.

2 Background
Definition 1. A Dung’s abstract argumentation framework (D-framework for
short) is a pair AF = 〈A,R〉 where A is a set of arguments and R ⊆ A×A is
a relation representing attacks over arguments. �

For instance, the graph depicted in Fig. 3 corresponds to the D-framework AF3 =
〈A3,R3〉 with the set of arguments A3 = {a, b} and the attack relation R3 =
{(a, b)}.

Definition 2. Given some D-framework AF = 〈A,R〉 and some set of argu-
ments S ⊆ A, an argument a ∈ A is said to be
i) defeated w.r.t. S iff ∃b ∈ S such that (b, a) ∈ R, and

ii) acceptable w.r.t. S iff for every argument b ∈ A with (b, a) ∈ R, there is
c ∈ S such that (c, b) ∈ R. �

To obtain shorter definitions we will also use the following notations:

Def (S) def= { a ∈ A
∣∣ ∃b ∈ S s.t. (b, a) ∈ R }

Acc(S) def= { a ∈ A
∣∣ ∀b ∈ A, (b, a)∈R implies b∈Def (S) }

respectively denote the set of all defeated and acceptable arguments w.r.t. S.

Definition 3. Given a D-framework AF = 〈A,R〉, a set of arguments S ⊆ A
is said to be
i) conflict-free iff S ∩Def (S) = ∅,

ii) admissible iff it is conflict-free and S ⊆ Acc(S),
iii) complete iff it is conflict-free and S = Acc(S),
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iv) preferred iff it is ⊆-maximal1 admissible,
v) stable iff it is conflict-free and S ∪Def (S) = A. �

Theorem 1 ([10]). Given a D-framework AF = 〈A,R〉, the following assertions
hold:
i) every complete set is also admissible,

ii) every preferred set is also complete, and
iii) every stable set is also preferred. �

For instance, in Example 3, the argument a is accepted w.r.t. any set S because
there is no argument x ∈ A such that (x, a) ∈ R. Furthermore, b is defeated
and non-acceptable w.r.t. the set {a}. Then, it is easy to check that {a} is
stable (and, thus, conflict-free, admissible, complete and preferred). The empty
set ∅ is admissible, but not complete; and the set {b} is conflict-free, but not
admissible.

3 Semantics for recursive attacks
Definition 4. A recursive argumentation framework RAF = 〈A,K,s,t〉 is a
quadruple where A and K are (possibly infinite) disjunct sets respectively rep-
resenting arguments and attack names, and where s : K −→ A and t : K −→
A ∪K are functions respectively mapping each attack to its source and its tar-
get. �

For instance, the argumentation framework of Example 3 corresponds to
RAF3 =〈A3,K3, s3, t3〉 where A3 = {a, b}, K3 = {α}, s3(α) = a and t3(α) = b.
In general, given any D-framework AF = 〈A,R〉, we may obtain its correspond-
ing argumentation framework RAF = 〈A,K,s,t〉 by defining a set of attack names
K = { α(a,b)

∣∣ (a, b) ∈ R }. Functions s and t are straightforwardly defined by
mapping each attack (a, b) ∈ R as follows: s(α(a,b)) = a and t(α(a,b)) = b.

It is worth noting that our definition allows the existence of several attacks
between the same arguments. Though this does not make any difference for
frameworks without recursive attacks, for recursive ones, it allows representing
attacks between the same arguments that are valid in different contexts. For
instance, in the example of Figure 5, there are two attacks between a and b,

c γ α

a b

d δ β

Figure 5: A recursive framework representing attacks in different contexts
1With ⊆ denoting the standard set inclusion relation.
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namely α and β, which represent different contexts as they are attacked by
different arguments.

Definition 5 (Structure). A pair A = 〈S,Γ〉 is said to be a structure of
some RAF = 〈A,K,s,t〉 iff it satisfies: S ⊆ A and Γ ⊆ K. �

Intuitively, the set S represents the set of “acceptable” arguments w.r.t. the
structure A, while Γ represents the set of “valid attacks” w.r.t. A. Any at-
tack2 α ∈ Γ is understood as non-valid and, in this sense, it cannot defeat the
argument or attack that it is targeting.

For the rest of this section we assume that all definitions and results are
relative to some given framework RAF = 〈A,K,s,t〉. We extend now the defini-
tion of defeated arguments (Definition 2) using the set Γ instead of the attack
relation R: given a structure of the form A = 〈S,Γ〉, we define:

Def (A) def= { a∈A
∣∣∃α ∈ Γ, s(α)∈S and t(α)=a } (1)

In other words, an argument a ∈ A is defeated w.r.t. A iff there is a “valid
attack” w.r.t. A that targets a and whose source is “acceptable” w.r.t. A. It
is interesting to observe that we may define the attack relation associated with
some structure A = 〈S,Γ〉 as follows:

RA def= { (s(α), t(α))
∣∣ α ∈ Γ } (2)

and that, using this relation, we can rewrite (1) as:

Def (A) def= { a ∈ A
∣∣ ∃b ∈ S s.t. (b, a) ∈ RA } (3)

Now, it is easy to see that our definition can be obtained from Dung’s definition
of defeat (Definition 2) just by replacing the attack relation R by the attack
relation RA associated with the structure A, or in other words, by replacing
the set of all attacks in the argumentation framework by the set of the “valid
attacks” w.r.t. the structure A, as stated in P1. Analogously, by

Inh(A) def= { α ∈ K
∣∣ ∃b ∈ S s.t. (b, α) ∈ RA } (4)

we denote a set of attacks that, intuitively, represents the “inhibited attacks3”
w.r.t. A.

We are now ready to extend the definition of acceptable argument w.r.t. a
set (Definition 2):

Definition 6 (Acceptability). An element x ∈ (A ∪K) is said to be acceptable
w.r.t. some structure A iff every attack α ∈ K with t(α) = x satisfies one of the
following conditions: (i) s(α) ∈ Def (A) or (ii) α ∈ Inh(A). �

2By Γ def= K\Γ we denote the set complement of Γ.
3We will deepen about the intuition of inhibited attacks in Section 6.
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By Acc(A), we denote the set containing all acceptable arguments and at-
tacks with respect to A. We also define the following order relations that will
help us defining preferred structures: for any pair of structures A = 〈S,Γ〉 and
A′ = 〈S′,Γ′〉, we write A v A′ iff (S ∪ Γ) ⊆ (S′ ∪ Γ′) and we write A var A′ iff
S ⊆ S′. As usual, we say that a structure A is v-maximal (resp. var-maximal)
iff every A′ that satisfies A v A′ (resp. A var A′) also satisfies A′ v A (resp.
A′ var A).

Definition 7. A structure A = 〈S,Γ〉 is said to be:
i) conflict-free iff S∩Def (A)=∅ and Γ∩Inh(A)=∅,

ii) admissible iff it is conflict-free and
(S ∪ Γ) ⊆ Acc(A),

iii) complete iff it is conflict-free and Acc(A) = (S ∪ Γ),
iv) preferred iff it is a v-maximal admissible structure,
v) arg-preferred iff it is a var-maximal preferred structure,

vi) stable4 iff S = Def (A) and Γ = Inh(A). �

Example 1 (cont’d) Let RAF be the recursive argumentation framework cor-
responding to Fig. 6 (Fig. 6 is Fig. 1 completed with the attack names). It is

a α b

β

c

Figure 6: An acyclic recursive framework

easy to check that this framework has a unique complete, preferred and stable
structure A = 〈{a, b, c}, {β}〉. Furthermore, there are nine admissible structures
that are not complete: 〈{a, c}, {β}〉, 〈{b, c}, {β}〉, 〈{a}, {β}〉, 〈{c}, {β}〉, 〈∅, {β}〉,
〈{a, c},∅〉, 〈{a},∅〉, 〈{c},∅〉 and 〈∅,∅〉. There are also other conflict-free struc-
tures that are not admissible: 〈∅, {α, β}〉, 〈{a}, {α, β}〉, 〈{b}, {α, β}〉, 〈{a, b}, {β}〉,
〈{b}, {β}〉, 〈{a, c}, {α}〉, 〈{b, c}, {α}〉, 〈{a}, {α}〉, 〈{b}, {α}〉, 〈{c}, {α}〉, 〈∅, {α}〉, 〈{a, b},∅〉,
〈{a, b, c},∅〉, 〈{b, c},∅〉 and 〈{b},∅〉. �

It is worth to mention that preferred and arg-preferred structures do not nec-
essarily coincide, since there exist preferred structures that do not contain a
maximal set of arguments as shown by the following example:

Example 4. Let RAF be the argumentation framework corresponding to the
the graph depicted in Figure 7. Both A = 〈{a, b}, {β}〉 and A′ = 〈{a}, {α, β}〉

4By Def (A) def= A\Def (A) we denote the non-defeated arguments. Similarly, by Inh(A) def=
K\Inh(A) we denote the non-inhibited attacks. Note also that S = Def (A) and Γ = Inh(A)
already implies conflict-freeness.
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a α b

β

Figure 7: A RAF in which preferred and arg-preferred structures do not coincide

are preferred structures of RAF, but only the former contains a maximal set of
arguments and thus A is the unique arg-preferred structure. �

We show now5 that, as in Dung’s argumentation theory, there is also a kind
of Fundamental Lemma for argumentation frameworks with recursive attacks.
For the sake of compactness, we will adopt the following notations: Given a
structure A = 〈S,Γ〉 and a set T ⊆ (A ∪K) containing arguments and attacks,
by A∪T def= 〈S ∪ (T ∩A),Γ∪ (T ∩K)〉 we denote the result of extending A with
the elements in T .

Lemma 1 (Fundamental Lemma). Let A = 〈S,Γ〉 be an admissible structure
and x, y ∈ Acc(A) be any pair of acceptable elements. Then, (i) A′ = A∪ {x} is
an admissible structure, and (ii) y ∈ Acc(A′). �

Moreover, admissible structures form a complete partial order with preferred
structures as maximal elements:

Proposition 1. The set of all admissible structures forms a complete partial
order with respect to v. Furthermore, for every admissible structure A, there
exists an (arg-)preferred one A′ such that A v A′. �

The following result shows that the usual relation between extensions also holds
for structures.

Theorem 2. The following assertions hold:
i) every complete structure is also admissible,

ii) every preferred structure is also complete, and
iii) every stable structure is also preferred. �

Example 5. As a further example, consider the framework RAF corresponding
to Fig. 8. This framework has a unique complete and (arg-)preferred struc-

a α b

β γ

c

Figure 8: A cyclic recursive framework
5The proofs of propositions, lemmas, theorems given in this paper can be found in A.
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ture A = 〈{a, c}, {γ}〉, but no stable one. Note that α and β are neither accept-
able nor inhibited w.r.t. A: β is not inhibited because b is not in the structure,
so α is not acceptable. α is not inhibited because β is not in the structure. And
β is not acceptable because b is not defeated (as α is not in the structure). �

Example 2 (cont’d) Consider the framework RAF represented in Fig. 2.
This framework has a unique complete, preferred and stable structure: A0 =
〈{a, g, p}, {α, ε, γ, δ}〉. Among the 63 admissible structures, we find A1 = 〈{a}, {ε}〉,
A2 = 〈{a}, {ε, δ}〉, and A3 = 〈{a}, {α, ε, γ, δ}〉. �

4 Relation with AFRA
In this section, we establish correspondences between our semantics for recursive
attacks and the semantics for AFRA. In [4] a recursive framework is turned into
a Dung’s framework by adding new arguments and attacks using the following
notion of defeat:

Definition 8 (Defeat). Let RAF = 〈A,K,s,t〉. An attack α ∈ K is said to
directly defeat x ∈ A ∪K iff t(α) = x. It is said to indirectly defeat β ∈ K
iff α directly defeats s(β). Then, α is said to defeat x ∈ A ∪K iff α directly
defeats x or α indirectly defeats x. �

For instance, in Example 5, it is easy to see that α directly defeats b and
indirectly defeats γ. Hence, α defeats both b and γ. Attacks β and γ directly
defeat α and β, respectively. It has been shown in [4] that AFRA extensions
can be characterized as the extensions of a Dung’s framework whose new set of
arguments contains both arguments and attacks and whose new attack relation
is the defeat relation of Definition 8. In this sense, under AFRA, the argumen-

a α b

β γ

c

Figure 9: AF framework for AFRA framework of Ex. 5

tation framework of Example 5 is turned into the one in Fig. 9 and it can be
checked that it has a unique complete and preferred extension {a, c} and no
stable one. We recall next the formal definitions of AFRA from [4]:

Definition 9. Let RAF = 〈A,K,s,t〉 and E ⊆ (A ∪ K). Then, an element
x ∈ (A ∪K) is said to be AFRA-acceptable w.r.t. E iff for every α ∈ K that
defeats x, there is β ∈ E that defeats α. �
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Definition 10 (AFRA-extensions). Let RAF = 〈A,K,s,t〉 and a set E ⊆ (A ∪
K), E is said to be:

i) AFRA-conflict-free iff @α, x ∈ E s.t. α defeats x,
ii) AFRA-admissible iff E is AFRA-conflict-free and each element of E is

AFRA-acceptable w.r.t. E,
iii) AFRA-complete iff it is AFRA-admissible and every x ∈ (A ∪K) which

is AFRA-acceptable w.r.t. E belongs to E,
iv) AFRA-preferred iff it is a ⊆-maximal

AFRA-admissible extension,
v) AFRA-stable iff it is AFRA-conflict-free and, for every x ∈ (A∪K), x < E

implies that x is defeated by some α ∈ E. �

As illustrated by Example 3, AFRA does not preserve Dung’s notion of conflict-
freeness.

Observation 1. AFRA is not a conservative generalisation of Dung’s approach.
�

In order to characterize the relation between our approach and AFRA, we
will need the following notation. Given some structure A = 〈S,Γ〉, by

EA def= S ∪ { α ∈ Γ
∣∣ s(α) ∈ S }

we denote its corresponding AFRA-extension.
Note that the AFRA-extension corresponding to a given structure only con-

tains the attacks of the structure whose source belongs to the structure. The
other attacks of the structure do not appear in the AFRA-extension. Intuitively,
this selection is motivated by the fact that any attack in an AFRA-extension
directly carries a conflict against its target, even if its source is not accepted,
something which we avoid in our framework.

Proposition 2. Let RAF = 〈A,K,s,t〉 and a structure A = 〈S,Γ〉, the following
assertions hold:

i) if A is conflict-free, then EA is AFRA-conflict-free,
ii) if A is admissible, then EA is AFRA-admissible,

iii) if A is complete, then EA is AFRA-complete,
iv) if A is preferred, then EA is AFRA-preferred,
v) if A is stable, then EA is AFRA-stable. �

For the converse of Prop. 2, we need to introduce some extra notation: Given
some set E ⊆ (A ∪K), by SE def= (E ∩A), we denote the set of arguments of E .
Then, considering the structure A′ = 〈SE , (E ∩K)〉, by

ΓE def= (E∩K) ∪ { α∈(Acc(A′)∩K)
∣∣ s(α)<E } (5)

we denote the set of “valid attacks” with respect to E . Finally, by AE def= 〈SE ,ΓE〉,
we denote the structure corresponding to some AFRA-extension E . Here, we
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have to add attacks that do not belong to the AFRA-extension. Intuitively,
this is due to the fact that, in AFRA, an attack is not acceptable whenever its
source is not acceptable [4, Lemma 1]. Hence, we need to add to the structure
all those attacks that are non-AFRA-acceptable only because of attacks towards
their source.

Proposition 3. Given a RAF = 〈A,K,s,t〉 and a set E ⊆ (A∪K), the following
assertions hold:

i) if E is AFRA-conflict-free, then AE is conflict-free,
ii) if E is AFRA-admissible, then AE is conflict-free,

iii) if E is AFRA-complete, AE is a complete structure,
iv) if E is AFRA-preferred, AE is a preferred structure,
v) if E is AFRA-stable, AE is a stable structure. �

It is worth to emphasise that for an AFRA-admissible extension, Proposition 3
only ensures that the corresponding structure AE is a conflict-free structure. In
fact, there exist AFRA-admissible extensions, whose corresponding structures
are not admissible. For instance, considering the argumentation framework of

a α b β c

Figure 10: A Dung’s framework with two attacks

Fig. 10, the set {α, c} is AFRA-admissible, but the corresponding structure
〈{c}, {α, β}〉 is not an admissible structure (since a is not in the structure).
This discrepancy follows from the fact that, in AFRA, α defeats β despite of
the absence of a while in our approach attacks whose source is not accepted
cannot defeat other arguments or attacks. This difference disappears if we
consider what we call closed sets. We say that E ⊆ (A ∪K) is closed iff every
attack α ∈ (E ∩K) satisfies s(α) ∈ E .

Proposition 4. Let E be a closed AFRA-admissible extension. Then, AE is an
admissible structure. �

Note that for conflict-freeness and admissibility, the correspondence is not
necessarily one-to-one. For instance, A = 〈{a, c}, {α}〉 and A′ = 〈{a, c}, {α, β}〉
are both admissible structures of the framework of Fig. 10 and both of them
correspond to the same AFRA-admissible extension EA = EA′ = {a, c, α}. Recall
that β is acceptable w.r.t. A′ because it is not attacked. However, it is not
AFRA-acceptable w.r.t. {a, c, α, β} because, in AFRA, α defeats β and α is
not itself defeated (in fact, {a, c, α, β} is not even AFRA-conflict-free). On the
other hand, note that only A′ is a complete structure. In fact, for complete
structures the correspondence is one-to-one.

Let us denote by Afra(·) the function mapping each structure A to its cor-
responding AFRA-extension EA.

Proposition 5. The following assertions hold:

10



i) if E is AFRA-complete (or just a closed AFRA-conflict-free extension),
then Afra(AE) = E, and

ii) if A is a complete structure, then AAfra(A) = A. �

Theorem 3. The function Afra(·) is a one-to-one correspondence between the
sets of all complete (resp. preferred and stable) structures and the set of all
AFRA-complete (resp. preferred and stable) extensions. �

Note that given the one-to-one correspondence between preferred structures
and AFRA-preferred extensions, there are AFRA-preferred extensions that do
not correspond to arg-preferred ones and thus, they do not contain a maximal
set of arguments. For instance, {a, b, β} and {a, α} are both AFRA-preferred
extensions in Example 4, but only the former contains a maximal set of argu-
ments.

An interesting consequence of Theorem 3 and Proposition 12 in [4] is that
complexity for RAFs’ semantics does not increase w.r.t. Dung’s frameworks.
That is, credulous acceptance w.r.t. the complete, preferred and the stable se-
mantics is NP-complete. Sceptical acceptance w.r.t. the preferred (resp. stable)
semantics is ΠP

2 -complete (resp. coNP-complete) [11].
Example 2 (cont’d) For the framework represented in Fig. 2, there is a unique
AFRA-complete, AFRA-preferred and AFRA-stable extension: E = {a, g, p, α, ε, γ}.
Note that δ < E whereas E = EA0 . Indeed, no AFRA-admissible extension con-
tains δ. Analogously, we have EA1 = EA2 = EA3 = {a, ε}. Moreover, among
the AFRA-admissible extensions, we find {a, g, ε, γ} which is not closed. The
associated structure A4 = 〈{a, g}, {ε, γ}〉 is not an admissible structure.

5 Conservative generalisation
As mentioned in the introduction, our theory aims to be a conservative gen-
eralisation of Dung’s theory (P2). Indeed, given the one-to-one correspon-
dence between complete, preferred and stable structures and their correspond-
ing AFRA-extensions and between the latter and Dung’s extensions [4] in the
case of non-recursive frameworks, it immediately follows that there exists a
one-to-one correspondence between complete, preferred and stable structures
and their corresponding Dung’s extensions.

On the other hand, this is not the case when we consider only conflict-freeness
or admissibility. As mentioned in the introduction, {a, b} is an AFRA-conflict-free
extension of the non-recursive argumentation framework of Example 3. From
Proposition 3, this implies that the corresponding structure 〈{a, b},∅〉, is a
conflict-free structure.

It is worth to note that, in Dung’s argumentation frameworks, every attack
is considered as “valid” in the sense that it may affect its target. The following
definition strengthens the notion of structure by adding a kind of reinstatement
principle on attacks, that forces every attack that cannot be defeated to be
“valid”.

11



Definition 11 (D-structure). A d-structure A = 〈S,Γ〉 is a structure that sat-
isfies (Acc(A) ∩K) ⊆ Γ. �

Definition 12. A conflict-free (resp. admissible, complete, preferred, stable)
d-structure is a conflict-free (resp. admissible, complete, preferred, stable) struc-
ture which is also a d-structure. �

As a direct consequence of Definition 7, we have:

Observation 2. Every complete structure is also a d-structure. �

Observation 2 plus Theorem 3 immediately imply the existence of a one-to-
one correspondence between complete (resp. preferred or stable) d-structures
and their corresponding AFRA and Dung’s extensions. In order to establish a
correspondence between conflict-free (resp. admissible) d-structures and their
corresponding Dung’s extensions, we need to define what it means for a set of
arguments to be an extension of some recursive framework.

Definition 13 (Argument extensions). A set of arguments S ⊆ A is conflict-
free (resp. admissible, complete, preferred, stable) iff there is some Γ ⊆ K such
that A = 〈S,Γ〉 is a conflict-free (resp. admissible, complete, preferred, stable)
d-structure. �

Definition 13 allows us to talk about sets of arguments instead of structures.
Before formalising the fact that Definition 13 characterizes a conservative gen-
eralisation of Dung’s argumentation framework, we define the attack relation
associated with some framework in a similar way to the attack relation associ-
ated with some structure: RRAF

def= { (s(α), t(α))
∣∣ α ∈ K }. Note that, since

every structure A = 〈S,Γ〉 satisfies Γ ⊆ K, it clearly follows that RA ⊆ RRAF.
We also precise what we mean by non-recursive framework:

Definition 14 (Non-recursive framework). A framework RAF = 〈A,K,s,t〉 is
said to be non-recursive iff RRAF ⊆ A×A. �

That is, non-recursive frameworks are those in which no attack targets an-
other attack. Given a non-recursive framework RAF, it is easy to observe
that AF = 〈A,RRAF〉 is a D-framework (Definition 1). In this sense, by
RAFD def= 〈A,RRAF〉, we denote the D-framework associated with some RAF.

Observation 3. Every d-structure A = 〈S,Γ〉 of any non-recursive framework
satisfies Γ=K. �

Theorem 4. A set of arguments S ⊆ A is conflict-free (resp. admissible,
complete, preferred or stable) w.r.t. some non-recursive RAF (Definition 13) iff
it is conflict-free (resp. admissible, complete, preferred or stable) w.r.t. RAFD
(Definition 3). �

Due to Observation 2, it follows directly that:

Corollary 1. A structure A = 〈S,K〉 is complete (resp. preferred, stable) w.r.t.
a non-recursive RAF (Definition 7) iff S is complete (resp. preferred or stable)
w.r.t. RAFD (Definition 3). �
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It is worth to note that the notion of d-structure provides alternative seman-
tics for the principles of conflict-freeness and admissibility.
Example 1 (cont’d) Among the conflict-free structures that are not admissible,
only five are conflict-free d-structures: 〈∅, {α, β}〉, 〈{a}, {α, β}〉, 〈{b}, {α, β}〉,
〈{a, b}, {β}〉, 〈{b}, {β}〉. Similarly, among the admissible structures that are
not complete, only five are admissible d-structures: 〈{a, c}, {β}〉, 〈{b, c}, {β}〉,
〈{a}, {β}〉, 〈{c}, {β}〉 and 〈∅, {β}〉. �

Example 2 (cont’d) There are admissible structures w.r.t. the framework rep-
resented in Fig. 2 that are not d-structures: for instance A1 and A2. Indeed,
each d-structure must contain the attacks thas are not targeted by any other
attack, that is, {ε, α, δ}. Moreover each d-structure containing a must also con-
tain γ. �

6 Inhibited attacks
In this section, the intuition behind the concept of inhibited attacks is deepened
and precisely defined. Indeed, we may expect that attacks that are inhibited
do not have any effect on their targets, that is, we may remove them without
modifying the condition of the structure.

Example 6. Let RAF be the recursive argumentation framework of Fig. 6
and A = 〈{a, b, c}, {β}〉 its unique complete structure. It is easy to check that α
is inhibited w.r.t. A because c and β belong to the structure and α is the target
of β. According to the above intuition, we may expect that this would imply
that there is a “somehow” corresponding structure A′ which is complete w.r.t.
some RAF′ obtained by removing α. Note that, in this case, removing α also
implies removing β because there cannot be attacks without target. In fact, the
resulting RAF′ is a recursive framework with arguments {a, b, c} and no attack.
It is easy to check that A′ = 〈{a, b, c},∅〉 is complete (also preferred and stable)
w.r.t RAF′ and that it shares with A the set of “acceptable” arguments. �

Let us now formalise this intuition:

Definition 15. Given some framework RAF and two different attacks β, α, we
define: β ≺ α iff there is some chain of attacks δ1, δ2, . . . δn such that δ1 = β,
δn = α and t(δi) = δi+1 for 1 ≤ i < n. �

For instance, in the argumentation framework of Fig. 6, we have that β ≺ α.
On the other hand, neither α ≺ β, nor β ≺ α hold for the argumentation
framework of Fig. 10. Note that ≺ is the empty relation for any non-recursive
framework. As usual, by � we denote the reflexive closure of ≺.

Given an attack α, and a set of attacks Γ, by Γ−α def= Γ\{ β ∈ K
∣∣ β � α }

we denote the set of attacks obtained by removing the attack α from Γ. Fur-
thermore, by RAF−α = 〈A,K−α, s−α, t−α〉, with s−α and t−α the restrictions
of s and t to K−α, we denote the framework obtained by removing the attack α
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from RAF = 〈A,K,s,t〉. Similarly, by A−α = 〈S,Γ−α〉 we denote the structure
obtained by removing the attack α from the structure A = 〈S,Γ〉.

Example 1 (cont’d) Let RAF be the recursive argumentation framework of
Fig. 6. Then RAF−α = 〈A,∅, s−α, t−α〉 with A = {a, b, c} because β ≺ α
implies that β < K−α. Furthermore, if A = 〈{a, b, c}, {β}〉, then A−α =
〈{a, b, c},∅〉 which is a stable structure of RAF−α. �

Proposition 6 below formalises the intuitions presented in the previous ex-
ample.

Proposition 6. Let RAF be some framework, A be some conflict-free (resp.
admissible, complete, preferred, stable) structure and α ∈ Inh(A) be some inhib-
ited attack w.r.t. A. Then, A−α is a conflict-free (resp. admissible, complete,
preferred, stable) structure of RAF−α. �

7 Conclusion and future works
In this work we have extended Dung’s abstract argumentation framework with
recursive attacks. One of the essential characteristics of this extension is its
conservative nature with respect to Dung’s approach (when d-structures are
considered). The other one is that semantics are given with respect to the notion
of “valid attacks” which play a role analogous to attacks in Dung’s frameworks.
The notions of “grounded attack” and “valid attack” have been introduced in [7].
However, these notions have been encoded through a two-step translation into a
meta-argumentation framework. In the first step, a meta-argument is associated
to an attack, and a support relation is added from the source of the attack to
the meta-argument. In the second step, a support relation is encoded by the
addition of a new meta-argument and new attacks. So [7] uses a method for
flattening a recursive framework. As a consequence, extensions contain different
kinds of argument. In contrast, we propose a theory where valid attacks remain
explicit, and distinct from arguments, within the notion of structure. Despite
these differences with respect to other generalisations, we proved a one-to-one
correspondence with AFRA-extensions in the case of the complete, preferred
and stable semantics, while retaining a one-to-one correspondence with Dung’s
frameworks in the case of conflict-free and admissible extensions.

For a better understanding of the RAF framework, future work should in-
clude the study of other semantics (stage, semi-stable, grounded and ideal),
extending our approach by taking into account bipolar interactions [8, 15] (case
when arguments and attacks may be attacked or supported), and enriching the
translation proposed by [5, 6, 12, 14] from Dung’s framework into propositional
logic and ASP, in order to capture RAF.
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A Proofs
Lemma A.1. Let RAF = 〈A,K,s,t〉 be some framework and A be a conflict-free
structure. Then, it follows that Acc(A)∩Def (A) = ∅ and Acc(A)∩ Inh(A) = ∅

Proof. Assume that a ∈ (Acc(A)∩Def (A)). Then, there is α ∈ Γ with s(α) ∈ S
and t(α) = a. Since a ∈ Acc(A), it follows that either s(α) ∈ Def (A) or α ∈
Inh(A) holds. Both situations are impossible since A is conflict-free, meaning
that S ∩Def (A) = ∅ and Γ ∩ Inh(A) = ∅.
The same reasoning holds for β ∈ (Acc(A)∩Inh(A)) replacing a by β. �

Lemma A.2. Let RAF = 〈A,K,s,t〉 be some framework and A,A′ be two
structures such that A v A′. Then, it follows that Def (A) ⊆ Def (A′) and
Inh(A) ⊆ Inh(A′). �

Proof. A v A′ implies that S ⊆ S′ and Γ ⊆ Γ′. So due to definition of Def (A)
and Inh(A), it is obvious that Def (A) ⊆ Def (A′) and Inh(A) ⊆ Inh(A′). �

Lemma A.3. Let RAF = 〈A,K,s,t〉 be some framework and A,A′ be two struc-
tures such that A v A′. Then, it follows that Acc(A) ⊆ Acc(A′). �

Proof. Let x ∈ Acc(A). Pick any α ∈ K with t(α) = x. Since x ∈ Acc(A),
it follows that either s(α) ∈ Def (A) or α ∈ Inh(A) hold. Furthermore, from
Lem. A.2, we have Def (A) ⊆ Def (A′) and Inh(A) ⊆ Inh(A′). In its turn, this
implies that x ∈ Acc(A′) follows. �

Lemma A.4. Let RAF = 〈A,K,s,t〉 be some framework and A = 〈S,Γ〉 be
some an admissible structure. Then, any acceptable argument a ∈ (Acc(A)∩A)
satisfies that A′ = 〈S ∪ {a},Γ〉 is conflict-free.

Proof. Let S′ = (S ∪ {a}) and suppose, for the sake of contradiction, that A′
is not conflict-free, that is, that either (S′ ∩ Def (A′)) , ∅ or (Γ ∩ Inh(A′)) , ∅
holds.
a) In the first case, there is a′ ∈ (S′ ∩ Def (A′)). So there is α ∈ Γ such that

t(α) = a′ and s(α) ∈ S′. Either a′ = a or a′ ∈ S.
Assume first that a′ = a. Since a ∈ Acc(A), it follows that either α ∈ Inh(A)
or s(α) ∈ Def (A) holds. However, we know that A is conflict-free, so it is
impossible that α ∈ (Γ∩Inh(A)). So, it must be the case that s(α) ∈ Def (A)
holds and, thus, that s(α) < S (also because A is conflict-free). Hence,
s(α) = a. Due to Lem. A.1, it is impossible to have a ∈ (Acc(A) ∩ Def (A))
and, thus, s(α) ∈ Def (A) plus s(α) = a imply that a < Acc(A). This is a
contradiction with the fact a ∈ Acc(A).
Assume now that a′ , a and, thus, that a′ ∈ S. Since (S ∩ Def (A)) = ∅,
we have that a′ < Def (A). Hence, s(α) < S and s(α) = a hold. Since
A is admissible and a′ ∈ S, it follows that a′ ∈ Acc(A). Furthermore,
since t(α) = a′, it also follows that either α ∈ Inh(A) or s(α) ∈ Def (A).
The former is in contradiction with the fact that A is admissible (and thus
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conflict-free). Furthermore, from Lem. A.1 and the fact that s(α) = a, the
latter implies that a < Acc(A) which is a contradiction, too.

b) If (Γ ∩ Inh(A′)) , ∅, then there is some attack β ∈ Γ with β ∈ Inh(A′)
and thus, there is also some α ∈ Γ such that t(α) = β and s(α) ∈ S′.
Since A is conflict-free, β < Inh(A) which implies that s(α) < S and thus,
s(α) = a holds. Since A is admissible and β ∈ Γ, it follows that β ∈ Acc(A).
Furthermore, since t(α) = β, it must be that either α ∈ Inh(A) or s(α) ∈
Def (A) holds. The former is in contradiction with the fact that α ∈ Γ
and the latter implies that a < Acc(A) which is in contradiction with the
hypothesis.

Consequently, A′ is conflict-free. �

Lemma A.5. Let RAF = 〈A,K,s,t〉 be some framework and A = 〈S,Γ〉 be
some admissible structure. Then, any attack α ∈ (Acc(A) ∩ K) satisfies that
A′ = 〈S,Γ ∪ {α}〉 is conflict-free.

Proof. Let Γ′ = (Γ∪ {α}) and suppose, for the sake of contradiction, that A′ is
not conflict free, that is, either (S ∩Def (A′)) , ∅ or (Γ′ ∩ Inh(A′)) , ∅.

1. In the first case, there is a ∈ S with a ∈ Def (A′). So there is β ∈ Γ′
such that t(β) = a and s(β) ∈ S. Since A is conflict-free, a < Def (A) and
thus, β < Γ and β = α follow. Then, β ∈ Acc(A). Furthermore, since A
is admissible and a ∈ S, we have that a ∈ Acc(A) and thus, that either
β ∈ Inh(A) or s(β) ∈ Def (A) holds. From Lem. A.1, the former is in
contradiction with the fact that β ∈ Acc(A) and, since A is conflict-free,
the latter is in contradiction with the fact that s(β) ∈ S.

2. If (Γ′ ∩ Inh(A′)) , ∅, there is some attack α′ ∈ Γ′ with α′ ∈ Inh(A′). So
there is β ∈ Γ′ such that t(β) = α′ and s(β) ∈ S. Furthermore, either
α′ = α or α′ ∈ Γ.
Assume first that α′ = α. Since α ∈ Acc(A), it follows that either β ∈
Inh(A) or s(β) ∈ Def (A). However, we know that A is conflict-free, so
it is impossible that s(β) ∈ (S ∩ Def (A)). So we must have β ∈ Inh(A)
and thus, that β < Γ (also because A is conflict-free). Hence β = α. Due
to Lem. A.1, it is impossible to have β ∈ (Acc(A) ∩ Inh(A)) and thus,
α < Acc(A). This is in contradiction with the hypothesis on α.
Assume now that α′ , α and thus that α′ ∈ Γ. Since A is conflict-free, it
follows that (Γ ∩ Inh(A)) = ∅ and thus, that α′ < Inh(A). So β < Γ, that
is, β = α and, thus, that β ∈ Acc(A). Furthermore, since A is admissible
and α′ ∈ Γ, we have that α′ ∈ Acc(A). As t(β) = α′, either β ∈ Inh(A)
or s(β) ∈ Def (A). From Lem. A.1, the former is in contradiction with
the fact that β ∈ Acc(A) and, since A is conflict-free, the latter is in
contradiction with the fact that s(β) ∈ S.

Consequently, A′ is conflict-free. �
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Lemma A.6. Let RAF = 〈A,K,s,t〉 be some framework and A = 〈S,Γ〉 be
some an admissible structure. Then, any element x ∈ Acc(A) satisfies that
A′ = A ∪ {x} is conflict-free.

Proof. If x ∈ A, the result follows directly from Lem. A.4. Otherwise, x ∈ K,
and the result follows from Lem. A.5. �

Lemma A.7. Any conflict-free structure A = 〈S,Γ〉 satisfies: Acc(A) ⊆ (Def (A)∪
Inh(A)). �

Proof. It follows directly from Lem. A.1 and the definitions of Def (A) and
Inh(A).

�

A.1 Proofs of Section 3
Proof of Lemma 1. From Lem. A.6, we know that A′ = 〈S′,Γ′〉 is conflict-
free. Furthermore, since A is admissible and x ∈ Acc(A), (S∪Γ∪{x}) ⊆ Acc(A).
Then, since A v A′, Lem. A.3 implies that

(S′ ∪ Γ′) = (S ∪ Γ ∪ {x}) ⊆ Acc(A) ⊆ Acc(A′)

and thus, that A′ is admissible and y ∈ Acc(A′). �

Lemma A.8. Let RAF = 〈A,K,s,t〉 be some non-recursive framework and A0 v
A1 v . . . be some sequence of conflict-free structures such that Ai = 〈Si,Γi〉.
Let us also define A = 〈

⋃
0≤i Si,

⋃
0≤i Γi〉. Then, A is conflict-free. �

Proof. Suppose, for the sake of contradiction, that A is not conflict-free. Then,
either (S∩Def (A)) , ∅ or (Γ∩Inh(A)) , ∅ (with S =

⋃
0≤i Si and Γ =

⋃
0≤i Γi).

Pick any argument x ∈ (S ∩ Def (A)) (resp. attack x ∈ Γ ∩ Inh(A))). Then,
x ∈ Def (A) (resp. x ∈ Inh(A)) implies that there is α ∈ Γ such that t(α) = x
and s(α) ∈ S. Hence, there is 0 ≤ i such that α ∈ Γi and 0 ≤ j such that
s(α) ∈ Sj . Let k = max{i, j}. Then, α ∈ Γk and s(α) ∈ Sk which means that
x ∈ Def (Ak) (resp. x ∈ Inh(Ak)). Moreover, there is 0 ≤ l such that x ∈ Sl
(resp. x ∈ Γl). Let m = max{k, l}. Then, x ∈ Sm (resp. x ∈ Γm), and from
Lem. A.2, we have that Def (Ak) ⊆ Def (Am) (resp. Inh(Ak) ⊆ Inh(Am) ). That
is in contradiction with the fact that Am is conflict-free.

Hence, A must be conflict-free. �

Proof of Proposition 1. First note that 〈∅,∅〉 is always admissible and that
〈∅,∅〉 v A for any structure A. Furthermore, for every chain A0 v A1 v . . .
with Ai = 〈Si,Γi〉, it follows that Ai v A with A = 〈S,Γ〉 and S =

⋃
0≤i Si and

Γ =
⋃

0≤i Γi. From Lem. A.8, it follows that A is conflict-free. Let us show
now that A is admissible that is, that every element in A is acceptable. Pick
x ∈ (Γ ∪ S) and any attack β ∈ K with t(β) = x. Then, x ∈ (Γi ∪ Si) for some
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0 ≤ i. Since Ai is admissible, this implies that x ∈ Acc(Ai) and, thus, there is
γ ∈ Γi ⊆ Γ such that s(γ) ∈ Si ⊆ S and t(γ) = β. Hence, x ∈ Acc(A) and,
thus, A is admissible.
To show that, for every admissible structure A, there is some preferred structure
A′ such that A v A′, suppose, for the sake of contradiction, that there is some
admissible structure A such that no preferred structure A′ with A v A′ exists.
Then, there must be some infinite chain A v A1 v A2 v . . . . However, as shown
above, it follows that there is some A′ such that Ai v A for all Ai and, thus, A′
is a preferred structure. �

Proof of Theorem 2.

1. By definition of a complete structure.

2. By definition, every preferred structure A = 〈S,Γ〉 is also admissible.
Hence, to show that A is complete, it enough to prove that Acc(A) ⊆
(S ∪Γ). Pick any x ∈ Acc(A). Then, from Lem. 1 (Fundamental Lemma)
it follows that A′ = (A ∪ {x}) is also admissible and that A v A′. Fur-
thermore, since A is preferred, it follows that A is a v-maximal admissible
structure and, thus, A v A′ implies that A = A′. Hence, x ∈ (S ∪Γ) holds
and, thus, it follows that Acc(A) ⊆ (S ∪ Γ) and that A is complete.

3. Assume that A is a stable structure. We have to prove that A is a v-
maximal admissible structure.
We first prove that A is admissible. By definition, A is conflict-free and
satisfies S = Def (A) and Γ = Inh(A). Pick x ∈ (Γ ∪ S) and any attack
β ∈ K with t(β) = x. As A is conflict-free, either β < Γ or s(β) < S. Hence,
either β ∈ Inh(A) or s(β) ∈ Def (A). Thus, it follows that x ∈ Acc(A) and
that A is admissible.
Now assume A′ = 〈S′,Γ′〉 to be some admissible structure such that A v
A′. Since A′ is admissible and thus, conflict-free, it follows from Lem. A.7
that (S′∪Γ′) ⊆ Acc(A′) ⊆ Def (A′)∪Inh(A′). Furthermore, from Lem. A.2,
and A v A′, it follows that

(Def (A) ∪ Inh(A)) ⊆ (Def (A′) ∪ Inh(A′))

and thus, Def (A′) ∪ Inh(A′) ⊆ Def (A) ∪ Inh(A). Hence we have (S′ ∪
Γ′) ⊆ Def (A) ∪ Inh(A). Furthermore, since A is stable, it holds that
Def (A) ∪ Inh(A) ⊆ (S ∪ Γ) and thus, that (S′ ∪ Γ′) ⊆ (S ∪ Γ) Recall that
A v A′ implies (S ∪ Γ) ⊆ (S′ ∪ Γ′) and thus, A = A′. That is, A is a
v-maximal admissible structure and, consequently, A is a preferred one.

�
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A.2 Proofs of Section 4
Lemma A.9. Let RAF = 〈A,K,s,t〉 be a framework and A be a structure.
Then, x ∈ (Def (A) ∪ Inh(A)) implies that there is some α ∈ EA such that
α defeats x. �

Proof. Since x ∈ (Def (A) ∪ Inh(A)), there is α ∈ Γ s.t. t(α) = x and s(α) ∈ S.
Note that α ∈ Γ and s(α) ∈ Γ imply that α ∈ EA and that t(α) = x implies
that α defeats x. �

Lemma A.10. Let RAF = 〈A,K,s,t〉 be some framework and A be some struc-
ture. Then, every a ∈ (Acc(A) ∩A) is AFRA-acceptable w.r.t. EA. �

Proof. Pick any attack α ∈ K such that α defeats a. Then, t(α) = a and, since
a ∈ Acc(A) it follows that either α ∈ Inh(A) or s(α) ∈ Def (A).
If α ∈ Inh(A), then there is β ∈ Γ such that s(β) ∈ S and t(β) = α. Note that
β ∈ Γ plus s(β) ∈ S imply β ∈ EA and that t(β) = α implies that β defeats α.
Hence, the fact that a is AFRA-acceptable w.r.t. E follows.
Otherwise, s(α) ∈ Def (A), and, there is β ∈ Γ such that s(β) ∈ S and t(β) =
s(α). As above, β ∈ Γ plus s(β) ∈ S imply β ∈ EA, and t(β) = s(α) implies
that β defeats α. Hence, the fact that a is AFRA-acceptable w.r.t. E follows.
In consequence, it holds that a is AFRA-acceptable w.r.t. E . �

Lemma A.11. Let RAF = 〈A,K,s,t〉 be some framework and A = 〈S,Γ〉 be
some structure. Then, every α ∈ (Acc(A) ∩K) that satisfies s(α) ∈ Acc(A), is
also AFRA-acceptable w.r.t. EA. �

Proof. Pick any attack β ∈ K such that β defeats α. Then, either t(β) = α or
t(β) = s(α).
If the latter, then Lem. A.10 plus s(α) ∈ Acc(A) imply that s(α) is AFRA-
acceptable w.r.t. EA and, thus, that there is some γ ∈ EA that defeats β.
If the former, α ∈ Acc(A) implies that either β ∈ Inh(A) or s(β) ∈ Def (A).
Assume β ∈ Inh(A). Then, there is γ ∈ Γ such that s(γ) ∈ S and t(γ) = β.
Note that γ ∈ Γ plus s(γ) ∈ S imply γ ∈ EA and that t(γ) = β implies that
γ defeats β.
Otherwise, s(β) ∈ Def (A) and there is γ ∈ Γ such that s(γ) ∈ S and t(γ) = s(β).
As above, γ ∈ Γ plus s(γ) ∈ S imply γ ∈ EA and t(γ) = s(β) implies that
γ defeats β.
Hence, for any attack β ∈ K that defeats α, there is some attack γ ∈ EA that
defeats β. That is, the fact that α is AFRA-acceptable w.r.t. EA follows. �

Lemma A.12. Let RAF = 〈A,K,s,t〉 be some framework and A be some conflict-
free (resp. admissible) structure. Then, it follows that EA is AFRA-conflict-free
(resp. AFRA-admissible) extension. �
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Proof. Let A = 〈S,Γ〉 be a conflict-free structure and suppose that EA is is not
an AFRA-conflict-free extension. Then, there are α, x ∈ EA s.t. α defeats x
and, thus, α ∈ Γ′ with Γ′ = { α ∈ Γ

∣∣ s(α) ∈ S }. That is, α ∈ Γ and s(α) ∈ S.
If x ∈ S, then we have that t(α) = x ∈ Def (A) which is a contradiction with
the fact that S ∩ (Def (A)) , ∅ holds because A is conflict-free.
Otherwise, x < S implies x ∈ K. Then, x ∈ EA implies that x ∈ Γ′ and,
thus, that x ∈ Γ and s(x) ∈ S. Furthermore, α defeats x implies that either
t(α) = x or t(α) = s(x) holds. The former, t(α) = x, implies that x ∈ Inh(A)
which is a contradiction with the fact that (Γ ∩ Inh(A)) , ∅ follows from A
being conflict-free. The latter, t(α) = s(x), is a contradiction with the fact that
s(x) ∈ S and the fact that (S ∩Def (A)) , ∅ follows from A being conflict-free.
If, in addition, A is admissible, then (S ∪ Γ) ⊆ Acc(A) and, from Lem. A.10,
it follows that every argument a ∈ (EA ∩ A) is AFRA-acceptable w.r.t. EA.
Furthermore, by construction, every attack α ∈ (EA∩K) satisfies that s(α) ∈ S.
Hence, both α and s(α) are acceptable w.r.t. A and, from Lem. A.11, it follows
that α is AFRA-acceptable w.r.t. EA. Consequently, if A is admissible, it implies
that EA is AFRA-admissible. �

Lemma A.13. Let RAF = 〈A,K,s,t〉 be some framework and A be some structure.
Then, α ∈ (Acc(A) ∩K) and s(α) < S imply α ∈ ΓEA . �

Proof. Let A′ = 〈S,ΓEA〉 and let us show that α ∈ Acc(A′). Pick any β ∈ K
such that t(β) = α. Since α ∈ Acc(A), it follows that either β ∈ Inh(A) or
s(β) ∈ Def (A). If the former, there is γ ∈ Γ such that t(γ) = β and s(γ) ∈ S.
Note that γ ∈ Γ plus s(γ) ∈ S imply that γ ∈ EA and, thus, that γ ∈ ΓEA and
that β ∈ Inh(A′). Similarly, s(β) ∈ Def (A) implies that there is γ ∈ Γ such that
t(γ) = s(β) and s(γ) ∈ S and, thus, s(β) ∈ Def (A′). Hence, any β ∈ K with
t(β) = α satisfies either β ∈ Inh(A′) or s(β) ∈ Def (A′). That is, α ∈ Acc(A′).
Hence, to show that α ∈ ΓEA it is enough to prove that s(α) < EA which directly
follows from the fact that s(α) < S. �

Lemma A.14. Let RAF = 〈A,K,s,t〉 be an framework and A = 〈S,Γ〉 be some
admissible structure. Then, S = SEA and Γ ⊆ ΓEA hold. �

Proof. Note that, by definition, it follows that SEA = (EA ∩A) = S.
Then, to show that Γ ⊆ ΓEA holds, pick any attack α ∈ Γ. If s(α) ∈ S, then
α ∈ (EA ∩K) and thus, α ∈ ΓEA . Otherwise, s(α) < S and α ∈ (Acc(A) ∩K) as
A = 〈S,Γ〉 is admissible. So, from Lem. A.13, it follows that α ∈ ΓEA . �

Lemma A.15. Let RAF = 〈A,K,s,t〉 be some framework and A be a complete
structure. Then, it follows that Acc(A) ⊆ (SEA ∪ ΓEA). �

Proof. Let A = 〈S,Γ〉. Note that, since A is complete, it follows that Acc(A) ⊆
(S ∪ Γ) and, thus, the result follows directly from Lem. A.14. �

Lemma A.16. Let RAF = 〈A,K,s,t〉 be some framework and A be a complete
structure. Then, AEA = A. �

22



Proof. Let A = 〈S,Γ〉. From Lem. A.14, it follows that S = SEA and Γ ⊆ ΓEA
hold. Hence, it remains to be shown that ΓEA ⊆ Γ also holds.
Let Γ′ = (EA ∩K) and A′ = 〈S,Γ′〉. Then, it follows that α ∈ ΓEA implies that
either α ∈ Γ′ ⊆ Γ or both s(α) < EA and α ∈ Acc(〈SEA , (EA∩K)〉). Furthermore,
the latter plus SEA = S imply that α ∈ Acc(A′). Note that, from Lem. A.3, this
plus A′ v A imply α ∈ Acc(A) and, since A is complete, this implies that α ∈ Γ.
Therefore, ΓEA ⊆ Γ holds. �

Lemma A.17. Let RAF = 〈A,K,s,t〉 be some framework and E ⊆ (A ∪ K)
be some closed AFRA-conflict-free extension. Then, every AFRA-acceptable
element x w.r.t. E satisfies x ∈ Acc(AE). �

Proof. Let x ∈ (A ∪K) be an AFRA-acceptable element w.r.t. E and pick any
attack α ∈ K such that t(α) = x. Since x is AFRA-acceptable w.r.t. E , there
is β ∈ E such that β defeats α. Note that β ∈ E implies that β ∈ ΓE and that
β defeats α implies that either t(β) = α or t(β) = s(α) holds.
Furthermore, by Lem. hypothesis, β ∈ E implies that s(β) ∈ E . Then, this
implies s(β) ∈ SE and, thus, that t(β) ∈ (Inh(AE) ∪Def (AE)) holds.
Hence, the fact that either t(β) = α or t(β) = s(α) holds implies that either
α ∈ Inh(AE) or s(α) ∈ Def (AE) must also hold and thus, x ∈ Acc(AE). �

Lemma A.18. Let RAF = 〈A,K,s,t〉 be some framework, A = 〈S,Γ〉 be a
complete structure and x be some AFRA-acceptable element w.r.t. EA. Then,
x ∈ (S ∪ Γ) holds. �

Proof. From Lem. A.17, the hypothesis implies that x ∈ Acc(AEA). Note that,
since A is complete, Lem. A.16, implies that AEA = A and, thus, that x ∈ Acc(A)
and that x ∈ (S ∪ Γ) (recall that A is complete). �

Lemma A.19. Let RAF = 〈A,K,s,t〉 be some framework and A = 〈S,Γ〉 be a
complete structure. Then, EA is AFRA-complete. �

Proof. Since A is a complete structure, it is admissible and, in addition, it
satisfies (S ∪ Γ) = Acc(A). From Lem. A.12, the former implies that EA is
AFRA-admissible. Hence, to show that EA is AFRA-complete, it is enough to
prove that every acceptable element x w.r.t. EA belongs to EA.
Pick any AFRA-acceptable element x ∈ (A ∪K) w.r.t. EA. From Lem. A.18,
this implies that x ∈ (S ∪ Γ). Note that, by construction, we have that S ⊆ EA.
Furthermore, if x ∈ Γ, then Lem. 1 in [4] plus the fact that x is AFRA-acceptable
w.r.t. EA, imply that s(x) is AFRA-acceptable w.r.t. EA and, from Lem. A.18
again, this implies that s(x) ∈ S. By definition, x ∈ Γ plus s(x) ∈ S imply
x ∈ EA and, thus, that Γ ⊆ EA. Therefore, we have that every AFRA-acceptable
element x w.r.t. EA belongs to EA and, thus, that EA is an AFRA-complete
extension. �
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Lemma A.20. Let RAF = 〈A,K,s,t〉 be some framework and E ⊆ (A ∪ K)
be an AFRA-conflict-free extension. Then, it follows that AE is a conflict-free
structure. �

Proof. Let E ⊆ (A ∪ K) be a conflict-free structure and AE = 〈SE ,ΓE〉, and
pick any a ∈ Def (AE). Then, from Lem. A.9, there is some α ∈ EA such that
α defeats a. Furthermore, since E is AFRA-conflict-free, α ∈ (E ∩K) implies
that a < E and, by definition, this implies that a < SE . Then, since a is an
arbitrary element of Def (AE), it follows that (SE ∩Def (AE)) = ∅.
Similarly, pick any α ∈ Inh(AE). Then, there exists some attack β ∈ ΓE such
that s(β) ∈ SE and t(β) = α. As above, this implies that β (directly) defeats α
and, since β ∈ ΓE and s(β) ∈ SE ⊆ E , it follows that β ∈ (E ∩K). Moreover,
since E is an AFRA-conflict-free extension, this implies that α < E .
Then, to show that α < ΓE , it is enough to prove that α < Acc(〈SE , (E ∩K)〉).
Note that β ∈ E plus the fact that E is AFRA-conflict-free imply that there is
no γ ∈ E that defeats β. Hence, every γ ∈ (E ∩K) satisfies both t(γ) = β and
t(γ) = s(β). Then, the former implies α < Acc(〈SE , (E ∩K)〉). Hence, we obtain
(ΓE ∩ Inh(AE)) = ∅, which together with (SE ∩Def (AE)) = ∅, implies that AE
is conflict-free. �

Lemma A.21. Let RAF = 〈A,K,s,t〉 be some framework and E ⊆ (A ∪K) be
a closed AFRA-admissible extension. Then, AE is an admissible structure. �

Proof. First note that, since E is an AFRA-admissible extension, it is also
AFRA-conflict-free and, from Lem. A.20, it follows that AE is a conflict-free
structure. Furthermore, since E is AFRA-admissible, then every element belong-
ing to E is AFRA-acceptable w.r.t. E . Let Γ′ = (E ∩K) and A′ = 〈SE ,Γ′〉. Since
(SE ∪Γ′) ⊆ E , every element belonging to (SE ∪Γ′) is AFRA-acceptable w.r.t. E .
Moreover, since E is closed, from Lem. A.17, this implies (SE ∪ Γ′) ⊆ Acc(AE).
Note also that, by definition, (ΓE\Γ′) ⊆ Acc(A′) and that A′ v AE . Then,
from Lem. A.3, it follows that (ΓE\Γ′) ⊆ Acc(A′) ⊆ Acc(AE) and, thus, that
(SE ∪ ΓE) ⊆ Acc(AE) holds. Consequently, AE is admissible. �

Lemma A.22. Let RAF = 〈A,K,s,t〉 be some framework and E ⊆ (A ∪K) be
a closed set. Then, it follows that EAE = E. �

Proof. Note that, by definition, it follows that

(EAE ∩A) = SE = (E ∩A)

It remains to be shown that (EAE ∩K) = (E ∩K). By definition, it follows that
ΓE ⊇ (E ∩K). Therefore, α ∈ E implies that α ∈ ΓE and, since E is closed, this
implies that s(α) ∈ (E ∩A) = SE and, thus, that α ∈ (EAE ∩K). In its turn,
this implies (EAE ∩K) ⊇ (E ∩K).
On the other hand, every α ∈ (EAE ∩K) satisfies α ∈ ΓE and s(α) ∈ SE ⊆ E .
Together, these two facts imply α ∈ (E ∩K). Hence, (EAE ∩K) = (E ∩K) holds
and, thus, EAE = E follows. �
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Lemma A.23. Let RAF = 〈A,K,s,t〉 be some framework and E be some AFRA-
complete extension. Then, E is closed. �

Proof. Pick any attack α ∈ (E ∩ K). Then, since E is AFRA-complete, this
implies that α is AFRA-acceptable w.r.t. E and, from Lem. 1 in [4], this implies
that s(α) is also AFRA-acceptable w.r.t. E . This plus the fact that E is AFRA-
complete imply that s(α) ∈ E . �

Lemma A.24. Let RAF = 〈A,K,s,t〉 be some framework and E ⊆ (A ∪K) be
a AFRA-complete extension. Then, AE is a complete structure. �

Proof. By definition, every AFRA-complete extension is also AFRA-admissible.
Furthermore, from Lem. A.23, every AFRA-complete extension is also closed,
thus, Lem. A.21 implies that AE is an admissible structure. Then, to show
that AE is a complete structure, it is enough to prove the following inclusion:
Acc(AE) ⊆ (SE ∪ ΓE). Let us recall that, from Lem. A.15, it follows that

Acc(AE) ⊆ (SEAE
∪ ΓEAE

)

and that, from Lem. A.22, it follows EAE = E . As a result, Acc(AE) ⊆ (SE ∪ΓE)
holds and, thus, AE is complete. �

Lemma A.25. Let RAF = 〈A,K,s,t〉 be some framework and E ⊆ E ′ ⊆ (A∪K)
be two AFRA-complete extensions. Then, AE v AE′ . �

Proof. First, note that

SE = (E ∩A) ⊆ (E ′ ∩A) = SE′

Let S = SE , S′ = SE′ , Γ = (E ∩K) and Γ′ = (E ′ ∩K). Let also A = 〈S,Γ〉 and
A′ = 〈S′,Γ′〉. Then,

ΓE = (E ∩K) ∪ { α ∈ Acc(A)
∣∣ s(α) < S }

ΓE′ = (E ′ ∩K) ∪ { α ∈ Acc(A′)
∣∣ s(α) < S′ }

Hence, to show ΓE ⊆ ΓE′ , it is enough to prove
{ α∈Acc(A)

∣∣ s(α)<S } ⊆ E ′ ∪ { α∈Acc(A′)
∣∣ s(α)<S′ }

Furthermore, from Lem. A.3 and the fact that A v A′, it follows that Acc(A) ⊆
Acc(A′) and, thus, it is enough to show that every α ∈ Acc(A) satisfies that:
s(α) < S implies that either s(α) < S′ or α ∈ E ′.
Suppose, for the sake of contradiction, that there is some α ∈ (Acc(A)\E ′) that
satisfies s(α) < S and s(α) ∈ S′. Since by hypothesis E ′ is AFRA-complete,
α < E ′ implies that α is not AFRA-acceptable w.r.t. E ′ and, thus, there is
some β ∈ K that defeats α and is not defeated by any γ ∈ E ′. That is, either
t(β) = α or t(β) = s(α). If the latter, then β also defeats s(α). But, then
s(α) ∈ S′ implies s(α) ∈ E ′ which, in its turn, implies that s(α) is AFRA-
acceptable w.r.t. E ′ and, thus, that β is defeated by some γ ∈ E ′ which is
a contradiction with the above. Hence, it must be that s(β) = α and, thus,
that α < Acc(A) which is a contradiction with the assumption. Hence, Γ ⊆ Γ′
holds. �
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Lemma A.26. Let RAF = 〈A,K,s,t〉 be some framework and A = 〈S,Γ〉 be a
preferred structure. Then, EA is AFRA-preferred. �

Proof. Since A is a preferred structure, it is admissible and, in addition, there
is no admissible structure A such that A v A′. From Lem. A.12, the former im-
plies that EA is AFRA-admissible. Hence, to show that EA is AFRA-preferred,
it is enough to prove that there does not exist any AFRA-admissible extension
E such that EA ⊂ E .
Suppose, for the sake of contradiction, that there exists any AFRA-admissible
extension E such that EA ⊂ E . Since E is AFRA-admissible, from Theorem 2
in [4], there is some AFRA-preferred extension E ′ such that EA ⊂ E ⊆ E ′. Fur-
thermore, from Lem. 4 in [4], it follows that E ′ is also AFRA-complete and,
thus, from Lem. A.24, that AE′ is a complete structure. Furthermore, since A
is a preferred structure, from Theorem. 2, it follows that A is also complete and
thus, from Lem. A.19, that EA is AFRA-complete. From Lem. A.25 and the fact
that both EA and E ′ are complete, EA ⊆ E implies that AEA v AE′ Moreover,
since A is complete, from Lem. A.16, it follows that AEA = A and, thus, that
A v AE′ .
Note that S ⊂ S′ implies A @ AE′ , which is a contradiction with the assumption
that A is a preferred structure. Hence, it must be that S = S′ holds. Further-
more, since EA ⊂ E ′, there is some element x ∈ (E ′\EA) and, since S = S′, it
follows that x ∈ K. From Lem. A.23 and the fact that E ′ is AFRA-complete, it
follows that E ′ is closed and, thus, x ∈ E ′ implies that s(x) ∈ E ′. This implies
s(x) ∈ S and, since S = S′, that s(x) ∈ S and s(x) ∈ E . This plus x < EA
imply that x < Γ and, thus, that Γ ⊂ Γ′ and A @ A′ hold. The latter is a
contradiction with the assumption that A is a preferred structure. Hence, EA is
AFRA-preferred. �

Lemma A.27. Let RAF = 〈A,K,s,t〉 be some framework and A = 〈S,Γ〉 be a
stable structure. Then, EA is AFRA-stable. �

Proof. Since A is a stable structure, it is conflict-free and, in addition, it satisfies
S = Def (A) and Γ = Inh(A). From Lem. A.12, the former implies that EA is
AFRA-conflict-free. Hence, to show that EA is AFRA-stable, it is enough to
prove that, for every x ∈ ((A ∪K)\EA), there is α ∈ EA such that α defeats x.
First, note that x ∈ ((A ∪K)\EA) implies that either x < (S ∪ Γ) or x ∈ Γ but
s(x) < S. Since A is stable, the former implies that x ∈ (Def (A) ∪ Inh(A)) and,
from Lem. A.9, this implies that there is some α ∈ EA such that α defeats x. On
the other hand, the latter implies that s(x) < S and, thus, that s(x) ∈ Def (A).
From Lem. A.9, this implies that there is some α ∈ EA such that α defeats s(x)
and, thus, that defeats x. �

Proof of Proposition 2. For i) and ii), note that from Lem. A.12, it follows
that A being conflict-free (resp. admissible) implies that EA is AFRA-conflict-
free (resp. AFRA-admissible). Conditions iii), iv) and v) follow directly from
Lem. A.19, A.26 and A.27, respectively. �
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Lemma A.28. Let RAF = 〈A,K,s,t〉 be some framework and E ⊆ (A ∪K) be
a closed set. Then, it follows that x ∈ (Def (AE) ∪ Inh(AE)) implies that there
is no α ∈ E such that α directly defeats x. �

Proof. Suppose, for the sake of contradiction, that there is α ∈ E such that
α directly defeats x. If α directly defeats x, then t(α) = x. Furthermore, since
E is closed, α ∈ E implies that s(α) ∈ E and, thus, that α ∈ ΓE and that
s(α) ∈ SE . This implies that x ∈ (Def (AE) ∪ Inh(AE)) which is a contradiction
with the assumption. �

Lemma A.29. Let RAF = 〈A,K,s,t〉 be some framework and E ⊆ (A ∪ K)
be a closed set. Then, a ∈ Def (AE) implies that there is no α ∈ E such that
α defeats a. �

Proof. a ∈ Def (AE) implies that a ∈ A and, thus, α defeats a only if α directly
defeats a. Then, the result follows directly from Lem. A.28. �

Lemma A.30. Let RAF = 〈A,K,s,t〉 be some framework and E ⊆ (A∪K) be a
closed set. Then, α ∈ Inh(AE) and s(α) ∈ Def (AE) imply that there is no β ∈ E
such that β defeats α. �

Proof. From Lem. A.28, it follows that there is is no β ∈ E such that β directly
defeats α. Suppose, for the sake of contradiction, that there is β ∈ E such that
β indirectly defeats α. This implies that t(β) = s(α). Furthermore, since E is
closed, it follows that β ∈ E implies that s(β) ∈ E and, thus, that β ∈ ΓE and
that s(β) ∈ SE . This implies that s(α) ∈ Def (AE) which is a contradiction with
the assumption. �

Lemma A.31. Let RAF = 〈A,K,s,t〉 be some framework and E ⊆ (A ∪K) be
a closed AFRA-conflict-free set. Then, x ∈ (Def (AE) ∪ Inh(AE)) implies that
there is no α ∈ E such that α defeats x. �

Proof. Pick any x ∈ (Def (A) ∪ Inh(AE)). If x ∈ A, from Lem. A.29, it follows
that there is no α ∈ E such that α defeats x. Otherwise, x ∈ K and x ∈ Inh(AE).
Since E is closed, it follows that s(x) ∈ E and s(x) ∈ SE . Furthermore, since
E is conflict-free, Lem. A.20 implies that AE is conflict-free. Then, s(x) ∈ SE
implies s(x) ∈ Def (AE). From Lem. A.30, this plus x ∈ Inh(AE) imply that
there is no α ∈ E such that α defeats x. �

Lemma A.32. Let RAF = 〈A,K,s,t〉 be some framework. Then, every AFRA-
stable extension is closed. �

Proof. Note that every AFRA-stable extension is also AFRA-complete (Lem. 4
and 5 in [4]) and, thus, Lem. A.23 implies that every AFRA-stable extension is
also closed. �

Lemma A.33. Let RAF = 〈A,K,s,t〉 be some framework and E ⊆ (A ∪K) be
a AFRA-stable extension. Then, it follows that (Def (AE) ∪ Inh(AE)) ⊆ E. �
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Proof. By definition every AFRA-stable extension is AFRA-conflict-free. Fur-
thermore, from Lem. A.32, every AFRA-stable extension is closed. Then,
Lem. A.31 implies that, for every x ∈ (Def (A) ∪ Inh(AE)), there is no α ∈ E
such that α defeats x. Then, since E is AFRA-stable, this implies that x ∈ E
and, consequently, that (Def (A) ∪ Inh(AE)) ⊆ E holds. �

Lemma A.34. Let RAF = 〈A,K,s,t〉 be some framework and E ⊆ (A ∪K) be
a AFRA-stable extension. Then, AE is a stable structure. �

Proof. Since by definition every AFRA-stable extension is AFRA-conflict-free,
it follows that AE is a conflict-free structure (Lem. A.20). Then, to show that
AE is stable, it is enough to prove SE = Def (AE) and ΓE = Inh(AE). Note that,
since AE is conflict-free, it follows that S ⊆ Def (AE) and Γ ⊆ Inh(AE) hold.
Furthermore, from Lem. A.33, it follows that

(Def (AE) ∪ Inh(AE)) ⊆ E ⊆ (SE ∪ ΓE)

and, thus, that S = Def (AE) and Γ = Inh(AE) hold. Consequently, AE is a
stable structure. �

Lemma A.35. Let RAF = 〈A,K,s,t〉 be some framework. Every AFRA-preferred
extension is closed. �

Proof. Note that every AFRA-preferred extension is also AFRA-complete (Lem. 4
in [4]) and, thus, Lem. A.23 implies that every AFRA-preferred extension is also
closed. �

Lemma A.36. Let RAF = 〈A,K,s,t〉 be some framework and A v A′ be two
structures. Then, EA ⊆ EA′ . �

Proof. Let A = 〈S,Γ〉 and A′ = 〈S′,Γ′〉. Then,

(EA ∩A) = S ⊆ S′ = (EA′ ∩A)

Furthermore,

(EA ∩K) = { α ∈ Γ
∣∣ s(α) ∈ S }

(EA ∩K) = { α ∈ Γ′
∣∣ s(α) ∈ S′ }

and, thus, (EA ∩K) ⊆ (EA ∩K). These two facts together imply EA ⊆ EA′ . �

Lemma A.37. Let RAF = 〈A,K,s,t〉 be some framework and E ⊆ (A ∪K) be
a set. Then, EAE ⊆ E. Furthermore, if E is closed, then EAE = E. �

Proof. First, note that by definition SE = (E ∩A) and, therefore, it holds that
(EAE ∩ A) = (E ∩ A). Furthermore, α ∈ (EAE ∩K) satisfies that α ∈ ΓE and
s(α) ∈ SE . Moreover, note that α ∈ ΓE implies that either α ∈ (E ∩K) ⊆ E or
s(α) < E . However, the latter is a contradiction with the facts that s(α) ∈ SE
and SE = (E ∩A) ⊆ E . Hence, it follows that (EAE ∩K) ⊆ (E ∩K) holds. This
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plus (EAE ∩A) = (E ∩A) imply (EAE ⊆ E).

Assume now that E is closed and pick α ∈ (E ∩K). By definition, it follows that
α ∈ ΓE . Furthermore, since α ∈ E and E is closed, it follows that s(α) ∈ E and,
thus, that s(α) ∈ SE . Consequently, it follows that α ∈ EAE and that EAE = E
holds. �

Lemma A.38. Let RAF = 〈A,K,s,t〉 be some framework and E ⊆ (A ∪K) be
a AFRA-preferred extension. Then, AE is a preferred structure. �

Proof. By definition every AFRA-preferred extension is AFRA-admissible. Fur-
thermore, from Lem. A.35, it follows that AFRA-preferred extensions are closed.
Then, from Lem. A.21, it follows that AE is an admissible structure. Hence, to
show that AE is preferred, it is enough to show that there does not exist any
admissible structure A′ such that AE @ A′.
Suppose that such admissible structure exists. Then, from Prop. 1, there is
some preferred structure A′′ such that AE @ A′ v A′′. From Lem. A.36, this
implies that EAE ⊆ EA′′ . Note also that, since E is closed, Lem. A.37 implies
that EAE = E and, thus, E ⊆ EA′′ . Since E is AFRA-preferred, this implies that
E ⊇ EA′′ also holds. From Lem. A.25, this implies that AE w AEA′′ . Finally, note
that, since A′′ is a preferred structure, it is also a complete one (Theorem. 2)
and, thus, AEA′′ = A′′ (Lem. A.16). That is, we have that AE w A′′. However,
this is a contradiction with the fact that AE @ A′′ and, thus, it must be that AE
is preferred. �

Proof of Proposition 3. For i), note that from Lem. A.20, it follows that
the fact of E being AFRA-conflict-free implies that AE is a conflict-free struc-
ture. Conditions iii), iv) and v) follow directly from Lem. A.24, A.38 and A.34,
respectively. �

Proof of Proposition 4. This is just a rephrasing of Lem. A.21 in order to
keep the order of presentation. �

Proof of Proposition 5. Condition i) follows directly from Lem. A.37 and A.23.
Condition ii) follows from Lem. A.16. �

A.3 Proofs of Section 5
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Proof of Observation 3. Pick any α ∈ K. Since RAF is non-recursive, there
is no β ∈ K s.t. t(β) = α and thus α ∈ Acc(A). As A is a d-structure, α ∈ Γ.

�

Proposition 7. Let RAF = 〈A,K,s,t〉 be some non-recursive framework and
A = 〈S,Γ〉 be some d-structure. Then, any argument a ∈ A satisfies: a ∈
Def (A) iff it is defeated w.r.t. S and RAFD (Definition 2). �

Proof. Recall that, by definition, it follows that RAFD = 〈A,RRAF〉. Then,
from Observation 3, it follows that RA = RRAF for every d-structure A. Then,
the result follows by observing that the definition of Def (A) (Equation (1)) is
obtained from the defeated definition (Def. 2) by just replacing RRAF by RA. �

Proposition 8. Let RAF = 〈A,K,s,t〉 be some non-recursive framework and
A = 〈S,Γ〉 be some conflict-free d-structure. Then, any argument a ∈ A satis-
fies: a ∈ Acc(A) iff a is acceptable w.r.t. S and RAFD (Definition 2). �

Proof. First note that, since RAF is non recursive, it follows that Inh(A) = ∅
and, thus, that Inh(A) = K holds. Furthermore, from Observation 3, it also
follows that Γ = K. Hence, we may rewrite the definition of acceptability as
follows:
a ∈ A is acceptable with respect to some d-structure A
iff every α ∈ K with t(α) = a satisfies s(α) ∈ Def (A)
iff for every b ∈ A, (b, a) ∈ RA implies b ∈ Def (A)
iff for every b ∈ A, (b, a) ∈ RRAF implies b ∈ Def (A)
iff a is acceptable w.r.t. S and RAFD (Definition 2). �

Proof of Theorem 4. First note that due to Observation 3, S is a conflict-free
(resp. admissible, complete, preferred or stable) extension of some non-recursive
RAF iff A = 〈S,K〉 is a conflict-free (resp. admissible, complete, preferred or
stable) structure. Then,
1. Conflict-free: A = 〈S,K〉 is a conflict-free structure

iff S ∩Def (A) = ∅ and K ∩ Inh(A) = ∅
iff S ∩Def (A) = ∅ (note that Inh(A) = ∅)
iff S ∩Def (S) = ∅ (Prop. 7)
iff S is a conflict-free extension of RAFD.

2. Admissible: A = 〈S,K〉 is an admissible structure
iff A is conflict-free and (S ∪K) ⊆ Acc(A)
iff S is conflict-free and (S ∪K) ⊆ Acc(A)
iff S is conflict-free and S ⊆ Acc(A) (since no attack is attacked)
iff S is conflict-free and S ⊆ Acc(S) (Prop. 8)
iff S is an admissible extension of RAFD.

3. Complete: A = 〈S,K〉 is a complete structure
iff A is admissible and Acc(A) ⊆ (S ∪K)
iff S is admissible and Acc(A) ⊆ (S ∪K)
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iff S is admissible and (Acc(A) ∩A) ⊆ S
iff S is admissible and Acc(S) ⊆ S (Prop. 8)
iff S is a complete extension of RAFD.

4. Preferred: A = 〈S,K〉 is a preferred structure
iff A is admissible and @A′ = 〈S′,Γ′〉 admissible structure s.t. (S ∪ K) ⊂
(S′ ∪ Γ′)
iff A is admissible and @A′ = 〈S′,K〉 admissible structure s.t. S ⊂ S′
iff S is admissible and @A′ = 〈S′,K〉 admissible structure s.t. S ⊂ S′
iff S is admissible and @S′ admissible s.t. S ⊂ S′
iff S is a preferred extension of RAFD.

5. Stable: A = 〈S,K〉 is a stable structure
iff A is conflict-free, S = Def (A) and K = Inh(A)
iff S is conflict-free, S = Def (A) and K = Inh(A)
iff S is conflict-free and S = Def (A) (no attack is attacked)
iff S is conflict-free and S = Def (S) (Prop. 7)
iff S is a stable extension of RAFD.

�

A.4 Proofs of Section 6
By ↓α = { β ∈ K

∣∣ β � α } we denote the down set generated by α. Further-
more, for some argumentation framework RAF and structure A, by Def (RAF,A)
and Inh(RAF,A) we respectively denote the defeated arguments and inhibited
attacks w.r.t. RAF and A. This allows us to relate defeated arguments (resp.
inhibited attacks) w.r.t. different argumentation framewokrs.

Lemma A.39. Let RAF = 〈A,K,s,t〉 be some framework and α, β ∈ K be be
two attacks and x ∈ (A∪K) be some argument or attack. Then, α , β, t(β) = x
and x <↓α imply β <↓α.

Proof. Suppose, for the sake of contradiction, that β ∈↓α. Then, since α , β, it
follows that there is some chain δ0, δ1, δ2, δn such that t(δi) = δi+1 and δ0 = β
and δn = α. But δ0 = β plus t(β) = x imply that δ1 = x and, thus, that
x ∈↓α. This is a contradiction with the assumption. Consequently, it must be
that β <↓α. �

Lemma A.40. Let RAF = 〈A,K,s,t〉 be some framework, A be some structure
and α ∈ K be some attack. Then, Def (RAF,A) ⊇ Def (RAF−α,A−α). �

Proof. Let A = 〈S,Γ〉 and A−α = 〈S,Γ−α〉. Pick any a ∈ Def (RAF−α,A−α).
Then, there is some β ∈ Γ−α such that t(β) = a and s(β) ∈ S. Further-
more, β ∈ Γ−α plus Γ′ ⊆ Γ imply β ∈ Γ which, in its turn, implies that
a ∈ Def (RAF,A). �

Lemma A.41. Let RAF = 〈A,K,s,t〉 be some framework, A be some structure
and α ∈ K be some attack. Then, Inh(RAF,A)−α ⊇ Inh(RAF−α,A−α). �
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Proof. Let A = 〈S,Γ〉 and A−α = 〈S,Γ−α〉. Pick any β ∈ Inh(RAF−α,A−α).
Then, there is some γ ∈ Γ−α such that t(γ) = β and s(γ) ∈ S. Furthermore,
γ ∈ Γ−α plus Γ−α ⊆ Γ imply γ ∈ Γ which, in its turn, implies that β ∈
Inh(RAF,A). Furthermore, β ∈ Inh(RAF−α,A−α) implies β � α. Hence,
β ∈ Inh(RAF,A)−α. �

Lemma A.42. Let RAF = 〈A,K,s,t〉 be some framework, A be some conflict-free
structure w.r.t. RAF and α ∈ K be some attack. Then, A−α is conflict-free w.r.t.
RAF−α. �

Proof. Let A = 〈S,Γ〉 and A−α = 〈S,Γ−α〉. Pick a ∈ S. Then, since A
is conflict-free, it follows that a < Def (RAF,A) and, from Lem. A.40, that
a < Def (RAF−α,A−α). Similarly, β ∈ Γ−α implies β < Inh(RAF,A). From
Lem. A.41, this implies β < Inh(RAF−α,A−α). Hence, A−α is conflict-free
w.r.t. RAF−α. �

Lemma A.43. Let RAF = 〈A,K,s,t〉 be some framework, A be some struc-
ture and α ∈ Inh(RAF,A) be some inhibited attack. Then, Acc(RAF,A)−α ⊇
Acc(RAF−α,A−α). �

Proof. Let A = 〈S,Γ〉 and A−α = 〈S,Γ−α〉. Pick any x ∈ Acc(RAF−α,A−α)
and γ ∈ K such that t(γ) = x. Then, x ∈ Acc(RAF−α,A−α) implies x ∈
(A ∪K−α) and, thus, that x <↓α. From Lem. A.39, this plus t(γ) = x implies
that either γ = α or γ <↓α. On the one hand, by hypothesis we have that
α ∈ Inh(RAF,A) and, thus, the former implies γ ∈ Inh(RAF,A). On the other
hand, the latter implies γ ∈ K−α and, thus, x ∈ Acc(RAF−α,A−α) implies
that γ ∈ Inh(RAF−α,A−α) or s(γ) ∈ Def (RAF−α,A−α). From Lem. A.41
and A.40, this implies that γ ∈ Inh(RAF,A) or s(γ) ∈ Def (RAF,A). Hence,
x ∈ Acc(RAF,A). Finally, we have that x <↓α implies x ∈ Acc(RAF,A)−α. �

Lemma A.44. Let RAF = 〈A,K,s,t〉 be some framework, A be some structure
and α ∈ (Inh(RAF,A)\Γ) be some inhibited attack w.r.t. A. Then, it follows
that Def (RAF,A) = Def (RAF−α,A−α). �

Proof. Let A = 〈S,Γ〉 and A−α = 〈S,Γ−α〉. From Lem. A.40, it follows that
Def (RAF,A) ⊇ Def (RAF−α,A−α). Pick now any argument a ∈ Def (RAF,A).
Then, there is some β ∈ Γ such that t(β) = a and s(β) ∈ S. Furthermore, since
α < Γ, it follows that β , α. Moreover, every γ ∈↓α satisfies either γ = α or
t(γ) ∈ K and, thus, that β <↓α. This implies that β ∈ Γ−α and, thus, that
a ∈ Def (RAF−α,A−α) �

Lemma A.45. Let RAF = 〈A,K,s,t〉 be some framework, A = 〈S,Γ〉 be some
structure and α ∈ (Inh(RAF,A)\Γ) be some inhibited attack w.r.t. A. Then, it
follows that Inh(RAF,A)−α = Inh(RAF−α,A−α). �

Proof. First note that, from Lem. A.41, it follows that

Inh(RAF,A)−α ⊇ Inh(RAF−α,A−α)
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Let A = 〈S,Γ〉 and A−α = 〈S,Γ−α〉. Pick now any β ∈ Inh(RAF,A)−α.
Then, there is some γ ∈ Γ such that t(γ) = β and s(γ) ∈ S. Furthermore,

since α < Γ, it follows that γ , α. Moreover, β ∈ Inh(RAF,A)−α implies that
β � α. Then, since γ ≺ β, that γ � α. Hence, it follows that γ ∈ Γ−α and
β ∈ Inh(RAF−α,A−α). �

Lemma A.46. Let RAF = 〈A,K,s,t〉 be some framework, A be some structure
and α ∈ (Inh(RAF,A)\Γ) be some inhibited attack w.r.t. A.
Then, (Acc(RAF,A)−α) = Acc(RAF−α,A−α). �

Proof. First note that, from Lem. A.43, it follows that

Acc(RAF,A)−α ⊇ Acc(RAF−α,A−α)

Let A = 〈S,Γ〉 and A−α = 〈S,Γ−α〉. Pick any β ∈ Acc(RAF,A)−α and γ ∈
K−α ⊆ K such that t(γ) = β. Since β ∈ Acc(RAF,A), it follows that either γ ∈
Inh(RAF,A) or s(γ) ∈ Def (RAF,A). Furthermore, γ ∈ K−α implies γ � α and,
from Lem. A.45 and A.44, this implies that either γ ∈ Inh(RAF−α,A′) or s(γ) ∈
Def (RAF−α,A′). Hence, β ∈ Acc(RAF−α,A′) and, thus, Acc(RAF,A)−α) =
Acc(RAF−α,A−α). �

Lemma A.47. Let RAF = 〈A,K,s,t〉 be some framework, A = 〈S,Γ〉 be some
admissible structure w.r.t. RAF and α ∈ Inh(RAF,A) be some inhibited attack.
Then, it follows that A−α is admissible w.r.t. RAF−α. �

Proof. Since A is an admissible structure w.r.t. RAF, it is conflict-free and, from
Lem. A.42, this implies that A−α is conflict-free w.r.t. RAF−α. Furthermore,
since A is admissible, it follows that (S ∪ Γ) ⊆ Acc(RAF,A). From Lem. A.46,
this implies (S ∪ Γ−α) ⊆ Acc(RAF−α,A−α) and, thus, that A−α is admissible
w.r.t. RAF−α. �

Lemma A.48. Let RAF = 〈A,K,s,t〉 be some framework, A = 〈S,Γ〉 be some
complete structure w.r.t. RAF and α ∈ Inh(RAF,A) be some inhibited attack.
Then, it follows that A−α is complete w.r.t. RAF−α. �

Proof. Since A is a complete structure w.r.t. RAF, it follows that it is admis-
sible and, from Lem. A.47, this implies that A−α is admissible w.r.t. RAF−α.
Furthermore, since A is complete, it follows that (S ∪ Γ) ⊇ Acc(RAF,A). From
Lem. A.46, this implies (S ∪ Γ−α) ⊇ Acc(RAF−α,A−α) and, thus, that A−α is
complete w.r.t. RAF−α. �

Lemma A.49. Let RAF = 〈A,K,s,t〉 be some framework, A = 〈S,Γ〉 be some
conflict-free structure w.r.t. RAF and α ∈ Inh(RAF,A) be some inhibited attack.
Let A′ = 〈S′,Γ′〉 some conflict-free structure w.r.t. RAF−α such that Γ−α ⊆ Γ′.
Then, the structure A′′ = 〈S′,Γ ∪ Γ′〉 is conflict-free w.r.t. RAF. �

Proof. Let Γ′′ = Γ ∪ Γ′. Pick first a ∈ S′ and any β ∈ Γ′′ such that t(β) = a.
Then, since t(β) = a, it follows that β � α and, thus, that β ∈ K−α. Hence,
β ∈ Γ implies β ∈ Γ−α ⊆ Γ′. Then, since A′ is conflict-free, it follows that
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s(β) < S′. This implies that every β ∈ Γ′′ with t(β) = a satisfies s(β) < S′ and,
thus, that a < Def (RAF,A′′).

Pick now γ, β ∈ Γ′′ such that t(β) = γ. Suppose, for the sake of contradic-
tion, that γ ∈ (Γ′′\Γ) and β ∈ (Γ′′\Γ′). Then, γ < (Γ′′\Γ) implies γ ∈ Γ′ ⊆ K−α
and, thus, it follows that γ � α and β � α. On the other hand, β ∈ (Γ′′\Γ′)
implies β ∈ Γ which, since β � α, implies β ∈ Γ−α ⊆ Γ′. This is a contradiction
with the assumption. Similarly, suppose that γ ∈ (Γ′′\Γ′) and β ∈ (Γ′′\Γ).
Then, γ ∈ (Γ′′\Γ′) implies and γ ∈ Γ. Furthermore, since Γ−α ⊆ Γ′, it follows
that γ < Γ′ implies γ < Γ−α and, this plus γ ∈ Γ, imply γ � α. Since t(β) = γ,
the latter implies that β � α holds and, thus, that β < Γ′. This is a contradic-
tion with the assumption that β ∈ (Γ′′\Γ). Hence, either γ, β ∈ Γ or γ, β ∈ Γ′
must hold. In both cases, the fact that A and A′ are conflict-free imply s(β) < S.
This implies that every β ∈ Γ′′ with t(β) = γ satisfies s(β) < S and, thus, that
γ < Inh(RAF,A′′). Consequently, A′′ is conflict-free. �

Lemma A.50. Let RAF = 〈A,K,s,t〉 be some framework, A = 〈S,Γ〉 be some
admissible structure w.r.t. RAF and α ∈ Inh(RAF,A) be some inhibited attack.
Let A′ = 〈S′,Γ′〉 some admissible structure w.r.t. RAF−α such that A−α v A′.
Then, the structure A′′ = 〈S′,Γ ∪ Γ′〉 is admissible w.r.t. RAF. �

Proof. From Lemma A.49, it follows that A′′ is conflict-free.
Furthermore, since A is admissible, it follows that (S ∪ Γ) ⊆ Acc(RAF,A).

Note also that A−α v A′ and α ∈ K implies that Γ = Γ−α ⊆ Γ′ and, thus, that
A v A′′. Then, from Lem. A.3, it follows that (S ∪ Γ) ⊆ Acc(RAF,A′′). Pick
now any attack γ ∈ (Γ′′\Γ) and any attack β ∈ K such that t(β) = γ. Since γ ∈
(Γ′′\Γ), it follows that γ ∈ Γ′ ⊆ K−α and, thus, that γ � α and β � α. Hence,
β ∈ K implies β ∈ K−α. Furthermore, since A′ is admissible w.r.t. RAF−α, this
implies that either s(β) ∈ Def (RAF−α,A−α) or β ∈ Inh(RAF−α,A−α). From
Lem. A.44 and A.45 respectively, this implies that either

s(β) ∈ Def (RAF,A)−α ⊆ Def (RAF,A)

or
β ∈ Inh(RAF,A)−α ⊆ Inh(RAF,A)

holds. Furthermore, since A v A′′, Lem. A.2 implies either s(β) ∈ Def (RAF,A′′)
or β ∈ Inh(RAF,A′′). Hence, every γ ∈ (Γ′′\Γ) satisfies that γ ∈ Acc(RAF,A′′)
and, thus, (S ∪ Γ′′) ⊆ Acc(RAF,A′′). This means that A′′ is admissible. �

Lemma A.51. Let RAF = 〈A,K,s,t〉 be some framework, A = 〈S,Γ〉 be some
preferred structure w.r.t. RAF and α ∈ Inh(RAF,A) be some inhibited attack.
Then, A−α is preferred w.r.t. RAF−α. �

Proof. Since A is a preferred structure w.r.t. RAF, it follows that it is admis-
sible and, from Lem. A.47, this implies that A−α is admissible w.r.t. RAF−α.
Suppose, for the sake of contradiction, that there is some structure A′ = 〈S′,Γ′〉
which is admissible w.r.t. RAF−α and that satisfies A−α @ A′. Then, from
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Prop. 1, we may assume without loss of generality that A′ is also preferred
w.r.t. RAF−α.

Let Γ′′ = (Γ ∪ Γ′) and let A′′ = 〈S′,Γ′′〉 be some structure. Then, from
Lemma A.50, it follows that A′′ is admissible. Furthermore, note that by con-
struction, A,A′ v A′′ holds and, thus, the fact that A is a preferred structure
implies A w A′′. On the other hand, A−α @ A′ implies that there is some element
x ∈ ((S′ ∪ Γ′)\(S−α ∪ Γ−α). Moreover, x ∈ (S′ ∪ Γ′) implies that x � α and
that x ∈ (S′ ∪ Γ′′). Since A w A′′, the latter implies that x ∈ (S ∪ Γ) which,
together with x � α, implies that x ∈ (S−α∪Γ−α). This is a contradiction and,
consequently, we have that A−α must be preferred. �

Lemma A.52. Let RAF = 〈A,K,s,t〉 be some framework, A = 〈S,Γ〉 be some
stable structure w.r.t. RAF and α ∈ Inh(RAF,A) be some inhibited attack.
Then, it follows that A−α is stable w.r.t. RAF−α. �

Proof. Since A is a stable structure w.r.t. RAF, it follows that it is conflict-free
and, from Lem. A.42, this implies that A−α is conflict-free w.r.t. RAF−α.
Furthermore, since A is stable, it follows that S = Def (RAF,A) and Γ =
Inh(RAF,A). From Lem. A.44 and A.45 respectively, this implies that S =
Def (RAF−α,A−α) and Γ−α = Inh(RAF−α,A−α). This implies that A−α is
stable w.r.t. RAF−α. �

Proof of Proposition 6. The fact that A−α is conflict-free follows directly
from Lem. A.42. Similarly, the fact that A−α is admissible, complete, preferred
or stable respectively follows from Lem. A.47, Lem. A.48, Lem. A.51 and A.52.

�

Theorem 5. The problem of credulous acceptance w.r.t. the preferred or the
stable semantics (whether there exists some preferred or stable structure con-
taining some argument) are NP-complete. The problem of sceptical acceptance
w.r.t. the preferred (resp. stable) semantics is ΠP

2 -complete (resp. coNP-
complete). �

Proof. Let a ∈ A be some argument. Then, from Theorem 3 and Prop. 12 in [4],
it follows that some structure A = 〈S,Γ〉 is preferred (resp. stable) w.r.t. RAF
iff Afra(A) is a preferred (resp. stable) extension w.r.t. RAF
iff Afra(A) is a preferred (resp. stable) extension w.r.t. RAFAF
with RAFAF is the corresponding Dung framework of RAF as given by Def. 19
in [4].
Hence, a is credulous accepted w.r.t. RAF and the preferred (resp. stable)
semantics
iff there is some preferred (resp. stable) structure A = 〈S,Γ〉 of RAF such that
a ∈ S
iff there is some preferred (resp. stable) extension E ⊆ (A ∪K) of RAF such
that a ∈ E
iff there is some preferred (resp. stable) extension E ⊆ (A∪K) of RAFAF such
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that a ∈ E .
iff a is credulous accepted w.r.t. RAFAF and the preferred (resp. stable) se-
mantics.
Then, since credulous acceptance for Dung’s frameworks w.r.t. the preferred
and the stable semantics is NP-complete [11] and RAFAF can be computed in
polynomial time, it follows that credulous acceptance for RAFs is in NP. Hard-
ness, follows from the fact that every Dung’s framework is also a RAF and that,
from Theorem 4, the preferred (resp. stable) semantics for RAFs are conserva-
tive generalisations.
Analogously, since sceptical acceptance for Dung’s frameworks w.r.t. the pre-
ferred (resp. stable) semantics is coNP-complete (resp. ΠP

2 -complete) [11], it
follows that sceptical acceptance for RAFs w.r.t. the preferred (resp. stable)
semantics is coNP-complete (resp. ΠP

2 -complete).
Finally, for the complete semantics, note that from Theorem 2, every preferred
structure is also a complete structure and, thus, if an argument is credulous
accepted w.r.t. the preferred semantics, it is also credulous accepted w.r.t. the
complete semantics. Furthermore, every complete A structure is admissible and,
from Proposition 1, this implies that there is a preferred structure A′ such that
A v A′. This implies that, if an argument is credulous accepted w.r.t. the com-
plete semantics, it is also credulous accepted w.r.t. the preferred semantics. �
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