
HAL Id: hal-02884127
https://hal.science/hal-02884127

Submitted on 29 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Logical encodings of interactions in an argumentation
graph with recursive attacks

Claudette Cayrol, Marie-Christine Lagasquie-Schiex, Luis Fariñas del Cerro

To cite this version:
Claudette Cayrol, Marie-Christine Lagasquie-Schiex, Luis Fariñas del Cerro. Logical encodings of
interactions in an argumentation graph with recursive attacks. [Research Report] IRIT-2017-08, IRIT
- Institut de recherche en informatique de Toulouse. 2017. �hal-02884127�

https://hal.science/hal-02884127
https://hal.archives-ouvertes.fr

Logical encodings of interactions
in an argumentation graph

with recursive attacks

Claudette Cayrol,
M-Christine Lagasquie-Schiex

Luis Farinas del Cerro

IRIT, Université Paul Sabatier,
118 route de Narbonne, 31062 Toulouse, France

{ccayrol,lagasq,luis.farinas}@irit.fr

Tech. Report (Revised version)
IRIT/RR- -2017- -08- -FR

Abstract

This work is a preliminary study that proposes logical encodings for translating argu-
mentation graphs themselves into logical knowledge bases. This translation will be used
for identifying or redefining some properties of argumentation graphs. The graphs that
we consider are used to formalize abstract argumentation with recursive attacks.

4

Contents

1 Introduction 1

2 Background on abstract argumentation 5
2.1 Different abstract argumentation systems . 5

2.2 Argumentation semantics for AS . 7

2.3 Argumentation semantics for BAS . 8

2.4 Argumentation semantics for ASAF . 9

2.4.1 Method of [6] . 9

2.4.2 Method of [21] . 10

2.4.3 Method of [15] . 11

2.4.4 Method of [22] . 12

3 Argumentation and logics 13
3.1 Background on logic programming . 13

3.2 Encoding of [14, 35] . 15

3.3 Encoding of [13] . 16

3.4 Other related works . 17

4 Graph description in a formal language 19
4.1 Preliminary version of the language for the classic case 19

4.1.1 Vocabulary . 19

4.1.2 Properties . 19

4.1.3 Some examples . 21

4.2 Extended language for an explicit representation of attacks (recursive case) 23

4.2.1 Vocabulary . 24

4.2.2 Properties . 24

4.2.3 Some examples . 27

i

5 Logical formalization of semantics: Case of AS 33
5.1 Semantics for an AS in the basic language . 33

5.1.1 Conflict-freeness . 33

5.1.2 Defence . 34

5.1.3 Reinstatement . 35

5.1.4 Stability . 37

5.1.5 Characterizing semantics for an AS in the basic language 38

5.1.6 Basic principles restated in terms of NAcc 42

5.2 Semantics for an AS in the extended language . 44

5.2.1 Specificity of an AS wrt validity . 44

5.2.2 Conflict-freeness . 45

5.2.3 Defence . 45

5.2.4 Reinstatement . 46

5.2.5 Stability . 47

5.2.6 Characterizing semantics for an AS in the extended language 47

5.3 Synthesis for AS . 49

6 Semantics for an ASAF 51
6.1 Basic principles revisited with recursive attacks . 51

6.1.1 Conflict-freeness . 51

6.1.2 Defence . 52

6.1.3 Reinstatement . 53

6.1.4 Stability . 54

6.2 Definitions of semantics for an ASAF . 54

6.2.1 The notion of structure . 54

6.2.2 Conflict-free structures . 55

6.2.3 Admissible structures . 57

6.2.4 Complete structures . 59

6.2.5 Stable structures . 59

6.3 Characterizing semantics for an ASAF . 60

6.4 Synthesis for ASAF . 61

7 Future works 63

Bibliography 64
Bibliography . 64

ii

A Description of the examples 67
A.1 Examples without recursivity (AS) . 67

A.1.1 Example 1 . 67
A.1.2 Example 2 . 69
A.1.3 Example 3 . 71
A.1.4 Example 4 . 73
A.1.5 Example 5 . 75
A.1.6 Example 6 . 76
A.1.7 Example 7 . 78
A.1.8 Example 8 . 80
A.1.9 Example 9 . 82
A.1.10 Example 10 . 84
A.1.11 Example 11 . 86
A.1.12 Example 12 . 88
A.1.13 Example 13 . 89

A.2 Examples with recursivity (ASAF) . 91
A.2.1 Example 14 . 91
A.2.2 Example 15 . 93
A.2.3 Example 16 . 95
A.2.4 Example 17 . 97
A.2.5 Example 18 . 99
A.2.6 Example 19 . 101
A.2.7 Example 20 . 103
A.2.8 Example 21 . 105
A.2.9 Example 22 . 107
A.2.10 Example 23 . 109
A.2.11 Example 24 . 111
A.2.12 Example 25 . 113

B Proofs 115
B.1 Proofs of Section 4.1.2 on page 19 . 115
B.2 Proofs of Section 4.2.2 on page 24 . 115
B.3 Proofs of Section 5.1 on page 33 . 115
B.4 Proofs of Section 5.2 on page 44 . 122
B.5 Proofs of Section 6.2 on page 54 . 123
B.6 Proofs of Section 6.3 on page 60 . 124

iii

iv

Chapter 1

Introduction

The main feature of argumentation framework is the ability to deal with incomplete and / or con-
tradictory information, especially for reasoning [24, 3]. Moreover, argumentation can be used to
formalize dialogues between several agents by modeling the exchange of arguments in, e.g., nego-
tiation between agents [4]. An argumentation system (AS) consists of a collection of arguments
interacting with each other through a relation reflecting conflicts between them, called attack. The
issue of argumentation is then to determine acceptable sets of arguments (i.e., sets able to defend
themselves collectively while avoiding internal attacks), called extensions, and thus to reach a co-
herent conclusion. Another form of analysis of an AS is the study of the particular status of each
argument, this status is based on membership (or non-membership) in the extensions. Formal frame-
works have greatly eased the modeling and study of AS. In particular, the framework of [24] allows
completely abstracting the concrete meaning of the arguments and relies only on binary interactions
that may exist between them.

AS have been extended along different lines. For instance, bipolar AS (BAS) correspond to AS
with a second kind of interaction, the support relation. This relation represents a positive interaction
between arguments and has been first introduced by [27, 38]. In [17], the support relation is left
general so that the bipolar framework keeps a high level of abstraction. However there is no single
interpretation of the support, and a number of researchers proposed specialized variants of the sup-
port relation (deductive support [10], necessary support [31, 32], evidential support [33, 34]). Each
specialization can be associated with an appropriate modelling using an appropriate complex attack.
These proposals have been developed quite independently, based on different intuitions and with dif-
ferent formalizations. In [18], a comparative study has been done in order to restate these proposals
in a common setting, the bipolar argumentation framework. Basically, the idea is to keep the original
arguments, to add complex attacks defined by the combination of the original attack and the support,
and to modify the classical notions of acceptability. An important result of [18] is the highlight of a
kind of duality between the deductive and the necessary interpretations of support, which results in
a duality in the modelling by complex attacks. Recent works give a translation between necessary
supports and evidential supports [36]; others propose a justification of the necessary support using
the notion of subarguments [37]; an extension of the necessary support is presented in [30].

AS have been also extended so as to take into account interactions between arguments and other in-
teractions. A first version has been introduced by [29], then studied in [6] under the name of AFRA

1

(Argumentation Framework with Recursive Attacks). This version describes abstract argumentation
systems in which the interactions can be either attacks between arguments or attacks from an ar-
gument to another attack. In this case, as for the bipolar case, a translation of an AFRA into an
equivalent AS can be defined by the addition of some new arguments and the attacks they produce
or they receive. Recently, an extension of AFRA has been proposed in [21] in order to take into
account supports on arguments or on interactions. These systems are called ASAF (Attack-Support
Argumentation Frameworks). And, once again, a translation of an ASAF into an equivalent AS is
proposed by the addition of arguments and attacks.

The subject of the current paper is to propose a logical vision of an ASAF that can justify the intro-
duction of all these new attacks. This logical vision is initially issued from works in bioinformatics
(see [23, 1]). In this domain, we can find metabolic networks that describe the chemical reactions of
cells; these reactions can be negative (inhibition of a protein) or positive (production of a new pro-
tein) and they can depend on other proteins or other reactions. A translation from metabolic networks
to classical logic has been proposed in [1]. This translation allows for the use of automated deduction
methods for reasoning on these networks. A very preliminary work has been done for adapting this
approach to argumentation systems (see [16]). Nevertheless, in terms of argumentation, the obtained
results are limited at this time.

In this new work, we restrict our study to argumentation systems with only attacks (recursive or not)
and propose a new logical vision of an AS and an ASAF.

Context. Two different cases are considered in this work:

The case called “classic”: we study argumentation systems, denoted by AS, where only attacks
between arguments (simple attacks, see Definition 1 on page 5) can be found;

The case called “recursive”: we study argumentation systems, where there exist arguments,
attacks between arguments and attacks between an argument and another attack, (called recur-
sive attacks, see Definition 4 on page 6).

Note: In this work, the interactions corresponding to the notion of support will not not considered
(this case is left for future work, see Section 7 on page 63).

According to the considered case (classic or recursive), there exist two ways for weakening an attack:

either by weakening the source of the attack (this is possible in both cases),

or because the attack is the target of another attack (this is possible only in the recursive case).

This leads to propose the notions of “grounded attack” and “valid attack” ([15]). The notion of
grounded attack is about the source of the attack and the notion of valid attack is about the link
between the source and the target of the attack (i.e. the role of the interaction itself).

Moreover, in [15], the argumentation graph is translated into a graph containing only simple attacks,
using the addition of meta-arguments. This translation allows taking into account the notion of
grounded (resp. valid) attack in the computation of the extensions of the resulting graph.

2

Contents:

1. The first two chapters contain the necessary background: the main notions about abstract ar-
gumentation are given in Chapter 2 on page 5 and some existing works about argumentation
and logics are described in Chapter 3 on page 13.

2. In Chapter 4 on page 19, we propose a translation of the argumentation graph itself using a
formal language: our aim is to formally express the semantics1 attached to an attack in an
argumentation graph, and so the notions of accepted argument, grounded or valid attack, inde-
pendently of any argumentation semantics. The proposed formal language will first take into
account simple attacks (Section 4.1 on page 19), then will be extended to cope with recursive
attacks (Section 4.2 on page 23).

3. Then, using the formal language described in the previous chapter, a modelization of argumen-
tation semantics is given in Chapter 5 on page 33. Our aim is to express the standard semantics
(grounded, preferred, complete, stable) of an AS in logical terms (either by formulae, or by a
selection of models). This will be done with the basic language (Section 5.1 on page 33) and
with the extended language (Section 5.2 on page 44).

4. This will suggest the definition of new argumentation semantics capable of handling recursive
attacks (Chapter 6 on page 51).

Notes:

A similar work has been done in [16]. However, the proposed encoding presented here is not
the same as the one given in [16] and so the results of [16] are not usable here.

All the examples used in this report are totally described in Appendix A on page 67.

Proofs are given in Appendix B on page 115.

1In the common sense of this word and not in the sense of “argumentation semantics” evoked in Section 2.2 on page 7.

3

4

Chapter 2

Background on abstract argumentation

This chapter gives some definitions about abstract argumentation (the different kinds of argumenta-
tion systems and the standard argumentation semantics).

2.1 Different abstract argumentation systems

The classic case concerns argumentation systems with only one kind of interaction: attacks between
arguments.

Def. 1 (AS) An argumentation system (AS) is a tuple 〈A,R〉, where

A is a finite and non-empty set of arguments,

R ⊆ A×A is an attack relation.

A first extension takes into account an additional kind of interaction: supports between arguments.

Def. 2 (BAS) A bipolar argumentation system (BAS) is a tuple 〈A,Ratt,Rsup〉, where

A is a finite and non-empty set of arguments,

Ratt ⊆ A×A is an attack relation and

Rsup ⊆ A×A is a support relation.

It is assumed that Ratt ∩Rsup = ∅.

Another possible extension concerns recursive interactions (support or attack), i.e. from an argument
to either another argument or another interaction [22].

Def. 3 (ASAF) An Attack-Support Argumentation Framework (ASAF) is a tuple 〈A, Ratt, Rsup〉
where

A is a set of arguments,

5

Ratt is a subset of A× (A ∪Ratt ∪Rsup) corresponding to a set of attacks, and

Rsup is a subset of A× (A∪Ratt ∪Rsup) corresponding to a set of supports. Note that Rsup is
assumed to be irreflexive and transitive.

It is assumed that Ratt ∩Rsup = ∅.

We propose an alternative formalisation in which each interaction is labelled.1

Def. 4 (ASAF) An ASAF is a tuple 〈A, Ratt, Rsup, s, t〉 where

A is a set of arguments,

Ratt (resp. Rsup) is a set disjunct from A, representing attacks (resp. supports),

s is a function from (Ratt ∪Rsup) to A, mapping each interaction to its source,

t is a function from (Ratt ∪Rsup) to (A ∪Ratt ∪Rsup) mapping each interaction to its target.

It is assumed that Ratt ∩Rsup = ∅.

Note that each interaction α can be identified with the pair (s(α), t(α)).

Note also that a BAS can be recovered as a particular case where t is a mapping from (Ratt ∪Rsup)
to A.

In the remainder of this paper, we do not consider the support relation. So we consider either an AS,
or an ASAF with Rsup = ∅. In both cases, the attack relation will be denoted by R.

So, we consider a 4-tuple 〈A, R, s, t〉 where

A is a set of arguments (denoted by a, b, . . .) and R is a set disjunct from A, representing
attacks (denoted by greek letters),

s is a function from R to A, mapping each interaction to its source,

t is a function from R to (A ∪R) mapping each interaction to its target.

An AS can be recovered as a particular case where t is a mapping from R to A.

For each of these argumentation systems, we use its graphical representation defined by G = (A,R)
(A being the set of vertices and R being the set of edges).

As usually done in Graph Theory, we adopt the following notations: let a ∈ A, R+(a) (resp. R−(a))
denotes the set of arguments attacked by (resp. that attack) a.

1Another formalisation is also given in [15]: A labelled ASAF (LASAF) is a 5-uple 〈A, Ratt, Rsup, V , L〉 where A is
a set of arguments, Ratt ⊆ A × (A ∪Ratt ∪Rsup) is an attack relation, Rsup ⊆ A × (A ∪Ratt ∪Rsup) is a support
relation, V is a set of labels (denoted by greek letters) and L is a bijection from R ⊆ (Ratt ∪Rsup) to V .

6

2.2 Argumentation semantics for AS

In the following, we recalled the definitions of the standard semantics. Note that these definitions
only concern classic abstract argumentation systems (with simple attacks). It is important to note
that no semantics has been clearly defined in the other cases, i.e. when supports and/or recursive
interactions exist (some suggestions have been done but there exists no consensus about them).
In the extension-based approach, a semantics specifies requirements that a set of arguments should
satisfy. These requirements have been extensively analysed in [BG07]. There are three basic require-
ments, corresponding to three principles for semantics:

An extension is a set of arguments that “can stand together”. This corresponds to the conflict-
free principle.

An extension is a set of arguments that “can stand on its own”, namely is able to counter all the
attacks it receives. This corresponds to the concept of defence and leads to the admissibility
principle.

Reinstatement is a kind of dual principle. If an extension defends an argument, this argument
is reinstated by the extension and should belong to the extension.

We give below the formal definitions.

Def. 5 (Basic concepts used in extension-based semantics) Let AS = 〈A,R〉 and S ⊆ A.

S is conflict-free if and only if there are no arguments a, b ∈ S, such that aRb.

a ∈ A is acceptable with respect to S (or equivalently S defends a) if and only if ∀b ∈ A such
that bRa, ∃c ∈ S such that cRb.

S is admissible if and only if S is conflict-free and each argument in S is acceptable with
respect to S.

Standard extension-based semantics are classically defined as follows:

Def. 6 (AS extensions in standard semantics) Let AS = 〈A,R〉 and S ⊆ A.

S is a naive extension of AS if and only if it is a maximal (with respect to ⊆) conflict-free set.

S is a preferred extension of AS if and only if it is a maximal (with respect to ⊆) admissible
set.

S is a complete extension of AS if and only if S is admissible and each argument which is
acceptable with respect to S belongs to S.

S is a stable extension of AS if and only if it is conflict-free and ∀a 6∈ S, ∃b ∈ S such that bRa.

Most of the standard semantics can be alternatively defined using the characteristic function F .

Def. 7 (Extensions defined by F) Let AS = 〈A,R〉 and S ⊆ A.

7

The characteristic function of AS is defined by: F(S) = {a ∈ A such that a is acceptable with
respect to S}.

S is admissible if and only if S is conflict-free and S ⊆ F(S).

S is a complete extension of AS if and only if it is conflict-free and a fixed point of F .

S is the grounded extension of AS if and only if it is the minimal (with respect to⊆) fixed point2

of F .

S is a preferred extension of AS if and only if it is a maximal (with respect to ⊆) complete
extension if and only if it is a maximal conflict-free fixed point of F .

Note that due to Definition 6 on the previous page the complete semantics is based on both principles
of admissibility and resinstatement. Moreover, as the grounded extension, the preferred extensions
and the stable extensions are also complete extensions, the grounded (resp. preferred, stable) seman-
tics satisfies the admissibility and reinstatement principles.

2.3 Argumentation semantics for BAS

Handling support and attack at an abstract level has the advantage to keep genericity and to give an
analytic tool for studying complex attacks and new semantics considering both attack and support
relations, among others. However, the drawback is the lack of guidelines for choosing the appropriate
definitions and semantics depending on the application. For solving this problem, some variants
of the support relation have been proposed recently, including the necessary support. This kind of
support was initially proposed in [32] with the following interpretation: If cRsupb then the acceptance
of c is necessary to get the acceptance of b, or equivalently the acceptance of b implies the acceptance
of c. Suppose now that aRattc. The acceptance of a implies the non-acceptance of c and so the non-
acceptance of b. Also, if cRsupa and cRattb, the acceptance of a implies the acceptance of c and the
acceptance of c implies the non-acceptance of b. So, the acceptance of a implies the non-acceptance
of b. These constraints relating a and b are enforced by adding new complex attacks from a to b:

Def. 8 ([32] Extended attack) Let 〈A,Ratt,Rsup〉 and a, b ∈ A. There is an extended attack from a
to b iff

either (1) aRattb;

or (2) a1Ratta2Rsup . . .Rsupan, n ≥ 3, with a1 = a, an = b;

or (3) a1Rsup . . .Rsupan, and a1Rattap, n ≥ 2, with an = a, ap = b.

Consider the following graphical notations:

the simple edges represent attacks,

the double edges represent supports.

2It can be proved that the minimal fixed point of F is conflict-free.

8

The following figures illustrate the cases 2 and 3 of Definition 8 on the facing page:

Case 2: a c . . . b Case 3:

c b

. . . a

Among the frameworks proposed in [19] for handling necessary supports, we focus on the one en-
coding the following interpretation: If cRsupb, “the acceptance of c is necessary to get the acceptance
of b” because “c is the only attacker of a particular attacker of b”:

Def. 9 ([19] MAS associated with a BAS) Let 〈A,Ratt,Rsup〉 be a BAS with Rsup being a set of nec-
essary supports. Let An = {Ncb|(c, b) ∈ Rsup} and Rn = {(c,Ncb)|(c, b) ∈ Rsup}∪{(Ncb, b)|(c, b) ∈
Rsup}. The tuple 〈A ∪An,Ratt ∪Rn〉 is the meta-argumentation system (MAS) associated with the
BAS (it is a Dung’s AS).

Since a MAS is a Dung’s AS, any Dung’s semantics can be applied.

2.4 Argumentation semantics for ASAF

Here, as the bipolar case, there is no consensus about semantics for ASAF. At least four distinct
methods exist. The first third ones consist in a translation of the original ASAF into an AS (in which
all Dung’s semantics can be reused) whereas the last one gives direct definitions for ASAF semantics
without using a translation into an AS.

2.4.1 Method of [6]

The proposed translation uses the notion of defeat defined as follows:3

Def. 10 ([6] Defeat in ASAF without support) Let 〈A,R〉 be an ASAF without support. Let α, β ∈
R. Let X ∈ A ∪R.

α directly defeats X iff X is the target of α.

α indirectly defeats β iff the target of α is an argument that is the source of β.

Then, a translation of an ASAF into an AS is provided:

Def. 11 ([6] AS associated with an ASAF) Let 〈A,R〉 be an ASAF without support. The AS asso-
ciated with this ASAF is 〈A′,R′〉 defined by:

A′ = A ∪R,

R′ = {(X, Y) s.t. X ∈ R, Y ∈ A ∪R and X directly or indirectly defeats Y }.

The previous notions are illustrated on the following example:
3Initially in [6], the used argumentation system with recursive attacks is called an AFRA.

9

ASAF Associated AS

a α c

δ β

d b

δ d

a α c

b β

For instance, α directly defeats c, β directly defeats α and δ indirectly defeats α.
The following points seem counterintuitive:

there is no attack between a and c (more generally, no argument from A can be an attacker in
the associated AS of the ASAF),

there is no link between a and α (more generally, there is no link between an attack and its
source); that is surprizing since, without a, the attack α does not exist.

2.4.2 Method of [21]

The translation from an ASAF into an AS follows two steps:4

1. First, the ASAF is turned into a BAS with necessary support.

2. Then, this BAS is turned into an AS by adding extended attacks.

Def. 12 ([21] BAS associated with ASAF) The following schemas describe the encoding of attacks
(attacked or not):

ASAF Associated BAS

a α c

δ β

d b

δ d

a α c

b β

Given the BAS associated with the ASAF, the second step followed in [21] is to create an AS by
adding complex attacks, namely Case 2 - extended attacks (see Def. 8):

Def. 13 ([21] AS associated with BAS and ASAF) Let 〈A,Ratt,Rsup〉 be the BAS associated with
a given ASAF. The pair 〈A′,R′〉, where A′ = A and R′ = Ratt ∪ {(a, b)| there is a sequence a1 Ratt

a2 Rsup . . .Rsup an, n ≥ 3, with a1 = a, an = b} is the AS associated with the BAS and the ASAF.

4Initially in [21], the used argumentation system contains recursive attacks and supports and the definitions are more
complex in order to take into account supports.

10

For instance (in this case the attack from δ to α is added following Definition 13 on the preceding
page):

ASAF Associated BAS Associated AS

a α c

δ β

d b

δ d

a α c

b β

δ d

a α c

b β

2.4.3 Method of [15]

The proposed translation consists in encoding recursive interactions into a MAS in two steps:5

1. First, the ASAF is turned into a BAS with necessary support (exactly in the same way that is
done in [21]).

2. Then, this BAS is turned into an MAS following Definition 9 on page 9.

We give here only the definition corresponding to an ASAF without support:

Def. 14 ([15] Encoding of labelled attacks) The following schemas describe the encoding of a la-
belled attack (attacked or not):

ASAF Associated BAS Associated MAS

a α c

δ β

d b

δ d

a α c

b β

δ Ndδ d

a Naα α c

b Nbβ β

Note that the Nij code the ground-links, i.e. the links between the source of an interaction and the
interaction.

5Initially in [15], the used argumentation system is called a LASAF and contains recursive attacks and supports; so
the definitions are more complex in order to take into account supports.

11

2.4.4 Method of [22]

Here the first idea is similar to the one developed in [6]: introducing a notion of defeat. Here we
only give the definitions corresponding to an ASAF without support, i.e. the definitions relied to the
notion of unconditional defeat.6

The unconditional defeats can be partitioned into two distinct cases: the first case corresponds to
conflicts already captured by the attack relation of the ASAF (called direct defeats), the second case
(called indirect defeat) captures the intuition that attacks are strictly related to their source, as in [6].

Def. 15 ([22] Defeats) Let 〈A,R〉 be an ASAF without support, α, β ∈ R and X ∈ A ∪R.

Direct defeat α directly defeats X , noted α d-def X , iff the target of α is X .

Indirect defeat α indirectly defeats β, noted α i-def β, iff α d-def the source of β.

Unconditional defeat α unconditionally defeatsX , noted α u-def X , iff α d-def X or α i-def X .

Then a redefinition of the main concepts used in argumentation semantics is given:7

Def. 16 ([22] Main semantics concepts for semantics) Let 〈A,R〉 be an ASAF without support,
S ∈ A ∪R.

Conflict-Freeness S is conflict-free iff: @α,X ∈ S s.t. α u-def X .

Acceptability Let X ∈ A ∪ R, X is acceptable wrt S iff: ∀α ∈ R s.t. α u-def X , ∃β ∈ S s.t.
β u-def α.

Then, using these new notions of conflict-freeness and acceptability as in Dung’s definitions, it is
possible to redefine all classical semantics.
Even if this approach is methodologically distinct from the one of [6], in the case of an ASAF without
support, the same results are obtained.

6Initially in [22], the used argumentation system contains recursive attacks and supports and the definitions are more
complex in order to take into account supports.

7Once again we only give the part of definition corresponding to an ASAF without support.

12

Chapter 3

Argumentation and logics

Correspondences between argumentation and logic programming have been introduced in the fun-
damental article of Dung [24]. From that moment, several works have been done (see for in-
stance [14, 35, 13] and more references can be found in this last article).
The most studied problem is the following: find an appropriate encoding of an argumentation system
AS into a logic program P and its associated logic programming semantics, such that, applied to P ,
these semantics capture argumentation semantics of the original AS.
For that purpose, many different encodings have been proposed. For instance Dung [24] has proposed
an encoding allowing the capture of (only) grounded and stable semantics. In [14, 35, 13], the
proposed encodings allow for the characterization the standard argumentation semantics (grounded,
stable, preferred and complete semantics). The main difference between [14, 35] and [13] is that,
in [14, 35], logic programming semantics are defined using classical models (2-valued semantics),
whereas, in [13], 3-valued semantics are used.
The following section recalls the main basic concepts of logic programming, with the definition of
2-valued and 3-valued semantics. Then we focus on [14, 35, 13] and present the main characteristics
of each encoding.

3.1 Background on logic programming

Let L be a finite set of symbols (or atoms). A literal is an atom a (positive literal) or the negation of
an atom not a (negative literal).
If {a1, . . . , an} is a set of atoms, not{a1, . . . , an} denotes the set of negative literals {not a1, . . . ,
not an}.
A normal rule r is an expression of the form:

c← a1, . . . , an, not b1, . . . , not bm

where c, ai and bj are atoms.
Notations: B+(r) = {a1, . . . , an} and B−(r) = {not b1, . . . , not bm}.
A normal logic program is a finite set of normal rules. LP denotes the set of the atoms appearing in
P .

13

Note about the negation
According to the way the logic program is taken into account, not represents either the “failure
negation” (as in [13]) or the classical negation (as in [14, 35]). In this last case, a logic program can
be considered as a classical logic theory and the literal not a can be replaced by ¬a.

2-valued semantics in logic programming
Let P be a normal logic program (considered as a classical theory) andM be a set of atoms,M ⊆ LP .
The p-stable models and the stable models are defined with reduction operations.

Def. 17 The reduction of P by M is the program Red(P,M) defined as follows: If r is a rule of P
under the form c ← a1, . . . , an,¬b1, . . . ,¬bm, r is modified by removing all literals ¬bi such that
bi /∈M .
M is a p-stable model of P if and only if M is a model of Red(P,M) and Red(P,M) ` a for all
a ∈M .

Another kind of reduction is used for defining the stable models.

Def. 18 PM is the program obtained from P by the removal of:

any rule r under the form c← a1, . . . , an,¬b1, . . . ,¬bm with bi ∈M , then

any negative literal into the remaining rules.

M is a stable model of P if and only if M is a minimal model of PM .

Semantics of “supported” models are defined as follows:

Def. 19 M is a supported model of P if and only if, for all a ∈ M , there exists a rule r under the
form a← a1, . . . , an,¬b1, . . . ,¬bm such that {a1, . . . , an} ⊆M and {b1, . . . , bm} ∩M = ∅.

The supported models of a program P are exactly the models obtained by the Clack completion of
P .

Def. 20 The Clark completion of the program P is the program Comp(P) obtained following the
two next steps:

any rule r under the form c ← a1, . . . , an,¬b1, . . . ,¬bm is replaced by the formula c ←
a1 ∧ . . . ∧ an ∧ ¬b1 ∧ . . . ∧ ¬bm.

∀a ∈ LP , Support(a) denotes the set of formulae whose conclusion is a (so Support(a) =
{a← φ1, . . . , a← φk}). Support(a) is replaced by the unique formula a↔ (φ1 ∨ . . . ∨ φk).
If Support(a) is empty, we add the formula ¬a to Comp(P).

Example:
P = {p← a, p← b, a← ¬b, b← ¬a}. Comp(P) = {p↔ a∨ b, a↔ ¬b, b↔ ¬a}. There are two
models: {a, p} and {b, p}.

3-valued semantics of logic programming
Let P be a normal logic program. A 3-valued assignment I of P is a pair (T, F) of sets of atoms
(T ⊆ LP , F ⊆ LP) such that T ∩ F = ∅. Intuitively, atoms of T are true in I , those of F are false
in I and those of LP \ (T ∩ F) are undefined (“undef”).
The reduction of P by I is defined as the program denoted by P/I and obtained as follows:

14

any rule r under the form c← a1, . . . , an, not b1, . . . , not bm with bi ∈ T is removed.

for each remaining rule, we modify the rule by removing the literals not bi such that bi ∈ F .

for each remaining rule, any literal not bi is replaced by the symbol u (u is an atom /∈ LP
assumed undefined in any assignment).

The reduced program P/I has a unique 3-valued model (T, F) with T minimal and F maximal
(obtained by a fixed-point operator, see also [13] for an equivalent definition of the smallest model),
denoted by ΓP (I).

The 3-valued semantics are defined using ΓP .

I is a p-stable 3-valued model of P iff ΓP (I) = I .

I = (T, F) is a well-founded 3-valued model of P iff I is a p-stable 3-valued model of P with
T minimal.

I = (T, F) is a regular 3-valued model of P iff I is a p-stable 3-valued model of P with T
maximal.

I = (T, F) is a stable 3-valued model of P iff I is a p-stable 3-valued model of P with
T ∪ F = LP .

3.2 Encoding of [14, 35]

Π(G) will denote the logic program associated with the argumentation graph G.

Let G = (A,R). Π(G) is defined by associating:

any argument x with a literal def(x) (“x is defeated”) whose meaning is “x cannot belong to
an admissible set” and with a literal acc(x) (“x is acceptable”) whose meaning is “x can be
considered as accepted”

any argument x with the set denoted by Π(x) containing the following normal rules:

– for any bRx, the rule def(x)← ¬def(b)

– for any bRx, the rule def(x)← def(c1) ∧ . . . ∧ def(ck)

with {c1, . . . , ck} = R−(b)

The first part of Π(x) encodes the fact that an argument is defeated if at least one of its attackers is not
defeated. The second part of Π(x) encodes the fact that an argument is defeated if all its defenders
against an attacker are defeated.

The normal program Π(G) associated with the graph G is obtained by the union of Π(x), for x ∈ A.

Notes: The first part of the program Π(G) only encodes the notion of defeated arguments. The
second part encodes the notion of acceptability.

15

Then, the encoding is completed in order to identify the acceptable arguments. The idea is the
following: if the atom def(x) is false in a classical model of Π(G), then x can be considered as
accepted. This idea is translated into the following rule: acc(x)← ¬def(x).
In the remainder of this paper, the obtained program will be denoted by Π′(G).
Notes: [35] proves that any theorem of Π(G) is a theorem of Π′(G) and that any theorem of Π′(G)
belonging to the language of Π(G) is already a theorem of Π(G).
Example: A = {a, b, c}, R = {(a, b), (b, c)}. Π′(G) contains:
def(b)← ¬def(a)
def(c)← ¬def(b)
def(b)← > (the conjonction of an empty set corresponds to the tautology denoted by >)
def(c)← def(a)
acc(a)← ¬def(a), acc(b)← ¬def(b), acc(c)← ¬def(c).

Characterization of argumentation semantics
Let E ⊆ A be a subset of arguments. Acc(E) denotes the set of literals acc(x) for x ∈ E. We define
m(E) = Acc(E) ∪ {def(x), x /∈ E}.
The results of [14] are completed by [35] in order to characterize the stable extensions (resp. pre-
ferred, complete) of an AS represented by a graph G, using models of the program Π′(G) under
different semantics of logic programming.

E is a stable extension of G iff m(E) is a stable model of Π′(G)

E is a preferred extension of G iff m(E) is a p-stable model of Π′(G)

E is a complete extension of G iff m(E) is a supported model of Π′(G) (iff m(E) is a model
of the Clark completion of Π′(G))

There also exists a direct characterization of the grounded extension but using models in a 3-valued
logic (well-founded semantics).

3.3 Encoding of [13]

Let G = (A,R). For defining Π(G), each argument x is associated with the rule r(x) under the
form x← not b1, . . . , not bm with {b1, . . . , bm} = R−(x). If x is unattacked, r(x) is under the form
x← >.
The normal program Π(G) associated with the graph G is obtained by the union of Π(x), for x ∈ A.
Example: A = {a, b, c}, R = {(b, a), (c, a)}.
Π(G) contains the 3 following rules: b← >, c← >, a← not b, not c.
There exists a bijection between the 3-valued assignments of Π(G) and the labellings of G. A
labelling of G is an application from A to {in, out, undec}. Most of argumentation semantics can
be expressed using labellings. So a characterization of argumentation semantics can be obtained in
term of 3-valued models of the program Π(G).

Characterization of argumentation semantics

16

Complete extensions of G are obtained using p-stable 3-valued models of Π(G)

Preferred extensions of G are obtained using regular 3-valued models of Π(G)

The grounded extension G is obtained using the well-founded 3-valued model of Π(G)

Stable extensions of G are obtained using stable 3-valued models of Π(G)

Notes

The encoding proposed by [13] is very simple and produces a logic program with a weak
negation.

So acceptability is encoded by default.

However, semantics are defined through 3-valued models and not with classical logic.

3.4 Other related works

The issue of logical encoding of argumentation has recently been addressed for different purposes
independently of the notion of logic programming.
[25] propose a first-order logical language for expressing dynamics of an AS. A distinguished predi-
cate symbol enables to code an attack between sets of arguments so that an attack is encoded by an
atomic formula of the language.
[2] propose a formal language built upon a classical propositional language for representing various
forms of structured arguments. Several kinds of interaction between these arguments can be captured
as inference rules in the language. This approach allows for the representation of nested interactions
but does not account for acceptability issues.
Many other works (the majority in this domain) concern the computation of extensions: [9] en-
code semantics of attack graphs by logical formulas (given a semantics σ and a set S of arguments,
a formula is provided which is satisfiable iff S is a σ-extension); [26] does the same thing but with a
modal logic considering that the accessibility relation is the inverse of the attack relation; the same
kind of work is presented in [5] using signed theories and QBF formulae; [39] present algorithms
using particular logical notions (minimal correction sets, backbone) in order to compute some se-
mantics (semi-stable and eager); [20] translate complete labellings into logical formulae in order to
compute preferred extensions with SAT solvers; [11] propose a metalevel analysis of the computa-
tion problems related to given semantics in order to automatically generate solvers adapted to these
problems.
In the more general abstract dialectical framework [12], each argument is associated with a proposi-
tional formula which represents the acceptance conditions of the argument. This logical translation
enables to capture easily the stable semantics. However, recursive interactions are not taken into
account.
Moreover in the context of the First International Competition on Computational Models of Argu-
mentation (ICCMA), different solvers have been proposed and tested (see for instance [7], or [28]).
However, in all these works, neither the attack relation itself is logically encoded, nor the bipolar or
the recursive aspects are taken into account.

17

18

Chapter 4

Graph description in a formal language

4.1 Preliminary version of the language for the classic case

Our aim is to describe an argumentation graph G containing only simple attacks. For this purpose,
we consider a logical language in which we are able to represent arguments, and their properties
(accepted or not, attacked or not, . . .). Σ0(G) will denote the set of logical formulae describing the
argumentation graph G.

4.1.1 Vocabulary

We use first-order logic (with the classical connectors ∨, ∧,→,↔, ¬, and the quantifiers ∃ and ∀).
For defining Σ0(G), each argument x is associated with:

a literal Acc(x) (“x is accepted”) and

a literal NAcc(x) (“x is attacked by an accepted argument”).

Notes: The meaning ofNAcc(x) is not “x is not accepted” (soNAcc(x) is not logically equivalent
to ¬Acc(x)), but rather “x cannot be accepted” since “x is attacked by an accepted argument”.
Then taking into account the semantics of an attack leads to deduce ¬Acc(x) from NAcc(x) (see
Section 4.1.2).

4.1.2 Properties

The property given below describes the behaviour of a simple attack (from an argument to another
one) in an argumentation graph, i.e. the impact of an existing attack on the arguments that it involves.
This property, denoted by P0

acc, translates the semantics1 of an attack edge between two arguments
into a constraint on the acceptability of the arguments involved in the attack.

1Always in the first sense of this word and not in the sense of the argumentation semantics evoked in Section 2.2 on
page 7.

19

P0
acc : If the source of an attack is accepted then its target cannot be accepted.

Using the vocabulary introduced in Section 4.1.1 on the previous page, Property P0
acc can be ex-

pressed, for any attack (a, b) of the graph, by the conjunction of two first-order formulae:

P0
acc For any (a, b) ∈ R, (Acc(a)→ NAcc(b))

∧
(NAcc(b)→ ¬Acc(b))

Notes:

The formula Acc(a) → NAcc(b) encodes the attack from a to b (if a is accepted then b is
attacked by an accepted argument). It allows for the representation of the direction of the attack
and avoids the contraposition of the attack. Indeed, from {Acc(a) → NAcc(b), NAcc(b) →
¬Acc(b)}, we can deduce Acc(a)→ ¬Acc(b), but we cannot deduce Acc(b)→ NAcc(a).

The formula NAcc(b)→ ¬Acc(b) encodes the impact of the attack on b (if b is attacked by an
accepted argument, then b is not accepted). It could be equivalently written asNAcc(b), Acc(b)→
⊥ thus removing the connector of negation.

From {Acc(a) → NAcc(b), NAcc(b) → ¬Acc(b)}, we can deduce Acc(a) → ¬Acc(b), but
not Acc(b)→ NAcc(a).

For proving NAcc(b) we need a formula Acc(x)→ NAcc(b) and a proof for Acc(x).

So having the symbol NAcc(x) is essential and it cannot be replaced by ¬Acc(x).

The logical base Σ0(G) that describes the graph G consist of the union of the descriptions of all the
attacks of G, using Property P0

acc.

It is easy to prove the consistency of Σ0(G):

Prop. 1 Let G be an argumentation graph representing an AS with A the set of arguments and
R ⊆ A×A the set of attacks. The logical knowledge base Σ0(G) is consistent.

Comparison with the encoding proposed in [14, 35] (see Section 3.2 on page 15) Consider an
attack bRa. NAcc plays the same role as def . So we can compare our encoding with the first part
of Π(x):

The first part of Π(x) gives Π1 = {def(a) ← ¬def(b), acc(a) ← ¬def(a), acc(b) ←
¬def(b)}.

With Property P0
acc, we obtain {Acc(b) → NAcc(a), NAcc(a) → ¬Acc(a), NAcc(b) →

¬Acc(b)}. Then replace NAcc by def and Acc by acc and consider Σ0 = {acc(b) →
def(a), def(a)→ ¬acc(a), def(b)→ ¬acc(b)}. The sets Σ0 and Π1 are not logically equiva-
lent.

20

By completion2 the rule acc(x) ← ¬def(x) gives the formula acc(x) ↔ ¬def(x). Then
consider Π′1 = {def(a) ← ¬def(b), acc(a) ↔ ¬def(a), acc(b) ↔ ¬def(b)}. We can see
that Σ0 is a logical consequence of Π′1 (but there is no equivalence).

In the same way, in the case of an AS, the formulaNAcc(a)→ ¬Acc(a) may be completed for
obtaining NAcc(a) ↔ ¬Acc(a). That means that we always have either Acc(a) or NAcc(a).
So consider now the set Σ′0 = {acc(b) → def(a), def(a) ↔ ¬acc(a), def(b) ↔ ¬acc(b)}.
The sets Π′1 and Σ′0 are logically equivalent.

4.1.3 Some examples

In this section, some typical examples of AS with simple attacks (i.e. no recursive) are encoded,
following the definitions of Section 4.1.2 on page 19.

Note: A complete set of examples (including these ones) is given in Appendix A.1 on page 67.

Ex. 1 In this example, the graph G is reduced to a simple attack from a to b:

a b

Using P0
acc leads to the following encoding:

Σ0(G) = {
Acc(a)→ NAcc(b)

NAcc(b)→ ¬Acc(b)}
Note that, among the logical consequences of Σ0(G), we find the following formula:

Acc(a)→ ¬Acc(b)
That means that, if a is accepted then b is not accepted.

Ex. 3
In this example, the graph G is reduced to a sequence of two attacks: a attacks b which attacks c.

a b c

Using P0
acc leads to the following encoding:

Σ0(G) = {
Acc(a)→ NAcc(b)

Acc(b)→ NAcc(c)

NAcc(b)→ ¬Acc(b)
2i.e. we assume that ¬def(x) is the only reason for having acc(x), otherwise there would exist other rules producing

acc(x). This completion mechanism is often used when we reason on incomplete knowledge bases.

21

NAcc(c)→ ¬Acc(c) }
Among the logical consequences of Σ0(G), we find the following formulae:

¬(Acc(a) ∧ Acc(b)) and ¬(Acc(c) ∧ Acc(b))
So, if a is accepted then b is not accepted and c might be accepted. But we cannot deduce that c is
accepted since we do not encode the reinstatement principle. We have just encoded the semantics of
an attack.

Ex. 6
In this example, the graph G contains a defence and an attack to a same argument:

a b c

d

Using P0
acc leads to the following encoding:

Σ0(G) = {
Acc(a)→ NAcc(b)

Acc(b)→ NAcc(c)

Acc(d)→ NAcc(c)

NAcc(b)→ ¬Acc(b)
NAcc(c)→ ¬Acc(c) }

Among the logical consequences of Σ0(G), we find the following formulae:
¬(Acc(a) ∧ Acc(b)), ¬(Acc(b) ∧ Acc(c)) and ¬(Acc(d) ∧ Acc(c))

So, if a is accepted then b is not accepted, and, if b or d is accepted then c is not accepted.

Ex. 9
In this example, the graph G contains two defences against two distinct attackers for a same argu-
ment:

a b c

e d

Using P0
acc leads to the following encoding:

Σ0(G) = {
Acc(a)→ NAcc(b)

Acc(b)→ NAcc(c)

Acc(e)→ NAcc(d)

Acc(d)→ NAcc(c)

22

NAcc(b)→ ¬Acc(b)
NAcc(c)→ ¬Acc(c)
NAcc(d)→ ¬Acc(d) }

Among the logical consequences of Σ0(G), we find the following formulae:

¬(Acc(a) ∧ Acc(b)), ¬(Acc(b) ∧ Acc(c)), ¬(Acc(e) ∧ Acc(d)) and ¬(Acc(d) ∧ Acc(c))
So, if a (resp. b, e and d) is accepted, b (resp. c, d and c) is not accepted.

Note that, if a and e are accepted, c might be accepted. But it is not deductible from Σ0(G).

Ex. 10
In this example, the graph G contains two defences against a same attacker:

a b c

d

Using P0
acc leads to the following encoding:

Σ0(G) = {
Acc(a)→ NAcc(b)

Acc(b)→ NAcc(c)

Acc(d)→ NAcc(b)

NAcc(b)→ ¬Acc(b)
NAcc(c)→ ¬Acc(c) }

Among the logical consequences of Σ0(G), we find the following formulae:

¬(Acc(a) ∧ Acc(b)), ¬(Acc(b) ∧ Acc(c)) and ¬(Acc(d) ∧ Acc(b))
So, if a (resp. b and d) is accepted, b (resp. c and b) is not accepted.

Note that, if a or d is accepted, c might be accepted. But it is not deductible from Σ0(G).

Other examples are available in Appendix A.1 on page 67.

4.2 Extended language for an explicit representation of attacks
(recursive case)

Our aim is to describe an argumentation graph G with an explicit representation of the attacks, that
might be themselves attacked. This description must allow us to represent arguments, attacks and
their properties (accepted argument, attacked argument, grounded attack, valid attack, . . .). Σ(G)
will denote the set of logical formulae describing the argumentation graph G.

Our idea is to separate the formulas that encode the properties of an attack in the general case from
the formulas that describe a particular argumentation graph. For that purpose, we need first-order

23

logic (with the classical connectors ∨, ∧, →, ↔, ¬, and the quantifiers ∃ and ∀). As we have to
distinguish between arguments and attacks, we will use bounded quantifiers.3

4.2.1 Vocabulary

We use the following unary predicate symbols : Acc, NAcc, Gr, V al, Act, Attack, Argument and
the following unary functions symbols : T , S, with the following meaning:

Acc(x) (resp. NAcc(x)) means “x is accepted” (resp. “x cannot be accepted”), when x denotes
an argument

Gr(α) (resp. V al(α), Act(α)) means “α is grounded” (resp. “α is valid, “α is active”) when
α denotes an attack

Attack(x) means “x is an attack”

Argument(x) means “x is an argument”

T (x) (resp. S(x)) denotes the target (resp. source) of x, when x denotes an attack

We will also use the binary equality predicate.
Note that the quantifiers ∃ and ∀ range over some domain D. To restrict them to subsets of D,
bounded quantifiers will be also used:

(∀x ∈ E)(P (x)) means (∀x)(x ∈ E → P (x)) or equivalently (∀x)(E(x)→ P (x)).
Here we will use:

(∀x ∈ Attack)(Φ(x)) (resp. (∃x ∈ Attack)(Φ(x)))

and (∀x ∈ Argument)(Φ(x)) (resp. (∃x ∈ Argument)(Φ(x))).

Notes:

As shown below by Property Pact, Act(α) is not really mandatory, but rather enables us to
simplify the formulae.

As in Section 4.1 on page 19, the meaning of NAcc(x) is not “x is not accepted” but rather “x
cannot be accepted”. In other words, due to the fact that attacks may be attacked, the meaning
of NAcc(x) is “x is the target of a valid attack whose source is accepted”.

4.2.2 Properties

The properties introduced in this section can be partitioned into two sets:

the properties describing the general behaviour of an attack, possibly recursive, in an argumen-
tation graph, i.e. how an attack interacts with arguments and other attacks related to it.

and the properties encoding the specificities of the current argumentation graph.
3It was not necessary to use bounded quantifiers in Section 4.1 on page 19, since in this section, the variables in

formulae could only denote arguments.

24

General theory. Regarding an attack, we first define the notion of grounded and active attack from
the notion of valid attack, with Properties Pgr and Pact.
Then, the behaviour of an attack wrt its source and its target can be expressed using the 2 following
properties Pval and Pacc. These properties generalize Property P0

acc introduced in Section 4.1.2 on
page 19. The idea is to describe the semantics of an attack under the form of a constraint on its
source (an argument) and its target (an attack or an argument).

Pgr : An attack is grounded iff its source is an accepted argument.

Pact : An attack is active iff it is grounded and valid.

Pacc : If an attack between two arguments is valid, then if its source is accepted, its target cannot be
accepted.

Pval : If an attack from an argument to an attack is valid, then if its source is accepted, its target
cannot be valid.

An equivalent formulation of Pval is :
If an attack is the target of an active attack, then it is not valid.

Notes:

Pacc is an extended version of P0
acc

Due to Properties Pgr and Pact, the notions of grounded and active attack can be expressed
using the notions of accepted argument and valid attack. That will enable us to simplify the
language.

The above properties do not give a definition of a valid attack. Property Pval only gives a
sufficient condition for an attack being not valid.

Using the vocabulary defined in Section 4.2.1 on the preceding page, the above properties can be
expressed by the following set of first-order formulae, denoted by Π (this set is always the same
regardless of the processed graph):

(1) ∀x ∈ Attack(Gr(x)↔ Acc(S(x)))

(2) ∀x ∈ Attack(Act(x)↔ (Gr(x) ∧ V al(x)))

(3) ∀x ∈ Attack(∀y ∈ Attack(V al(y) ∧ (T (y) = x) ∧ Acc(S(y))→ ¬V al(x))

(4) ∀x ∈ Argument(∀y ∈ Attack(V al(y) ∧ (T (y) = x) ∧ Acc(S(y))→ NAcc(x))

(5) ∀x ∈ Argument(NAcc(x)→ ¬Acc(x))

(6) ∀x(Attack(x)→ ¬Argument(x))

(7) ∀x(Argument(x) ∨ Attack(x))

Formulae (1, 2) express the properties Pgr,Pact. Formula (3) expresses Property Pval. Formulae (4-5)
express Property Pacc. Formula (6) says that arguments are not attacks and attacks are not arguments,
and Formula (7) prevents the language from talking about anything else than attacks and arguments.

25

Logical encoding of specificities of G. Let G be an argumentation graph representing an ASAF
with A the set of arguments and R the set of attacks. We assume that G is finite with A =
{a1, . . . , an} and the set of interactions is {α1, . . . , αm}. In order to make arguments a and b ap-
pear when the attack α = (a, b) is encoded, we consider the literals (S(α) = a) and (T (α) = b).4

Let Π(G) denote the following set of formulas:

(8) (S(α) = a) ∧ (T (α) = b) for all α ∈ R with α = (a, b)

(9) ∀x(Argument(x)↔ (x = a1) ∨ . . . ∨ (x = an))

(10) ∀x(Attack(x)↔ (x = α1) ∨ . . . ∨ (x = αm))

(11) ai 6= aj for all ai, aj ∈ A with i 6= j

(12) αi 6= αj for all αi, αj ∈ R with i 6= j

The logical theory Σ(G) corresponding to the argumentation graph G consists of the union of the
theories Π and Π(G).

Note that formulae (7, 9, 10) force the interpretation of terms to be surjective and thus models of
Σ(G) satisfy the Domain Closure Assumption (DCA).
Moreover, Formula (6) together with formulae (9, 10) imply:

(13) ai 6= αj for all ai ∈ A and αj ∈ R

And Formula (13) together with formulae (11,12) establish the Unique Name Assumption (UNA)
for all constants of the language (though not for functional terms so that Formula (8) is not a contra-
diction).
Note also that the terms S(α) and T (α) are defined for every attack α ∈ R, but they are not de-
fined for arguments so they can take any value (we will not be interested in the values they take for
arguments).

Notes about Pval: Let us consider the following examples:

In the particular case of an AS with simple attacks (no attacked attack), Formula (3) is a
tautology (since there exists no attack that attacks another attack) and thus can be ignored.
Moreover, as Π does not give any sufficient condition for an attack being valid, it cannot be
assumed that the attacks in the AS are valid. As a consequence, in order to recover Dung’s
semantics in the case of an AS, it will be necessary to add a specific property (see Section 5.2.1
on page 44).

Consider now a graph G reduced to one argument a and one attack α such that S(α) = a and
T (α) = α. Due to Property Pval, Σ(G) enables to deduce the formula : V al(α) ∧ Acc(a) →
¬V al(α) which is equivalent to the formula : Acc(a) → ¬V al(α). So neither V al(α), nor
¬V al(α) can be deduced.

4In the examples we will write Sα in place of S(α) and Tα in place of T (α) for simplicity.

26

It is easy to prove the consistency of Σ(G):

Prop. 2 Let G be an argumentation graph representing an ASAF with A the set of arguments and
R the set of attacks. The logical knowledge base Σ(G) is consistent.

4.2.3 Some examples

In this section, we revisit the examples given in Section 4.1.3 on page 21 and add some new ex-
amples presenting recursive attacks. For each example, we give its logical description (a complete
description for Example 1, then a simplified one for the other examples).

Note: A more complete set of examples is given in appendices A.1 on page 67 and A.2 on page 91.

Ex. 1 (cont’d) In this example, the graph G is reduced to a simple attack: α = (a, b)

a α b

Π is given as in Section 4.2.2 on page 24 and Π(G) contains the following formulas:

(S(α) = a) ∧ (T (α) = b) (the simplified form being (sα = a) ∧ (tα = b))

∀x(Argument(x)↔ (x = a) ∨ (x = b))

∀x(Attack(x)↔ (x = α)

a 6= b

So from Σ(G) = Π ∪ Π(G), we can conclude the formulas a 6= α and b 6= α.

Moreover, using the equality axioms, a simplified version of Σ(G) can be obtained (in particular, the
tautologies are not given), which is easy-to-read:5

Σ(G) = Π ∪ Π(G) = {
Gr(α)↔ Acc(a) (Pgr)

Act(α)↔ (Gr(α) ∧ V al(α)) (Pact)

(V al(α) ∧ Acc(a))→ NAcc(b) and NAcc(b)→ ¬Acc(b) (Pacc)}
Note that we can deduce from Σ(G) neither V al(α), nor Acc(a). However, it can be deduced that
(V al(α) ∧ Acc(a))→ ¬Acc(b).

Ex. 3 (cont’d) In this example, the graph G is reduced to a sequence of two attacks: α = (a, b) and
β = (b, c)

a α b β c

5On the other examples, we will give directly the simplified version of Σ(G).

27

Let sα = a, tα = b, sβ = b, tβ = c.
Properties are instantiated on the domain defined by G (three arguments a, b and c and two attacks
α and β).
Σ(G) = {

Gr(α)↔ Acc(a) (Pgr)
Gr(β)↔ Acc(b) (Pgr)
Act(α)↔ (Gr(α) ∧ V al(α)) (Pact)
Act(β)↔ (Gr(β) ∧ V al(β)) (Pact)
(V al(α) ∧ Acc(a))→ NAcc(b) and NAcc(b)→ ¬Acc(b) (Pacc)
(V al(β) ∧ Acc(b))→ NAcc(c) and NAcc(c)→ ¬Acc(c) (Pacc) }

Ex. 6 (cont’d)
In this example, the graph G contains a defence and an attack to a same argument: α = (a, b),
β = (b, c) and δ = (d, c):

a α b β c

d δ

Let sα = a, tα = b, sβ = b, tβ = c, sδ = d, tδ = c.
Properties are instantiated on the domain defined by G (four arguments a, b, c and d and three
attacks α, β and δ).
Σ(G) = {

Gr(α)↔ Acc(a) (Pgr)
Gr(β)↔ Acc(b) (Pgr)
Gr(δ)↔ Acc(d) (Pgr)
Act(α)↔ (Gr(α) ∧ V al(α)) (Pact)
Act(β)↔ (Gr(β) ∧ V al(β)) (Pact)
Act(δ)↔ (Gr(δ) ∧ V al(δ)) (Pact)
(V al(α) ∧ Acc(a))→ NAcc(b) and NAcc(b)→ ¬Acc(b) (Pacc)
(V al(β) ∧ Acc(b))→ NAcc(c) and NAcc(c)→ ¬Acc(c) (Pacc)
(V al(δ) ∧ Acc(d))→ NAcc(c) and NAcc(c)→ ¬Acc(c) (Pacc) }

Ex. 9 (cont’d)
In this example, the graph G contains two defences against two distinct attackers for a same argu-
ment: α = (a, b), β = (b, c), δ = (e, d) and γ = (d, c):

a α b β c

e δ d γ

28

Let sα = a, tα = b, sβ = b, tβ = c, sδ = e, tδ = d, sγ = d, tγ = c.
Properties are instantiated on the domain defined by G (five arguments a, b, c, d and e and four
attacks α, β, δ and γ).
Σ(G) = {

Gr(α)↔ Acc(a) (Pgr)
Gr(β)↔ Acc(b) (Pgr)
Gr(δ)↔ Acc(e) (Pgr)
Gr(γ)↔ Acc(d) (Pgr)
Act(α)↔ (Gr(α) ∧ V al(α)) (Pact)
Act(β)↔ (Gr(β) ∧ V al(β)) (Pact)
Act(δ)↔ (Gr(δ) ∧ V al(δ)) (Pact)
Act(γ)↔ (Gr(γ) ∧ V al(γ)) (Pact)
(V al(α) ∧ Acc(a))→ NAcc(b) and NAcc(b)→ ¬Acc(b) (Pacc)
(V al(β) ∧ Acc(b))→ NAcc(c) and NAcc(c)→ ¬Acc(c) (Pacc)
(V al(δ) ∧ Acc(e))→ NAcc(d) and NAcc(d)→ ¬Acc(d) (Pacc)
(V al(γ) ∧ Acc(d))→ NAcc(c) and NAcc(c)→ ¬Acc(c) (Pacc) }

Ex. 10 (cont’d)
In this example, the graph G contains two defences against a same attacker: α = (a, b), β = (b, c)
and δ = (d, b):

a α b β c

d δ

Let sα = a, tα = b, sβ = b, tβ = c, sδ = d, tδ = b.
Properties are instantiated on the domain defined by G (four arguments a, b, c and d and three
attacks α, β and δ).
Σ(G) = {

Gr(α)↔ Acc(a) (Pgr)
Gr(β)↔ Acc(b) (Pgr)
Gr(δ)↔ Acc(d) (Pgr)
Act(α)↔ (Gr(α) ∧ V al(α)) (Pact)
Act(β)↔ (Gr(β) ∧ V al(β)) (Pact)
Act(δ)↔ (Gr(δ) ∧ V al(δ)) (Pact)
(V al(α) ∧ Acc(a))→ NAcc(b) and NAcc(b)→ ¬Acc(b) (Pacc)
(V al(β) ∧ Acc(b))→ NAcc(c) and NAcc(c)→ ¬Acc(c) (Pacc)
(V al(δ) ∧ Acc(d))→ NAcc(b) and NAcc(b)→ ¬Acc(b) (Pacc) }

Ex. 14 In this example, the graph G is reduced to an attacked attack: α = (a, b), β = (c, α)

29

a α b

β

c

Let sα = a, tα = b, sβ = c, tβ = α.
Properties are instantiated on the domain defined by G (three arguments a, b, c and two attacks α
and β).
Σ(G) = {

Gr(α)↔ Acc(a) (Pgr)
Gr(β)↔ Acc(c) (Pgr)
(V al(β) ∧ Acc(c))→ ¬V al(α)) (Pval)
Act(α)↔ (Gr(α) ∧ V al(α)) (Pact)
Act(β)↔ (Gr(β) ∧ V al(β)) (Pact)
(V al(α) ∧ Acc(a))→ NAcc(b) and NAcc(b)→ ¬Acc(b) (Pacc) }

Ex. 17

d δ a α b

β

c

Let sα = a, tα = b, sβ = c, tβ = α, sδ = d, tδ = a.
Properties are instantiated on the domain defined by G (four arguments a, b, c, d and three attacks
α, β and δ).
Σ(G) = {

Gr(α)↔ Acc(a) (Pgr)
Gr(β)↔ Acc(c) (Pgr)
Gr(δ)↔ Acc(d) (Pgr)
(V al(β) ∧ Acc(c))→ ¬V al(α)) (Pval)
Act(α)↔ (Gr(α) ∧ V al(α)) (Pact)
Act(β)↔ (Gr(β) ∧ V al(β)) (Pact)
Act(δ)↔ (Gr(δ) ∧ V al(δ)) (Pact)
(V al(α) ∧ Acc(a))→ NAcc(b) and NAcc(b)→ ¬Acc(b) (Pacc)
Acc(d)→ NAcc(a) and NAcc(a)→ ¬Acc(a) } (Pacc)

Ex. 18

30

d δ a α b

β

e γ c

Let sα = a, tα = b, sβ = c, tβ = α, sδ = d, tδ = a, sγ = e, tγ = c.

Properties are instantiated on the domain defined by G (five arguments a, b, c, d, e and four attacks
α, β, δ and γ).

Σ(G) = {
Gr(α)↔ Acc(a) (Pgr)

Gr(β)↔ Acc(c) (Pgr)

Gr(δ)↔ Acc(d) (Pgr)

Gr(γ)↔ Acc(e) (Pgr)

(V al(β) ∧ Acc(c))→ ¬V al(α)) (Pval)

Act(α)↔ (Gr(α) ∧ V al(α)) (Pact)

Act(β)↔ (Gr(β) ∧ V al(β)) (Pact)

Act(δ)↔ (Gr(δ) ∧ V al(δ)) (Pact)

Act(γ)↔ (Gr(γ) ∧ V al(γ)) (Pact)

(V al(α) ∧ Acc(a))→ NAcc(b) and NAcc(b)→ ¬Acc(b) (Pacc)

Acc(d)→ NAcc(a) and NAcc(a)→ ¬Acc(a) (Pacc)

Acc(e)→ NAcc(c) and NAcc(c)→ ¬Acc(c) } (Pacc)

Many other examples are available in Appendix A on page 67.

31

32

Chapter 5

Logical formalization of semantics: Case of
AS

In argumentation theory, an extension-based semantics is defined by a set of requirements that a set
of arguments should satisfy. In this section, our purpose is to restate standard semantics of an AS in
logical terms.
The first step is to consider the case of an AS represented in the basic language (see Section 5.1) and
characterize standard semantics by logical formulas of this basic language. Next we will consider the
extended version of the language (see Section 5.2 on page 44) allowing for the explicit representation
of attacks, and show that the logical formalization of standard semantics of an AS can be easily
obtained.
Building on this logical formalization of an AS in the extended language, we will be able to propose
semantics accounting for recursive attacks in Section 6 on page 51.
Note that ideas and results obtained in Section 5.1 correspond to those introduced in [8], but with a
different and richer language that allows us to extend our work to recursive attacks.

5.1 Semantics for an AS in the basic language

In this section, the base corresponding to the translation of the argumentation graph G is Σ0.
As recalled in Section 2.2 on page 7, standard semantics are based on three basic principles: the
conflict-freeness principle, the defence principle (closely related to the notion of admissibility), and
its dual, the reinstatement principle.
We successively consider these three principles, giving a logical expression for each of them.

5.1.1 Conflict-freeness

Each semantics demands that its extensions be conflict-free. This requirement can be formulated as
follows:

Pcf If two arguments are conflicting, they cannot be jointly accepted.

33

The attack aRb is encoded in the base Σ0(G) by the formula Acc(a) → NAcc(b). So S ⊆ A is
not conflict-free iff there exists in Σ0(G) a formula Acc(a)→ NAcc(b) with a, b ∈ S. On the other
hand, the formula Acc(a) → NAcc(b) comes with the formula NAcc(b) → ¬Acc(b). So the base
Σ0(G) already contains formulas that express the property Pcf.

5.1.2 Defence

As recalled in Section 2.2 on page 7, an argument a is acceptable wrt a set of arguments S if S
attacks each argument attacker of a. As an immediate consequence, we have that an argument which
is not attacked is always acceptable wrt S. Moreover, if a set of arguments S is admissible, it defends
all its elements. So, if an argument a belongs to an admissible set S, either a is unattacked, or a is
defended by S against each of its attackers.

These remarks lead to formulate the following property Pdef for describing the defence.

Pdef: An “attacked” argument may be accepted only if it is defended by an accepted argument against
each of its attackers.

Let us enumerate interesting particular cases:

1. Case of a sequence of two attacks: a attacks b that attacks c. c may be accepted only if a
is accepted, as a is the unique defender of c against b. This constraint results in the formula
Acc(c)→ Acc(a).

2. Case of several defenders against the same attacker: bRc and a1Rb, . . . akRb (the attackers of
b are a1, . . . ak). c may be accepted only if one of the ai is accepted. This constraint results in
the formula Acc(c)→ (Acc(a1) ∨ . . . ∨ Acc(ak)).

3. Case of a single attacker and no defender: b attacks c and there is no attack to b. c may be
accepted only if one of the attackers of b is accepted. Yet the set of attackers of b is empty and
the disjunction of an empty set of literals is always false. So we obtain the formulaAcc(c)→ ⊥
which is equivalent to ¬Acc(c). It may be noted that there is an analogy with the logical
encoding proposed by [14, 35] (see Section 3.2 on page 15).

4. Case of several attackers: b1Rc, . . . bkRc and ∀i, aiRbi. c may be accepted only if it is de-
fended against each of its attackers. So each ai must be accepted. This constraint results in the
formula Acc(c)→ (Acc(a1) ∧ . . . ∧ Acc(ak)).

The particular cases considered above lead to the formula that expresses Property Pdef.

Let c be an attacked argument and R−(c) = {b1, . . . bk} its attackers, for each bi ∈ R−(c), Bi =
R−(bi) denotes the set (possibly empty) of the arguments that attack bi. The property Pdef for c is
expressed by the formulaAcc(c)→ (∧i=1..k(∨a∈BiAcc(a)))). More generally and formally, Property
Pdef is expressed by:

Pdef (∀c)(Acc(c)→ (∧b∈R−(c)(∨a∈R−(b)Acc(a))))

34

Note that the formula Acc(c)→ (∧b∈R−(c)(∨a∈R−(b)Acc(a))) is logically equivalent to the conjunc-
tion of the formulas Acc(c) → (∨a∈R−(b)Acc(a)), b ∈ R−(c). That is to say that Pdef results in one
formula for each attack.

Remark
We could have removed the word “attacked” in the formulation of Property Pdef, instead writing
“An argument may be accepted only if it is defended by an accepted argument against each of its
attackers ”. That does not correspond to admissibility, as recalled above. Knowing that an argument
is acceptable wrt S implies that “if it is attacked, then . . .”. Anyway, if this new version was taken,
in the particular case of an unattacked argument c, we would get the formula Acc(c) → > (the
conjunction of an empty set of literals is always true) which is a tautology. The case of an unattacked
argument will be relevant for the reinstatement principle.
The defence principle can be explicitely encoded by adding to the base Σ0(G) (which describes the
argumentation graph G) the formulas issued from Pdef, one formula for each attack to each attacked
argument. Let Σ0

d(G) denote the resulting base.

The logical consistency of Σ0
d(G) can be easily verified:

Prop. 3 Let G be an argumentation graph representing an AS with A the set of arguments and
R ⊆ A×A the set of attacks. The logical knowledge base Σ0

d(G) is consistent.

Let us illustrate Σ0
d(G) on different examples.

Ex. 1 (cont’d) The formula ¬Acc(b) is added to Σ0(G)

Ex. 3 (cont’d) The formulae ¬Acc(b) and Acc(c)→ Acc(a) are added to Σ0(G)

Ex. 6 (cont’d) The formulae ¬Acc(b) et ¬Acc(c) are added to Σ0(G)

Ex. 9 (cont’d) The formulae ¬Acc(d), ¬Acc(b) and Acc(c) → (Acc(a) ∧ Acc(e)) are added to
Σ0(G)

Ex. 10 (cont’d) The formulae ¬Acc(b) and Acc(c)→ (Acc(a) ∨ Acc(d)) are added to Σ0(G)

5.1.3 Reinstatement

As recalled in Section 2.2 on page 7, if a semantics satisfies the reinstatement principle, then, if
an extension S defends an argument a (that is a is acceptable wrt S), a must belong to S. As an
unattacked argument is always acceptable wrt S, it is defended by S.
These remarks lead to formulate the following property Preins for describing the notion of reinstate-
ment.

Preins: If an argument is defended by an accepted argument against each of its attackers, then it must
be accepted.

Let us enumerate interesting particular cases:

35

1. Case of a sequence of two attacks: a attacks b that attacks c. If a is accepted, then c must be
accepted (“reinstated” by a). This constraint results in the formula Acc(a)→ Acc(c).

2. Case of several defenders against the same attacker: bRc and a1Rb, . . . akRb (the attackers of
b are a1, . . . ak). If one of the ai is accepted then c must be accepted. This constraint results in
the formula (Acc(a1) ∨ . . . ∨ Acc(ak))→ Acc(c).

3. Case of several attackers : b1Rc, . . . bkRc and ∀i, aiRbi. If each ai is accepted, then c must be
accepted. This constraint results in the formula (Acc(a1) ∧ . . . ∧ Acc(ak))→ Acc(c).

4. Case of a single attacker and no defender: b attacks c and there is no attack to b. The set of
attackers of b is empty. We obtain the formula ⊥ → Acc(c) which is a tautology.

5. Case of an unattacked argument: If c is not attacked, it does not have to be defended, it is
obviously acceptable. We obtain the formula > → Acc(c) (the conjunction of an empty set of
literals is always true) equivalent to Acc(c).

The particular cases considered above lead to the formula that expresses Property Preins.

Let c be an argument and R−(c) = {b1, . . . bk} its attackers, for each bi ∈ R−(c), Bi = R−(bi)
denotes the set (possibly empty) of the arguments that attack bi. The property Preins for c is expressed
by the formula (∧i=1..k(∨a∈BiAcc(a)))→ Acc(c).

More generally and formally, Property Preins is expressed by:

Preins (∀c)((∧b∈R−(c)(∨a∈R−(b)Acc(a)))→ Acc(c))

Remark: In the particular case of an unattacked argument c, Bi is empty. As the conjunction of an
empty set of literals is always true, Preins results in the formula Acc(c).

The reinstatement principle can be explicitely encoded by adding to the base Σ0(G) (which describes
the argumentation graph G) the formulas issued from Preins, one formula for each argument (either
attacked or not). Let Σ0

r(G) denote the resulting base.

The base Σ0
r(G) is logically consistent:

Prop. 4 Let G be an argumentation graph representing an AS with A the set of arguments and
R ⊆ A×A the set of attacks. The logical knowledge base Σ0

r(G) is consistent.

Let us illustrate Σ0
r(G) on different examples.

Ex. 1 (cont’d) a is not attacked: the formula Acc(a) is added to Σ0(G). Then, ¬Acc(b) is deducible
from Σ0

r(G).

Ex. 3 (cont’d) a is not attacked: the formula Acc(a) is added to Σ0(G).
c is attacked and defended: the formula Acc(a) → Acc(c) is added to Σ0(G). The formulae Acc(c)
et ¬Acc(b) are deducible from Σ0

r(G).

36

Ex. 6 (cont’d) a are d are unattacked: the formulae Acc(a) et Acc(d) are added to Σ0(G) .
c is attacked with two attackers: the formula (Acc(a)∧⊥)→ Acc(c) (which is a tautology) is added
to Σ0(G). The formulae ¬Acc(b) and ¬Acc(c) are deducible from Σ0

r(G).

Ex. 9 (cont’d) a and e are unattacked: the formulae Acc(a) and Acc(e) are added to Σ0(G).
c is attacked and defended: the formula (Acc(a) ∧ Acc(e)) → Acc(c) is added to Σ0(G). The
formulae Acc(c), ¬Acc(b) and ¬Acc(d) are deducible from Σ0

r(G).

Ex. 10 (cont’d) a and d are unattacked: the formulae Acc(a) and Acc(d) are added to Σ0(G).
c is attacked and defended: the formula (Acc(a) ∨ Acc(d)) → Acc(c) is added to Σ0(G). The
formulae Acc(c) and ¬Acc(b) are deducible from Σ0

r(G).

5.1.4 Stability

The idea is to propose a new property for expressing a kind of stability principle as it was done in [8]:

Psta If an argument is not accepted, it must be attacked by an accepted argument.

And the associated formula:

Psta (∀c)(¬Acc(c)→ (∨b∈R−(c)Acc(b)))

The stability principle can be explicitely encoded by adding to the base Σ0(G) (which describes
the argumentation graph G) the formulas issued from Psta, one formula for each argument (either
attacked or not). Let Σ0

s(G) denote the resulting base.

The formulae issued from P0
acc can be written as follows:

(∀c)((∨b∈R−(c)Acc(b))→ NAcc(c))

(∀c)(NAcc(c)→ ¬Acc(c))

Then, it is easy to prove that:

Pdef (resp. Preins) is a consequence of Σ0(G) ∪ Psta

As an immediate consequence, Σ0
s classically entails Σ0

d and also Σ0
r

Note that the above result is in line with the relation between stability and admissibility in the stan-
dard Dung’s semantics.

Moreover, Ex. 4 on page 73 shows that the base Σ0
s(G) is not always logically consistent.

Let us illustrate Σ0
s(G) on different examples.

Ex. 1 (cont’d) The formulae Acc(a) and ¬Acc(b)→ Acc(a) are added to Σ0(G).

37

Ex. 3 (cont’d) The formulae Acc(a), ¬Acc(b) → Acc(a) and ¬Acc(c) → Acc(b) are added to
Σ0(G).

Ex. 6 (cont’d) The formulaeAcc(a),Acc(d), ¬Acc(b)→ Acc(a) and ¬Acc(c)→ (Acc(b)∨Acc(d))
are added to Σ0(G).

Ex. 9 (cont’d) The formulaeAcc(a),Acc(e), ¬Acc(b)→ Acc(a), ¬Acc(d)→ Acc(e) and¬Acc(c)→
(Acc(b) ∨ Acc(d)) are added to Σ0(G).

Ex. 10 (cont’d) The formulae Acc(a), Acc(d), ¬Acc(b) → (Acc(a) ∨ Acc(d)) and ¬Acc(c) →
Acc(b) are added to Σ0(G).

5.1.5 Characterizing semantics for an AS in the basic language

In this section, we propose to characterize standard semantics using the principles previously defined
and the corresponding bases, recalled in the following table:

Base Used principles
Σ0(G) = {P0

acc}
Σ0
d(G) = Σ0(G) ∪ {Pdef}

Σ0
r(G) = Σ0(G) ∪ {Preins}

Σ0
s(G) = Σ0(G) ∪ {Psta}

Let AS = 〈A,R〉 and S ⊆ A. We adopt the following notations:

Acc(S) denotes the set of literals Acc(x) for x ∈ S,

ΦAcc(S) denotes the formula ∧x∈SAcc(x).

Def. 21 Let I be an interpretation of Σ, a set of formulae of the basic language,

SI = {x ∈ A|I(Acc(x)) = true}

I is Acc(A)-maximal iff there is no interpretation I ′ of Σ such that SI ⊂ SI′ .

I is Acc(A)-minimal iff there is no interpretation I ′ of Σ such that SI′ ⊂ SI .

In other words, I isAcc(A)-maximal (resp. Acc(A)-minimal) if and only if the set of literalsAcc(x)
satisfied by I is maximal (resp. minimal) for set-inclusion in Acc(A).

Remark:
Let I be an interpretation of Σ, a set of formulae of the basic language, and S ⊆ A. I is a model of
Acc(S) if and only if S ⊆ SI .

38

Characterizing conflict-free subsets
The models of Σ0(G) characterize the conflict-free subsets of G. Indeed, if I is a model of Σ0(G),
SI is conflict-free. The converse also holds as claimed in the following proposition:

Prop. 5 S is conflict-free if and only if ∃I model of Σ0(G) such that SI = S.

As an immediate consequence, we have a characterization of a conflict-free set S in terms of the set
of literals Acc(S):

Prop. 6 S is conflict-free if and only if Acc(S) ∪ Σ0(G) is consistent (or equivalently Σ0(G) ∧
ΦAcc(S) is consistent).

Characterizing naive extensions
The models of Σ0(G) that maximize the satisfied literals ofAcc(A) characterize the naive extensions
of G.

Prop. 7 S is a naive extension if and only if ∃I Acc(A)-maximal model of Σ0(G) such that SI = S.

We have also a characterization of a naive extension S in terms of the set of literals Acc(S):

Prop. 8 S is a naive extension if and only ifAcc(S) is a maximal (for set-inclusion) subset ofAcc(A)
consistent with Σ0(G).

Characterizing admissible subsets
The models of Σ0

d(G) characterize the admissible subsets of G. Indeed, if I is a model of Σ0
d(G), SI

is admissible. The converse also holds as claimed in the following proposition:

Prop. 9 S is admissible if and only if ∃I model of Σ0
d(G) such that S = SI .

As an immediate consequence of the above results, we have:

Prop. 10

1. If S is admissible, then Acc(S) ∪ Σ0
d(G) is consistent.

2. If Acc(S) ∪ Σ0
d(G) is consistent, then there is an admissible set containing S.

Note that we have only inclusion in the second part of the above proposition, as shown by Example 3
on page 71:

Ex. 3 (cont’d) Let S = {c}. Acc(S) ∪Σ0
d(G) is consistent. However, S is not admissible whereas S

is included in {a, c} which is admissible.

So we do not get an exact characterization of admissible sets S by testing the consistency of Acc(S)
with Σ0

d(G). Hopefully, an exact characterization holds for maximal (for set-inclusion) admissible
sets.

39

Characterizing preferred extensions
The models of Σ0

d(G) that maximize the satisfied literals of Acc(A) characterize the preferred exten-
sions of G.

Prop. 11 Let S ⊆ A. S is a preferred extension if and only if ∃I Acc(A)-maximal model of Σ0
d(G)

such that SI = S.

We have also a characterization of a preferred extension S in terms of Acc(S):

Prop. 12 S is a preferred extension if and only if Acc(S) is a maximal (for set-inclusion) subset of
Acc(A) consistent with Σ0

d(G).

Characterizing the grounded extension
It can be proved that there is only one model of Σ0

r(G) that minimizes the satisfied literals ofAcc(A).
This model characterizes the grounded extension of G.

Prop. 13 S is the grounded extension if and only if S = SI where I is an Acc(A)-minimal model
of Σ0

r(G).

As a consequence we have:

Prop. 14 The grounded extension is the set Sg defined by Sg = {x ∈ A|Σ0
r(G) ` Acc(x)}

Characterizing the complete extensions
The models of Σ0

r(G) ∪ Σ0
d(G) characterize the complete extensions of G.

We recall that S is a complete extension if and only if S is admissible and each argument which is
acceptable with respect to S belongs to S. In other words, S is a complete extension if and only if S
is admissible and F(S) ⊆ S.

We first characterize the subsets S such that F(S) ⊆ S.

Prop. 15

1. If I is a model of Σ0
r(G), then F(SI) ⊆ SI .

2. If F(S) ⊆ S and S is conflict-free, then ∃I model of Σ0
r(G) such that S = SI .

As a consequence we have the following characterization of complete extensions.

Prop. 16 S is a complete extension if and only if ∃I model of Σ0
d(G) ∪ Σ0

r(G) such that S = SI .

To sum up, the models of Σ0
d(G) enable to characterize the admissible sets (the conflict-free sets S

such that S ⊆ F(S)) whereas the models of Σ0
r(G) enable to characterize the conflict-free sets S

such that F(S) ⊆ S.
As a consequence, the models of Σ0

d(G) and Σ0
r(G) are generally different, as illustrated by the fol-

lowing examples:

Ex. 12

40

a b

c d

This example shows a model of Σ0
r(G) which is not a model of Σ0

d(G).

Σ0(G) = {

Acc(a)→ NAcc(b)
Acc(b)→ NAcc(c)
Acc(c)→ NAcc(a)
Acc(c)→ NAcc(d)
NAcc(a)→ ¬Acc(a)
NAcc(b)→ ¬Acc(b)
NAcc(c)→ ¬Acc(c)
NAcc(d)→ ¬Acc(d)

}

Σ0
d(G) = Σ0(G) ∪ {

Acc(a)→ Acc(b)
Acc(b)→ Acc(c)
Acc(c)→ Acc(a)
Acc(d)→ Acc(b)

}

Σ0
r(G) = Σ0(G) ∪ {

Acc(a)→ Acc(c)
Acc(b)→ Acc(a)
Acc(c)→ Acc(b)
Acc(b)→ Acc(d)

}

Let I be defined by: ∀x ∈ A, x 6= d, I(Acc(x)) = false, I(Acc(d)) = true and ∀x ∈ A, I(NAcc(x)) =
false if and only if I(Acc(x)) = true.
I is a model of Σ0

r(G) and not a model of Σ0
d(G).

Example 3 on page 71 shows a model of Σ0
d(G) which is not a model of Σ0

r(G).

Ex. 3 (cont’d) Let I be defined by: I(Acc(a)) = true, I(Acc(b)) = I(Acc(c)) = false and ∀x ∈
A, I(NAcc(x)) = false if and only if I(Acc(x)) = true. I is a model of Σ0

d(G) and not a model of
Σ0
r(G).

And finally, we have a characterization of a complete extension S in terms of the set of literals
Acc(S):

Prop. 17 S is a complete extension if and only if Acc(S)∪{¬Acc(x)|x ∈ A\S}∪Σ0
d(G)∪Σ0

r(G)
is consistent
if and only if Acc(S) ∪ {NAcc(x)|x ∈ A \ S} ∪ Σ0

d(G) ∪ Σ0
r(G) is consistent.

Characterizing the stable extensions
The models of Σ0

s(G) characterize the stable subsets of G. Indeed, if I is a model of Σ0
s(G), SI is

stable. The converse also holds as claimed in the following proposition:

Prop. 18 S is a stable extension if and only if ∃I model of Σ0
s(G) such that SI = S.

Stable extensions can be also characterized in terms of the set of literals Acc(S):

41

Prop. 19 S is a stable extension if and only if Acc(S)∪{¬Acc(x)|x ∈ A\S}∪Σ0
s(G) is consistent

if and only if Acc(S) ∪ {NAcc(x)|x ∈ A \ S} ∪ Σ0
s(G) is consistent.

Other characterizations can be given, in terms of the set of literals Acc(S) and in terms of models:

Prop. 20 S is a stable extension if and only if:

1. Acc(S) is a maximal for set-inclusion subset of Acc(A) consistent with Σ0(G), and

2. ∀a /∈ S, (Σ0(G) ∪ Acc(S)) ` NAcc(a)

Prop. 21 S is a stable extension if and only if:

1. ∃I model of Σ0(G) such that S = SI , and

2. ∀J model of Σ0(G) such that S ⊆ SJ , ∀a /∈ S,J (NAcc(a)) = true.

The following table synthetizes the links between properties of an interpretation I and properties of
its associated set SI = {x ∈ A|I(Acc(x)) = true}.

I SI Number of Prop.
model of Σ0(G) conflict-free 5, 6

Acc(A)-maximal model of Σ0(G) naive extension 7, 8
model of Σ0

d(G) admissible 9, 10
Acc(A)-maximal model of Σ0

d(G) preferred extension 11, 12
Acc(A)-minimal model of Σ0

r(G) grounded extension 13, 14
model of Σ0

d(G) ∪ Σ0
r(G) complete extension 16, 17

model of Σ0
s(G) stable extension 18, 19

5.1.6 Basic principles restated in terms of NAcc

The principles described above (the conflict-free, defence and reinstatement principles) are expressed
in terms of acceptability of interacting arguments. The defence principle for an argument c for
instance is expressed by a formula that involves the literal Acc(c) and the literals Acc(a) such that a
attacks an attacker of c.

In this section, we consider new principles expressed under the form of relations between NAcc(x)
and Acc(y) when x and y interact. We show that these new principles can be considered as building
blocks from which the defence and reinstatement principles can be defined.

The new principles
Let us recall that the intended meaning of NAcc(x) is “x cannot be accepted”. The two following
principles give conditions for NAcc(c) being true in terms of acceptability of the attackers of c.

P5 If an argument cannot be accepted, then at least one of its attackers must be accepted.

42

P6 If an argument is attacked by at least one accepted argument, then it cannot be accepted.

More formally, we obtain the following formulas:

P5 (∀c)(NAcc(c)→ (∨b∈R−(c)Acc(b)))

P6 (∀c)((∨b∈R−(c)Acc(b))→ NAcc(c))

Obvioulsy, the above formula P6 is a direct consequence of Property P0
acc. So it is already entailed

by the base Σ0(G).

The next two principles give conditions for Acc(c) being true in terms of literals NAcc(b) where b is
an attacker of c.

P7 An argument may be accepted only if each of its attackers cannot be accepted.

P8 An argument is accepted provided that each of its attackers cannot be accepted.

More formally, we obtain the following formulas:

P7 (∀c)(Acc(c)→ (∧b∈R−(c)NAcc(b)))

P8 (∀c)((∧b∈R−(c)NAcc(b))→ Acc(c))

The new principles wrt Pdef, Preins and Psta

The following results are easy to prove:

1. P7 is a consequence of the conjunction of P6 and Pdef

2. Pdef is a consequence of the conjunction of P5 and P7

3. Preins is a consequence of the conjunction of P6 andP8

4. P8 is a consequence of the conjunction of P5 and Preins

In other words,

From P6, we have that Pdef entails P7

From P5, we have that P7 entails Pdef

and

From P6, we have that P8 entails Preins

From P5, we have that Preins entails P8

Moreover, using the formulae NAcc(x)→ ¬Acc(x) it is easy to prove that:

P8 (resp. P5) is a consequence of Psta

43

Characterizing the new principles in terms of models of Σ0(G)

Adding Property P5 to Σ0(G) comes to consider the completion of the first kind of rules issued from
Property P0

acc wrt the predicate NAcc. That amounts to restrict the models of Σ0(G) to those models
where the set of literals NAcc(x) satisfied is in some sense minimal (for set-inclusion).

Let I be an interpretation of Σ, a set of formulae of the basic language. We recall that SI = {x ∈
A|I(Acc(x)) = true}.
Let us define :

NI = {x ∈ A|I(NAcc(x)) = true}

I is NAcc(A)-minimal iff there is no interpretation I ′ of Σ such that SI′ = SI and NI′ ⊂ NI .

We have the following result :

Prop. 22 The models of Σ0(G) ∪ {P5} are exactly the NAcc(A)-minimal models of Σ0(G).

5.2 Semantics for an AS in the extended language

In this section, we characterize standard semantics of an AS by logical formulas of the extended
language introduced in Section 4.2 on page 23. Note that the argumentation graph G associated with
an AS is now represented by the base Σ(G).

As noted in Section 4.2.2 on page 24, in presence of attacks which are not attacked, formulae issued
from Pval are tautologies. So there is no sufficient condition for an attack being valid. As a conse-
quence it is not assumed that non attacked attacks are always valid. This property will appear later
in Section 6.1.3 on page 53 as a consequence of a kind of reinstatement principle for attacks.
However, in the particular case of an AS (with simple attacks), standard Dung’s semantics handle
attacks as if they were valid. So in order to recover standard Dung’s semantics in the case of an
AS, we will have to assume that each attack is valid. In Section 5.2.1, we will consider a specific
principle for AS and its logical expression in the extended language.

Then, as in Section 5.1 on page 33, we will consider the basic principles (conflict-freeness, defence,
reinstatement and stability) and give a logical expression for each of them in the extended language.

5.2.1 Specificity of an AS wrt validity

Standard semantics of an AS can be captured in the extended language, due to the addition of the
following property:

Pas
val : Each attack is valid.

Property Pas
val can be expressed by the following formula:

Pas
val : (∀x ∈ Attack)(V al(x))

44

This formula does not belong to Σ(G). Adding this formula to the base Σ(G) leads to a base denoted
by Σas(G).
Due to Pas

val, Σas(G) entails the formulas Act(α) ↔ Gr(α) ↔ Acc(sα) for each attack α. And the
formula (V al(α) ∧ Acc(sα))→ NAcc(tα) is equivalent to the formula Acc(sα)→ NAcc(tα).
The above remark enables us to consider a simplified form of Σas(G) that only contains literals of
the form a = sα, b = tα and complex formulas of the type Acc(sα)→ NAcc(tα) and NAcc(tα)→
¬Acc(tα).
Indeed, we obtain a base of formulas which is very close to the base Σ0(G) used in Section 5.1 on
page 33.
Note also that each model I of the simplified form of Σas(G) can be extended to a model of the
initial base Σas(G) by taking ∀α, I(V al(α)) = true, I(Gr(α)) = I(Act(α)) = I(Acc(sα)). For
simplicity, the simplified form of Σas(G) will still be called Σas(G).

In the rest of Section 5.2 on the preceding page, the base corresponding to the translation of an AS
with the extended language will be Σas(G).

5.2.2 Conflict-freeness

The interaction α corresponding to the attack aRb is encoded using the symbols a, b, α, sα, tα, the
literals a = sα, b = tα and the formulas Acc(sα)→ NAcc(tα)) and NAcc(tα)→ ¬Acc(tα).
So the base Σas(G) already contains formulas that express the fact that two conflicting arguments
cannot be jointly accepted.

5.2.3 Defence

As in Section 5.1.2 on page 34, the defence principle can be explicitely encoded by adding to the
base Σas(G) the formulas issued from Property Pdef, one formula for each attack. However, those
formulae must be written in the extended language.

Pdef (∀α ∈ Attack)(Acc(tα)→ (∃β ∈ Attack)(tβ = sα ∧ Acc(sβ)))

Remark: In Section 5.1.2 on page 34, Pdef is expressed for each attacked argument c and the
resulting formula is equivalent to a conjunction of formulas, one for each attack to c. In contrast, the
extended language enables us to work directly at the level of attacks. So applying Pdef produces one
formula for each attack α.
Note also that there is no need for considering that α or β should be active or valid, as we consider
the particular case of an AS and a simplified form of Σas(G) as explained above.
Let Σd(G) still denote the resulting base. Let us illustrate Σd(G) on different examples (always in
the simplified form as it is described for Example 1 on page 67 in Section 4.2 on page 23). Note that
we recover the same results as those obtained in Section 5.1.2 on page 34.

Ex. 1 (cont’d) The formula ¬Acc(b) is added to Σas(G)

Ex. 3 (cont’d) The formulae ¬Acc(b) and Acc(c)→ Acc(a) are added to Σas(G)

45

Ex. 6 (cont’d) The formulae ¬Acc(b) and ¬Acc(c) are added to Σas(G)

Ex. 9 (cont’d) The formulae ¬Acc(d), ¬Acc(b), Acc(c) → Acc(a) and Acc(c) → Acc(e) (so
Acc(c)→ (Acc(a) ∧ Acc(e))) are added to Σas(G)

Ex. 10 (cont’d) The formulae ¬Acc(b) and Acc(c)→ (Acc(a) ∨ Acc(d)) are added to Σas(G)

Note that, as in Section 5.1.2 on page 34, the base Σd(G) is consistent:

Prop. 23 Let G be an argumentation graph representing an AS with A the set of arguments and
R ⊆ A×A the set of attacks. The logical knowledge base Σd(G) is consistent.

5.2.4 Reinstatement

As in Section 5.1.3 on page 35, the reinstatement principle can be explicitely encoded by adding
to the base Σas(G) the formulas issued from the property Preins, one formula for each argument.
However, those formulae must be written in the extended language.

Preins (∀c ∈ Argument)(((∀α ∈ Attack)(tα = c → (∃β ∈ Attack)(tβ = sα ∧ Acc(sβ)))) →
Acc(c))

Remark: As a logical consequence of Preins, we obtain the formula:

(∀c ∈ Argument)(((∀α ∈ Attack)(¬(tα = c)))→ Acc(c))

which is equivalent to:

(∀c ∈ Argument)(¬((∃α ∈ Attack)(tα = c))→ Acc(c))

So in the case of an unattacked argument c, as ¬((∃α ∈ Attack)(tα = c)) is true, we can deduce
Acc(c).
Let Σr(G) still denote the resulting base. Let us illustrate Σr(G) on different examples. Note that
we recover the same results as those obtained in Section 5.1.3 on page 35.

Ex. 1 (cont’d) a is not attacked: the formula Acc(a) is added to Σr(G). Then, ¬Acc(b) is deducible
from Σr(G).

Ex. 3 (cont’d) a is not attacked: the formula Acc(a) is added to Σr(G).
c is attacked and defended: the formula Acc(a) → Acc(c) is added to Σ(G). The formulae Acc(c)
and ¬Acc(b) are deducible from Σr(G).

Ex. 6 (cont’d) a and d are unattacked: the formulae Acc(a) and Acc(d) are added to Σas(G).
c is attacked with two attackers: the formula (Acc(a) ∧ ⊥) → Acc(c) (a tautology) is added to
Σas(G). The formulae ¬Acc(c) and ¬Acc(b) are deducible from Σr(G).

Ex. 9 (cont’d) a and e are unattacked: the formulae Acc(a) and Acc(e) are added to Σas(G).
c is attacked and defended: the formula (Acc(a) ∧ Acc(e)) → Acc(c) is added to Σas(G). The
formulae Acc(c), ¬Acc(b) and ¬Acc(d) are deducible from Σr(G).

46

Ex. 10 (cont’d) a and d are unattacked: the formulae Acc(a) and Acc(d) are added to Σas(G).
c is attacked and defended: the formula (Acc(a) ∨ Acc(d)) → Acc(c) is added to Σas(G). The
formulae Acc(c) and ¬Acc(b) are deducible from Σr(G).

Note that, as in Section 5.1.3 on page 35, the base Σr(G) is consistent:

Prop. 24 Let G be an argumentation graph representing an AS with A the set of arguments and
R ⊆ A×A the set of attacks. The logical knowledge base Σr(G) is consistent.

5.2.5 Stability

The principle Psta can be expressed using the extended language as follows:

Psta (∀c ∈ Argument)(¬Acc(c)→ (∃β ∈ Attack)((tβ = c) ∧ Acc(sβ)))

This stability principle can be explicitely encoded by adding to the base Σas(G) (which describes the
argumentation graph G corresponding to an AS) the formulas issued from Psta, one formula for each
argument (either attacked or not). Let Σs(G) denote the resulting base.
Note that, as in Section 5.1.4 on page 37, the base Σs(G) can be inconsistent (once again consider
Ex. 4 on page 73).
Let us illustrate Σs(G) on different examples.

Ex. 1 (cont’d) The formulae Acc(a) and ¬Acc(b)→ Acc(a) are added to Σas(G).

Ex. 3 (cont’d) The formulae Acc(a), ¬Acc(b) → Acc(a) and ¬Acc(c) → Acc(b) are added to
Σas(G).

Ex. 6 (cont’d) The formulaeAcc(a),Acc(d), ¬Acc(b)→ Acc(a) and ¬Acc(c)→ (Acc(b)∨Acc(d))
are added to Σas(G).

Ex. 9 (cont’d) The formulaeAcc(a),Acc(e), ¬Acc(b)→ Acc(a), ¬Acc(d)→ Acc(e) and¬Acc(c)→
(Acc(b) ∨ Acc(d)) are added to Σas(G).

Ex. 10 (cont’d) The formulae Acc(a), Acc(d), ¬Acc(b) → (Acc(a) ∨ Acc(d)) and ¬Acc(c) →
Acc(b) are added to Σas(G).

5.2.6 Characterizing semantics for an AS in the extended language

In this section, we propose to characterize standard semantics using the principles previously defined
and the corresponding bases, recalled in the following table:

Base Used principles
Σ(G) = {Pacc,Pval,Pgr,Pact}

Σas(G) = Σ(G) ∪ {Pas
val}

Σd(G) = Σas(G) ∪ {Pdef}
Σr(G) = Σas(G) ∪ {Preins}
Σs(G) = Σas(G) ∪ {Psta}

47

Let us first recall that we work with the simplified form of the base Σas(G). That implies the use of
the constant symbols α, tα, sα and only the predicate symbols Acc and NAcc, as in Σ0(G). So, we
may still consider the set of literals SI for I being an interpretation of Σas(G).

For instance, S ⊆ A being conflict-free can be expressed by the following formula:

(∀a ∈ S)(∀b ∈ S)(∀α)(¬((a = sα) ∧ (b = tα)))

or equivalently1:
(∀α)(¬(sα ∈ S ∧ tα ∈ S))

All the characterizations obtained in Section 5.1.5 on page 38 can be extended in a straightforward
way, replacing Σ0(G) by Σas(G). The proofs can be adapted using tα and sα for denoting arguments.

Prop. 25

1. S is conflict-free if and only if ∃I model of Σas(G) such that SI = S.

2. S is a naive extension if and only if ∃I Acc(A)-maximal model of Σas(G) such that SI = S.

3. S is admissible if and only if ∃I model of Σd(G) such that S = SI .

4. S is a preferred extension if and only if ∃I Acc(A)-maximal model of Σd(G) such that SI = S.

5. S is the grounded extension if and only if S = SI where I is the Acc(A)-minimal model of
Σr(G).

6. S is a complete extension if and only if ∃I model of Σd(G) ∪ Σr(G) such that S = SI .

7. S is a stable extension if and only if ∃I model of Σs(G) such that SI = S.

8. S is a stable extension if and only if ∃I model of Σas(G) such that S = SI , and ∀J model of
Σas(G) such that S ⊆ SJ , ∀a /∈ S,J (NAcc(a)) = true.

and in terms of Acc(S):

Prop. 26

1. S is conflict-free if and only if Acc(S) ∪ Σas(G) is consistent.

2. S is a naive extension if and only if Acc(S) is a maximal (for set-inclusion) subset of Acc(A)
consistent with Σas(G).

3. If S is admissible, then Acc(S) ∪ Σd(G) is consistent. If Acc(S) ∪ Σd(G) is consistent, then
there is an admissible set containing S.

4. S is a preferred extension if and only if Acc(S) is a maximal (for set-inclusion) subset of
Acc(A) consistent with Σd(G).

1sα ∈ S is equivalent to (∃a ∈ S)(a = sα).

48

5. The grounded extension is the set Sg defined by Sg = {x ∈ A|Σr(G) ` Acc(x)}.

6. S is a complete extension if and only if Acc(S) ∪ {¬Acc(x)|x ∈ A \ S} ∪ Σd(G) ∪ Σr(G) is
consistent.
S is a complete extension if and only if Acc(S) ∪ {NAcc(x)|x ∈ A \ S} ∪ Σd(G) ∪ Σr(G) is
consistent.

7. S is a stable extension if and only if Acc(S) ∪ {¬Acc(x)|x ∈ A \ S} ∪ Σs(G) is consistent
S is a stable extension if and only if Acc(S) ∪ {NAcc(x)|x ∈ A \ S} ∪ Σs(G) is consistent.

8. S is a stable extension if and only if Acc(S) is a maximal for set-inclusion subset of Acc(A)
consistent with Σas(G), and ∀a /∈ S, (Σas(G) ∪ Acc(S)) ` NAcc(a).

The following table synthetizes all these results in both cases (basic language or extended language)
giving the links between properties of an interpretation I and properties of its associated set SI =
{x ∈ A|I(Acc(x)) = true}.

I SI Number of Prop.
basic lg. extended lg.

model of Σ0(G) (resp. Σas(G)) conflict-free 5, 6 25.1, 26.1
Acc(A)-maximal model of Σ0(G) (resp. Σas(G)) naive extension 7, 8 25.2, 26.2

model of Σ0
d(G) (resp. Σd(G)) admissible 9, 10 25.3, 26.3

Acc(A)-maximal model Σ0
d(G) (resp. Σd(G)) preferred extension 11, 12 25.4, 26.4

Acc(A)-minimal model of Σ0
r(G) (resp. Σr(G)) grounded extension 13, 14 25.5, 26.5

model of Σ0
d(G) ∪ Σ0

r(G) (resp. Σd(G) ∪ Σr(G)) complete extension 16, 17 25.6, 26.6
model of Σ0

s(G) (resp. Σs(G)) stable extension 18, 19 25.7, 26.7

5.3 Synthesis for AS

The following figure describes the different encodings that can be used for an AS.

49

AS
With extended languageWith basic language

P0
acc

Σ0

Pas
val

Σ

Σas

Psta

PreinsPdef

Σ0
rΣ0

d

Σ0
s Σs

Pdef
Preins

Σd Σr

Psta

Pgr, Pact, Pacc

50

Chapter 6

Semantics for an ASAF

We propose to :

consider again the basic principles (conflict-freeness, defence, reinstatement, stability) taking
into account the fact that attack could be attacked,

give a logical expression for each of these principles in the extended language, thus leading to
add formulas to the base Σ(G) and producing new bases in the same way as Σd(G), Σr(G)
and Σs(G) were produced,

study examples of such bases encoding argumentation graphs with recursive attacks,

define standard semantics for an ASAF,

provide a characterization of the associated extensions in terms of models of the new bases
Σ(G), Σd(G), Σr(G), and Σs(G).

6.1 Basic principles revisited with recursive attacks

In presence of recursive interactions, the conflict-freeness, defence, reinstatement and stability prin-
ciples must be reformulated for taking into account the fact that attacks could be not valid. Indeed,
the fact that an attack α is grounded is taken into account through the literal Acc(sα), due to Prop-
erty Pgr. Moreover, due to Property Pact, we could do without the predicate symbol Act. So we
concentrate on the notion of validity.
The first idea is to extend the definition of S being conflict-free by allowing non-valid attacks between
arguments in S.
Similarly, a could be defended by S provided that S weakens each attack α to a, either by attacking
sα, or by attacking α itself.

6.1.1 Conflict-freeness

In presence of recursive attacks, the conflict-free property can be reformulated as follows:

51

Parg
cf If there is a valid attack between two arguments, they cannot be jointly accepted.

Note that the fact that two arguments may be conflicting depends on the validity of the attack between
them.
The attack α = (a, b) is encoded in the base Σ(G) by the formulae (V al(α) ∧ Acc(a))→ NAcc(b)
andNAcc(b)→ ¬Acc(b). So the base Σ(G) already contains formulas that express the property Parg

cf .

Similarly we could consider a kind of conflict-freeness principle for attacks.

Patt
cf If there is an attack from an accepted argument to an attack, these attacks cannot be both valid.

Due to the formulae encoding an attack α = (a, β) in the base Σ(G), this property is already ex-
pressed in Σ(G) (see Pval and its logical translation).

6.1.2 Defence

Similarly, a could be defended by S provided that S weakens each valid attack α to a, either by
attacking sα, or by attacking α itself.
In other words, the idea is to claim that an argument a is acceptable wrt a set of arguments S (in other
words a is defended by S) if S weakens each attack α to a, either by attacking sα, or by attacking α
itself. Moreover, the defense should be obtained with valid attacks.
So, we propose to reformulate the defence principle as follows:

Parg
def : An attacked argument may be accepted only if for each attack against it, either the source or

the attack itself is in turn attacked by a valid attack from an accepted argument (i.e. an active
attack).

The property Parg
def is expressed by the following formula:

Parg
def (∀α ∈ Attack)(Acc(tα)→ (∃β ∈ Attack)(tβ ∈ {sα, α} ∧ V al(β) ∧ Acc(sβ)))

Similarly we consider a kind of defence principle for attacks.

Patt
def An attack may be valid only if for each attack against it, either the source or the attack itself is

in turn attacked by a valid attack from an accepted argument.

The property Patt
def is expressed by the following formula:

Patt
def (∀α ∈ Attack)(∀δ ∈ Attack)(((δ = tα)∧V al(δ))→ (∃β ∈ Attack)(tβ ∈ {sα, α}∧V al(β)∧

Acc(sβ)))

The formulae that are obtained from Parg
def and Patt

def are added to the base Σ(G), thus producing the
base Σd(G).

52

Two particular cases: Consider the following graph:

a α b

Adding Parg
def to ΣG enables to produce the formula ¬Acc(b) since there is no attack from α or its

source.
Consider now the following graph:

a α b

β

c

Adding Patt
def to ΣG enables to produce the formula ¬V al(α) since there is no attack from β or its

source.

6.1.3 Reinstatement

We keep the original principle with the new notion of defence. If a semantics satisfies the reinstate-
ment principle, then if an extension S defends an argument a, a must belong to S.
So we propose to reformulate the reinstatement property as follows:

Parg
reins: An argument must be accepted provided that, for each attack against it, the source or the

attack itself is in turn attacked by a valid attack from an accepted argument (i.e. an active
attack).

The property Parg
reins is expressed by the following formula:

Parg
reins (∀c ∈ Argument)(((∀α ∈ Attack)(tα = c → (∃β ∈ Attack)(tβ ∈ {sα, α} ∧ V al(β) ∧

Acc(sβ))))→ Acc(c))

Similarly we consider a kind of reinstatement principle for attacks.

Patt
reins An attack may be valid provided that for each attack against it, either the source or the attack

itself is in turn attacked by a valid attack from an accepted argument.

The property Patt
reins is expressed by the following formula:

Patt
reins (∀δ ∈ Attack)(((∀α ∈ Attack)(tα = δ → (∃β ∈ Attack)(tβ ∈ {sα, α} ∧ V al(β) ∧

Acc(sβ))))→ V al(δ))

The formulae that are obtained from Parg
reins and Patt

reins are added to the base Σ(G), thus producing the
base Σr(G).

53

A particular case: Consider the following graph:

a α b

Adding Parg
reins to Σ(G) enables to produce the formula Acc(a) since a is unattacked.

Adding Patt
reins to Σ(G) enables to produce the formula V al(α) since α is unattacked.

6.1.4 Stability

The stability property can be reformulated as follows:

If an argument is not accepted, it must be attacked by an active attack. The associated formula is:

Parg
sta (∀c ∈ Argument)(¬Acc(c)→ (∃β ∈ Attack)((tβ = c) ∧ V al(β) ∧ Acc(sβ)))

Similarly we consider a kind of stability principle for attacks.

If an attack is not valid, it must be attacked by an active attack. The associated formula is:

Patt
sta (∀α ∈ Attack)(¬V al(α)→ (∃β ∈ Attack)((tβ = α) ∧ V al(β) ∧ Acc(sβ)))

The formulae that are obtained from Parg
sta and Patt

sta are added to the base Σ(G), thus producing the
base Σs(G).

A particular case: Consider the following graph:

a α b

Adding Parg
sta to Σ(G) enables to produce the formula Acc(a) since a is unattacked.

Adding Patt
sta to Σ(G) enables to produce the formula V al(α) since α is unattacked.

6.2 Definitions of semantics for an ASAF

Our purpose is to propose the definition of standard semantics for an ASAF. These definitions are
guided by the principles presented above and should also extend standard semantics in the case of an
AS.

6.2.1 The notion of structure

As expressed by Property Parg
cf for instance, the fact that two arguments may be conflicting depends

on the validity of the attack between them. So it would not be sound to give a definition of a set of
arguments S being conflict-free, independently of a set of attacks. More generally, we need to reason
about pairs of sets of arguments and sets of attacks, called “structures” in the following.

54

Def. 22 Given ASAF = 〈A, R, s, t〉, a structure on ASAF is a pair U = (S,Γ) such that S ⊆ A and
Γ ⊆ R.

Intuitively, we are interested in structures U = (S,Γ) such that S contains arguments that are ac-
cepted “owing to” U and Γ contains attacks which are valid “owing to” U . The precise meaning of
“owing to” will depend on the considered semantics.

6.2.2 Conflict-free structures

The minimal requirement for a structure (S,Γ) is that two arguments of S cannot be related by a
valid attack, and similarly there cannot be an attack grounded in S and whose target is an element of
Γ.
Accordingly, we propose the following definitions:

Def. 23 Given ASAF = 〈A, R, s, t〉, and a structure U = (S,Γ) on ASAF.
Let a ∈ A and α ∈ R.

a is defeated wrt (S,Γ) iff ∃β ∈ Γ such that s(β) ∈ S and t(β) = a

α is inhibited wrt (S,Γ) iff ∃β ∈ Γ such that s(β) ∈ S and t(β) = α

The idea is that a structure is weakly conflict-free if no argument (resp. attack) of the structure is
defeated (resp. inhibited) wrt the structure.

Def. 24 Given ASAF 〈A, R, s, t〉, and a structure U = (S,Γ) on ASAF.
The structure (S,Γ) is weakly conflict-free iff

1. 6 ∃a ∈ S such that a is defeated wrt (S,Γ)

2. 6 ∃α ∈ Γ such that α is inhibited wrt (S,Γ)

It is easy to prove that the structure U = (S,Γ) is weakly conflict-free iff

1. ∀a, b ∈ S,@α ∈ Γ such that s(α) = a and t(α) = b

2. ∀β ∈ Γ,@α ∈ Γ such that s(α) ∈ S and t(α) = β

The following proposition is obvious:

Prop. 27 Let S ′ ⊆ S ⊆ A and Γ′ ⊆ Γ ⊆ R.
If the structure (S,Γ) is weakly conflict-free, the structures (S ′,Γ), (S,Γ′) and (S ′,Γ′) are also
weakly conflict-free.

Note that for any Γ ⊆ R, the structure (∅,Γ) is weakly conflict-free. The same holds for classic
AS, where an empty set of arguments is always conflict-free. Moreover for any S ⊆ A the structure
(S,∅) is weakly conflict-free. The weak conflict-freeness requirement can be strengthened by adding
attacks to Γ, namely the attacks which are not attacked. That leads to conflict-free structures.

55

Def. 25 Given an ASAF 〈A, R, s, t〉, and a structure U = (S,Γ) on ASAF.
The structure (S,Γ) is conflict-free iff

1. It is weakly conflict-free

2. {α ∈ R|@β ∈ R such that t(β) = α} ⊆ Γ

Note that each conflict-free structure must contain all the unattacked attacks. Moreover, ∀α = (a, b),
there is no conflict-free structure U = (S,Γ) such that a, b ∈ S and α ∈ Γ. Similarly, ∀β = (c, α),
there is no conflict-free structure U = (S,Γ) such that c ∈ S and α, β ∈ Γ.
Note also that Proposition 27 does not hold for conflict-free structures. We only have the following
result: If the structure (S,Γ) is conflict-free, for any S ′ ⊆ S the structure (S ′,Γ) is also conflict-free.

In the case of an ASAF with simple (i.e. non recursive) attacks, as no attack is attacked, every
conflict-free structure U = (S,Γ) satisfies Γ = R. As a consequence, the notion of conflict-free
structure enables to recover Dung’s conflict-free extensions, as shown below:

Def. 26 Given an ASAF 〈A, R, s, t〉, and S ⊆ A.
S is a conflict-free extension of ASAF iff there is Γ ⊆ R such that (S,Γ) is a conflict-free structure
of ASAF.

It is easy to prove that:

Prop. 28 Given AS = 〈A, R, s, t〉 an ASAF with simple attacks, and S ⊆ A, S is a conflict-free
extension of AS in the sense of Def. 26 iff S is a conflict-free extension of A according to Dung’s
definition.

Ex. 1 The following structures are conflict-free:

({a}, {α})

({b}, {α})

(∅, {α})

Indeed, the conflict-free extensions of A (in Dung’s sense) are {a}, {b} and ∅.
However, the structures ({a, b},∅) and (∅,∅) are only weakly conflict-free.

Ex. 3 The following structures are conflict-free:

({a, c}, {α, β})

({b}, {α, β})

(∅, {α, β})

However, the structures ({a, b, c},∅), ({a, b}, {β}), ({b, c}, {α}) and (∅,∅) are only weakly conflict-
free.

Ex. 14 The following structures are conflict-free:

56

({a, b, c}, {β})

({a}, {α, β})

However, the structures ({a, c}, {α}) and ({b, c}, {α}) are only weakly conflict-free.
The structure ({a, c}, {α, β}) is not even weakly conflict-free.

Ex. 21 The following structures are conflict-free:

({a, b, c}, {δ})

({a, c}, {α, δ})

({a, c}, {β, δ})

({a}, {α, β, δ})

Ex. 25 The weakly conflict-free structures are :

({a},∅)

(∅,∅)

(∅, {α})

They are all conflict-free too.

6.2.3 Admissible structures

As done for conflict-freeness, the definition of an argument a being acceptable wrt a set of arguments
S should be relative to a set of attacks. That leads to consider a notion of admissibility for structures.

Def. 27 Given ASAF = 〈A, R, s, t〉, and a structure U = (S,Γ) on ASAF.
Let a ∈ A and α ∈ R.

a is acceptable wrt U iff ∀β ∈ R such that t(β) = a, either β is inhibited wrt U or s(β) is
defeated wrt U .

α is acceptable wrt U iff ∀β ∈ R such that t(β) = α, either β is inhibited wrt U or s(β) is
defeated wrt U .

In other words, x ∈ A ∪R is acceptable wrt a structure U = (S,Γ) iff for each attack β ∈ R such
that t(β) = x, there exists γ ∈ Γ with s(γ) ∈ S and t(γ) = {β, s(β)}.
Then admissible structures can be defined as follows:

Def. 28 Given = ASAF 〈A, R, s, t〉, and a structure U = (S,Γ) on ASAF.

57

1. The structure U is weakly admissible iff U is weakly conflict-free and ∀x ∈ (S ∪ Γ), x is
acceptable wrt U .

2. The structure U is admissible iff U is conflict-free and ∀x ∈ (S ∪ Γ), x is acceptable wrt U .

Note that ∀α = (a, b), if α and a are unattacked, there is no admissible structure U = (S,Γ) such that
b ∈ S. Similarly, ∀β = (c, α), if β and c are unattacked, there is no admissible structure U = (S,Γ)
such that α ∈ Γ.
Admissible structures enable to recover Dung’s admissible extensions, as shown below:

Def. 29 Given an ASAF 〈A, R, s, t〉, and S ⊆ A.
S is an admissible extension of ASAF iff there is Γ ⊆ R such that (S,Γ) is an admissible structure
of ASAF.

Prop. 29 Given AS = 〈A, R, s, t〉 an ASAF with simple attacks. Let a ∈ A.

If a is acceptable wrt a structure U = (S,Γ) on AS, then a is acceptable wrt S in Dung’s sense.

If a is acceptable wrt S in Dung’s sense, then a is acceptable wrt the structure (S,R).

Prop. 30 Given AS = 〈A, R, s, t〉 an ASAF with simple attacks, and S ⊆ A, S is an admissible
extension of AS (in the sense of Def. 29) iff S is an admissible subset of A according to Dung’s
definition of admissibility.

Ex. 1

({a, b},∅) is not weakly-admissible, since b is not acceptable wrt this structure

({b}, {α}) is conflict-free, but not admissible for the same reason (b is not acceptable wrt this
structure)

The admissible structures are (∅, {α}) and ({a}, {α})

Ex. 3 The admissible structures are (∅, {α, β}), ({a}, {α, β}), and ({a, c}, {α, β}).

Ex. 14 No admissible structure contains α. The admissible structures are:
(∅, {β}), ({a}, {β}), ({c}, {β}), ({b, c}, {β}), ({a, c}, {β}) and ({a, b, c}, {β}).

Ex. 21 Any admissible structure (S,Γ) is such that δ ∈ Γ.
Assume there exists an admissible structure U = (S,Γ) such that b ∈ S. Then α must be inhibited by
U , so c ∈ S and β ∈ Γ. Then β must be acceptable wrt U , so b must be defeated by U . That implies
that a ∈ S and α ∈ Γ. However, the structure ({a, b, c}, {α, β, δ}) is not even weakly conflict-free.
So no admissible structure may contain b.
Similarly, it is easy to prove that no admissible structure may contain α (resp. β).
The admissible structures are (∅, {δ}), ({a}, {δ}), ({c}, {δ}) and ({a, c}, {δ}).

Ex. 25 Assume there exists an admissible structure U = (S,Γ) such that α ∈ Γ. Then α must be
acceptable wrt U , so S must contain a. However, the structure ({a}, {α}) is not conflict-free.
So the admissible structures are(∅,∅) and ({a},∅).

58

6.2.4 Complete structures

Following the definitions of standard semantics in the classic case, we define complete structures
as admissible structures which contain all the arguments (resp. attacks) that are acceptable wrt the
structure.

Def. 30 Given ASAF = 〈A, R, s, t〉, and a structure U = (S,Γ) on ASAF.
The structure U is complete iff U is admissible and ∀x ∈ A (resp. x ∈ R), if x is acceptable wrt U
then x ∈ S (resp. x ∈ Γ).

Def. 31 Given an ASAF 〈A, R, s, t〉, and S ⊆ A.
S is a complete extension of ASAF iff there is Γ ⊆ R such that (S,Γ) is a complete structure of
ASAF.

Note that each complete structure must contain all the unattacked arguments and all the unattacked
attacks.

Prop. 31 Given AS = 〈A, R, s, t〉 an ASAF with simple attacks, and S ⊆ A, S is a complete
extension of AS (in the sense of Def. 31) iff S is a complete extension of A according to Dung’s
definition.

Ex. 1 There is only one complete structure ({a}, {α}).

Ex. 3 There is only one complete structure ({a, c}, {α, β}).

Ex. 14 There is only one complete structure ({a, b, c}, {β}).

Ex. 21 There is only one complete structure ({a, c}, {δ}).

Ex. 25 There is only one complete structure ({a},∅).

6.2.5 Stable structures

In the classic case, stable extensions are defined as conflict-free extensions that attack external argu-
ments. It can be proved that stable extensions are also admissible and even complete extensions. So
we should provide a definition of stable structures that preserves the same relation between seman-
tics.

Def. 32 Given ASAF = 〈A, R, s, t〉, and a structure U = (S,Γ) on ASAF.
The structure U is stable iff

1. U is conflict-free

2. ∀a /∈ S, a is defeated wrt U

3. ∀α /∈ Γ, α is inhibited wrt U

Def. 33 Given an ASAF 〈A, R, s, t〉, and S ⊆ A.
S is a stable extension of ASAF iff there is Γ ⊆ R such that (S,Γ) is a stable structure of ASAF.

59

Prop. 32 Given AS = 〈A, R, s, t〉 an ASAF with simple attacks, and S ⊆ A, S is a stable extension
of AS (in the sense of Def. 33 on the previous page) iff S is a stable extension of A according to
Dung’s definition.

Ex. 23
({a, b, c},∅) is the unique complete structure. However it is not stable, as no attack is inhibited by
this structure.

Prop. 33 Let ASAF = 〈A,R, s, t〉. Stable structures of ASAF are also complete structures of ASAF.

6.3 Characterizing semantics for an ASAF

Our purpose is to propose characterizations of the structures in different semantics in terms of models
of the bases Σ(G), Σd(G), Σr(G), Σs(G).
Remark:
The Herbrand models of the base Σ(G) representing an ASAF contain literals of the form Acc(x),
NAcc(y), and also literals of the form V al(α), Gr(β) and Act(γ). Both types of literals should be
exploited. However, as explained before, the literals of the form Gr(α) are not informative since
Gr(α) is true if and only if Acc(sα) is true (due to Pgr). So we could simplify the representation of a
Herbrand model of Σ(G) by omitting the literals of the form Gr(α). Similarly, due to Property Pact,
we could omit the literals of the form Act(α).
In the following, a Herbrand model I of Σ(G) will be represented by the set of the positive literals
of the form Acc(x), NAcc(x), V al(α) that are true in I.
Formally, we define:

Def. 34 Let I be an interpretation of Σ(G).

SI = {x ∈ A|I(Acc(x)) = true}

ΓI = {α|I(V al(α)) = true}

The following results hold.
First the characterization of weakly conflict-free structures is given by the following result:

Prop. 34 Given an ASAF 〈A, R, s, t〉 represented by the base Σ(G), S ⊆ A and Γ ⊆ R.
The structure (S,Γ) is weakly conflict-free iff there exists I model of Σ(G) such that SI = S and
ΓI = Γ.

Then the characterization of weakly admissible structures is given by the following result:

Prop. 35 Given an ASAF 〈A, R, s, t〉 represented by the base Σ(G), S ⊆ A and Γ ⊆ R.
The structure (S,Γ) is weakly admissible iff there exists I model of Σd(G) such that SI = S and
ΓI = Γ.

The characterization of complete structures is given by the following result:

60

Prop. 36 Given an ASAF 〈A, R, s, t〉 represented by the base Σ(G), S ⊆ A and Γ ⊆ R.
The structure (S,Γ) is complete iff there exists I model of Σd(G) ∪ Σr(G) such that SI = S and
ΓI = Γ.

And finally the characterization of stable structures is given by the following result:

Prop. 37 Given an ASAF 〈A, R, s, t〉 represented by the base Σ(G), S ⊆ A and Γ ⊆ R.
The structure (S,Γ) is stable iff there exists I model of Σs(G) such that SI = S and ΓI = Γ.

Some concluding remarks

In order to get a characterization of conflict-free structures (resp. admissible structures), we
must add a formula to the base Σ(G) (resp. Σd(G)). This formula expresses the fact that each
attack which is not attacked must be valid.
Note that this formula is entailed by Σr(G).

Once interesting structures have been obtained, for instance the complete structures, one could
be interested in the active attacks determined by these structures.

Due to the definition of an active attack, we should define these attacks as follows:
Let U = (S,Γ) be a structure on ASAF, Act(U) = {α ∈ Γ|s(α) ∈ S}.

This notion of active attacks determined by a structure will enable us to draw comparisons with
the work of [6] and [22].

6.4 Synthesis for ASAF

The following figure describes the different encodings that can be used for an ASAF.

61

ASAF

Pgr, Pact, Pval, Pacc

With extended language

Σ

Preins
Pdef

Psta

Σd Σr

Σs

62

Chapter 7

Future works

Beyond the open questions raised in Section 6.2 on page 54, it is mandatory to pursue this work
towards the following directions:

In the case of an AS:

1. Discuss the related works in logic programming, ASP, labelling-based argumentation
frameworks, Abstract Dialectical Frameworks (ADF).

2. Implement the different procedures (searching for models, for extensions).

In the case of a ASAF, draw a comparative study with the work of [6, 21, 15] which propose to
encode recursive attacks with different frameworks (AFRA, ASAF and Meta Argumentation
Systems – MAS).

In a longer-term perspective, it would be of interest to extend this work to the case of bipolar argu-
mentation frameworks, including supports and attacks between arguments, both interactions being
possibly recursive.

63

Bibliography

[1] J. M. Alliot, R. Demolombe, L. Fariñas del Cerro, M. Diéguez, and N. Obeid. Reason-
ing on molecular interaction maps. In Proc. of ESCIM, pages 263–269, 2015. Available
at:http://escim2015.uca.es/wp-content/uploads/2015/02/ESCIM2015-FINAL.pdf.

[2] L. Amgoud, P. Besnard, and A. Hunter. Logical representation and analysis for rc-arguments.
In Proc. of ICTAI, pages 104–110, 2015.

[3] L. Amgoud and C. Cayrol. A reasoning model based on the production of acceptable arguments.
Annals of Mathematics and Artificial Intelligence, 34:197–216, 2002.

[4] L. Amgoud, N. Maudet, and S. Parsons. Modelling dialogues using argumentation. In Proc. of
ICMAS, pages 31–38, 2000.

[5] O. Arieli and M.W.A. Caminada. A QBF-based formalization of abstract argumentation se-
mantics. Journal of Applied Logic, 11(2):229 – 252, 2013.

[6] P. Baroni, F. Cerutti, M. Giacomin, and G. Guida. AFRA: Argumentation framework with
recursive attacks. Intl. Journal of Approximate Reasoning, 52:19–37, 2011.

[7] C. Beierle, F. Brons, and N. Potyka. A software system using a SAT solver for reasoning under
complete, stable, preferred, and grounded argumentation semantics. In Proc. of KI, pages 241–
248, 2015.

[8] P. Besnard and S. Doutre. Checking the acceptability of a set of arguments. In Proc. of NMR,
pages 59–64, 2004.

[9] P. Besnard, S. Doutre, and A. Herzig. Encoding argument graphs in logic. In Proc of IPMU,
pages 345–354, 2014.

[10] G. Boella, D. M. Gabbay, L. van der Torre, and S. Villata. Support in abstract argumentation.
In Proc. of COMMA, pages 111–122, 2010.

[11] B. Bogaerts, T. Janhunen, and S. Tasharrofi. Declarative solver development: Case studies. In
Proc. of KR, pages 74–83, 2016.

[12] G. Brewka and S. Woltran. Abstract dialectical frameworks. In Proc. of KR, pages 102–111,
2010.

[13] M. Caminada, S. Sá, J. Alcântara, and W. Dvořák. On the equivalence between logic program-
ming semantics and argumentation semantics. IJAR, 58:87 – 111, 2015.

[14] J. L. Carballido, J. C. Nieves, and M. Osorio. Inferring preferred extensions by pstable seman-
tics. Inteligencia artificial: Revista Iberoamericana de Inteligencia Artificial, 13(41):38–53,
2009.

[15] C. Cayrol, A. Cohen, and M-C. Lagasquie-Schiex. Towards a new framework for recursive
interactions in abstract bipolar argumentation. In Proc. of COMMA, pages 191–198, 2016.

64

[16] C. Cayrol, L. Fariñas del Cerro, and M-C. Lagasquie-Schiex. A logical vision of abstract
argumentation systems with bipolar and recursive interactions. Technical Report RR- -2016-
-02- -FR, IRIT, 2016.

[17] C. Cayrol and M-C. Lagasquie-Schiex. On the acceptability of arguments in bipolar argumen-
tation frameworks. In Proc. of ECSQARU, pages 378–389, 2005.

[18] C. Cayrol and M-C. Lagasquie-Schiex. Bipolarity in argumentation graphs: towards a better
understanding. Intl. J. of Approximate Reasoning, 54(7):876–899, 2013.

[19] C. Cayrol and M-C. Lagasquie-Schiex. An axiomatic approach to support in argumentation. In
Proc. of TAFA (LNAI 9524, revised selected papers), pages 74–91, 2015.

[20] F. Cerutti, P. E. Dunne, M. Giacomin, and Mauro Vallati. Computing preferred extensions in
abstract argumentation: A SAT-based approach. In Proc. of TAFA, Revised Selected papers,
pages 176–193, 2014.

[21] A. Cohen, S. Gottifredi, A. J. García, and G. R. Simari. An approach to abstract argumentation
with recursive attack and support. J. Applied Logic, 13(4):509–533, 2015.

[22] A. Cohen, S. Gottifredi, A. J. García, and G. R. Simari. On the acceptability semantics of
argumentation frameworks with recursive attack and support. In Proc. of COMMA, pages 231–
242, 2016.

[23] R. Demolombe, L. Fariñas del Cerro, and N. Obeid. Molecular Interaction Automated Maps
(regular paper). In Proc. of LNMR, pages 31–42, 2013.

[24] P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77:321–357, 1995.

[25] F. Dupin de Saint-Cyr, P. Bisquert, C. Cayrol, and M-C. Lagasquie-Schiex. Argumentation
update in YALLA (Yet Another Logic Language for Argumentation). Intl. J. of Approximate
Reasoning, 75:57 – 92, 2016.

[26] D. Grossi. On the logic of argumentation theory. In Proc. of AAMAS, pages 409–416, 2010.

[27] N. Karacapilidis and D. Papadias. Computer supported argumentation and collaborative deci-
sion making: the HERMES system. Information systems, 26(4):259–277, 2001.

[28] J. M. Lagniez, E. Lonca, and J. G. Mailly. Coquiaas: A constraint-based quick abstract argu-
mentation solver. In Proc. of ICTAI, pages 928–935, 2015.

[29] S. Modgil. Reasoning about preferences in argumentation frameworks. Artif. Intell., 173:901–
934, 2009.

[30] F. Nouioua. AFs with necessities: further semantics and labelling characterization. In Proc. of
SUM, pages 120–133, 2013.

[31] F. Nouioua and V. Risch. Bipolar argumentation frameworks with specialized supports. In
Proc. of ICTAI, pages 215–218. IEEE Computer Society, 2010.

65

[32] F. Nouioua and V. Risch. Argumentation frameworks with necessities. In Proc. of SUM, pages
163–176, 2011.

[33] N. Oren and T. J. Norman. Semantics for evidence-based argumentation. In Proc. of COMMA,
pages 276–284, 2008.

[34] N. Oren, C. Reed, and M. Luck. Moving between argumentation frameworks. In Proc. of
COMMA, pages 379–390, 2010.

[35] M. Osorio, J. C. Nieves, and A. Santoyo. Complete extensions as clark’s completion semantics.
In Proc. of the Mexican International Conference on Computer Science, pages 81–88, 2013.

[36] S. Polberg and N. Oren. Revisiting support in abstract argumentation systems. In Proc. of
COMMA, pages 369–376, 2014.

[37] H. Prakken. On support relations in abstract argumentation as abstraction of inferential rela-
tions. In Proc. of ECAI, pages 735–740, 2014.

[38] B. Verheij. Deflog: on the logical interpretation of prima facie justified assumptions. Journal
of Logic in Computation, 13:319–346, 2003.

[39] J. P. Wallner, G. Weissenbacher, and S. Woltran. Advanced SAT techniques for abstract argu-
mentation. In Proc. of CLIMA, pages 138–154, 2013.

66

Appendix A

Description of the examples

A.1 Examples without recursivity (AS)

A.1.1 Example 1

Ex. 1

a α b

Σ0(G) = { Acc(a)→ NAcc(b)
NAcc(b)→ ¬Acc(b) }

Σ(G) = {

Gr(α)↔ Acc(a)
Act(α)↔ (Gr(α) ∧ V al(α))
(V al(α) ∧ Acc(a))→ NAcc(b)
NAcc(b)→ ¬Acc(b)

}

Σas(G) = Σ(G) ∪ { V al(α) }
Σd(G) = Σas(G) ∪ { ¬Acc(b) }
Σr(G) = Σas(G) ∪ { Acc(a) }

Σs(G) = Σas(G) ∪ { Acc(a)
¬Acc(b)→ Acc(a)

}

Among the logical consequences of Σ0(G) is the formula:

Acc(a)→ ¬Acc(b)
It follows that if a is accepted then b is not accepted.

Among the logical consequences of Σas(G) are the formulae:

V al(α)

Act(α)↔ Gr(α) and so Act(α)↔ Acc(a)

Acc(a)→ ¬Acc(b) and so Act(α)→ ¬Acc(b)
It follows that α is active iff a is accepted and if α is active then b is not accepted..

Note that ¬Acc(b) follows from Σr(G).

67

The following table displays the standard Dung extensions of G:

Semantics Extensions
Grounded {a}
Preferred {a}

Stable {a}
Complete {a}

The following table shows the sets SI = {x ∈ A|I(Acc(x)) = true} associated to the models I of
some bases:

Base SI
Σ(G) ∅ {a} {b}
Σd(G) ∅ {a}
Σr(G) {a}

68

A.1.2 Example 2

Ex. 2

α

a b

β

Σ0(G) = {

Acc(a)→ NAcc(b)
Acc(b)→ NAcc(a)
NAcc(a)→ ¬Acc(a)
NAcc(b)→ ¬Acc(b)

}

Σ(G) = {

Gr(α)↔ Acc(a)
Gr(β)↔ Acc(b)
Act(α)↔ (Gr(α) ∧ V al(α))
Act(β)↔ (Gr(β) ∧ V al(β))
(V al(α) ∧ Acc(a))→ NAcc(b)
NAcc(b)→ ¬Acc(b)
(V al(β) ∧ Acc(b))→ NAcc(a)
NAcc(a)→ ¬Acc(a)

}

Σas(G) = Σ(G) ∪ { V al(α), V al(β)} }
Σd(G) = Σas(G)
Σr(G) = Σas(G)

Σs(G) = Σas(G) ∪ { ¬Acc(a)→ Acc(b)
¬Acc(b)→ Acc(a)

}

Among the logical consequences of Σ0(G) is the formula:
¬(Acc(a) ∧ Acc(b)).

It follows that a and b cannot be jointly accepted.
Among the logical consequences of Σas(G) are the formulae:

V al(α) and V al(β)

Act(α)↔ Gr(α) and Act(β)↔ Gr(β) and so Act(α)↔ Acc(a) and Act(β)↔ Acc(b)

¬(Acc(a) ∧ Acc(b)) and so Act(α)→ ¬Acc(b) and Act(β)→ ¬Acc(a)

It follows that α is active iff a is accepted, β is active iff b is accepted, α et β cannot be jointly active,
and a and b cannot be jointly accepted.

The following table displays the standard Dung extensions of G:

Semantics Extensions
Grounded ∅
Preferred {a} {b}

Stable {a} {b}
Complete ∅ {a} {b}

69

The following table shows the sets SI = {x ∈ A|I(Acc(x)) = true} associated to the models I of
some bases:

Base SI
Σ(G) ∅ {a} {b}
Σd(G) ∅ {a} {b}
Σr(G) ∅ {a} {b}

70

A.1.3 Example 3

Ex. 3

a α b β c

Σ0(G) = {

Acc(a)→ NAcc(b)
Acc(b)→ NAcc(c)
NAcc(b)→ ¬Acc(b)
NAcc(c)→ ¬Acc(c)

}

Σ(G) = {

Gr(α)↔ Acc(a)
Gr(β)↔ Acc(b)
Act(α)↔ (Gr(α) ∧ V al(α))
Act(β)↔ (Gr(β) ∧ V al(β))
(V al(α) ∧ Acc(a))→ NAcc(b)
NAcc(b)→ ¬Acc(b)
(V al(β) ∧ Acc(b))→ NAcc(c)
NAcc(c)→ ¬Acc(c)

}

Σas(G) = Σ(G) ∪ { V al(α)
V al(β)

}

Σd(G) = Σas(G) ∪ { ¬Acc(b)
Acc(c)→ Acc(a)

}

Σr(G) = Σas(G) ∪ { Acc(a)
Acc(a)→ Acc(c)

}

Σs(G) = Σas(G) ∪ {
Acc(a)
¬Acc(b)→ Acc(a)
¬Acc(c)→ Acc(b)

}

Among the logical consequences of Σ0(G) are the formulae:
¬(Acc(a) ∧ Acc(b)) et ¬(Acc(c) ∧ Acc(b))

It follows that if a is accepted then b is not accepted. Note that c could be accepted.
Among the logical consequences of Σas(G) are the formulae:

V al(α) et V al(β)

Act(α)↔ Gr(α) and Act(β)↔ Gr(β) and so Act(α)↔ Acc(a) and Act(β)↔ Acc(b)

¬(Acc(a) ∧ Acc(b)) and ¬(Acc(c) ∧ Acc(b)) and so
Act(α)→ ¬Acc(b) and Act(β)→ ¬Acc(c)

It follws that α is active iff a is accepted, β is active iff b is accepted, if α is active b is not accepted
and if β is active then c is not accepted.
Note that Acc(c) and ¬Acc(b) follow from Σr(G).

The following table displays the standard Dung extensions of G:
Semantics Extensions
Grounded {a, c}
Preferred {a, c}

Stable {a, c}
Complete {a, c}

71

The following table shows the sets SI = {x ∈ A|I(Acc(x)) = true} associated to the models I of
some bases:

Base SI
Σ(G) ∅ {a} {b} {c} {a, c}
Σd(G) ∅ {a} {a, c}
Σr(G) {a, c}

72

A.1.4 Example 4

Ex. 4

a α b

δ β

c

Σ0(G) = {

Acc(a)→ NAcc(b)
Acc(b)→ NAcc(c)
Acc(c)→ NAcc(a)
NAcc(a)→ ¬Acc(a)
NAcc(b)→ ¬Acc(b)
NAcc(c)→ ¬Acc(c)

}

Σ(G) = {

Gr(α)↔ Acc(a)
Gr(β)↔ Acc(b)
Gr(δ)↔ Acc(c)
Act(α)↔ (Gr(α) ∧ V al(α))
Act(β)↔ (Gr(β) ∧ V al(β))
Act(δ)↔ (Gr(δ) ∧ V al(δ))
(V al(α) ∧ Acc(a))→ NAcc(b)
NAcc(b)→ ¬Acc(b)
(V al(β) ∧ Acc(b))→ NAcc(c)
NAcc(c)→ ¬Acc(c)
(V al(δ) ∧ Acc(c))→ NAcc(a)
NAcc(a)→ ¬Acc(a)

}

Σas(G) = Σ(G) ∪ {
V al(α)
V al(β)
V al(δ)

}

Σd(G) = Σas(G) ∪ {
Acc(a)→ Acc(b)
Acc(b)→ Acc(c)
Acc(c)→ Acc(a)

}

Σr(G) = Σas(G) ∪ {
Acc(a)→ Acc(c)
Acc(b)→ Acc(a)
Acc(c)→ Acc(b)

}

Σs(G) = Σas(G) ∪ {
¬Acc(a)→ Acc(c)
¬Acc(b)→ Acc(a)
¬Acc(c)→ Acc(b)

}

Among the logical consequences of Σ0(G) are the formulae:

¬(Acc(a) ∧ Acc(b)), ¬(Acc(b) ∧ Acc(c)) and ¬(Acc(a) ∧ Acc(c))
It follows that a and b (resp. a and c, b, c) cannot be jointly accepted.

Among the logical consequences of Σas(G) are the formulae:

73

V al(α), V al(β) and V al(δ),

Act(α)↔ Gr(α), Act(β)↔ Gr(β) and Act(δ)↔ Gr(δ)

Act(α)↔ Acc(a), Act(β)↔ Acc(b) and Act(δ)↔ Acc(c)

¬(Acc(a) ∧ Acc(b)), ¬(Acc(b) ∧ Acc(c)) and ¬(Acc(a) ∧ Acc(c))
and so Act(α)→ (¬Acc(c) ∧ ¬Acc(b)), Act(β)→ (¬Acc(a) ∧ ¬Acc(c))
and Act(δ)→ (¬Acc(b) ∧ ¬Acc(a))

It follows that a and b (resp. a and c, b, c) cannot be jointly accepted.

The following table displays the standard Dung extensions of G:

Semantics Extensions
Grounded ∅
Preferred ∅

Stable none
Complete ∅

The following table shows the sets SI = {x ∈ A|I(Acc(x)) = true} associated to the models I of
some bases:

Base SI
Σ(G) ∅ {a} {b} {c}
Σd(G) ∅
Σr(G) ∅

74

A.1.5 Example 5

Ex. 5

a α

Σ0(G) = { Acc(a)→ NAcc(a)
NAcc(a)→ ¬Acc(a)

}

Σ(G) = {

Gr(α)↔ Acc(a)
Act(α)↔ (Gr(α) ∧ V al(α))
(V al(α) ∧ Acc(a))→ NAcc(a)
NAcc(a)→ ¬Acc(a)

}

Σas(G) = Σ(G) ∪ { V al(α) }
Σd(G) = Σas(G)
Σr(G) = Σas(G)
Σs(G) = Σas(G) ∪ { Acc(a) }

Among the logical consequences of Σ0(G) is the literal:

¬Acc(a)

It follows that a cannot be accepted.

Among the logical consequences of Σas(G) are the formulae:

V al(α)

Act(α)↔ Gr(α) and Act(α)↔ Acc(a)

¬Acc(a)

It follows that a cannot be accepted and that α is valid yet not active.

The following table displays the standard Dung extensions of G:

Semantics Extensions
Grounded ∅
Preferred ∅

Stable none
Complete ∅

The following table shows the sets SI = {x ∈ A|I(Acc(x)) = true} associated to the models I of
some bases:

Base SI
Σ(G) ∅
Σd(G) ∅
Σr(G) ∅

75

A.1.6 Example 6

Ex. 6

a α b β c

d δ

Σ0(G) = {

Acc(a)→ NAcc(b)
Acc(b)→ NAcc(c)
Acc(d)→ NAcc(c)
NAcc(b)→ ¬Acc(b)
NAcc(c)→ ¬Acc(c)

}

Σ(G) = {

Gr(α)↔ Acc(a)
Gr(β)↔ Acc(b)
Gr(δ)↔ Acc(d)
Act(α)↔ (Gr(α) ∧ V al(α))
Act(β)↔ (Gr(β) ∧ V al(β))
Act(δ)↔ (Gr(δ) ∧ V al(δ))
(V al(α) ∧ Acc(a))→ NAcc(b)
NAcc(b)→ ¬Acc(b)
(V al(β) ∧ Acc(b))→ NAcc(c)
NAcc(c)→ ¬Acc(c)
(V al(δ) ∧ Acc(d))→ NAcc(c)

}

Σas(G) = Σ(G) ∪ {
V al(α)
V al(β)
V al(δ)

}

Σd(G) = Σas(G) ∪ { ¬Acc(b)
¬Acc(c) }

Σr(G) = Σas(G) ∪ { Acc(a)
Acc(d)

}

Σs(G) = Σas(G) ∪ {

Acc(a)
Acc(d)
¬Acc(b)→ Acc(a)
¬Acc(c)→ (Acc(b) ∨ Acc(d))

}

Among the logical consequences of Σ0(G) are the formulae:

¬(Acc(a) ∧ Acc(b)), ¬(Acc(b) ∧ Acc(c)) and ¬(Acc(d) ∧ Acc(c))
It follows that if a s accepted then b is not accepted, and if b or d is accepted then c is not accepted.

Among the logical consequences of Σas(G) are the formulae:

V al(α), V al(β) and V al(δ)

Act(α)↔ Gr(α), Act(β)↔ Gr(β) and Act(δ)↔ Gr(δ)

Act(α)↔ Acc(a), Act(β)↔ Acc(b) and Act(δ)↔ Acc(d)

¬(Acc(a) ∧ Acc(b)), ¬(Acc(b) ∧ Acc(c)) and ¬(Acc(d) ∧ Acc(c))

76

and so Act(α)→ ¬Acc(b), Act(β)→ ¬Acc(c) and Act(δ)→ ¬Acc(c)
It follows that α (resp. δ) is active iff a (resp. d) is accepted, β is active iff b is accepted, if α is active
then b is not accepted, and if β or δ is active then c is not accepted.

Note that ¬Acc(b) and ¬Acc(c) follow from Σr(G).

The following table displays the standard Dung extensions of G:

Semantics Extensions
Grounded {a, d}
Preferred {a, d}

Stable {a, d}
Complete {a, d}

The following table shows the sets SI = {x ∈ A|I(Acc(x)) = true} associated to the models I of
some bases:

Base SI
Σ(G) ∅ {a} {b} {c} {d} {a, d} {b, d} {a, c}
Σd(G) ∅ {a} {d} {a, d}
Σr(G) {a, d}

77

A.1.7 Example 7

Ex. 7

a α b β c δ d γ e

Σ0(G) = {

Acc(a)→ NAcc(b)
Acc(b)→ NAcc(c)
Acc(c)→ NAcc(d)
Acc(d)→ NAcc(e)
NAcc(b)→ ¬Acc(b)
NAcc(c)→ ¬Acc(c)
NAcc(d)→ ¬Acc(d)
NAcc(e)→ ¬Acc(e)

}

Σ(G) = {

Gr(α)↔ Acc(a)
Gr(β)↔ Acc(b)
Gr(δ)↔ Acc(c)
Gr(γ)↔ Acc(d)
Act(α)↔ (Gr(α) ∧ V al(α))
Act(β)↔ (Gr(β) ∧ V al(β))
Act(δ)↔ (Gr(δ) ∧ V al(δ))
Act(γ)↔ (Gr(γ) ∧ V al(γ))
(V al(α) ∧ Acc(a))→ NAcc(b)
NAcc(b)→ ¬Acc(b)
(V al(β) ∧ Acc(b))→ NAcc(c)
NAcc(c)→ ¬Acc(c)
(V al(δ) ∧ Acc(c))→ NAcc(d)
NAcc(d)→ ¬Acc(d)
(V al(γ) ∧ Acc(d))→ NAcc(e)
NAcc(e)→ ¬Acc(e)

}

Σas(G) = Σ(G) ∪ { V al(α) V al(β)
V al(δ) V al(γ)

}

Σd(G) = Σas(G) ∪ {

¬Acc(b)
Acc(c)→ Acc(a)
Acc(d)→ Acc(b)
Acc(e)→ Acc(c)

}

Σr(G) = Σ(G)as ∪ {

Acc(a)
Acc(a)→ Acc(c)
Acc(b)→ Acc(d)
Acc(c)→ Acc(e)

}

Σs(G) = Σas(G) ∪ {

Acc(a)
¬Acc(b)→ Acc(a)
¬Acc(c)→ Acc(b)
¬Acc(d)→ Acc(c)
¬Acc(e)→ Acc(d)

}

Among the logical consequences of Σ0(G) are the formulae:

78

¬(Acc(a) ∧ Acc(b)), ¬(Acc(b) ∧ Acc(c)), ¬(Acc(c) ∧ Acc(d)) and ¬(Acc(d) ∧ Acc(e))
It follows that if a (resp. b, c, d) is accepted, then b (resp. c, d, e) is not accepted.

Among the logical consequences of Σas(G) are the formulae:

V al(α), V al(β), V al(δ) and V al(γ)

Act(α)↔ Gr(α), Act(β)↔ Gr(β), Act(δ)↔ Gr(δ) and Act(γ)↔ Gr(γ)

Act(α)↔ Acc(a), Act(β)↔ Acc(b), Act(δ)↔ Acc(c) and Act(γ)↔ Acc(d)

¬(Acc(a) ∧ Acc(b)), ¬(Acc(b) ∧ Acc(c)), ¬(Acc(c) ∧ Acc(d)) and
¬(Acc(d) ∧ Acc(e))

and so Act(α)→ ¬Acc(b), Act(β)→ ¬Acc(c), Act(δ)→ ¬Acc(d) and Act(γ)→ ¬Acc(e)
It follows that α (resp. β, δ, γ) is active iff a (resp. b, c, d) is accepted, and if α (resp. β, δ, γ) is
active then b (resp. c, d, e) is not accepted.

Note that:

¬Acc(d) follows from Σd(G)

Acc(c), Acc(e), ¬Acc(b) and ¬Acc(d) follow from Σr(G).

The following table displays the standard Dung extensions of G:

Semantics Extensions
Grounded {a, c, e}
Preferred {a, c, e}

Stable {a, c, e}
Complete {a, c, e}

The following table shows the sets SI = {x ∈ A|I(Acc(x)) = true} associated to the models I of
some bases:

Base SI
Σ(G) ∅ {a} {b} {c} {d} {e} {a, c} {a, d} {a, e} {b, d} {b, e} {c, e} {a, c, e}
Σd(G) ∅ {a} {a, c} {a, c, e}
Σr(G) {a, c, e}

79

A.1.8 Example 8

Ex. 8

a α b β c

e δ d γ

Σ0(G) = {

Acc(a)→ NAcc(b)
Acc(b)→ NAcc(c)
Acc(e)→ NAcc(d)
Acc(d)→ NAcc(b)
NAcc(b)→ ¬Acc(b)
NAcc(c)→ ¬Acc(c)
NAcc(d)→ ¬Acc(d)

}

Σ(G) = {

Gr(α)↔ Acc(a)
Gr(β)↔ Acc(b)
Gr(δ)↔ Acc(e)
Gr(γ)↔ Acc(d)
Act(α)↔ (Gr(α) ∧ V al(α))
Act(β)↔ (Gr(β) ∧ V al(β))
Act(δ)↔ (Gr(δ) ∧ V al(δ))
Act(γ)↔ (Gr(γ) ∧ V al(γ))
(V al(α) ∧ Acc(a))→ NAcc(b)
NAcc(b)→ ¬Acc(b)
(V al(β) ∧ Acc(b))→ NAcc(c)
NAcc(c)→ ¬Acc(c)
(V al(δ) ∧ Acc(e))→ NAcc(d)
NAcc(d)→ ¬Acc(d)
(V al(γ) ∧ Acc(d))→ NAcc(b)

}

Σas(G) = Σ(G) ∪ { V al(α) V al(β)
V al(δ) V al(γ)

}

Σd(G) = Σas(G) ∪ {
¬Acc(d)
¬Acc(b)
Acc(c)→ (Acc(a) ∨ Acc(d))

}

Σr(G) = Σas(G) ∪ {
Acc(a)
Acc(e)
(Acc(a) ∨ Acc(d))→ Acc(c)

}

Σs(G) = Σas(G) ∪ {

Acc(a)
Acc(e)
¬Acc(b)→ (Acc(a) ∨ Acc(d))
¬Acc(d)→ Acc(e)
¬Acc(c)→ Acc(b)

}

Among the logical consequences of Σ0(G) are the formulae:

¬(Acc(a) ∧ Acc(b)), ¬(Acc(b) ∧ Acc(c)), ¬(Acc(e) ∧ Acc(d)) and ¬(Acc(d) ∧ Acc(b))

80

It follows that if a (resp. b, e, d) is accepted then b (resp. c, d, b) is not accepted.

Among the logical consequences of Σas(G) are the formulae:

V al(α), V al(β), V al(δ) and V al(γ)

Act(α)↔ Gr(α), Act(β)↔ Gr(β), Act(δ)↔ Gr(δ) and Act(γ)↔ Gr(γ)

Act(α)↔ Acc(a), Act(β)↔ Acc(b), Act(δ)↔ Acc(e) and Act(γ)↔ Acc(d)

¬(Acc(a) ∧ Acc(b)), ¬(Acc(b) ∧ Acc(c)), ¬(Acc(e) ∧ Acc(d)) and ¬(Acc(d) ∧ Acc(b))
and so Act(α)→ ¬Acc(b), Act(β)→ ¬Acc(c), Act(δ)→ ¬Acc(d) and Act(γ)→ ¬Acc(b)

It follows that α (resp. β, δ, γ) is active iff a (resp. b, e, d) is accepted, if α or γ is active then b is
not accepted and if β (resp. δ) is active then c (resp. d) is not accepted.

Note that Acc(c), ¬Acc(b) and ¬Acc(d) follow from Σr(G).

The following table displays the standard Dung extensions of G:

Semantics Extensions
Grounded {a, c, e}
Preferred {a, c, e}

Stable {a, c, e}
Complete {a, c, e}

The following table shows the sets SI = {x ∈ A|I(Acc(x)) = true} associated to the models I of
some bases:

Base SI
Σ(G) ∅ {a} {b} {c} {d} {e} {a, c} {a, d} {a, e} {b, e} {c, e} {c, d} {a, c, e}
Σd(G) ∅ {a} {e} {a, c} {a, e} {a, c, e}
Σr(G) {a, c, e}

81

A.1.9 Example 9

Ex. 9

a α b β c

e δ d γ

Σ0(G) = {

Acc(a)→ NAcc(b)
Acc(b)→ NAcc(c)
Acc(e)→ NAcc(d)
Acc(d)→ NAcc(c)
NAcc(b)→ ¬Acc(b)
NAcc(c)→ ¬Acc(c)
NAcc(d)→ ¬Acc(d)

}

Σ(G) = {

Gr(α)↔ Acc(a)
Gr(β)↔ Acc(b)
Gr(δ)↔ Acc(e)
Gr(γ)↔ Acc(d)
Act(α)↔ (Gr(α) ∧ V al(α))
Act(β)↔ (Gr(β) ∧ V al(β))
Act(δ)↔ (Gr(δ) ∧ V al(δ))
Act(γ)↔ (Gr(γ) ∧ V al(γ))
(V al(α) ∧ Acc(a))→ NAcc(b)
NAcc(b)→ ¬Acc(b)
(V al(β) ∧ Acc(b))→ NAcc(c)
NAcc(c)→ ¬Acc(c)
(V al(δ) ∧ Acc(e))→ NAcc(d)
NAcc(d)→ ¬Acc(d)
(V al(γ) ∧ Acc(d))→ NAcc(c)

}

Σas(G) = Σ(G) ∪ {

V al(α)
V al(β)
V al(δ)
V al(γ)

}

Σd(G) = Σas(G) ∪ {
¬Acc(d)
¬Acc(b)
Acc(c)→ (Acc(a) ∧ Acc(e))

}

Σr(G) = Σas(G) ∪ {
Acc(a)
Acc(e)
(Acc(a) ∧ Acc(e))→ Acc(c)

}

Σs(G) = Σas(G) ∪ {

Acc(a)
Acc(e)
¬Acc(b)→ Acc(a)
¬Acc(c)→ (Acc(b) ∨ Acc(d))
¬Acc(d)→ Acc(e)

}

82

Among the logical consequences of Σ0(G) are the formulae:

¬(Acc(a) ∧ Acc(b)), ¬(Acc(b) ∧ Acc(c)), ¬(Acc(e) ∧ Acc(d)) and ¬(Acc(d) ∧ Acc(c))
It follows that if a (resp. b, e, d) is accepted, b (resp. c, d, c) is not accepted.

Among the logical consequences of Σas(G) are the formulae:

V al(α), V al(β), V al(δ) and V al(γ)

Act(α)↔ Gr(α), Act(β)↔ Gr(β), Act(δ)↔ Gr(δ) and Act(γ)↔ Gr(γ)

Act(α)↔ Acc(a), Act(β)↔ Acc(b), Act(δ)↔ Acc(e) and Act(γ)↔ Acc(d)

¬(Acc(a) ∧ Acc(b)), ¬(Acc(b) ∧ Acc(c)), ¬(Acc(e) ∧ Acc(d)) and ¬(Acc(d) ∧ Acc(c))
and so Act(α)→ ¬Acc(b), Act(β)→ ¬Acc(c), Act(δ)→ ¬Acc(d) and Act(γ)→ ¬Acc(c)

It follows that α (resp. β, δ, γ) is active iff a (resp. b, e, d) is accepted, if β or γ is active then c is
not accepted and if α (resp. δ) is active then b (resp. d) is not accepted.

Note that Acc(c), ¬Acc(b) and ¬Acc(d) follow from Σr(G).

The following table displays the standard Dung extensions of G:

Semantics Extensions
Grounded {a, c, e}
Preferred {a, c, e}

Stable {a, c, e}
Complete {a, c, e}

The following table shows the sets SI = {x ∈ A|I(Acc(x)) = true} associated to the models I of
some bases:

Base SI
Σ(G) ∅ {a} {b} {c} {d} {e} {a, c} {a, d} {a, e} {b, e} {c, e} {b, d} {a, c, e}
Σd(G) ∅ {a} {e} {a, e} {a, c, e}
Σr(G) {a, c, e}

83

A.1.10 Example 10

Ex. 10

a α b β c

d δ

Σ0(G) = {

Acc(a)→ NAcc(b)
Acc(b)→ NAcc(c)
Acc(d)→ NAcc(b)
NAcc(b)→ ¬Acc(b)
NAcc(c)→ ¬Acc(c)

}

Σ(G) = {

Gr(α)↔ Acc(a)
Gr(β)↔ Acc(b)
Gr(δ)↔ Acc(d)
Act(α)↔ (Gr(α) ∧ V al(α))
Act(β)↔ (Gr(β) ∧ V al(β))
Act(δ)↔ (Gr(δ) ∧ V al(δ))
(V al(α) ∧ Acc(a))→ NAcc(b)
NAcc(b)→ ¬Acc(b)
(V al(β) ∧ Acc(b))→ NAcc(c)
NAcc(c)→ ¬Acc(c)
(V al(δ) ∧ Acc(d))→ NAcc(b)

}

Σas(G) = Σ(G) ∪ {
V al(α)
V al(β)
V al(δ)

}

Σd(G) = Σas(G) ∪ { ¬Acc(b)
Acc(c)→ (Acc(a) ∨ Acc(d))

}

Σr(G) = Σas(G) ∪ {
Acc(a)
Acc(d)
(Acc(a) ∨ Acc(d))→ Acc(c)

}

Σs(G) = Σas(G) ∪ {

Acc(a)
Acc(d)
¬Acc(b)→ (Acc(a) ∨ Acc(d))
¬Acc(c)→ Acc(b)

}

Among the logical consequences of Σ0(G) are the formulae:

¬(Acc(a) ∧ Acc(b)), ¬(Acc(b) ∧ Acc(c)) and ¬(Acc(d) ∧ Acc(b))
It follows that if a (resp. b, d) is accepted, b (resp. c, b) is not accepted.

Among the logical consequences of Σas(G) are the formulae:

V al(α), V al(β) and V al(δ)

Act(α)↔ Gr(α), Act(β)↔ Gr(β) and Act(δ)↔ Gr(δ)

Act(α)↔ Acc(a), Act(β)↔ Acc(b) and Act(δ)↔ Acc(d)

84

¬(Acc(a) ∧ Acc(b)), ¬(Acc(b) ∧ Acc(c)) and ¬(Acc(d) ∧ Acc(b))
and so Act(α)→ ¬Acc(b), Act(β)→ ¬Acc(c) and Act(δ)→ ¬Acc(b)

It follows that α (resp. β, δ) is active iff a (resp. b, d) is accepted, if β is active then c is not accepted
and if α or δ is active then b is not accepted.

Note that ¬Acc(b) and Acc(c) follow from Σr(G).

The following table displays the standard Dung extensions of G:

Semantics Extensions
Grounded {a, c, d}
Preferred {a, c, d}

Stable {a, c, d}
Complete {a, c, d}

The following table shows the sets SI = {x ∈ A|I(Acc(x)) = true} associated to the models I of
some bases:

Base SI
Σ(G) ∅ {a} {b} {c} {d} {a, c} {a, d} {c, d} {a, c, d}
Σd(G) ∅ {a} {d} {a, c} {a, d} {c, d} {a, c, d}
Σr(G) {a, c, d}

85

A.1.11 Example 11

Ex. 11

a α b β

Σ0(G) = {
Acc(a)→ NAcc(b)
NAcc(b)→ ¬Acc(b)
Acc(b)→ NAcc(b)

}

Σ(G) = {

Gr(α)↔ Acc(a)
Gr(β)↔ Acc(b)
Act(α)↔ (Gr(α) ∧ V al(α))
Act(β)↔ (Gr(β) ∧ V al(β))
(V al(α) ∧ Acc(a))→ NAcc(b) et NAcc(b)→ ¬Acc(b)
(V al(β) ∧ Acc(b))→ NAcc(b) et NAcc(b)→ ¬Acc(b)

}

Σas(G) = Σ(G) ∪ { V al(α)
V al(β)

}
Σd(G) = Σas(G) ∪ { ¬Acc(b) }
Σr(G) = Σas(G) ∪ { Acc(a) }

Σs(G) = Σas(G) ∪ { Acc(a)
→ Acc(b), Acc(a)

}

The formula ¬Acc(b) is a logical consequence of Σ0(G).
Among the logical consequences of Σas(G) are the formulae:

V al(α) and V al(β)

Act(α)↔ Gr(α) and Act(β)↔ Gr(β) and so Act(α)↔ Acc(a), and Act(β)↔ Acc(b)

¬(Acc(a) ∧ Acc(b)) and so Act(α)→ ¬Acc(b), and so Act(β)→ ¬Acc(b)
La formule ¬Acc(b) is also a logical consequence of Σ(G) and of Σr(G).
Note that the property Preins applied to b produces a tautology: ((Acc(a) ∨Acc(b)) ∧⊥)→ Acc(b).
Indeed, b must be defended both against a and against itself. Obviously, a (or b) can be used to
defend b against itself. However, no argument enables to defend b against a.
The following table displays the standard Dung extensions of G:

Semantics Extensions
Grounded {a}
Preferred {a}

Stable {a}
Complete {a}

The following table shows the sets SI = {x ∈ A|I(Acc(x)) = true} associated to the models I of
some bases:

86

Base SI
Σ0(G) ∅ {a}
Σd(G) ∅ {a}
Σr(G) {a}

87

A.1.12 Example 12

Ex. 12 In this example we do not use the label of interactions. So here we only give the simplified
form of bases.

a b

c d

Σ0(G) = {

Acc(a)→ NAcc(b)
Acc(b)→ NAcc(c)
Acc(c)→ NAcc(a)
Acc(c)→ NAcc(d)
NAcc(a)→ ¬Acc(a)
NAcc(b)→ ¬Acc(b)
NAcc(c)→ ¬Acc(c)
NAcc(d)→ ¬Acc(d)

}

Σ0
d(G) = Σ0(G) ∪ {

Acc(a)→ Acc(b)
Acc(b)→ Acc(c)
Acc(c)→ Acc(a)
Acc(d)→ Acc(b)

}

Σ0
r(G) = Σ0(G) ∪ {

Acc(a)→ Acc(c)
Acc(b)→ Acc(a)
Acc(c)→ Acc(b)
Acc(b)→ Acc(d)

}

Σ0
s(G) = Σ0(G) ∪ {

¬Acc(a)→ Acc(c)
¬Acc(b)→ Acc(a)
¬Acc(c)→ Acc(b)
¬Acc(d)→ Acc(c)

}

The following table displays the standard Dung extensions of G:

Semantics Extensions
Grounded ∅
Preferred ∅

Stable none
Complete ∅

The following table shows the sets SI = {x ∈ A|I(Acc(x)) = true} associated to the models I of
some bases:

Base SI
Σ0(G) ∅ {a} {b} {c} {d} {a, d} {b, d}
Σd(G) ∅
Σr(G) ∅

88

A.1.13 Example 13

Ex. 13 In this example we do not use the label of interactions. So here we only give the simplified
form of bases.

a b c

d e

Σ0(G) = {

Acc(a)→ NAcc(b)
Acc(b)→ NAcc(c)
Acc(b)→ NAcc(d)
Acc(d)→ NAcc(e)
Acc(e)→ NAcc(d)
NAcc(b)→ ¬Acc(b)
NAcc(c)→ ¬Acc(c)
NAcc(d)→ ¬Acc(d)
NAcc(e)→ ¬Acc(e)

}

Σ0
d(G) = Σ0(G) ∪ {

Acc(c)→ Acc(a)
Acc(d)→ (Acc(a) ∧ Acc(d))
Acc(e)→ (Acc(b) ∨ Acc(e))
¬Acc(b)

}

Σ0
r(G) = Σ0(G) ∪ {

Acc(a)→ Acc(c)
(Acc(a) ∧ Acc(d))→ Acc(d)
(Acc(b) ∨ Acc(e))→ Acc(e)
Acc(a)

}

Σ0
s(G) = Σ0(G) ∪ {

Acc(a)
¬Acc(b)→ Acc(a)
¬Acc(c)→ Acc(b)
¬Acc(d)→ (Acc(b) ∨ Acc(e))
¬Acc(e)→ Acc(d)

}

The following table displays the standard Dung extensions of G:

Semantics Extensions
Grounded {a, c}
Preferred {a, c, d}, {a, c, e}

Stable {a, c, d}, {a, c, e}
Complete {a, c}, {a, c, d}, {a, c, e}

The following table shows the sets SI = {x ∈ A|I(Acc(x)) = true} associated to the models I of
some bases:

89

Base SI
Σ0(G) ∅ {a} {b} {c} {d} {e} {a, c} {a, d} {a, e} {c, e} {c, d} {b, e} {a, c, d} {a, c, e}
Σd(G) ∅ {a} {e} {a, c} {a, d} {a, e} {a, c, d} {a, c, e}
Σr(G) {a, c} {a, c, d} {a, c, e}

90

A.2 Examples with recursivity (ASAF)

In the following examples, the bases Σ0(G) and Σas(G) are not pertinent.

A.2.1 Example 14

Ex. 14

a α b

β

c

Σ(G) = {

Gr(α)↔ Acc(a)
Gr(β)↔ Acc(c)
(V al(β) ∧ Acc(c))→ ¬V al(α)
Act(α)↔ (Gr(α) ∧ V al(α))
Act(β)↔ (Gr(β) ∧ V al(β))
(V al(α) ∧ Acc(a))→ NAcc(b)
NAcc(b)→ ¬Acc(b)

}

Σd(G) = Σ(G) ∪ { Acc(b)→ (V al(β) ∧ Acc(c))
¬V al(α)

}

Σr(G) = Σ(G) ∪ {

Acc(a)
Acc(c)
(V al(β) ∧ Acc(c))→ Acc(b)
V al(β)

}

Σs(G) = Σ(G) ∪ {

Acc(a)
¬Acc(b)→ (V al(α ∧ Acc(a))
Acc(c)
¬V al(α)→ (V al(β) ∧ Acc(c))
V al(β)

}

Using definition of Section 6.2 on page 54, some specific structures of this graph are displayed in the
following table:

Semantics Structures
Admissible (∅, {β}), ({a}, {β}), ({c}, {β}),({a, c}, {β}), ({b, c}, {β}), ({a, b, c}, {β})

Stable ({a, b, c}, {β})
Complete ({a, b, c}, {β})

In the case when recursive attacks are encoded with meta-arguments, as in [15], the graph is turned
into:

91

a Naα α b

c Ncβ β

With [6, 21], the graph is turned into:

a α b

c β

In both cases, the standard Dung extensions of these new graphs are displayed in the following table:

Semantics Extensions
Grounded {a, b, c, β}
Preferred {a, b, c, β}

Stable {a, b, c, β}
Complete {a, b, c, β}

92

A.2.2 Example 15

Ex. 15

a α b

β

Σ(G) = {

Gr(α)↔ Acc(a)
Gr(β)↔ Acc(b)
(V al(β) ∧ Acc(b))→ ¬V al(α)
Act(α)↔ (Gr(α) ∧ V al(α))
Act(β)↔ (Gr(β) ∧ V al(β))
(V al(α) ∧ Acc(a))→ NAcc(b)
NAcc(b)→ ¬Acc(b)

}

Σd(G) = Σ(G) ∪ { Acc(b)→ V al(β)
V al(α)→ Acc(a)

}

Σr(G) = Σ(G) ∪ { Acc(a)
V al(β)

}

Σs(G) = Σ(G) ∪ {

Acc(a)
¬Acc(b)→ (V al(α) ∧ Acc(a))
V al(β)
¬V al(α)→ (V al(β) ∧ Acc(b))

}

Using definition of Section 6.2 on page 54, some specific structures of this graph are displayed in the
following table:

Semantics Structures
Admissible (∅, {β}), ({a}, {β}), ({b}, {β}), ({a}, {α, β}), ({a, b}, {β})

Stable ({a}, {α, β}), ({a, b}, {β})
Complete ({a}, {β}), ({a}, {α, β}), ({a, b}, {β})

In the case when recursive attacks are encoded with meta-arguments, as in [15], the graph is turned
into:

a Naα α b

β Nbβ

The standard Dung extensions of this new graph are displayed in the following table:

93

Semantics Extensions
Grounded {a}
Preferred {a, b, β} {a, α,Nbβ}

Stable {a, b, β} {a, α,Nbβ}
Complete {a} {a, b, β} {a, α,Nbβ}

With [6, 21], the graph is turned into:

a α b

β

The standard Dung extensions of this new graph are displayed in the following table (they are very
similar to the ones obtained with MAS approach):

Semantics Extensions
Grounded {a}
Preferred {a, b, β} {a, α}

Stable {a, b, β} {a, α}
Complete {a} {a, b, β} {a, α}

94

A.2.3 Example 16

Ex. 16

a α b

β

d δ c

Σ(G) = {

Gr(α)↔ Acc(a)
Gr(β)↔ Acc(c)
Gr(δ)↔ Acc(d)
(V al(β) ∧ Acc(c))→ ¬V al(α)
Act(α)↔ (Gr(α) ∧ V al(α))
Act(β)↔ (Gr(β) ∧ V al(β))
Act(δ)↔ (Gr(δ) ∧ V al(δ))
(V al(α) ∧ Acc(a))→ NAcc(b)
NAcc(b)→ ¬Acc(b)
(V al(δ) ∧ Acc(d))→ NAcc(c)
NAcc(c)→ ¬Acc(c)

}

Σd(G) = Σ(G) ∪ {
Acc(b)→ (V al(β) ∧ Acc(c))
¬Acc(c)
V al(α)→ (V al(δ) ∧ Acc(d))

}

Σr(G) = Σ(G) ∪ {

Acc(a)
Acc(d)
(V al(β) ∧ Acc(c))→ Acc(b)
V al(β)
V al(δ)
(V al(δ) ∧ Acc(d))→ V al(α)

}

Σs(G) = Σ(G) ∪ {

Acc(a)
Acc(d)
¬Acc(c)→ (V al(δ) ∧ Acc(d))
¬Acc(b)→ (V al(α) ∧ Acc(a))
V al(β)
V al(δ)
¬V al(α)→ (V al(β) ∧ Acc(c))

}

Using definition of Section 6.2 on page 54, some specific structures of this graph are displayed in the
following table:

Semantics Structures
Admissible (∅, {β, δ}), ({a}, {β, δ}), ({d}, {β, δ}), ({d}, {α, β, δ}),

({a, d}, {β, δ}), ({a, d}, {α, β, δ})
Stable ({a, d}, {α, β, δ})

Complete ({a, d}, {α, β, δ})

95

In the case when recursive attacks are encoded with meta-arguments, as in [15], the graph is turned
into (note that as δ is not attacked, it can be handled as a simple attack) :

a Naα α b

d Ndδ δ c Ncβ β

The standard Dung extensions of this new graph are displayed in the following table:

Semantics Extensions
Grounded {a, d,Ncβ, α, δ}
Preferred {a, d,Ncβ, α, δ}

Stable {a, d,Ncβ, α, δ}
Complete {a, d,Ncβ, α, δ}

With [6, 21], the graph is turned into:

a α b

d δ β

c

The standard Dung extensions of this new graph are displayed in the following table (similar to those
obtained with MAS approach):

Semantics Extensions
Grounded {a, d, α, δ}
Preferred {a, d, α, δ}

Stable {a, d, α, δ}
Complete {a, d, α, δ}

96

A.2.4 Example 17

Ex. 17

d δ a α b

β

c

Σ(G) = {

Gr(α)↔ Acc(a)
Gr(β)↔ Acc(c)
Gr(δ)↔ Acc(d)
(V al(β) ∧ Acc(c))→ ¬V al(α)
Act(α)↔ (Gr(α) ∧ V al(α))
Act(β)↔ (Gr(β) ∧ V al(β))
Act(δ)↔ (Gr(δ) ∧ V al(δ))
(V al(α) ∧ Acc(a))→ NAcc(b)
NAcc(b)→ ¬Acc(b)
(V al(δ) ∧ Acc(d))→ NAcc(a)
NAcc(a)→ ¬Acc(a)

}

Σd(G) = Σ(G) ∪ {
¬Acc(a)
Acc(b)→ ((V al(β) ∧ Acc(c)) ∨ (V al(δ) ∧ Acc(d)))
¬V al(α)

}

Σr(G) = Σ(G) ∪ {

Acc(d)
Acc(c)
((V al(β) ∧ Acc(c)) ∨ (V al(δ) ∧ Acc(d)))→ Acc(b)
V al(β)
V al(δ)

}

Σs(G) = Σ(G) ∪ {

Acc(d)
Acc(c)
¬Acc(a)→ (V al(δ) ∧ Acc(d))
¬Acc(b)→ (V al(α) ∧ Acc(a))
V al(β)
V al(δ)
¬V al(α)→ (V al(β) ∧ Acc(c))

}

Using definition of Section 6.2 on page 54, some specific structures of this graph are displayed in the
following table:

Semantics Structures
Admissible (∅, {β, δ}), ({c}, {β, δ}), ({d}, {β, δ}), ({b, c}, {β, δ}), ({b, d}, {β, δ}),

({c, d}, {β, δ}), ({b, c, d}, {β, δ})
Stable ({b, c, d}, {β, δ})

Complete ({b, c, d}, {β, δ})

97

In the case when recursive attacks are encoded with meta-arguments, as in [15], the graph is turned
into (note that as δ is not attacked, it can be handled as a simple attack):

d Ndδ δ a Naα α b

c Ncβ β

The standard Dung extensions of this new graph are displayed in the following table:

Semantics Extensions
Grounded {c, d, δ,Naα, β, b}
Preferred {c, d, δ,Naα, β, b}

Stable {c, d, δ,Naα, β, b}
Complete {c, d, δ,Naα, β, b}

With [6, 21], the graph is turned into:

d δ a α b

c β

The standard Dung extensions of this new graph are displayed in the following table (similar to those
obtained with MAS approach):

Semantics Extensions
Grounded {c, d, δ, β, b}
Preferred {c, d, δ, β, b}

Stable {c, d, δ, β, b}
Complete {c, d, δ, β, b}

98

A.2.5 Example 18

Ex. 18

d δ a α b

β

e γ c

Σ(G) = {

Gr(α)↔ Acc(a)
Gr(β)↔ Acc(c)
Gr(δ)↔ Acc(d)
Gr(γ)↔ Acc(e)
(V al(β) ∧ Acc(c))→ ¬V al(α)
Act(α)↔ (Gr(α) ∧ V al(α))
Act(β)↔ (Gr(β) ∧ V al(β))
Act(δ)↔ (Gr(δ) ∧ V al(δ))
Act(γ)↔ (Gr(γ) ∧ V al(γ))
(V al(α) ∧ Acc(a))→ NAcc(b)
NAcc(b)→ ¬Acc(b)
(V al(δ) ∧ Acc(d))→ NAcc(a)
NAcc(a)→ ¬Acc(a)
(V al(γ) ∧ Acc(e))→ NAcc(c)
NAcc(c)→ ¬Acc(c)

}

Σd(G) = Σ(G) ∪ {

¬Acc(a)
¬Acc(c)
Acc(b)→ ((V al(β) ∧ Acc(c)) ∨ (V al(δ) ∧ Acc(d)))
V al(α)→ (V al(γ) ∧ Acc(e))

}

Σr(G) = Σ(G) ∪ {

Acc(d)
Acc(e)
((V al(β) ∧ Acc(c)) ∨ (V al(δ) ∧ Acc(d)))→ Acc(b)
V al(β)
V al(δ)
V al(γ)
(V al(γ) ∧ Acc(e))→ V al(α)

}

Σs(G) = Σ(G) ∪ {

Acc(d)
Acc(e)
¬Acc(a)→ (V al(δ) ∧ Acc(d))
¬Acc(b)→ (V al(α) ∧ Acc(a))
¬Acc(c)→ (V al(γ) ∧ Acc(e))
V al(β)
V al(δ)
V al(γ)
¬V al(α)→ (V al(β) ∧ Acc(c))

}

99

Using definition of Section 6.2 on page 54, some specific structures of this graph are displayed in the
following table:

Semantics Structures
Admissible (∅, {β, δ, γ}), ({d}, {β, δ, γ}), ({b, d}, {β, δ, γ}), ({e}, {β, δ, γ}), ({e}, {α, β, δ, γ}),

({d, e}, {β, δ, γ}), ({d, e}, {α, β, δ, γ}), ({b, d, e}, {β, δ, γ}), ({b, d, e}, {α, β, δ, γ})
Stable ({b, d, e}, {α, β, δ, γ})

Complete ({b, d, e}, {α, β, δ, γ})

In the case when recursive attacks are encoded with meta-arguments, as in [15], the graph is turned
into (note that as δ and γ are not attacked,they can be handled as a simple attack):

d Ndδ δ a Naα α b

e Neγ γ c Ncβ β

The standard Dung extensions of this new graph are displayed in the following table:

Semantics Extensions
Grounded {b, d, e,Naα, Ncβ, δ, γ}
Preferred {b, d, e,Naα, Ncβ, δ, γ}

Stable {b, d, e,Naα, Ncβ, δ, γ}
Complete {b, d, e,Naα, Ncβ, δ, γ}

With [6, 21], the graph is turned into:

d δ a α b

β

e γ c

The standard Dung extensions of this new graph are displayed in the following table:

Semantics Extensions
Grounded {b, d, e, δ, γ}
Preferred {b, d, e, δ, γ}

Stable {b, d, e, δ, γ}
Complete {b, d, e, δ, γ}

100

A.2.6 Example 19

Ex. 19

a α b

d δ β

c

Σ(G) = {

Gr(α)↔ Acc(a)
Gr(β)↔ Acc(c)
Gr(δ)↔ Acc(d)
(V al(β) ∧ Acc(c))→ ¬V al(α)
(V al(δ) ∧ Acc(d))→ ¬V al(β)
Act(α)↔ (Gr(α) ∧ V al(α))
Act(β)↔ (Gr(β) ∧ V al(β))
Act(δ)↔ (Gr(δ) ∧ V al(δ))
(V al(α) ∧ Acc(a))→ NAcc(b)
NAcc(b)→ ¬Acc(b)

}

Σd(G) = Σ(G) ∪ {
Acc(b)→ (V al(β) ∧ Acc(c))
¬V al(β)
V al(α)→ (V al(δ) ∧ Acc(d))

}

Σr(G) = Σ(G) ∪ {

Acc(a)
Acc(c)
Acc(d)
(V al(β) ∧ Acc(c))→ Acc(b)
V al(δ)
(V al(δ) ∧ Acc(d))→ V al(α)

}

Σs(G) = Σ(G) ∪ {

Acc(a)
Acc(c)
Acc(d)
¬Acc(b)→ (V al(α) ∧ Acc(a))
V al(δ)
¬V al(α)→ (V al(β) ∧ Acc(c))
¬V al(β)→ (V al(δ) ∧ Acc(d))

}

Using definition of Section 6.2 on page 54, some specific structures of this graph are displayed in the
following table:

Semantics Structures
Admissible (∅, {δ}), ({a}, {δ}), ({c}, {δ}), ({d}, {δ}) ({d}, {α, δ}), ({a, c}, {δ}),

({a, d}, {δ}), ({a, d}, {α, δ}), ({c, d}, {δ}), ({c, d}, {α, δ}),
({a, c, d}, {δ}), ({a, c, d}, {α, δ})

Stable ({a, c, d}, {α, δ})
Complete ({a, c, d}, {α, δ})

101

In the case when recursive attacks are encoded with meta-arguments, as in [15], the graph is turned
into:

a Naα α b

c Ncβ β

d Ndδ δ

With [6, 21], the graph is turned into:

a α b

c β

d δ

For both cases, the standard Dung extensions of these new graph are displayed in the following
table:
Semantics Extensions
Grounded {a, c, d, δ, α}
Preferred {a, c, d, δ, α}

Stable {a, c, d, δ, α}
Complete {a, c, d, δ, α}

102

A.2.7 Example 20

Ex. 20

a α b

e γ d δ β

c

Σ(G) = {

Gr(α)↔ Acc(a)
Gr(β)↔ Acc(c)
Gr(δ)↔ Acc(d)
Gr(γ)↔ Acc(e)
(V al(β) ∧ Acc(c))→ ¬V al(α)
(V al(δ) ∧ Acc(d))→ ¬V al(β)
Act(α)↔ (Gr(α) ∧ V al(α))
Act(β)↔ (Gr(β) ∧ V al(β))
Act(δ)↔ (Gr(δ) ∧ V al(δ))
Act(γ)↔ (Gr(γ) ∧ V al(γ))
(V al(α) ∧ Acc(a))→ NAcc(b)
NAcc(b)→ ¬Acc(b)
(V al(γ) ∧ Acc(e))→ NAcc(d)
NAcc(d)→ ¬Acc(d)

}

Σd(G) = Σ(G) ∪ {

Acc(b)→ (V al(β) ∧ Acc(c))
¬Acc(d)
V al(α)→ (V al(δ) ∧ Acc(d))
V al(β)→ (V al(γ) ∧ Acc(e))

}

Σr(G) = Σ(G) ∪ {

Acc(a)
Acc(c)
Acc(e)
(V al(β) ∧ Acc(c))→ Acc(b)
V al(δ)
V al(γ)
(V al(δ) ∧ Acc(d))→ V al(α)
(V al(γ) ∧ Acc(e))→ V al(β)

}

Σs(G) = Σ(G) ∪ {

Acc(a)
Acc(c)
Acc(e)
¬Acc(b)→ (V al(α) ∧ Acc(a))
¬Acc(d)→ (V al(γ) ∧ Acc(e))
V al(δ)
V al(γ)
¬V al(α)→ (V al(β) ∧ Acc(c))
¬V al(β)→ (V al(δ) ∧ Acc(d))

}

103

Using definition of Section 6.2 on page 54, some specific structures of this graph are displayed in the
following table:

Semantics Structures
Admissible (∅, {δ, γ}), ({a}, {δ, γ}), ({c}, {δ, γ}), ({a, c}, {δ, γ}) ({e}, {δ, γ}), ({e}, {β, δ, γ}),

({a, e}, {δ, γ}), ({a, e}, {β, δ, γ}), ({c, e}, {δ, γ}), ({c, e}, {β, δ, γ}),
({a, c, e}, {δ, γ}), ({a, c, e}, {β, δ, γ}), ({b, c, e}, {β, δ, γ}), ({a, b, c, e}, {β, δ, γ})

Stable ({a, b, c, e}, {β, δ, γ})
Complete ({a, b, c, e}, {β, δ, γ})

In the case when recursive attacks are encoded with meta-arguments, as in [15], the graph is turned
into (note that as γ is not attacked, it can be handled as a simple attack):

a Naα α b

c Ncβ β

e Neγ γ d Ndδ δ

The standard Dung extensions of this new graph are displayed in the following table:
Semantics Extensions
Grounded {a, c, e, γ,Ndδ, β, b}
Preferred {a, c, e, γ,Ndδ, β, b}

Stable {a, c, e, γ,Ndδ, β, b}
Complete {a, c, e, γ,Ndδ, β, b}

With [6, 21], the graph is turned into:

a α b

c β

e γ d δ

The standard Dung extensions of this new graph are displayed in the following table (similar to those
obtained with MAS approach):
Semantics Extensions
Grounded {a, c, e, γ, β, b}
Preferred {a, c, e, γ, β, b}

Stable {a, c, e, γ, β, b}
Complete {a, c, e, γ, β, b}

104

A.2.8 Example 21

Ex. 21

a α b

β δ

c

Σ(G) = {

Gr(α)↔ Acc(a)
Gr(β)↔ Acc(c)
Gr(δ)↔ Acc(b)
(V al(β) ∧ Acc(c))→ ¬V al(α)
(V al(δ) ∧ Acc(b))→ ¬V al(β)
Act(α)↔ (Gr(α) ∧ V al(α))
Act(β)↔ (Gr(β) ∧ V al(β))
Act(δ)↔ (Gr(δ) ∧ V al(δ))
(V al(α) ∧ Acc(a))→ NAcc(b)
NAcc(b)→ ¬Acc(b)

}

Σd(G) = Σ(G) ∪ {
Acc(b)→ (V al(β) ∧ Acc(c))
V al(α)→ (V al(δ) ∧ Acc(b))
V al(β)→ (V al(α) ∧ Acc(a))

}

Σr(G) = Σ(G) ∪ {

Acc(a)
Acc(c)
(V al(β) ∧ Acc(c))→ Acc(b)
V al(δ)
(V al(δ) ∧ Acc(b))→ V al(α)
(V al(α) ∧ Acc(a))→ V al(β)

}

Σs(G) = Σ(G) ∪ {

Acc(a)
Acc(c)
¬Acc(b)→ (V al(α) ∧ Acc(a))
V al(δ)
¬V al(α)→ (V al(β) ∧ Acc(c))
¬V al(β)→ (V al(δ) ∧ Acc(b))

}

Using definition of Section 6.2 on page 54, some specific structures of this graph are displayed in the
following table:

Semantics Structures
Admissible (∅, {δ}), ({a}, {δ}), ({c}, {δ}), ({a, c}, {δ})

Stable @
Complete ({a, c}, {δ})

In the case when recursive attacks are encoded with meta-arguments, as in [15], the graph is turned
into:

105

a Naα α b

β δ Nbδ

c Ncβ

The standard Dung extensions of this new graph are displayed in the following table:

Semantics Extensions
Grounded {a, c}
Preferred {a, c}

Stable @
Complete {a, c}

With [6, 21], the graph is turned into:

a α b

β δ

c

The standard Dung extensions of this new graph are exactly those obtained with MAS approach.

106

A.2.9 Example 22

Ex. 22

a α b

β δ

c

Σ(G) = {

Gr(α)↔ Acc(a)
Gr(β)↔ Acc(c)
Gr(δ)↔ Acc(b)
(V al(β) ∧ Acc(c))→ ¬V al(α)
Act(α)↔ (Gr(α) ∧ V al(α))
Act(β)↔ (Gr(β) ∧ V al(β))
Act(δ)↔ (Gr(δ) ∧ V al(δ))
(V al(α) ∧ Acc(a))→ NAcc(b)
NAcc(b)→ ¬Acc(b)
(V al(δ) ∧ Acc(b))→ NAcc(c)
NAcc(c)→ ¬Acc(c)

}

Σd(G) = Σ(G) ∪ {
Acc(b)→ (V al(β) ∧ Acc(c))
Acc(c)→ (V al(α) ∧ Acc(a))
V al(α)→ (V al(δ) ∧ Acc(b))

}

Σr(G) = Σ(G) ∪ {

Acc(a)
(V al(β) ∧ Acc(c))→ Acc(b)
(V al(α) ∧ Acc(a))→ Acc(c)
V al(β)
V al(δ)
(V al(δ) ∧ Acc(b))→ V al(α)

}

Σs(G) = Σ(G) ∪ {

Acc(a)
¬Acc(b)→ (V al(α) ∧ Acc(a))
¬Acc(c)→ (V al(δ) ∧ Acc(b))
V al(β)
V al(δ)
¬V al(α)→ (V al(β) ∧ Acc(c))

}

Using definition of Section 6.2 on page 54, some specific structures of this graph are displayed in the
following table:

Semantics Structures
Admissible (∅, {β, δ}), ({a}, {β, δ})

Stable @
Complete ({a}, {β, δ})

In the case when recursive attacks are encoded with meta-arguments, as in [15], the graph is turned
into:

107

a Naα α b

β Nbδ

Ncβ δ

c

The standard Dung extensions of this new graph are displayed in the following table:

Semantics Extensions
Grounded {a}
Preferred {a}

Stable @
Complete {a}

With [6, 21], the graph is turned into:

a α b

β δ

c

The standard Dung extensions of this new graph are exactly those obtained with MAS approach.

108

A.2.10 Example 23

Ex. 23

b

a α δ

β

c

Σ(G) = {

Gr(α)↔ Acc(a)
Gr(β)↔ Acc(c)
Gr(δ)↔ Acc(b)
(V al(β) ∧ Acc(c))→ ¬V al(α)
(V al(δ) ∧ Acc(b))→ ¬V al(β)
(V al(α) ∧ Acc(a))→ ¬V al(δ)
Act(α)↔ (Gr(α) ∧ V al(α))
Act(β)↔ (Gr(β) ∧ V al(β))
Act(δ)↔ (Gr(δ) ∧ V al(δ))

}

Σd(G) = Σ(G) ∪ {
V al(α)→ (V al(δ) ∧ Acc(b))
V al(β)→ (V al(α) ∧ Acc(a))
V al(δ)→ (V al(β) ∧ Acc(c))

}

Σr(G) = Σ(G) ∪ {

Acc(a)
Acc(b)
Acc(c)
(V al(δ) ∧ Acc(b))→ V al(α)
(V al(α) ∧ Acc(a))→ V al(β)
(V al(β) ∧ Acc(c))→ V al(δ)

}

Σs(G) = Σ(G) ∪ {

Acc(a)
Acc(b)
Acc(c)
¬V al(α)→ (V al(β) ∧ Acc(c))
¬V al(β)→ (V al(δ) ∧ Acc(b))
¬V al(δ)→ (V al(α) ∧ Acc(a))

}

Using definition of Section 6.2 on page 54, some specific structures of this graph are displayed in the
following table:

Semantics Structures
Admissible (∅,∅), ({a},∅), ({b},∅), ({c},∅), ({a, b},∅), ({a, c},∅), ({b, c},∅), ({a, b, c},∅)

Stable @
Complete ({a, b, c},∅)

In the case when recursive attacks are encoded with meta-arguments, as in [15], the graph is turned
into:

109

Nbδ b

a Naα α δ

β

Ncβ c

The standard Dung extensions of this new graph are displayed in the following table:

Semantics Extensions
Grounded {a, b, c}
Preferred {a, b, c}

Stable @
Complete {a, b, c}

With [6, 21], the graph is turned into:

b

a α δ

β

c

The standard Dung extensions of this new graph are exaxtly those obtained with MAS approach.

110

A.2.11 Example 24

Ex. 24

b

a α β

Σ(G) = {

Gr(α)↔ Acc(a)
Gr(β)↔ Acc(b)
(V al(β) ∧ Acc(b))→ ¬V al(α)
(V al(α) ∧ Acc(a))→ ¬V al(β)
Act(α)↔ (Gr(α) ∧ V al(α))
Act(β)↔ (Gr(β) ∧ V al(β))

}

Σd(G) = Σ(G) ∪ { V al(α)→ Acc(a)
V al(β)→ Acc(b)

}

Σr(G) = Σ(G) ∪ { Acc(a)
Acc(b)

}

Σs(G) = Σ(G) ∪ {

Acc(a)
Acc(b)
¬V al(α)→ (V al(β) ∧ Acc(b))
¬V al(β)→ (V al(α) ∧ Acc(a))

}

Using definition of Section 6.2 on page 54, some specific structures of this graph are displayed in the
following table:

Semantics Structures
Admissible (∅,∅), ({a},∅), ({a}, {α}), ({b},∅), ({b}, {β}), ({a, b},∅), ({a, b}, {α}), ({a, b}, {β})

Stable ({a, b}, {α}), ({a, b}, {β})
Complete ({a, b},∅), ({a, b}, {α}), ({a, b}, {β})

In the case when recursive attacks are encoded with meta-arguments, as in [15], the graph is turned
into:

Nbβ b

a Naα α β

The standard Dung extensions of this new graph are displayed in the following table:

Semantics Extensions
Grounded {a, b}
Preferred {a, b, α}, {a, b, β}

Stable {a, b, α}, {a, b, β}
Complete {a, b}, {a, b, α}, {a, b, β}

111

With [6, 21], the graph is turned into:

b

a α β

The standard Dung extensions of this new graph are exactly those obtained with MAS approach.

112

A.2.12 Example 25

Ex. 25

a α

Σ(G) = {
Gr(α)↔ Acc(a)
(V al(α) ∧ Acc(a))→
Act(α)↔ (Gr(α) ∧ V al(α))

}

Σd(G) = Σ(G) ∪ { V al(α)→ Acc(a) }
Σr(G) = Σ(G) ∪ { Acc(a) }

Σs(G) = Σ(G) ∪ { Acc(a)
V al(α)

}

Using definition of Section 6.2 on page 54, some specific structures of this graph are displayed in the
following table:

Semantics Structures
Admissible (∅,∅), ({a},∅)

Stable @
Complete ({a},∅)

In the case when recursive attacks are encoded with meta-arguments, as in [15], the graph is turned
into:

a Naα α

The standard Dung extensions of this new graph are displayed in the following table:

Semantics Extensions
Grounded {a}
Preferred {a}

Stable @
Complete {a}

With [6, 21], the graph is turned into:

a α

The standard Dung extensions of this new graph are exactly those obtained with MAS approach.

113

114

Appendix B

Proofs

B.1 Proofs of Section 4.1.2 on page 19

Proof of Prop. 1 on page 20: A model I of Σ0(G) can be defined as follows:

∀x ∈ A, I(Acc(x)) = false and I(NAcc(x)) = true. �

B.2 Proofs of Section 4.2.2 on page 24

Proof of Prop. 2 on page 27: A model I of Σ(G) can be defined as follows:

∀x ∈ A, I(Acc(x)) = false and I(NAcc(x)) = true.

∀α ∈ R, I(Gr(α)) = I(Act(α)) = false and I(V al(α)) = true. �

B.3 Proofs of Section 5.1 on page 33

Proof of Prop. 3 on page 35: The model I of Σ0(G) given in the proof of Proposition 1 on
page 20 can also be used for proving the consistency of Σ0

d(G):
∀x ∈ A, I(Acc(x)) = false and I(NAcc(x)) = true. �

Proof of Prop. 4 on page 36: A model I of Σ0
r(G) can be defined using the following iterative

construction:

1. Let M0 = {Acc(x)| x is unattacked }.
2. ∀j ≥ 0, let Mj+1 = {Acc(x)|∃Φ ∈ Σ0

r(G), Φ = (∧i=1..k(∨a∈BiAcc(a)))→ Acc(x) and
for each bi (attacker of x), ∃a ∈ Bi such that Acc(a) ∈ (M0 ∪ . . .Mj)}.

3. LetM =
⋃
Mj , j ≥ 0. Then I is defined by I(Acc(x)) = true if and only ifAcc(x) ∈M

and I(NAcc(x)) = false if and only if I(Acc(x)) = true.

Obviously, I satisfies the formulae issued from Preins.
Moreover, the definition of M exactly corresponds to the iterative construction of the least fixed

115

point of the characteristic functionF ofG. SoM is exactly the setAcc(GE), whereGE denotes
the grounded extension of G. We know that GE is conflict-free (see section 2.2 on page 7), so
following Proposition 6 on page 39, M is consistent with Σ0(G). Thus I is a model of Σ0

r(G).

�

Proof of Prop. 5 on page 39:

⇒ Assume that S is conflict-free. Let us define an interpretation I of Σ0(G) as follows :
I(Acc(x)) = true if and only if x ∈ S and I(NAcc(x)) = true if and only if I(Acc(x)) =
false. We have SI = S. It remains to prove that I is a model of Σ0(G). Obviously I sat-
isfies the formula NAcc(x) → ¬Acc(x). So, if I is not a model of Σ0(G), there exists a
formula Acc(a) → NAcc(b) that is not satisfied by I. In that case I(Acc(a)) = true and
I(NAcc(b)) = false. By definition of I, we also have I(Acc(b)) = true, and a, b are in S.
The formula Acc(a)→ NAcc(b) encodes an attack from a to b. So that is in contradiction
with S being conflict-free.

⇐ Let I be a model of Σ0(G). We prove that SI is conflict-free. If it is not the case, there
exist two arguments a, b in SI such that a attacks b. So Σ0(G) contains the formulas
Acc(a) → NAcc(b) and NAcc(b) → ¬Acc(b). As a, b belong to SI , I(Acc(a)) = true
and I(Acc(b)) = true. That is in contradiction with I being a model of Σ0(G).

�

Proof of Prop. 6 on page 39:

⇒ Assume that S is conflict-free. From Proposition 5 on page 39, there exists a model I of
Σ0(G) such that SI = S. Obviously I is a model of Acc(S) ∪ Σ0(G).

⇐ Let I be a model of Acc(S) ∪Σ0(G). As I is a model of Acc(S), we have S ⊆ SI . As I is
a model of Σ0(G), from Proposition 5 on page 39 again, we know that SI is conflict-free.
So S is conflict-free.

�

Proof of Prop. 7 on page 39: It is a direct consequence of Prop. 5 on page 39.

⇒ Assume that S is a naive extension. From Proposition 5 on page 39, there exists a model
I of Σ0(G) such that SI = S. If I is not Acc(A)-maximal, there exists I ′ model of
Σ0(G) such that SI ⊂ SI′ . Then SI′ is conflict-free and strictly contains S, which is in
contradiction with S being a naive extension.

⇐ Let I be an Acc(A)-maximal model of Σ0(G) such that SI = S. Then S is conflict-free. If
S is not a naive extension, there exists S′ conflict-free such that S ⊂ S′. So there exists
a model I ′ of Σ0(G) such that SI′ = S′. Then we have SI = S ⊂ SI′ which is in
contradiction with I being Acc(A)-maximal.

�

Proof of Prop. 8 on page 39: It is a direct consequence of Prop. 6 on page 39.

116

⇒ Assume that S is a naive extension. We know that Acc(S) ∪ Σ0(G) is consistent. Assume
that there exists L ⊆ Acc(A) such that Acc(S) ⊂ L and L ∪ Σ0(G) is consistent. Let
S′ such that L = Acc(S′). We have S ⊂ S′ and S′ conflict-free (from Proposition 6 on
page 39). That is in contradiction with S being a naive extension. So Acc(S) is a maximal
(for set-inclusion) subset of Acc(A) consistent with Σ0(G).

⇐ Assume that Acc(S) is a maximal (for set-inclusion) subset of Acc(A) consistent with
Σ0(G). From Proposition 6 on page 39, S is conflict-free. If there exists S′ such that
S ⊂ S′ and S′ conflict-free, Acc(S′)∪Σ0(G) is consistent and Acc(S) ⊂ Acc(S′), which
is in contradiction with the assumption on Acc(S).

�

Proof of Prop. 9 on page 39:

⇒ Let S be admissible. S is conflict-free, so due to the proof of Proposition 5 on page 39, ∃I
model of Σ0(G) with SI = S and such that:

∀x ∈ S, I(Acc(x)) = true and I(NAcc(x)) = false;
∀x /∈ S, I(Acc(x)) = false and I(NAcc(x)) = true.

We prove that I is a model of Σ0
d(G). We just have to consider the formulae issued from

Property Pdef. Two kinds of formulae must be considered:

A formula Φ = ¬Acc(x) corresponds to the particular case when x is attacked by an
argument b which is unattacked. In that case, x cannot belong to any admissible set,
so x /∈ S and I(Acc(x)) = false. So I satisfies Φ.
A formula Φ = (Acc(x)→ (Acc(a1)∨ . . .∨Acc(ak)) corresponds to the case when
x is attacked by b, {a1, . . . ak} being the set of attackers of b.

– either x ∈ S; since S is admissible, there exists i such that ai ∈ S. Then
I(Acc(x)) = I(Acc(ai)) = true;

– or x 6∈ S then I(Acc(x)) = false.
In both cases, Φ is satisfied by I.

In conclusion, each formula of Σ0
d(G) is satisfied by I. So I is a model of Σ0

d(G).

⇐ We prove that if I is a model of Σ0
d(G), then SI is admissible.

1. As Σ0
d(G) contains Σ0(G), if I is a model of Σ0

d(G), I is also a model of Σ0(G) and
then SI is conflict-free (due to Proposition 5 on page 39).

2. Let us prove that SI ⊆ F(SI).
By definition, F(SI) = {x ∈ A|x is acceptable wrt SI} = {x ∈ A|∀b ∈ A such that
bRx,∃a ∈ SI and aRb}.
If x ∈ SI is unattacked, obviously x ∈ F(SI).
So let us consider x ∈ SI such that x is attacked. Let b be any attacker of x.
Σ0
d(G) contains the formulae Acc(b)→ NAcc(x) and NAcc(x)→ ¬Acc(x). Since
I(Acc(x)) = true, and I is a model of Σ0

d(G), then I(NAcc(x)) = I(Acc(b)) =
false. Two different cases must be considered for b:

If b is unattacked, Σ0
d(G) contains a formula equivalent to ¬Acc(x), which is in

contradiction with I being a model of Σ0
d(G) and I(Acc(x)) = true. So this case

is impossible.

117

If b is attacked, let a1, . . . ak be the attackers of b.
Σ0
d(G) contains the formulaAcc(x)→ (Acc(a1)∨. . .∨Acc(ak)). Since I(Acc(x)) =

true, and I is a model of Σ0
d(G), then I(Acc(ai)) = true for at least one ai. It

means that ai ∈ SI . So x ∈ F(SI).

�

Proof of Prop. 10 on page 39:

1. Assume S is admissible. From Proposition 9 on page 39, ∃I model of Σ0
d(G) such that

S = SI . Obviously I is a model of Acc(S) ∪ Σ0
d(G).

2. Let I be a model of Acc(S) ∪ Σ0
d(G). As I is a model of Acc(S), we have S ⊆ SI . As

I is a model of Σ0
d(G), from Proposition 9 on page 39, we know that SI is admissible. So

there is an admissible set containing S.

�

Proof of Prop. 11 on page 40: It is a direct consequence of Prop. 9 on page 39.

⇒ Let S be a preferred extension. From Proposition 9 on page 39, there exists a model I of
Σ0
d(G) such that S = SI . If I is not Acc(A)-maximal, there exists I ′ model of Σ0

d(G)
such that SI ⊂ SI′ . Following Proposition 9 on page 39 again, SI′ is admissible. So there
exists an admissible set SI′ such that S = SI ⊂ SI′ , which is in contradiction with S
being a preferred extension.

⇐ Let I be an Acc(A)-maximal model of Σ0
d(G) such that SI = S. If SI is not a preferred

extension, there exists S′ ⊆ A such that SI ⊂ S′ and S′ is admissible. Following Propo-
sition 9 on page 39, there exists I ′ model of Σ0

d(G) such that S′ = SI′ . So, there is a
contradiction with I being an Acc(A)-maximal model of Σ0

d(G).

�

Proof of Prop. 12 on page 40:

⇒ Assume that S is a preferred extension. S is admissible, so from Proposition 10 on page 39,
we know that Acc(S) ∪ Σ0

d(G) is consistent. Assume that there exists L ⊆ Acc(A) such
that Acc(S) ⊂ L and L ∪ Σ0

d(G) is consistent. Let S′ such that L = Acc(S′). We have
S ⊂ S′ and Acc(S′) ∪ Σ0

d(G) is consistent. From Proposition 10 on page 39 again, we
know that S′ ⊆ S′′ where S′′ is admissible. So S ⊂ S′′, which is in contradiction with S
being a preferred extension.

⇐ Assume that Acc(S) is a maximal (for set-inclusion) subset of Acc(A) consistent with
Σ0
d(G). We have to prove that S is admissible and then that S is maximal admissible.

From Proposition 10 on page 39, we know that S ⊆ S′ where S′ is admissible. Then we
have Acc(S′) ∪ Σ0

d(G) is consistent. As Acc(S) is a maximal (for set-inclusion) subset of
Acc(A) consistent with Σ0

d(G), we have Acc(S) = Acc(S′) and S = S′. So S is admis-
sible.
If S is not a preferred extension, there exists an admissible set S′′ strictly containing S.
Then we know that Acc(S′′)∪Σ0

d(G) is consistent, which is in contradiction with Acc(S)
being a maximal (for set-inclusion) subset of Acc(A) consistent with Σ0

d(G). So we have
proved that S is a preferred extension.

118

�

Proof of Prop. 13 on page 40: It follows from the proof of Proposition 4 on page 36.
Let M be the subset of Acc(A) built in the proof of Proposition 4 on page 36, with an iterative
procedure. We know that M = Acc(GE), or equivalently GE = {x ∈ A|Acc(x) ∈M}, where
GE denotes the grounded extension of G.
Let I be the model of Σ0

r(G) associated with M in the proof of Proposition 4 on page 36. We
have x ∈ SI if and only if Acc(x) ∈M , so SI = {x ∈ A|Acc(x) ∈M} = GE.
From the definition of M , it is easy to see that each model J of the formulae issued from Preins
must satisfy the literals of M , or equivalently {x ∈ A|Acc(x) ∈M} ⊆ SJ .
As a consequence, it is easy to see that for each J anAcc(A)-minimal model of Σ0

r(G), we have
SJ = {x ∈ A|Acc(x) ∈M} = GE. Note that I itself is an Acc(A)-minimal model of Σ0

r(G).

�

Proof of Prop. 14 on page 40: Let I be an Acc(A)-minimal model of Σ0
r(G). We know that

SI = GE.

We first prove that GE = SI ⊆ Sg. Let x ∈ SI . By definition of SI , there is no model I ′
of Σ0

r(G) such that SI′ ⊂ SI . So the set of formulae Σ0
r(G) ∪ {¬Acc(x)} has no model.

It means that Σ0
r(G) ` Acc(x), and so x ∈ Sg.

Conversely, let x ∈ Sg. As Σ0
r(G) ` Acc(x), Acc(x) is true in each model of Σ0

r(G). So
Acc(x) is true in the particular model I. It means that x ∈ SI = GE.

�

Proof of Prop. 15 on page 40:

1. Let I be a model of Σ0
r(G). SI = {x ∈ A|I(Acc(x)) = true}. We have to prove that

F(SI) ⊆ SI . Let x ∈ F(SI).
If x is not attacked, the formula Acc(x) belongs to Σ0

r(G). As I is a model of Σ0
r(G), I

satisfies Acc(x) which means that x ∈ SI .
If x is attacked, let b1, . . . , bk be the attackers of x, and for each i, let Bi be the set of
attackers of bi. Σ0

r(G) contains the formula Φ = (∧i=1..k(∨a∈BiAcc(a))) → Acc(x). As
x ∈ F(SI), for each i, there exists a ∈ Bi such that a ∈ SI . Or equivalently, for each i,
there exists a ∈ Bi such that I(Acc(a)) = true . As I satisfies the formula Φ, we have
I(Acc(x)) = true which means that x ∈ SI .

2. Assume that F(S) ⊆ S and S is conflict-free. Let us consider the interpretation I defined
by:

∀x ∈ S, I(Acc(x)) = true and I(NAcc(x)) = false;
∀x /∈ S, I(Acc(x)) = false and I(NAcc(x)) = true.

We have SI = S and from the proof of Proposition 5 on page 39, we know that I is a
model of Σ0(G). It remains to prove that I satisfies the formulae of Σ0

r(G) \ Σ0(G). Two
kinds of formulae must be considered:
A formula Φ = Acc(x) corresponds to the particular case when x is not attacked. In that
case, x ∈ F(S) ⊆ S, so x ∈ S and then I(Acc(x)) = true. So I satisfies Φ.
A formula Φ = (∧i=1..k(∨a∈BiAcc(a)))→ Acc(x) corresponds to the case when b1, . . . , bk
are the attackers of x, and for each i, Bi denotes the set of attackers of bi.

119

either x ∈ F(S), so for each i, there exists a ∈ Bi such that a ∈ S. Or equivalently,
or each i, there exists a ∈ Bi such that I(Acc(a)) = true. As F(S) ⊆ S, x ∈ S and
then I(Acc(x)) = true. In that case the formula Φ is satisfied by I.
or x 6∈ F(S), so there exists i such that for each a ∈ Bi, a /∈ S. In other words, there
exists i such that for each a ∈ Bi, I(Acc(a)) = false. In that case the formula Φ is
trivially satisfied.

In both cases, Φ is satisfied by I.

�

Proof of Prop. 16 on page 40:

⇒ Let S be a complete extension. S is admissible and F(S) ⊆ S. From the proofs of Proposi-
tions 9 on page 39 and 15 on page 40, we know that there exists a same model I of Σ0

d(G)
and of Σ0

r(G) such that S = SI . This model is defined by :

∀x ∈ S, I(Acc(x)) = true and I(NAcc(x)) = false;
∀x /∈ S, I(Acc(x)) = false and I(NAcc(x)) = true.

⇐ The converse is an immediate consequence of Propositions 9 on page 39 and 15 on page 40.

�

Proof of Prop. 17 on page 41:

⇒ Let S be a complete extension. From Proposition 16 on page 40, there exists I model of
Σ0
d(G) ∪ Σ0

r(G) such that S = SI .
By definition of SI , S = SI means that ∀x ∈ S, I(Acc(x)) = true and ∀x ∈ A \
S, I(Acc(x)) = false, or equivalently ∀x ∈ A \ S, I(¬Acc(x)) = true. So I is a model
of Acc(S) ∪ {¬Acc(x)|x ∈ A \ S} ∪ Σ0

d(G) ∪ Σ0
r(G).

Moreover, from the proofs of the previous propositions, I can be chosen such that:
I(NAcc(x)) = true if and only if I(Acc(x)) = false.

So I is also model of Acc(S) ∪ {NAcc(x)|x ∈ A \ S} ∪ Σ0
d(G) ∪ Σ0

r(G).

⇐ Let I be a model ofAcc(S)∪{¬Acc(x)|x ∈ A\S}∪Σ0
d(G)∪Σ0

r(G). From Proposition 16
on page 40, SI is a complete extension. As I satisfies Acc(S), we have S ⊆ SI and as I
satisfies {¬Acc(x)|x ∈ A \ S} we have A \ S ⊆ A \ SI . So S = SI and S is a complete
extension.
Moreover if I is a model of Acc(S) ∪ {NAcc(x)|x ∈ A \ S} ∪ Σ0

d(G) ∪ Σ0
r(G), as

the formulae NAcc(x) → ¬Acc(x) belong to Σ0(G), I is also a model of Acc(S) ∪
{¬Acc(x)|x ∈ A \ S} ∪ Σ0

d(G) ∪ Σ0
r(G) and we can conclude that S is a complete

extension.

�

Proof of Prop. 18 on page 41:

⇒ Assume that S is stable. It is well-known that S is conflict-free. Following the proof of
Proposition 5 on page 39, ∃I model of Σ0(G) with SI = S and such that:

∀x ∈ S, I(Acc(x)) = true and I(NAcc(x)) = false;

120

∀x /∈ S, I(Acc(x)) = false and I(NAcc(x)) = true.

We have to prove that I satisfies the formula Psta : (∀c)(¬Acc(c) → (∨b∈R−(c)Acc(b))).
Let c ∈ A. If c ∈ S = SI , I(Acc(c)) = true and I(NAcc(c)) = false so the implication
¬Acc(c)→ (∨b∈R−(c)Acc(b)) is trivially true.
If c /∈ S, as S is stable, there exists a ∈ S = SI such that a ∈ R−(c). As I(Acc(a)) =
true, so the implication ¬Acc(c)→ (∨b∈R−(c)Acc(b)) is still true.

⇐ Assume that ∃I model of Σ0(G)∪{Psta}, such that S = SI . From Proposition 5 on page 39,
S is conflict-free.
Let c /∈ S, as S = SI I(Acc(c)) = false. As I satisfies Psta, I satisfies (∨b∈R−(c)Acc(b)).
So there exists b ∈ R−(c) such that I(Acc(b)) = true, which means that b ∈ SI = S. We
have proved that S is stable. Then, we conclude that S is stable.

�

Proof of Prop. 19 on page 42: The proof is analogous to the proof of Proposition 17 on page 41.
�

Proof of Prop. 20 on page 42:

⇒ Assume that S is stable. It is well-known that S is a naive extension. From Proposition 8 on
page 39 Acc(S) is a maximal (for set-inclusion) subset of Acc(A) consistent with Σ0(G).
Let a /∈ S. As S is stable, there exists x ∈ S such that x attacks a. So Σ0(G) contains the
formulas Acc(x) → NAcc(a) and NAcc(a) → ¬Acc(a). Let I be a model of Acc(S) ∪
Σ0(G), I(Acc(x)) = true (as x ∈ S) so I(NAcc(a)) = true. We have proved that
(Σ0(G) ∪Acc(S)) ` NAcc(a).

⇐ Assume that Acc(S) is a maximal for set-inclusion subset of Acc(A) consistent with Σ0(G)
and ∀a /∈ S, (Σ0(G) ∪Acc(S)) ` NAcc(a). Let us prove that S is stable.
From Proposition 8 on page 39, S is a naive extension so S is conflict-free.
Let a /∈ S. We have (Σ0(G) ∪ Acc(S)) ` NAcc(a). Due to the form of Σ0(G), there
exists x such that (Σ0(G)∪Acc(S)) ` Acc(x) and Σ0(G) contains the formulaAcc(x)→
NAcc(a). In that case, we know that x attacks a. Moreover as Acc(S) is a maximal for
set-inclusion subset of Acc(A) consistent with Σ0(G), x must belong to S. So we have
proved that S is stable.

�

Proof of Prop. 21 on page 42:

⇒ Assume that S is stable. It is well-known that S is conflict-free. From Proposition 5 on
page 39, ∃I model of Σ0(G) such that SI = S.
Let J be a model of Σ0(G) such that S ⊆ SJ . Let a /∈ S. As S is stable, there exists
x ∈ S such that x attacks a. So Σ0(G) contains the formulas Acc(x) → NAcc(a) and
NAcc(a) → ¬Acc(a). x ∈ S ⊆ SJ so J (Acc(x)) = true. As J is a model of Σ0(G),
we have J (NAcc(a)) = true.

⇐ Assume that ∃I model of Σ0(G), such that S = SI . From Proposition 5 on page 39, S is
conflict-free.
Let us prove that ∀a /∈ S, (Σ0(G) ∪ Acc(S)) ` NAcc(a). Consider a /∈ S. Let J be a
model of Σ0(G)∪Acc(S). Then S ⊆ SJ . Due to the assumption, we haveJ (NAcc(a)) =
true. So we have proved that (Σ0(G) ∪Acc(S)) ` NAcc(a). Then, due to Proposition 20
on page 42, we conclude that S is stable.

121

�

Proof of Prop. 22 on page 44:

⇒ Let I be a model of Σ0(G) ∪ {P5}. If I is not NAcc(A)-minimal, there exists I ′ model of
Σ0(G) ∪ {P5} such that NI′ ⊂ NI and SI′ = SI .
So there exists x ∈ NI \ NI′ . Then we have I(NAcc(x)) = true and I ′(NAcc(x)) =
false.
As I satisfies P5, there exists y ∈ R−(x) such that I(Acc(y)) = true. As SI′ = SI , we
also have I ′(Acc(y)) = true. As I ′ is a model of Σ0(G), and y ∈ R−(x), we must have
that I ′(NAcc(x)) = true, which is in contradiction with the assumption x /∈ NI′ .
So I is a NAcc(A)-minimal model of Σ0(G).

⇐ Let I be a NAcc(A)-minimal model of Σ0(G). Let us prove that I satisfies P5. If it is not
the case, there exists c such that I(NAcc(c)) = true (c ∈ NI) and for each b ∈ R−(c),
I(Acc(b)) = false. As I(NAcc(c)) = true, we have I(Acc(c)) = false.
Let us consider the interpretation I ′ such that SI′ = SI and NI′ = NI \ {c}. We have
I ′(NAcc(c)) = false. It is easy to see that I ′ satisfies the formula P0

acc. So I ′ is a model
of Σ0(G). That contradicts the fact that I is a NAcc(A)-minimal model of Σ0(G).

�

B.4 Proofs of Section 5.2 on page 44

All the results obtained in Section 5.1 on page 33 can be extended in a straightforward way, replacing
Σ0(G) (resp. Σ0

d(G), Σ0
r(G), Σ0

s(G)) by Σas(G) (resp. Σd(G), Σr(G), Σs(G)). The proofs can be
adapted using cα and sα for denoting arguments.
We just illustrate this mechanism by giving the proof for the first item of Proposition 25 on page 48,
considering the simplified form of Σas(G) (the proof of propositions 23 on page 46 and 24 on
page 47, the proof of the other items of Proposition 25 on page 48 and the proof of Proposition 26
on page 48 can be obtained in a similar way).

Proof of Prop. 25 on page 48:

1. ⇒ Assume that S is conflict-free. Let us consider an interpretation I of Σas(G) such
that : I(Acc(x)) = true if and only if x ∈ S, I(NAcc(x)) = true if and only if
I(Acc(x)) = false. I is a model of Acc(S). It remains to prove that I is a model
of Σas(G). Obviously I satisfies the formulae (NAcc(cα) → ¬Acc(cα)). So, if
I is not a model of Σas(G), there exists a formula Acc(sα) → NAcc(cα) that is
not satisfied by I. In that case I(Acc(sα)) = true and I(NAcc(cα)) = false. By
definition of I, we also have I(Acc(cα)) = true, and then sα and cα are in S. So that
is in contradiction with S being conflict-free.

⇐ Let I be a model of Acc(S) ∪ Σas(G). We prove that SI is conflict-free. If it is not
the case there exist a, b ∈ SI and α with the formulae a = sα, b = cα, Acc(sα) →
NAcc(cα) and (NAcc(cα) → ¬Acc(cα)) in Σas(G). We have I(Acc(sα)) = true
and I(Acc(cα)) = true, so there is a contradiction with I being a model of Σas(G).

�

122

B.5 Proofs of Section 6.2 on page 54

Proof of Prop. 28 on page 56: By definition, S is a conflict-free extension of AS in the sense of
Def. 26 on page 56 means that there is Γ ⊆ R such that (S,Γ) is a conflict-free structure of AS.
As no attack of R is attacked, we have Γ = R. Then S conflict-free means that ∀a, b ∈ S, 6 ∃α ∈
R such that s(α) = a and t(α) = b, which exactly means that S is a conflict-free subset of A in
Dung’s sense. �

Proof of Prop. 29 on page 58:

⇒ Let a be acceptable wrt U = (S,Γ). Let β ∈ R such that t(β) = a. Either β is inhibited wrt
U , or s(β) is defeated wrt U . As attacks in R are simple, we have that s(β) is defeated wrt
U . So there exists γ ∈ Γ ⊆ R such that s(γ) ∈ S and t(γ) = s(β). That means that a is
acceptable wrt S in Dung’s sense.

⇐ Let a be acceptable wrt S ⊆ A in Dung’s sense. Let β ∈ R such that t(β) = a. Then s(β)
is attacked by an argument in S (the corresponding attack being in R). So s(β) is defeated
by the structure U = (S,R). That proves that a is acceptable wrt the structure (S,R).

�

Proof of Prop. 30 on page 58:

⇒ Let S be an admissible extension of AS in the sense of Def. 29 on page 58. By definition,
there exists an admissible structure (S,Γ) of AS. So (S,Γ) is conflict-free. Due to Propo-
sition 28, S is conflict-free in Dung’s sense. Each x ∈ S is acceptable wrt (S,Γ), so it is
also acceptable wrt S in Dung’s sense, due to Proposition 29 on page 58. It follows that S
is an admissible subset of A according to Dung’s definition of admissibility.

⇐ Let S be an admissible subset of A in Dung’s sense. Due to Proposition 28, there exists
Γ ∈ R such that (S,Γ) is a conflict-free structure. As attacks in R are simple, conflict-
freeness implies that Γ = R.
Moreover, each x ∈ S is acceptable wrt S in Dung’s sense, so, due to Proposition 29,
each x ∈ S is acceptable wrt (S,R). As attacks in R are not attacked, it follows that the
structure (S,R) is admissible. So, by definition, S is an admissible extension of AS.

�

Proof of Prop. 31 on page 59:

⇒ Let S be a complete extension of AS in the sense of Def. 31 on page 59. By definition, there
exists a complete structure (S,Γ) of AS. As attacks in R are simple, conflict-freeness im-
plies that Γ = R. So, (S,R) is a complete structure, meaning that (i) (S,R) is admissible
and (ii) each x ∈ A (resp. x ∈ R) which is acceptable wrt (S,R) belongs to S (resp. R).
Due to the above propositions, (i) implies that S is admissible in Dung’s sense and (ii)
implies that each x ∈ A which is acceptable wrt S in Dung’s sense belongs to S (as it is
also acceptable wrt the structure (S,R)). So S is a complete extension in Dung’s sense.

⇐ Let S be a complete extension in Dung’s sense. Due to Proposition 30, the structure (S,R)
is admissible.
Let x ∈ A such that x is acceptable wrt (S,R), then x is acceptable wrt S in Dung’s sense.
As S is complete, x ∈ S.
As attacks in R are not attacked, it follows that the structure (S,R) is complete.

123

�

Proof of Prop. 32 on page 60:

⇒ Let S be a stable extension of AS in the sense of Def. 33 on page 59. By definition, there
exists a stable structure (S,Γ) of AS. So (S,Γ) is conflict-free. As attacks in R are simple,
conflict-freeness implies that Γ = R. So, (S,R) is a stable structure.
Due to Proposition 28, S is conflict-free in Dung’s sense. It remains to prove that ∀a 6∈ S
a is attacked by S.
Let a 6∈ S, as the structure (S,R) is stable, a is defeated wrt (S,R) which exactly means
that a is attacked by S. So S is stable in Dung’s sense.

⇐ Let S be a stable extension according to Dung’s definition. S is conflict-free in Dung’s sense,
so the structure (S,R) is conflict-free. Moreover, ∀a 6∈ S a is attacked by S. As said in
the first part of this proof, that exactly means that ∀a 6∈ S a is defeated wrt (S,R). As the
structure (S,R) contains all the attacks, we have proved that (S,R) is a stable structure,
so S is a stable extension of AS in the sense of Def. 33 on page 59.

�

Proof of Prop. 33 on page 60: Let U = (S,Γ) be a stable structure of ASAF.

We first prove that U is admissible. By definition, U is conflict-free.
Let x ∈ (S ∪ Γ) such that there is β ∈ R with t(β) = x. As U is conflict-free, either
β 6∈ Γ, or s(β) 6∈ S. In the first case, β is inhibited wrt U , and in the second case s(β)
is defeated wrt U . So, we have proved that x is acceptable wrt U . Consequently, U is
admissible.

It remains to prove that each x ∈ A (resp. x ∈ R) which is acceptable wrt (S,Γ) belongs
to S (resp. Γ). Let x ∈ A being acceptable wrt (S,Γ). Assume that x 6∈ S. As U is
stable, x is defeated wrt U . So there is β ∈ Γ with s(β) ∈ S and t(β) = x. As x is
acceptable wrt U , either β is inhibited wrt U , or s(β) is defeated wrt U . In other words,
there is γ ∈ Γ such that s(γ) ∈ S and t(γ) ∈ {β, s(β)}. That is in contradiction with U
being a conflict-free structure. So we have proved that x ∈ S.
An analogous reasoning holds for proving that each x ∈ R which is acceptable wrt (S,Γ)
belongs to Γ.

�

B.6 Proofs of Section 6.3 on page 60

Proof of Prop. 34 on page 60: The proof is inspired by the proof of Proposition 5.
Let us recall that Σ(G) includes formulae (3, 4, 5).

⇒ Assume that the structure (S,Γ) is weakly conflict-free. Let us define an interpretation I of
Σ(G) as follows :
- I(Acc(x)) = true if and only if x ∈ S and I(NAcc(x)) = true if and only if I(Acc(x)) =
false.

124

- I(V al(x)) = true if and only if x ∈ Γ.
We have SI = S and ΓI = Γ. It remains to prove that I is a model of Σ(G).
Obviously I satisfies Formula (5).
If I does not satisfy Formula (4), there exist x ∈ A and α ∈ R such that t(α) = x,
I(V al(α)) = true, I(Acc(s(α))) = true and I(NAcc(x)) = false.
In other words, α ∈ Γ, s(α) ∈ S and x ∈ S. That is in contradiction with (S,Γ) being
weakly conflict-free.
If I does not satisfy Formula (3), there exist α, β ∈ R such that t(α) = β, I(V al(α)) =
true, I(Acc(s(α))) = true and I(V al(β)) = true.
In other words, α, β ∈ Γ and s(α) ∈ S. That is in contradiction with (S,Γ) being weakly
conflict-free.
It follows easily that I is a model of Σ(G).

⇐ Let I be a model of Σ(G). We prove that the structure (SI ,ΓI) is weakly conflict-free.
If it is not the case, either there exist a, b ∈ SI and α ∈ ΓI with s(α) = a and t(α) = b,
or there exist α, β ∈ ΓI with s(α) ∈ SI and t(α) = β.
In the first case, Formula (4) is falsified. In the second case, Formula (3) is falsified. That
is in contradiction with I being a model of Σ(G).

�

Proof of Prop. 35 on page 60: The proof is inspired by the proof of Proposition 9.
Let us recall that Σd(G) is obtained from Σ(G) by adding formulae Parg

def and Patt
def.

⇒ Assume that the structure (S,Γ) is weakly admissible. Due to the proof of Proposition 34 on
page 60, ∃I model of Σ(G) with SI = S and ΓI = Γ and such that:

∀x ∈ S, I(Acc(x)) = true and I(NAcc(x)) = false;
∀x /∈ S, I(Acc(x)) = false and I(NAcc(x)) = true.
I(V al(x)) = true ∀x ∈ Γ

It is easy to prove that I satisfies formulae Parg
def and Patt

def.

⇐ Let I be a model of Σd(G). It is easy to prove that the structure (SI ,ΓI) is weakly admissi-
ble.

�

Proof of Prop. 36 on page 61: Let us recall that Σr(G) is obtained from Σ(G) by adding
formulae Parg

reins and Patt
reins.

⇒ Assume that the structure (S,Γ) is complete. Due to the proof of Proposition 35 on page 60,
∃I model of Σd(G) with SI = S and ΓI = Γ and such that:

∀x ∈ S, I(Acc(x)) = true and I(NAcc(x)) = false;
∀x /∈ S, I(Acc(x)) = false and I(NAcc(x)) = true.
I(V al(x)) = true ∀x ∈ Γ

It is easy to prove that I satisfies formulae Parg
reins and Patt

reins.

125

⇐ Let I be a model of Σd(G)∪Σr(G). Due to Proposition 35 the structure (SI ,ΓI) is weakly
admissible.
It is easy to prove that each x ∈ A (resp. x ∈ R) which acceptable wrt (SI ,ΓI) belongs
to SI (resp. ΓI). As a consequence, {α ∈ R| 6 ∃β ∈ R such that t(β) = α} ⊆ ΓI . So the
structure (SI ,ΓI) is admissible and complete.

�

Proof of Prop. 37 on page 61: Let us recall that Σs(G) is obtained from Σ(G) by adding
formulae Parg

sta and Patt
sta.

Let us first note that if I is a model of Σ(G) which also satisfies Formula Patt
sta, then the structure

(SI ,ΓI) is conflict-free.

⇒ Assume that the structure (S,Γ) is stable. We know that ∃I model of Σ(G) with SI = S
and ΓI = Γ and such that:

∀x ∈ S, I(Acc(x)) = true and I(NAcc(x)) = false;
∀x /∈ S, I(Acc(x)) = false and I(NAcc(x)) = true.
I(V al(x)) = true ∀x ∈ Γ

It is easy to prove that I satisfies formulae Parg
sta and Patt

sta.

⇐ Let I be a model of Σs(G). From the remark above, the structure (SI ,ΓI) is conflict-free.
Then the fact that I satisfies Parg

sta and Patt
sta enables to prove that the structure (SI ,ΓI)

satisfies the two following conditions : ∀a /∈ SI , a is defeated wrt (SI ,ΓI), and ∀α /∈ ΓI ,
α is inhibited wrt (SI ,ΓI). So the structure (SI ,ΓI) is stable.

�

126

	Introduction
	Background on abstract argumentation
	Different abstract argumentation systems
	Argumentation semantics for AS
	Argumentation semantics for BAS
	Argumentation semantics for ASAF
	Method of BCGG11-sh
	Method of CGGS2015-sh
	Method of CCLS16b-sh
	Method of CGGS16-sh

	Argumentation and logics
	Background on logic programming
	Encoding of CNO09-sh,ONS13-sh
	Encoding of CSAD15-sh
	Other related works

	Graph description in a formal language
	Preliminary version of the language for the classic case
	Vocabulary
	Properties
	Some examples

	Extended language for an explicit representation of attacks (recursive case)
	Vocabulary
	Properties
	Some examples

	Logical formalization of semantics: Case of AS
	Semantics for an AS in the basic language
	Conflict-freeness
	Defence
	Reinstatement
	Stability
	Characterizing semantics for an AS in the basic language
	Basic principles restated in terms of NAcc

	Semantics for an AS in the extended language
	Specificity of an AS wrt validity
	Conflict-freeness
	Defence
	Reinstatement
	Stability
	Characterizing semantics for an AS in the extended language

	Synthesis for AS

	Semantics for an ASAF
	Basic principles revisited with recursive attacks
	Conflict-freeness
	Defence
	Reinstatement
	Stability

	Definitions of semantics for an ASAF
	The notion of structure
	Conflict-free structures
	Admissible structures
	Complete structures
	Stable structures

	Characterizing semantics for an ASAF
	Synthesis for ASAF

	Future works
	Bibliography
	Bibliography

	Description of the examples
	Examples without recursivity (AS)
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9
	Example 10
	Example 11
	Example 12
	Example 13

	Examples with recursivity (ASAF)
	Example 14
	Example 15
	Example 16
	Example 17
	Example 18
	Example 19
	Example 20
	Example 21
	Example 22
	Example 23
	Example 24
	Example 25

	Proofs
	Proofs of Section def-lang-prop-v0
	Proofs of Section def-lang-prop
	Proofs of Section model-semarg-v0
	Proofs of Section model-semarg-v1
	Proofs of Section def-log-sem-2
	Proofs of Section carac-sem-ASAF

