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Abstract

This work is a preliminary study that proposes logical encodings for translating argu-
mentation graphs themselves into logical knowledge bases. This translation will be used for
identifying or redefining some properties of argumentation graphs. The graphs we consider
are used to formalize abstract argumentation with at least two different kinds of interaction
(attack and support) and also recursive interactions.
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1 Introduction

The main feature of argumentation framework is the ability to deal with incomplete and / or
contradictory information, especially for reasoning [16; 2]. Moreover, argumentation can be
used to formalize dialogues between several agents by modeling the exchange of arguments in,
e.g., negotiation between agents [4]. An argumentation system (AS) consists of a collection of
arguments interacting with each other through a relation reflecting conflicts between them, called
attack. The issue of argumentation is then to determine “acceptable” sets of arguments (i.e.,
sets able to defend themselves collectively while avoiding internal attacks), called “extensions”,
and thus to reach a coherent conclusion. Another form of analysis of an AS is the study of the
particular status of each argument, this status is based on membership (or non-membership)
of the extensions. Formal frameworks have greatly eased the modeling and study of AS. In
particular, the framework of [16] allows to completely abstract the “concrete” meaning of the
arguments and relies only on binary interactions that may exist between them.

Many different extensions exist. For instance, bipolar AS (BAS) correspond to AS with a
second kind of interaction, the support relation. This relation represents a positive interaction
between arguments and has been first introduced by [17; 27]. In [8], the support relation is left
general so that the bipolar framework keeps a high level of abstraction. However there is no
single interpretation of the support, and a number of researchers proposed specialized variants
of the support relation (deductive support [6], necessary support [21; 22], evidential support [23;
24]). Each specialization can be associated with an appropriate modelling using an appropriate
complex attack. These proposals have been developed quite independently, based on different
intuitions and with different formalizations. In [10], a comparative study has been done in
order to restate these proposals in a common setting, the bipolar argumentation framework.
Basically, the idea is to keep the original arguments, to add complex attacks defined by the
combination of the original attack and the support, and to modify the classical notions of
acceptability. An important result of [10] is the highlight of a kind of duality between the
deductive and the necessary interpretations of support, which results in a duality in the modelling
by complex attacks. In this context, new different papers have recently been written: some of
them give a translation between necessary supports and evidential supports [25]; others propose
a justification of the necessary support using the notion of subarguments [26]; an extension of
the necessary support is presented in [20].

Another important extensions are AS that take into account interactions on interactions. A
first version has been introduced by [19], then studied in [5] under the name of AFRA (Argu-
mentation Framework with Recursive Attacks). This version describes abstract argumentation
systems in which the interactions can be either attacks between arguments or attacks from an
argument to another attack. In this case, as for the bipolar case, a translation of an AFRA into
an equivalent AS can be defined by the addition of some new arguments and the attacks they
produce or they receive. Recently, an extension of these AFRA has been proposed in [13] in order
to take into account supports on arguments or on interactions. These systems are called ASAF
(Attack-Support Argumentation Frameworks). And, once again, a translation of an ASAF into
an equivalent AS is proposed by the addition of arguments and attacks.

The subject of the current paper is to propose a logical vision of an ASAF that can justify the
introduction of all these new attacks. This logical vision is issued from works in bioinformatics
(see [15; 1]). In this domain, we can find metabolic networks that describe the chemical reactions
of cells; these reactions can be negative (inhibition of a protein) or positive (production of a new
protein) and they can depend on other proteins or other reactions. A translation from metabolic
networks to classical logic has been proposed in [1]. This translation allows to use automated
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deduction methods for reasoning on these networks. We will show that ASAF are very similar to
these graphs considering that inhibition is a kind of attack, and production a kind of (deductive)
support.

Some background about argumentation is given in Section 2 for ASAF. Section 4 describes
the logical vision of processes of inhibition and production of proteins. Section 5 presents the
logical vision of the BAS and the ASAF. Then in Section 6, we give some preliminary results
towards a comparative study with existing works. Finally, Section 7 concludes and suggests
perspectives of our work.

2 Background of abstract argumentation systems

Bipolar argumentation systems extend Dung’s argumentation systems.

2.1 Abstract argumentation system (AS)

Dung’s seminal abstract framework consists of a set of arguments and only one type of interaction
between them, namely attack. What really means is the way arguments are in conflict.

Def. 1 (Dung AS) A Dung’s argumentation system (AS, for short) is a pair 〈A,R〉 where
A is a finite and non-empty set of arguments and R is a binary relation over A (a subset of
A×A), called the attack relation.

An argumentation system can be represented by a directed graph denoted G, called the
interaction graph, in which the nodes represent arguments and the edges are defined by the
attack relation: ∀a, b ∈ A, aRb is represented by a−→b.

Def. 2 (Admissibility in AS) Given 〈A,R〉 and S ⊆ A,
• S is conflict-free in 〈A,R〉 iff1 there are no arguments a, b ∈ S, s.t.2 aRb.
• a ∈ A is acceptable in 〈A,R〉 wrt3 S iff ∀b ∈ A s.t. bRa, ∃c ∈ S s.t. cRb.
• S is admissible in 〈A,R〉 iff S is conflict-free and each argument in S is acceptable wrt S.

Standard semantics introduced by Dung (preferred, stable, grounded) enable to characterize
admissible sets of arguments that satisfy some form of optimality.

Def. 3 (Extensions) Given 〈A,R〉 and S ⊆ A,
• S is a preferred extension of 〈A,R〉 iff it is a maximal (wrt ⊆) admissible set.
• S is a stable extension of 〈A,R〉 iff it is conflict-free and for each a 6∈ S, there is b ∈ S s.t.
bRa.
• S is the grounded extension of 〈A,R〉 iff it is the least (wrt ⊆) admissible set X s.t. each
argument acceptable wrt X belongs to X.

Ex. 1 Let AS be defined by A = {a, b, c, d, e} and R = {(a, b), (b, a), (b, c), (c, d), (d, e), (e, c)}
and represented by the following graph. There are two preferred extensions ({a} and {b, d}), one
stable extension ({b, d}) and the grounded extension is the empty set.

1if and only if
2such that
3with respect to
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a b c d

e

The status of an argument is determined by its membership of the extensions of the selected
semantics: e.g., an argument can be “skeptically accepted” (resp. “credulously”) if it belongs to
all the extensions (resp. at least to one extension) and be “rejected” if it does not belong to any
extension.

2.2 Abstract bipolar argumentation system (BAS)

The abstract bipolar argumentation framework presented in [8; 9] extends Dung’s framework
in order to take into account both negative interactions expressed by the attack relation and
positive interactions expressed by a support relation (see [3] for a more general survey about
bipolarity in argumentation).

Def. 4 (BAS) A bipolar argumentation system (BAS, for short) is a tuple 〈A,Ratt,Rsup〉
where A is a finite and non-empty set of arguments, Ratt is a binary relation over A called
the attack relation and Rsup is a binary relation over A called the support relation.

A BAS can still be represented by a directed graph Gb called the bipolar interaction graph,
with two kinds of edges. Let ai and aj ∈ A, aiRattaj (resp. aiRsupaj) means that ai attacks aj
(resp. ai supports aj) and it is represented by a−→b (resp. by a=⇒b).

Ex. 2 For instance, in the following graph representing a BAS, there is a support from g to d

and an attack from b to a

a b c d g

e f

Handling support and attack at an abstract level has the advantage to keep genericity. An
abstract bipolar framework is useful as an analytic tool for studying different notions of complex
attacks, complex conflicts, and new semantics taking into account both kinds of interactions
between arguments. However, the drawback is the lack of guidelines for choosing the appropriate
definitions and semantics depending on the application. For solving this problem, some variants
of the support relation have been proposed recently: the deductive support and the necessary
support4.

2.2.1 Deductive supports

Among the different variants defined for taking into account a support between arguments, [6]

proposed the notion of deductive support. This notion is intended to enforce the following
constraint: If bRsupc then the acceptance of b implies the acceptance of c, and as a consequence
the non-acceptance of c implies the non-acceptance of b.

In order to compute semantics of a BAS, one of the main proposals is to translate the BAS
into an AS expressing the new attacks due to the presence of supports. In the case of a deductive
support, two kinds of attack can appear. The first one, called mediated attack, corresponds to

4A third one, the evidential support, has also been proposed in [23; 24; 25] but will not be discussed here.
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the case when bRsupc and aRattc: the acceptance of a implies the non-acceptance of c and so
the non-acceptance of b.

Def. 5 ([6] Mediated attack)
Let BAS = 〈A,Ratt,Rsup〉. There is a mediated attack from a to b iff there is a sequence

a1Rsup . . .Rsupan−1, and anRattan−1, n ≥ 3, with a1 = b, an = a. M
Rsup

Ratt
denotes the set of

mediated attacks generated by Rsup on Ratt.

Moreover, the deductive interpretation of the support justifies the introduction of another
attack (called supported attacks in [9]): if aRsupc and cRattb, the acceptance of a implies the
acceptance of c and the acceptance of c implies the non-acceptance of b; so, the acceptance of a
implies the non-acceptance of b.

Def. 6 ([9] Supported attack)
Let BAS = 〈A,Ratt,Rsup〉. There is a supported attack from a to b iff there is a sequence
a1R1 . . .Rn−1an, n ≥ 3, with a1 = a, an = b, ∀i = 1 . . . n − 2, Ri = Rsup and Rn−1 = Ratt.

S
Rsup

Ratt
denotes the set of supported attacks generated by Rsup on Ratt.

So, with the deductive interpretation of the support, new kinds of attack, from a to b, can
be considered in the following cases:

Supported attacks: Mediated attacks:

a . . . c b

b . . . c

a

Def. 7 The AS defined by 〈A,Ratt ∪M
Rsup

Ratt
∪ S

Rsup

Ratt
〉 is called the associated Dung AS for the

deductive support of BAS and denoted by AS
D.

From Definitions 5 and 6, new attacks called d+-attacks can be generated inductively as
follows:5

Def. 8 ([10], d+-attacks) Let BAS = 〈A,Ratt,Rsup〉 with Rsup being a set of deductive sup-
ports. There exists a d+-attack from a to b iff

• either aRattb, or aS
Rsup

Ratt
b, or aM

Rsup

Ratt
b (Basic case),

• or there exists an argument c s.t. a supports c and c d+-attacks b (Case 1),
• or there exists an argument c s.t. a d+-attacks c and b supports c (Case 2).

D
Rsup

Ratt
denoted the set of d+-attacks generated by Rsup on Ratt.

The AS defined by 〈A,D
Rsup

Ratt
〉 is called the complete associated Dung AS for the deductive

support of BAS and denoted by AS
Dc.

BAS has been turned into a Dung’s argumentation system AS6(AS
Dc), in which the classical

semantics can be considered.

5Our notation is different that the one used in [10]. We have modified it in order to homogenize with the
notation of necessary attacks defined in [11].

6See in [10], some properties of AS
Dc.
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2.2.2 Necessary supports

Necessary support has been initially7 proposed in [21; 22] with the following interpretation: If
cRsupb then the acceptance of c is necessary to get the acceptance of b, or equivalently the
acceptance of b implies the acceptance of c.

Suppose now that aRattc. The acceptance of a implies the non-acceptance of c and so the
non-acceptance of b. This constraint can be taken into account by introducing a new attack,
called secondary attack in [9] and extended attack in [21].

Moreover, another kind of complex attack can be justified: If cRsupa and cRattb, the accep-
tance of a implies the acceptance of c and the acceptance of c implies the non-acceptance of b.
So, the acceptance of a implies the non-acceptance of b. This constraint relating a and b should
be enforced by adding a new complex attack from a to b proposed in [22].

The formal definition of these two complex attacks is:

Def. 9 ([22] Extended attack) Let BAS = 〈A,Ratt,Rsup〉. There is an extended attack
from a to b iff
1. either aRattb,
2. or there is a sequence a1Ratta2Rsup . . .Rsupan, n ≥ 3, with a1 = a, an = b,
3. or there is a sequence a1Rsup . . .Rsupan, and a1Rattap, n ≥ 2, with an = a, ap = b.
The set of the extended attacks will be denoted by R

ext
att .

The AS defined by 〈A,Rext
att 〉 is called the associated Dung AS for the necessary support of

BAS and denoted by AS
N .

So, with the necessary interpretation of the support, new kinds of attack, from a to b, can
be considered in the following cases:

Extended attacks – Case 2 Extended attacks – Case 3:
(secondary attacks):

a c . . . b

c b

. . . a

As for deductive supports, from Definition 9, new attacks called n+-attacks can be generated
inductively as follows:

Def. 10 (n+-attacks) Let BAS = 〈A,Ratt,Rsup〉 with Rsup being a set of necessary supports.
There exists a n+-attack from a to b iff
• either aRattb, or there is a (case 1 or case 2) extended attack from a to b,
• or there exists an argument c s.t. a n+-attacks c and c supports b,
• or there exists an argument c s.t. c supports a and c n+-attacks b.

Considering the n+-attacks on A enables to define an AS called the complete associated
Dung AS for the necessary support of BAS and denoted by AS

Nc.

2.2.3 Duality between deductive and necessary supports

In this section, we will use the following notation:

7An extension of this work is presented in [20]. In this new version the support version relies a set of

arguments to an argument (whereas, in the previous version the support relation was a binary relation between
two arguments). In this context, the meaning of a support is not exactly the same: If {a1, . . . , an}Rsupb then the
acceptance of b implies the acceptance of at least one argument of {a1, . . . , an}. This extension of the necessary
support is not taken into account in the current paper.
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Nota. 1 Deductive (resp. necessary) support will be called d-support (resp. n-support) and the
existence of a d-support (resp. n-support) between two arguments a and b will be denoted by a
D
=⇒ b (resp. a

N
=⇒ b).

Deductive support and necessary support have been introduced independently. Nevertheless,

they correspond to dual interpretations of the support in the following sense: a
N
=⇒ b means

that the acceptance of a is necessary to get the acceptance of b, and a
D
=⇒ b means that the

acceptance of a implies the acceptance of b. So a
N
=⇒ b is equivalent to b

D
=⇒ a.

In [10], this duality has been used to show another kind of duality between mediated attacks
and secondary attacks: the mediated attacks obtained by combining the attack relation Ratt and
the support relation Rsup exactly correspond to the secondary attacks obtained by combining
the attack relation Ratt and the support relation R

−1
sup which is the symmetric relation of Rsup

(R−1
sup = {(b, a)|(a, b) ∈ Rsup}). Similarly, the supported attacks obtained by combining the

attack relation Ratt and the support relation Rsup exactly correspond to the the third case of
extended attack (Definition 9) obtained by combining the attack relation Ratt and the support
relation R

−1
sup.

Nota. 2 Let BAS = 〈A,Ratt,Rsup〉 with Rsup being a set of n-supports.
• BASsym denotes the bipolar framework defined by 〈A, Ratt, R

−1
sup〉 (R−1

sup is a set of d-
supports).
• AF

Dc
sym denotes the complete associated Dung AS for BASsym (obtained using the d+-attacks

issued from BASsym).
• The complete associated Dung AS for the necessary support, denoted by AS

Nc, exactly cor-
responds to AF

Dc
sym.

Using the above notations, Table 1, issued from [10], gives a synthetic view of the correspon-
dences between the three approaches (abstract, deductive and necessary).

Deductive supports Necessary supports
of [6] of [21; 22]

Rsup is a d-support R
−1
sup is a n-support

supported attack extended attack (case 3) with R
−1
sup

mediated attack extended attack (case 2) with R
−1
sup

AS
Dc

AS
Nc for R

−1
sup

Table 1: Correspondences between deductive and necessary supports

2.2.4 Axiomatisation of a necessary BAS

In [11], an axiomatic approach for handling necessary support has been proposed. Four con-
straints have be defined describing the desired behavior of a BAS with necessary support, and
different frameworks suitable for encoding these constraints have been studied.

Transitivity (TRA) This first requirement concerns the relation Rsup alone. It expresses
transitivity of the necessary support. It is defined as:

Def. 11 (Constraint TRA [11]) ∀a, b ∈ A, if ∃n > 1 such that a = a1Rsup . . .Rsupan =
b, then a supports b.
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Closure (CLO) A second constraint also concerns the relation Rsup alone and expresses the
fact that if cRsupb, then “the acceptance of b implies the acceptance of c”. So, if cRsupb,
and there exists an extension S containing b, then S also contains c. This constraint can
be expressed by the property of closure of an extension under R

−1
sup.

Def. 12 (Constraint CLO [11]) Let s be a semantics and E be an extension under s.
∀a, b ∈ A, if aRsupb and b ∈ E, then a ∈ E.

Conflicting sets (CFS) Now, we consider constraints induced by the presence of both attacks
and supports in a BAS. Starting from the original interpretation, if aRattc and cRsupb,
“the acceptance of a implies the non-acceptance of c” and “the acceptance of b implies the
acceptance of c”. So, using contrapositives, “the acceptance of a implies the non-acceptance
of b”, and then “the acceptance of b implies the non-acceptance of a”. Thus, we obtain
a symmetric constraint involving a and b. However, the fact that “the acceptance of a

implies the non-acceptance of b” is not equivalent to the fact that there is an attack from
a to b. We have only the sufficient condition. So, the creation of a complex attack (here
a secondary attack) from a to b can be viewed in some sense too strong. Hence, faced
with the case when aRattc and cRsupb, we propose to assert a conflict between a and b,
or in other words that the set {a, b} is a conflicting set. Similarly, if cRattb and cRsupa,
“the acceptance of a implies the acceptance of c” and so “the acceptance of a implies the
non-acceptance of b”.

Def. 13 (Constraint CFS [11]) ∀a, b, c ∈ A. If (aRattc and c supports b) or (cRattb

and c supports a) then {a, b} is a conflicting set.

Addition of new attacks (nATT, n+ATT) According to the applications and the previous
works presented in literature, we may impose stronger constraints corresponding to the
addition of new attacks. Two cases may be considered:

Def. 14 (Constraint nATT [11]) If aRattc and cRsupb, then there is a new attack from
a to b.

Def. 15 (Constraint n+ATT [11]) If (aRattc and cRsupb) or (cRattb and cRsupa),
then there is a new attack from a to b.

nATT (resp. n+ATT) corresponds to the addition of secondary (resp. extended) attacks.

3 Recursive interactions

The idea of recursive interaction has been introduced in [19] and developed in [5] for recursive
attacks and in [12] for recursive supports plus attacks.

The purpose is to express the fact that the validity of an interaction may depend on another
interaction (for instance because of preferences as in [19]).

3.1 AS with recursive interactions

In [5], recursive attacks are considered. An attack is defined recursively as a pair where the first
part is an argument and the second part is an argument (basic case) or another attack.

Def. 16 (AFRA) An Argumentation Framework with Recursive Attacks (AFRA) is a pair
〈A,R〉 where:
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• A is a set of arguments,
• R is a subset of A× (A∪R). R is a set of attacks, each attack being defined either between
two arguments of A, or between an argument of A and an attack of R.

Note that, in order to reason with these recursive attacks, it is mandatory to name them.
Moreover, given an attack α = (a,X), a is called the source of α and X is called the target of
α. The notion of defeat is defined as follows:

Def. 17 (Defeat in AFRA) Let AFRA = 〈A,R〉. Let α, β ∈ R. Let X ∈ A ∪R.
• α directly defeats X iff X is the target of α.
• α indirectly defeats β iff the target of α is an argument that is the source of β.

Then in [5], a translation of an AFRA into an AS is provided:

Def. 18 (AS associated with an AFRA) Let AFRA = 〈A,R〉. The AS associated with
AFRA is AS = 〈A′,R′〉 defined by:
• A

′ = A ∪R,
• R

′ = {(X,Y ) s.t. X ∈ R, Y ∈ A ∪R and X directly or indirectly defeats Y }.

The previous notions are illustrated on the following example:

Ex. 3 Consider the AFRA represented by:

p

a n

g c

ǫ δ

α

γ

β

For instance, ǫ directly defeats n and indirectly defeats δ.
The AS associated with AFRA is:

p

a n

ǫ δ γ

g β α c

The following points seem counterintuitive:
• there is no attack between a and n (more generally, no argument from A can be an attacker
in the associated AS of the AFRA),
• there is no link between a and ǫ (more generally, there is no link between an attack and its
source); that is surprizing since, without a, the attack ǫ does not exist.
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3.2 BAS with recursive interactions

In [12], AFRA has been extended in order to handle supports, with the necessary interpretation.
In that case, supports as well as attacks can be recursive.

Def. 19 (ASAF) An Attack-Support Argumentation Framework (ASAF) is a triple 〈A, Ratt,
Rsup〉 where:
• A is a set of arguments,
• Ratt is a subset of A× (A∪Ratt ∪Rsup). Ratt is a set of attacks, each attack being defined
either between two arguments of A, or between an argument of A and an attack of Ratt, or
else between an argument of A and a support of Rsup.
• Rsup is a subset of A× (A∪Ratt ∪Rsup). Rsup is a set of necessary supports, each support
being defined either between two arguments of A, or between an argument of A and an attack
of Ratt, or else between an argument of A and a support of Rsup. Note that Rsup is assumed
to be irreflexive and transitive.

We assume that Ratt ∩Rsup = ∅.

As in the AFRA approach, a translation of an ASAF into an AS is given in [12]. This
translation follows a two-steps process (see Def. 22): first, the ASAF is turned into a necessary
BAS (see Def. 20), then this BAS is turned into an AS (see Def. 21) through the addition of
extended attacks.

For the first step, the idea is to encode an attack α = (a, c), a, c being arguments, by a
meta-argument α which interacts with a and c in the following way: the acceptance of the meta-
argument α means that the attack α is “active” and as a is necessary for the attack it originates,
there will be a necessary support from a to α. Then the fact that α defeats c is encoded by a
simple attack from the meta-argument α to the argument c. So the attack α = (a, c) is encoded
by a=⇒α−→c.
In the case of a support β = (b, c), b, c being arguments, two meta-arguments β+ and β− are
introduced with the following meaning: “β+ active” means that c is accepted (and so b is also
accepted) and “β− active” means that c is not accepted. So the support β = (b, c) is encoded
by b=⇒β+−→β−−→c.

The formal definition of the BAS associated with ASAF is given below:

Def. 20 (BAS associated with ASAF) Let ASAF = 〈A,Ratt,Rsup〉. The BAS associated
with ASAF is the triple BAS

′ = 〈A′,Ratt
′,Rsup

′〉 such that:

A
′ = A

⋃
{α|α = (a, x) ∈ Ratt}⋃
{β−, β+|β = (b, y) ∈ Rsup}

Ratt
′ = {(α, x)|α = (a, x) ∈ Ratt and x ∈ A ∪Ratt}⋃

{(β+, β−), (β−, y)|β = (b, y) ∈ Rsup and y ∈ A ∪Ratt}⋃
{(α, β+), (α, β−)|α = (a, β) ∈ Ratt and β ∈ Rsup}⋃
{(β+, β−), (β−, γ+), (β−, γ−)|β = (b, γ) ∈ Rsup and γ ∈ Rsup}
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Rsup
′ = {(a, α)|α = (a, x) ∈ Ratt and x ∈ A ∪Ratt}⋃

{(b, β+)|β = (b, y) ∈ Rsup and y ∈ A ∪Ratt}⋃
{(a, α)|α = (a, β) ∈ Ratt and β ∈ Rsup}⋃
{(b, β+)|β = (b, γ) ∈ Rsup and γ ∈ Rsup}

Note that Ratt (resp. Rsup) is not included in Ratt
′ (resp. Rsup

′). Nevertheless, due to the
introduction of a necessary support, a link between an attack (or a support) and its source exists
(this addresses one of the problems pointed in AFRA).

Note also that the attacks and supports of Ratt
′ and Rsup

′ are “simple” interactions, i.e.
pairs of elements of A′ which are not labelled with a symbol.

The following examples illustrate different cases:

Ex. 4

ASAF: BAS, the associated BAS of ASAF:

a b c
α β a α b β c

Ex. 5 Consider different ASAF with recursive interactions and their associated BAS. We suc-
cessively consider an attack which is attacked, an attack which is supported, a support which is
attacked and a support which is supported.

ASAF: BAS, the associated BAS of ASAF:

a c

b

β

α a α c

b β

a c

b

β

α a α c

b β+ β−

a c

b

β

α
a α+ α− c

b β

a c

b

β

α
a α+ α− c

b β+ β−

After turning ASAF into a BAS with necessary supports, the second step is to create an
AS. The approach followed in [12] is to encode supports by adding complex attacks, namely the
secondary attacks (or case 2 - extended attacks, see Definition 9). Formally:

10



Def. 21 (AS associated with BAS) Let BAS = 〈A,Ratt,Rsup〉 be a necessary BAS. Its as-
sociated AS is the pair AS

′ = 〈A′,R′〉 such that
• A

′ = A,
• R

′ = Ratt∪{(a, b)| there is a sequence a1Ratta2Rsup . . .Rsupan, n ≥ 3, with a1 = a, an = b}

Note that the AS obtained using Def. 21 is included in the AS obtained with Def. 9, since
Def. 9 (corresponding to Constraint n+ATT) is more general that Def. 21 (corresponding only
to Constraint nATT). Nevertheless, in term of acceptability, the results are the same (see [11]).

Def. 22 (AS associated with ASAF) Let ASAF = 〈A,Ratt,Rsup〉. The AS associated with
ASAF is the associated AS of the associated BAS of ASAF.

For summarizing, for taking into account recursive interactions (attacks and supports), the
“ASAF approach” proposes a translation of an ASAF into a BAS followed by a translation of
this BAS into an AS.

4 Logics in biology

[14; 1] present a logical approach for reasoning on metabolic networks. These networks describe
the chemical reactions of cells; these reactions can be negative (inhibition of a protein) or positive
(production of a new protein) and they can depend on other proteins and other reactions. Such
a network can be graphically represented by a molecular interaction map (MIM) that is a graph
whose nodes are proteins and edges are either relations between proteins (Protein p1 can inhibit
-resp. product – Protein p2), or relations from a protein to another relation (Protein p3 can
inhibit -resp. activate – a relation, for instance the relation between p1 and p4 in Ex. 6). A
translation from metabolic networks to classical logic has been proposed in [1]. This translation
allows to use automated deduction methods for reasoning on these networks.

Ex. 6 The following graph gives a short example of a MIM:

Protein p0 Protein p1 Protein p2

Protein p3

Protein p5
�

Protein p4

Relations in a MIM are not restricted to binary ones: for instance a set of proteins can
produce a reaction on another protein. It is the case in the graph above: the set {p0, p5} produces
p3.

Four types of edges can be found in a MIM (uppercase letters denote sets of proteins and
lowercase letters denote either proteins, or reactions):
• P p: the presence of P induces the production of p,
• P � p: the presence of P inhibits the production of p (P and p cannot be present
together),
• P r: the presence of P activates the reaction r,
• P r: the presence of P inhibits the reaction r (if P is present, then the reaction r

cannot be activated).

11



Each type of edge encodes a kind of reaction.
and � describe a causal link from a protein (or a set of proteins) to another protein.

They are called causal reactions in the following.
By contrast, and describe the impact of a protein (or a set of proteins) on a reaction

r. They are called context reactions in the following. P and Q define the context C in
which the reaction r can occur. Moreover a context reaction (resp. ) may also have its
own context C′ (resp. C′′). In that case, the context C is denoted by a pair 〈C′P , C′′Q 〉.
Note that a context may be associated to any reaction (including the causal reactions).

Def. 23 (MIM) A MIM is a graph 〈P,React〉 where:
• P is a finite non-empty set of proteins,
• React is a set of reactions involving proteins. React is partitioned into four subsets:
– ProP is a subset of 2P ×P representing the reactions that produce a protein using a set of
proteins,
– InhP is a subset of 2P×P representing the reactions that inhibit the production of a protein
using a set of proteins,
– ActR is a subset of 2P × React representing the reactions in which a set of proteins
activates a reaction,
– InhR is a subset of 2P ×React representing the reactions which a set of proteins inhibits
a reaction.

ProP ∪ InhP is the set of causal reactions.
ActR ∪ InhR is the set of context reactions (reactions describing a part of a context).

In the following we describe the logical translation of each element of a MIM.
Let us first consider a causal reaction without any context. The causal reaction P q (resp.
P � q) is interpreted by the fact that if all the proteins of P are present then the protein q

is produced (resp. inhibited). Now assume that the causal reaction P q has the context C.
In that case, the protein q is produced provided that all the proteins of P are present and the
context C is “active”. The fact that q is produced (resp. inhibited) is encoded with the logical
symbol Prq (resp. Inq) and the fact that the context C is active is encoded with a logical formula
A(C). Moreover, a formula will be added for expressing that if p is produced (resp. inhibited)
then p is present (resp. not present).

This leads to the following definition (note that the definition of A(C) is given in Def. 25):

Def. 24 (Encoding of causal reactions) Let q be a protein, let P = {p1, . . . , pn} be a set of
proteins.

Let P q be a causal reaction having the context C. This reaction can be translated into
the two following propositional formulae:
• (A(C)

∧
pi∈P

pi) → Prq and
• Prq → q.

Let P � q be a causal reaction having the context C. This reaction can be translated into
the two following propositional formulae:
• (A(C)

∧
pi∈P

pi) → Inq and
• Inq → ¬q.

The knowledge base Σ1 giving the translation of all causal reactions of the MIM is defined

12



by:

Σ1 = {(A(C)
∧

pi∈P

pi) → Prq|(P q) ∈ ProP}

∪ {(A(C)
∧

pi∈P

pi) → Inq|(P �q) ∈ InhP}

∪ {Prq → q|q ∈ P}

∪ {Inq → ¬q|q ∈ P}

Now let us consider a reaction r with the context C = 〈P ,Q 〉. Let us denote P r

by r1 and Q r by r2. The fact that C is active intuitively means that the context reaction
r1 is “active” and the context reaction r2 is “inactive”. Moreover r1 is considered as active if
each protein of the set P is present, and r2 is considered as inactive if at least one protein of
the set Q is absent. That enables to define the formula A(C) which expresses that the context
is “active”. More generally, the context reactions r1 and r2 themselves may have a context. In
that case, r1 is considered as active if each protein of the set P is present and the context of r1
is active. And similarly r2 is considered as inactive if at least one protein of the set Q is absent
or the context of r2 is not active.

This leads to the following definition:

Def. 25 (Encoding context reactions) Let 〈P,React〉 be a MIM. Let r ∈ React be a re-
action of the MIM. Let P = {p1, . . . , pn}, Q = {q1, . . . , qm} be sets of proteins. Let C =
〈C′P , C′′Q 〉 be the context of r, two logical expressions can be defined, the activation
expression A(C) and the inhibition expression I(C):

A(C) = (
∧

pi∈P

pi)∧A(C
′)∧((

∨

qj∈Q

¬qj)∨I(C
′′)) I(C) = (

∨

pi∈P

¬pi)∨I(C
′)∨((

∧

qj∈Q

qj)∧A(C
′′))

The knowledge base Σ2 giving the translation of all context reactions of the MIM is defined
by:

Σ2 = {A(C) ↔ ((∧(pi∈P )pi) ∧A(C′) ∧ ((∨(qj∈Q)¬qj) ∨ I(C′′)))|

∃r ∈ React such that C = 〈C′P , C′′Q 〉 is the context of r}

∪ {I(C) ↔ ((∨(pi∈P )¬pi) ∨ I(C′) ∨ ((∧(qj∈Q)qj) ∧A(C′′)))|

∃r ∈ React such that C = 〈C′P , C′′Q 〉 is the context of r}

Note that, in the above definition, the activation expression and the inhibition expression are
defined inductively. In the particular case of a simple context of the form C = 〈P ,Q 〉, it
can be easily proved that I(C) is equivalent to ¬A(C). Then by induction on the structure of a
context it can be proved that it is also the case for a context of the form C = 〈C′P , C′′Q 〉.

Prop. 1 Let C = 〈C′P , C′′Q 〉 be the context of a reaction r of a given MIM. It holds
that I(C) is equivalent to ¬A(C).

Proof:

• Basic case : Let C = 〈P ,Q 〉. A(C) = (
∧

pi∈P pi) ∧ (
∨

qj∈Q ¬qj) and I(C) =

(
∨

pi∈P ¬pi) ∨ (
∧

qj∈Q qj). Obviously, I(C) is equivalent to ¬A(C).
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• Induction step : Let C = 〈C′P , C′′Q 〉 and assume that I(C′) = ¬A(C′) and
I(C′′) = ¬A(C′′). We have I(C) = (

∨
pi∈P ¬pi) ∨ I(C′) ∨ ((

∧
qj∈Q qj) ∧ A(C′′)). So I(C) =

(
∨

pi∈P ¬pi)∨¬A(C
′)∨((

∧
qj∈Q qj)∧¬I(C

′′)). As A(C) = (
∧

pi∈P pi)∧A(C
′)∧((

∨
qj∈Q ¬qj)∨

I(C′′)), we obtain that I(C) is equivalent to ¬A(C).

✷

Def. 26 (Encoding of MIM) Let 〈P,React〉 be a MIM. The knowledge base Σ = Σ1 ∪Σ2 is
the translation of this MIM.

Ex. 6 (cont’d) In this example, we first introduce labels on edges in order to name reactions
and to distinguish between causal and context reactions:

Protein p0 Protein p1 Protein p2

Protein p3

Protein p5
�

Protein p4

r1 r3

r4

r2
r5

Reactions r1, r3 and r4 are causal reactions. r2 and r5 are context reactions.
r1, r2 and r5 have no context while r3 and r4 have a context.

• let C = 〈p3 ,−〉 be the context of r3 (p3 is used for activating r3 and there is no specified
inhibition of r3).
• let C′ = 〈−, p4 〉 the context of r4 is (p4 is used for inhibiting r4 and there is no specified
activation of r4).

Applying definitions 25 and 24 we obtain:
• (p5 ∧ p0) → Prp3 (p0 and p5 produce p3)
• (A(C) ∧ p1) → Inp4 (p1 produces p4 with the context of the reaction r3); and A(C) ↔ p3, we
have (p3 ∧ p1) → Inp4
• (A(C′) ∧ p1) → Prp2 (p1 inhibits p2 with the context of the reaction r4); and A(C′) ↔ ¬p4,
we have (¬p4 ∧ p1) → Prp2
• and then all the formulae Prpi → pi and Inpi → ¬pi

So the corresponding knowledge base is equivalent to:

(p5 ∧ p0) → Prp3
(p3 ∧ p1) → Inp4
(¬p4 ∧ p1) → Prp2

Prp0 → p0
Inp0 → ¬p0
Prp1 → p1
Inp1 → ¬p1
Prp2 → p2
Inp2 → ¬p2
Prp3 → p3
Inp3 → ¬p3
Prp4 → p4
Inp4 → ¬p4
Prp5 → p5
Inp5 → ¬p5

Then using a logical solver, we are able to deduce the presence of Protein p2 from the presence
of the proteins p0, p1 and p5. By contrast, Protein p1 is not enough for producing p2.

The logical translation of a MIM always gives a consistent knowledge base:
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Prop. 2 The knowledge base associated with a MIM is logically consistent.

Proof: Let a consider a MIM built on the set {p1, . . . , pn} of proteins. Let Σ be its associated
knowledge base. In the MIM, we can find only the following elements:

• P q with the context C, which is translated into the following formulae of Σ:
(A(C)

∧
pi∈P pi) → Prq and Prq → q;

• P � q with the context C, which is translated into the following formulae of Σ:
(A(C)

∧
pi∈P pi) → Inq and Inq → ¬q;

• P r and Q r, which define the context C of r and are only used for expressing
A(C) and its negation:

A(C) ↔ (
∧

pi∈P pi) ∧A(C′) ∧ ((
∨

qj∈Q ¬qj) ∨ I(C′′)).

The following assignation gives a model of Σ:

• each pi is assigned to false, so each formula (A(C)
∧

pi∈P pi) → Prq, each formula
(A(C)

∧
pi∈P pi) → Inq are assigned to true (whatever the value assigned to A(C), for

any C);
• each Prpi is assigned to false, so each formula Prq → q is assigned to it true;
• each Inpi is assigned to false, so each formula Inq → ¬q is assigned to it true.

Since Σ has a model, Σ is consistent. ✷

However, as soon as we introduce the presence of a protein in the MIM, the corresponding
knowledge base may become inconsistent:

Ex. 7 The following MIM is encoded by a consistent base Σ:

Protein p0 �Protein p1

Σ = { p0 → Inp1,

Inp1 → ¬p1,
p1 → Prp0,

Prp0 → p0}

However, Σ |= ¬p1.

So Σ ∪ {p1} is inconsistent.

Ex. 8 The following MIM is encoded by a consistent base Σ:

�Protein p0
Σ = { p0 → Inp0,

Inp0 → ¬p0}
However, Σ |= ¬p0

So Σ ∪ {p0} is inconsistent.

5 A logical representation of an argumentation graph

5.1 The case of a bipolar argumentation graph

It is easy to draw a parallel between a MIM and a bipolar argumentation graph. More precisely:
• the notion of attack between two arguments in a BAS corresponds to the notion of inhibition
of a protein by another protein in a MIM:

the reaction p1 �p2 means “if p1 is present then p2 is not present”;

the attack a1−→a2 means “if a1 is accepted then a2 is not accepted”.

• the notion of deductive support between two arguments in a BAS corresponds to the notion
of production of a protein by another protein in a MIM:

the reaction p1 p2 means“if p1 is present then p2 is present”;

the deductive support a1=⇒a2 means “if a1 is accepted then a2 is accepted”.
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Note that in a BAS the interactions are always binary and no interaction can impact on another
interaction.
Using the duality between deductive and necessary supports, we pursue the parallel and es-
tablish a correspondance between the notion of necessary support between two arguments in a
BAS and the notion of production of a protein by another protein in a MIM:

the reaction p1 p2 means “if p1 is present then p2 is present”;

the necessary support a2=⇒a1 corresponds to “if a1 is accepted then a2 is accepted”.

The correspondances drawn above lead us to propose a logical encoding of a BAS. For that
purpose, we consider the following propositional variables associated with a set A of arguments:
for each a ∈ A,
• the variable a means that a is accepted,
• the variable Pra means that a is a supporter (the source of a necessary support),
• the variable Ina means that a is attacked.

In the following L denotes the propositional language built on these propositional variables.

Def. 27 (Logical translation of a necessary BAS) Let BAS = 〈A,Ratt,Rsup〉 be a bipolar
argumentation system, where Rsup is a necessary support. Let a, b ∈ A.
• An attack a−→b is translated into the two following propositional formulae of L:
– a → Inb and
– Inb → ¬b.

• A necessary support a=⇒b is translated into the two following propositional formulae of L:
– b → Pra and
– Pra → a.
The knowledge base associated with BAS is denoted by Σ(BAS) (or Σ for short) and is defined

by:

Σ = {b → Pra|(a, b) ∈ Rsup}⋃
{a → Inb|(a, b) ∈ Ratt}

⋃
{Pra → a|a ∈ A and ∃x ∈ A s.t. (a, x) ∈ Rsup}

⋃
{Ina → ¬a|a ∈ A and ∃x ∈ A s.t. (x, a) ∈ Ratt}

Ex. 9 Consider the following BAS (with necessary supports): a−→b=⇒c−→d.
Its associated knowledge base is:

Σ = {a → Inb,

Inb, b →,

c → Prb,

Prb → b,

c → Ind,

Ind, d →}

Some interesting results can be proved. The first result concerns the consistency of the
associated knowledge base:

Prop. 3 Let BAS = 〈A,Ratt,Rsup〉 be a necessary bipolar argumentation system. Let Σ be its
associated knowledge base. Σ is always consistent.
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Proof: It is a direct consequence of Prop. 2. ✷

The second result gives a condition for introducing an inconsistency:

Prop. 4 Let BAS = 〈A,Ratt,Rsup〉 be a bipolar argumentation system. Let Σ be its associated
knowledge base. If there exist a, b ∈ A such that aRattb, then Σ ∪ {a, b} is inconsistent.

Proof: Following Def. 27, Σ contains the formulae a → Inb and Inb → ¬b. So Σ ∪ {a, b} is
inconsistent. ✷

In particular, this property can be applied to the case of a self-attacked argument, or more
generally to the case of cycles of attacks whose length is upper than 1. Note also that the above
inconsistency is produced by two arguments related by a direct attack. No inconsistency appears
in the case of an indirect attack, as shown be the following example:

Ex. 10 Consider the following sequence of attacks: a1Ratta2Ratta3Ratta4. Following Def. 27,
the corresponding Σ contains a1 → Ina2, . . . , a3 → Ina4 and ∀i = 1 . . . 4, Inai → ¬ai. We can
easily see that Σ ∪ {a1} infers ¬a2, but it does not infer ¬a4 whereas a1 is an indirect attacker
of a4.

Another situation in which inconsistency may occur comes from the combination of support
and attack.

Prop. 5 Let BAS = 〈A,Ratt,Rsup〉 be a bipolar argumentation system with necessary support.
Let Σ be its associated knowledge base. If there exist two arguments a, b ∈ A such that there is
an extended attack from a to b then Σ ∪ {a, b} is inconsistent.

Proof: Due to Def. 9, three cases must be considered:

1. aRattb : it follows from Prop. 4 that Σ ∪ {a, b} is inconsistent.
2. There is a sequence a = a1Ratta2Rsup . . .Rsupan = b, n ≥ 3: Following Def. 27, Σ
contains the formulae a1 → Ina2, Ina2 → ¬a2, and b = an → Pran−1, Pran−1 → an−1 . . .

a3 → Pra2, Pra2 → a2. It is easy to see that Σ infers a → ¬a2 and b → a2. So Σ ∪ {a, b}
is inconsistent.

3. There is a sequence a1Rsup . . .Rsupan = a, and a1Rattb, n ≥ 2: Following Def. 27, Σ
contains the formulae a1 → Inb, Inb → ¬b, and a = an → Pran−1, Pran−1 → an−1 . . .

a2 → Pra1, Pra1 → a1. It is easy to see that Σ infers a1 → ¬b and a → a1. So Σ ∪ {a, b}
is inconsistent.

✷

A particular case of the above proposition occurs when aRattb and aRsupb. In that case,
there is an extended attack from b to b. So Σ ∪ {b} is inconsistent.

However the presence of an argument that attacks and supports another argument is not a
source of inconsistency.

Ex. 11 Assume that aRattb and aRsupb. Following Def. 27, Σ contains the formulae a → Inb,
b → Pra, Inb → ¬b and Pra → a. Obviously Σ ∪ {a} is consistent.

More generally, given a necessary BAS, conflict-freeness in the complete associated Dung AS
(denoted by AS

Nc, see Def. 10) can be verified on the associated knowledge base Σ owing to the
following result:

Prop. 6 Let BAS = 〈A,Ratt,Rsup〉 be a bipolar argumentation system with necessary support.
Let Σ be its associated knowledge base. Let S ⊆ A. S is conflict-free in AS

Nc iff Σ ∪ S is
consistent.
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Proof: We proof the contrapositive: S is not conflict-free in AS
Nc iff Σ ∪ S is inconsistent.

⇒ Let us assume that S is not conflict-free in AS
Nc. There exist a, b ∈ S such that

there is an attack from a to b in AS
Nc. Due to Def. 10, there exist a sequence

anRattbpRsup . . .Rsupb1 = b and a sequence anRsupan−1Rsup . . .Rsupa1 = a with
n ≥ 1, p ≥ 1. Following Def. 27, Σ contains the formulas an → Inbp, Inbp → ¬bp, and
b = b1 → Prb2, Prb2 → b2 . . . bp−1 → Prbp, Prbp → bp and a = a1 → Pra2, Pra2 → a2
. . . an−1 → Pran, Pran → an. It is easy to see that Σ infers a → an, an → ¬bp and
b → bp. So Σ ∪ {a, b} is inconsistent.

⇐ Let us assume that Σ∪S is inconsistent. Note that Σ contains only binary Horn clauses.
So if Σ ∪ S is inconsistent, Σ ∪ S infers two complementary literals. Moreover, as
each symbol Ina (resp. Pra) is associated with only one argument, Σ ∪ S infers two
complementary literals of the form c and ¬c. So we have:

• Σ ∪ S infers c means that either c ∈ S or there exist in Σ the formulae x → Prc

and Prc → c with Σ∪ S infers x. By induction, it is easy to prove that (Σ∪ S infers
c) is equivalent to (c ∈ S or there is in Σ a sequence ck → Prck−1, Prck−1 → ck−1

. . . c2 → Prc1, Prc1 → c1 = c with ck ∈ S).
• Σ ∪ S infers ¬c means that either (Case 1) there exist in Σ the formulae x → Inc

and Inc → ¬c with Σ∪S infers x, or (Case 2) there exist in Σ the formulae c → Iny

and Iny → ¬y with Σ ∪ S infers y. In Case 2, as Σ ∪ S infers c it follows that Σ ∪ S

infers y and ¬y, with the inference of ¬y falling within Case 1.

So we can assume that Σ ∪ S infers two complementary literals of the form c and ¬c
with a Case 1 inference for ¬c. Consequently, the above equivalences can be rewritten
in terms of supports and attacks, producing the following results :

• Σ ∪ S infers c means that there is a sequence of supports c = c1Rsupc2 . . .Rsupck
with ck ∈ S and k ≥ 1.
• Σ ∪ S infers ¬c means that there are the sequences xRattc and x = x1Rsupx2 . . .

Rsupxk with xk ∈ S and k ≥ 1.

We recover exactly the conditions under which there is an attack from xk et ck in
AS

Nc. As xk, ck ∈ S, that proves that S is not conflict-free in AS
Nc.

✷

The above result enables to determine the conflict-free subsets of the complete associated
Dung AS, by checking Σ− consistency. Conflict-freeness is the basic requirement for extensions
in standard semantics in argumentation. Now, it is worth considering other issues of argumen-
tation in terms of logical issues. In other words, we want to find correspondences between the
characteristic properties of a semantics and logical criteria. For instance, we are interested in the
determination of stable sets of arguments, through direct manipulations of the logical knowledge
base.

In the following, we propose some preliminary results towards that research direction.

Prop. 7 Let BAS = 〈A,Ratt,Rsup〉 be a bipolar argumentation system with necessary support.
Let Σ be its associated knowledge base. Let x ∈ A. There exists no argument y in A s.t. yRattx

iff there is no formula in Σ containing the variable Inx.

The proof of this proposition is obvious following the definition of Σ.

Prop. 8 Let BAS = 〈A,Ratt,Rsup〉 be a bipolar argumentation system with necessary support.
Let Σ be its associated knowledge base. Let a, b ∈ A. There is an attack from a to b in AS

Nc iff
there exists c ∈ A such that Σ infers the two formulas a → Inc and b → ¬Inc.

Proof:
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⇒ Assume that there is an attack from a to b in AS
Nc. As said in the first part of the

proof of Prop. 6, there exist a sequence anRattbpRsup . . .Rsupb1 = b and a sequence
anRsupan−1Rsup . . .Rsupa1 = a with n ≥ 1, p ≥ 1. Following Def. 27, Σ contains the
formulas an → Inbp, Inbp → ¬bp, and b = b1 → Prb2, Prb2 → b2 . . . bp−1 → Prbp,
Prbp → bp and a = a1 → Pra2, Pra2 → a2 . . . an−1 → Pran, Pran → an. It is easy to
see that Σ infers a → an, an → Inbp, b → bp and also Inbp → ¬bp. So, Σ infers the
two formulas a → Inbp and b → ¬Inbp.

⇐ Assume that there exists c ∈ A such that Σ infers the two formulas a → Inc and
b → ¬Inc.

• Σ infers a → Inc means that either the formula a → Inc belongs to Σ, or there
exists in Σ a formula an → Inc such that Σ infers a → an ( or equivalently Σ ∪ {a}
infers an). The fact that an → Inc belongs to Σ means that there is a direct attack
from an to c. From the second part of the proof of Prop. 6, Σ∪ {a} infers an means
that there is a sequence of supports anRsupan−1 . . .Rsupa with n ≥ 1.
• Σ infers b → ¬Inc means that either the formula Inc → ¬b belongs to Σ (in
that case b = c), or Σ contains the formula Inc → ¬c and Σ infers b → c (or
equivalently Σ ∪ {b} infers c). In the second case, we can find a sequence c =
bpRsupbp−1 . . .Rsupb1 = b with p ≥ 1.

Bringing together the above sequences, we obtain anRattc = bpRsup . . .Rsupb1 = b

and anRsupan−1Rsup . . .Rsupa1 = a with n ≥ 1, p ≥ 1. That exactly corresponds to

an attack from a to b in AS
Nc (see Def. 10).

✷

Corol. 1 Let BAS = 〈A,Ratt,Rsup〉 be a bipolar argumentation system with necessary support.
Let Σ be its associated knowledge base. Let S ⊆ A. S is stable in AS

Nc iff Σ ∪ S is consistent,
and ∀b ∈ A \ S, there exists c ∈ A such that Σ infers b → ¬Inc and Σ ∪ S infers Inc.

Proof:

First of all, due to Prop. 6, S is conflict-free in AS
Nc iff Σ ∪ S is consistent.

⇒ Assume that ∀b ∈ A\S, there exists a ∈ S such that a attacks b in AS
Nc. Using Prop. 8,

there exists c ∈ A such that Σ infers the two formulas a → Inc and b → ¬Inc. So
Σ ∪ S infers Inc.

⇐ Assume that ∀b ∈ A \ S, there exists c ∈ A such that Σ infers b → ¬Inc and Σ ∪ S

infers Inc. If Σ ∪ S infers Inc, there exists x ∈ A such that Σ contains the formula
x → Inc and Σ ∪ S infers x. Using one again the proof of Prop. 6, there exists a
sequence xk → Prxk−1, Prxk−1 → xk−1 . . . x2 → Prx1, Prx1 → x1 = x with xk ∈ S

and k ≥ 1. Let a = xk. We have a ∈ S and Σ infers a → Inc. So, since Σ infers
b → ¬Inc, following Prop. 8, we can conclude that there exists an attack from a to b

in AS
Nc.

✷

As a particular case, we obtain a sufficient condition for stability:

Corol. 2 Let BAS = 〈A,Ratt,Rsup〉 be a bipolar argumentation system with necessary support.
Let Σ be its associated knowledge base. Let S ⊆ A such that Σ ∪ S is consistent. If ∀b ∈ A \ S
Σ ∪ S infers Inb, then S is stable in AS

Nc.

Proof: If Σ ∪ S infers Inb, there exists the formula Inb → ¬b in Σ. So Σ infers b → ¬Inb
and Σ ∪ S infers Inb. Cor. 1 can be applied with c = b. ✷

A particular case of Prop. 8 concerns the characterization of the extended attacks in Case 3
of Def. 9.
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Prop. 9 Let BAS = 〈A,Ratt,Rsup〉 be a bipolar argumentation system with necessary support.
Let Σ be its associated knowledge base. Let a, b ∈ A. There is a Case 3-extended attack from a

to b in AS
Nc iff Σ infers a → Inb.

Proof:

⇒ Assume that there exist a sequence anRattb and a sequence anRsupan−1Rsup . . .Rsupa1 =
a with n ≥ 1. Following Def. 27, Σ contains the formulas an → Inb, Inb → ¬b and
a = a1 → Pra2, Pra2 → a2 . . . an−1 → Pran, Pran → an. It is easy to see that Σ
infers a → an and an → Inb.

⇐ Assume that Σ infers a → Inb. From the second part of the proof of Prop. 8, we have
that there exists an ∈ A such that there is a direct attack from an to b and a sequence
of supports anRsupan−1 . . .Rsupa with n ≥ 1. That is exactly a Case 3-extended
attack from a to b.

✷

Note that the above result is false for Case 2-extended attacks. If aRattc and cRsupb, there
is a Case 2-extended attack from a to b. The associated knowledge base Σ contains the formulas
a → Inc, Inc → ¬c, b → Prc and Prc → c. So Σ infers a → Inc and b → ¬Inc as stated in
Prop. 8, but Σ does not infer a → Inb since the propositional variable Inb does not appear in Σ.

5.2 The case of a recursive bipolar argumentation graph (ASAF)

In this section, we extend the language defined in the previous section, in order to take into
account recursive interactions. Let us start with the following remarks. In Sect. 3.2, if an attack
α = a1Ratta2 is attacked, it may be inactive. In the case of a MIM, if the reaction r = p1 �p2
has the context C = 〈P ,Q 〉, the fact that the context C is active is expressed by the
formula A(C). Indeed, it means that the context reaction P r is active and the context
reaction Q r is inactive. So we can relate the notion of active attack to the notion of active
context.

In other words, the following links can be established:
• the notion of attacked or supported attack between two arguments in argumentation corre-
sponds to the notion of protein inhibition by another protein together with a given context in
a MIM:

the reaction p1 �p2 with Context C corresponds to “if p1 is present and the context
C is active then p2 is not present”;

the attack α = (a1, a2) corresponds to “if a1 is accepted and the interaction α is
active then a2 is not accepted”.

• the notion of attacked or supported deductive support between two arguments in argumenta-
tion corresponds to the notion of protein production by another protein together with a given
context in a MIM:

the reaction p1 p2 with Context C corresponds to “if p1 is present and the context
C is active then p2 is present”;

the support α = (a1, a2) corresponds to “if a1 is accepted and the interaction α is
active then a2 is accepted”.

Using the duality between deductive and necessary supports, we may establish the following
link between the notion of attacked or supported necessary support between two arguments in
argumentation and the notion of protein production by another protein with a given context
in a MIM:
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the reaction p1 p2 with Context C corresponds to “if p1 is present and the
context C is active then p2 is present”;

the necessary support α = (a2, a1) corresponds to “if a1 is accepted and the interac-
tion α is active then a2 is accepted”.

Owing to the above correspondences, we pursue the parallel between argumentation graphs
and MIM (initiated for BAS in Sect. 5.1) by associating a context with each interaction being
attacked or supported.
• Let α = (a1, a2) be an interaction which is attacked by β = (x, α). It can be considered that
α has the context C = 〈−, x−→〉.
• Let α = (a1, a2) be an interaction which is supported by β = (x, α). Similarly, it could be
considered that α has the context C = 〈x=⇒,−〉. However, in a MIM, the meaning of the first
part of a context is an activation link, which corresponds to a deductive support. In contrast,
in ASAF, β is a necessary support from x to α. So strictly speaking, it is not possible to
use duality and to turn β into a deductive support from the interaction α to the argument
x. Nevertheless, in the particular case where there is at most one support to α, it may be
considered that deductive and necessary meanings coincide8.

That leads to the following definitions.

Def. 28 Let ASAF = 〈A,Ratt,Rsup〉 be a bipolar argumentation system with recursive interac-
tions. We define:

V = {a|a ∈ A} ∪ {Pra|a ∈ A} ∪ {Ina|a ∈ A} ∪

{Aα|α ∈ (Ratt ∪Rsup) and ∃β ∈ (Ratt ∪Rsup) s.t. β = (x, α)} ∪

{Iα|α ∈ (Ratt ∪Rsup) and ∃β ∈ (Ratt ∪Rsup) s.t. β = (x, α)}

L is the language defined from propositional logic using V as the set of propositional variables.

Note that the meaning of the chosen propositional variables corresponds to that given in the
previous section completed by:
• the variable Aα means that the interaction α is active,
• the variable Iα means that the interaction α is inhibited.

Def. 29 (Logical translation of ASAF) Let ASAF = 〈A,Ratt,Rsup〉 be a bipolar recursive
argumentation system, in which there exists at most one support to a given interaction. Let
a, b, c ∈ A. Let α, β ∈ Ratt ∪Rsup.

• A necessary support between two arguments a
α

=⇒b is translated into the two following propo-
sitional formulas of L:
– (Aα ∧ b) → Pra and
– Pra → a.

• An attack between two arguments a
α

−→b is translated into the two following propositional
formulae of L:
– (Aα ∧ a) → Inb and
– Inb → ¬b.

• Let α ∈ (Ratt∪Rsup) be an interaction neither supported, nor attacked. In this case, Aα ↔ ⊤
and Iα ↔ ⊥ (so Aα is always true whereas Iα is always false).

8This equivalence actually holds in a MIM, where the context is reduced to only one activation and only one
inhibition. The context C = 〈P ,Q 〉 of the reaction r defines all the conditions under which the reaction
r can occur. So the first part may be interpreted as follows: the presence of P activates the reaction r and only
the presence of P activates the reaction r.
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• Let α ∈ (Ratt ∪Rsup) be an interaction necessarily supported by β = (c, α). In this case:
– Aα ↔ (c ∧Aβ) and
– Iα ↔ (¬c ∨ Iβ).

• Let α ∈ (Ratt ∪Rsup) be an interaction attacked by β = (c, α). In this case:
– Aα ↔ (¬c ∨ Iβ) and
– Iα ↔ (c ∧Aβ).

• Let α ∈ (Ratt ∪Rsup) be an interaction necessarily supported by β = (c, α) and attacked by
δ = (d, α). In this case:
– Aα ↔ ((c ∧Aβ) ∧ (¬d ∨ Iδ)) and
– Iα ↔ ((¬c ∨ Iβ) ∨ (d ∧Aδ)).

Def. 30 (The knowledge base associated with an ASAF) Let ASAF = 〈A,Ratt,Rsup〉 be
a bipolar recursive argumentation system, in which there exists at most one support to a given
interaction.

The knowledge base associated with ASAF gives the translation of ASAF into formulae of L.
It is denoted by Σ and defined by:

Σ = Σ1

⋃
Σ2

where Σ1 gives the translation for non recursive interactions whereas Σ2 gives the translation
for recursive interactions. Σ1 and Σ2 are defined by:

Σ1 = {(Aα ∧ b) → Pra|α = (a, b) ∈ Rsup}⋃
{(Aα ∧ a) → Inb|α = (a, b) ∈ Ratt}

⋃
{Pra → a|a ∈ A and ∃x ∈ A s.t. (a, x) ∈ Rsup}

⋃
{Ina → ¬a|a ∈ A and ∃x ∈ A s.t. (x, a) ∈ Ratt}

Σ2 = {(Aα ↔ ⊤) ∧ (Iα ↔ ⊥)|α ∈ Ratt ∪Rsup

and ∄β = (c, α) ∈ Rsup

and ∄δ = (d, α) ∈ Ratt}⋃
{(Aα ↔ (c ∧Aβ)) ∧ (Iα ↔ (¬c ∨ Iβ))|α ∈ Ratt ∪Rsup

and ∃β = (c, α) ∈ Rsup

and ∄δ = (d, α) ∈ Ratt}⋃
{(Aα ↔ (¬d ∨ Iδ)) ∧ (Iα ↔ (d ∧Aδ))|α ∈ Ratt ∪Rsup

and ∄β = (c, α) ∈ Rsup

and ∃δ = (d, α) ∈ Ratt}⋃
{(Aα ↔ ((c ∧Aβ) ∧ (¬d ∨ Iδ))) ∧ (Iα ↔ ((¬c ∨ Iβ) ∨ (d ∧Aδ)))|α ∈ Ratt ∪Rsup

and ∃β = (c, α) ∈ Rsup

and ∃δ = (d, α) ∈ Ratt}

The following example illustrates the different cases encountered in the above definition.

22



Ex. 12 We consider different ASAFs and their associated knowledge bases.

ASAF1: ΣASAF1
, the associated knowledge base of ASAF1:

a c

b

β

α
Aα, a → Inc

Inc, c →
Aα ↔ ¬b
Iα ↔ b

ASAF2: ΣASAF2
, the associated knowledge base of ASAF2:

a c

b

β

α
Aα, a → Inc

Inc, c →
Aα ↔ b

Iα ↔ ¬b

ASAF3: ΣASAF3
, the associated knowledge base of ASAF3:

a c

b

β

α
Aα, c → Pra

Pra → a

Aα ↔ ¬b
Iα ↔ b

ASAF4: ΣASAF4
, the associated knowledge base of ASAF4:

a c

b

β

α
Aα, c → Pra

Pra → a

Aα ↔ b

Iα ↔ ¬b

We have proposed a logical encoding of ASAF inspired by the logical handling of MIM.
This parallel has required the restriction to ASAF containing at most one support to a given
interaction. However, it could be possible to go further by generalizing the notion of context.
For instance each part of the context could contain several context reactions. The activation
and inhibition expressions should be defined accordingly. This is a topic for further research.

As done for bipolar argumentation graphs, we are now interested in exploiting the logical
knowledge base associated with a recursive bipolar graph.

In the following, we propose some preliminary results towards that research direction.
Of course, Prop. 3 still holds in the case of an ASAF (a model of Σ can be obtained by

assigning each variable pi, each variable Inpi and each variable Prpi to false).
The following results describe situations in which inconsistency may appear:

Prop. 10 Let ASAF = 〈A,Ratt,Rsup〉 be an ASAF. Let Σ be its associated knowledge base.
1. If there exists α = (a, c) ∈ Ratt and ∄(b, α) ∈ (Ratt ∪Rsup) then Σ ∪ {a, c} is inconsistent.
2. If there exists α = (a, c) ∈ Ratt and ∃(b, α) ∈ Ratt and ∄(d, α) ∈ Rsup then Σ ∪ {a, c,¬b} is
inconsistent.

3. If there exists α = (a, c) ∈ Ratt and ∄(b, α) ∈ Ratt and ∃(d, α) ∈ Rsup then Σ ∪ {a, c, d} is
inconsistent.

4. If there exists α = (a, c) ∈ Ratt and ∃(b, α) ∈ Ratt and ∃(d, α) ∈ Rsup then Σ ∪ {a, c,¬b, d}
is inconsistent.
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Proof:

1. Σ contains the formulas a → Inc, Inc, c →. So Σ ∪ {a, c} is inconsistent.
2. Σ contains the formulas Aα, a → Inc, Inc, c →, Aα ↔ ¬b. So Σ ∪ {a, c,¬b} is inconsis-
tent.

3. Σ contains the formulas Aα, a → Inc, Inc, c →, Aα ↔ d. So Σ∪{a, c, d} is inconsistent.
4. Σ contains the formulas Aα, a → Inc, Inc, c →, Aα ↔ (¬b ∧ d). So Σ ∪ {a, c,¬b, d} is
inconsistent.

✷

Unfortunately, there is no simple characterization of subsets S such that Σ∪S is inconsistent
(as stated in Prop. 6).

However interesting results can be derived by considering the A−prime implicates of the
knowledge base Σ. Let us recall the definition of A−prime implicate of Σ (for instance, see [18]).

Def. 31 Let Σ be a propositional knowledge base built over a set V of propositional variables.
Let W be a subset of V. Let π be a clause built on W (it is called a W−clause). π is a W−prime
implicate of Σ iff
1. Σ infers π (π is called an implicate of Σ)
2. If π′ is a W−clause such that π′ is an implicate of Σ and π′ infers π, then π infers π′.

The above results can be illustrated on Ex. 12.

Ex. 12 (cont’d) We consider different ASAF and their associated knowledge base.

ASAF1: ΣASAF1
, the associated knowledge base of ASAF1:

a c

b

β

α
Aα, a → Inc

Inc, c →
Aα ↔ ¬b
Iα ↔ b

We have:
• Any interpretation in which the truth value of b is true (β is active) or a is false (a is not
accepted) is a model of ΣASAF1

(in these cases, a and c can be accepted together since α is not
active).
• The unique A−prime implicate of ΣASAF1

is ¬a ∨ b ∨ ¬c.
• As a consequence, the interpretation in which a is true (α is active) and b is false (β is not
active) is a model of ΣASAF1

only if c is false (c is not accepted). In other words ΣASAF1
∪

{a, c,¬b} is inconsistent (second case of Prop. 10).

ASAF2: ΣASAF2
, the associated knowledge base of ASAF2:

a c

b

β

α
Aα, a → Inc

Inc, c →
Aα ↔ b

Iα ↔ ¬b

We have:
• Any interpretation in which the truth value of b is false (β is not active) or a is false (a is
not accepted) is a model of ΣASAF2

(in these cases, a and c can be accepted together since α is
not active).
• The unique A−prime implicate of ΣASAF2

is ¬a ∨ ¬b ∨ ¬c.
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• As a consequence, the interpretation in which a and b are true (α is active and β is also
active) is a model of ΣASAF2

only if the truth value of c is false (c is not accepted). In other
words ΣASAF2

∪ {a, c, b} is inconsistent (third case of Prop. 10).

ASAF3: ΣASAF3
, the associated knowledge base of ASAF3:

a c

b

β

α
Aα, c → Pra

Pra → a

Aα ↔ ¬b
Iα ↔ b

We have:
• Any interpretation in which the truth value of b is true (β is active) or c is false (c is not
accepted) is a model of ΣASAF3

(in these cases, a can be accepted even if c is not accepted since
α is not active).
• The unique A−prime implicate of ΣASAF3

is a ∨ b ∨ ¬c.
• As a consequence, the interpretation in which the truth value of c is true and the truth value
of b is false (α is active and β is not active) is a model of ΣASAF3

only if the truth value of a
is true (a is accepted). In other words, ΣASAF3

∪ {¬a, c,¬b} is inconsistent.

ASAF4: ΣASAF4
, the associated knowledge base of ASAF4:

a c

b

β

α
Aα, c → Pra

Pra → a

Aα ↔ b

Iα ↔ ¬b

We have:
• Any interpretation in which the truth value of b is false (β is not active) or c is false (c is
not accepted) is a model of ΣASAF4

(in these cases, a can be accepted even if c is not accepted
since α is not active).
• The unique A−prime implicate of ΣASAF4

is a ∨ ¬b ∨ ¬c.
• As a consequence, the interpretation in which the truth values of c and b are true (α and β

are valid) is a model of ΣASAF4
only if the truth value of a is true (a is accepted). In other

words, ΣASAF4
∪ {¬a, c, b} is inconsistent.

6 Some comparison results

6.1 Logical representation of BAS vs axiomatisation

Consider a necessary BAS and the constraints proposed in [11] and recalled in Section 2.2. These
constraints aim at describing the desired behavior of a necessary BAS. An important issue is to
check whether these constraints can be satisfied in the logical representation of the BAS.

Transitivity (TRA) Transitivity of the necessary support is satisfied as shown by the following
result:

Prop. 11 Let BAS = 〈A,Ratt,Rsup〉 be a bipolar argumentation system. Let Σ be its
associated knowledge base. ∀a, b ∈ A, if ∃n > 1 such that a = a1Rsup . . .Rsupan = b then
Σ infers (b → Pra).
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Proof: Consider a, b ∈ A, such that ∃n > 1 such that a = a1Rsup . . .Rsupan = b.
So in Σ, we have the following formulae: b = an → Pran−1, . . . , a2 → Pra and ∀ai,
Prai → ai. So Σ infers b → Pra and Pra → a which encodes a necessary support from
a to b. ✷

Closure (CLO) The property of closure concerns extensions (under a given semantics). There
is no equivalent notion in the logical representation. However, as discussed in Sect. 5.1, the
basic requirement for extensions, conflict-freeness, exactly corresponds to Σ−consistency.
So, the following result ensures a kind of closure.

Prop. 12 Let BAS = 〈A,Ratt,Rsup〉 be a bipolar argumentation system. Let Σ be its
associated knowledge base. ∀a, b ∈ A, if aRsupb then Σ ∪ {b} infers a.

Proof: Consider a, b ∈ A, such that aRsup. So in Σ, we have the following formulae:
b → Pra and Pra → a. So Σ ∪ {b} infers a. ✷

Indeed, this result enables to prove that each model of Σ satisfying b also satisfies a.

Conflicting sets (CFS) As a particular case of Prop. 5, we obtain the following result showing
that the constraint is satisfied:

Prop. 13 Let BAS = 〈A,Ratt,Rsup〉 be a bipolar argumentation system. Let Σ be its
associated knowledge base. ∀a, b, c ∈ A, if (aRattc and c supports b) or (cRattb and c

supports a) then Σ ∪ {a, b} is inconsistent.

Addition of new attacks (nATT, n+ATT) Due to results obtained in Sect. 5.1, especially
in Prop. 8 and Prop. 9, these constraints are not satisfied. More precisely, we have:

Prop. 14 Let BAS = 〈A,Ratt,Rsup〉 be a bipolar argumentation system. Let Σ be its
associated knowledge base. ∀a, b, c ∈ A,

• if aRattc and cRsupb then Σ does not infer (a → Inb) (i.e. the attack (a, b) is not
inferred by Σ);
• if cRattb and cRsupa then Σ infers (a → Inb) (i.e. the attack (a, b) is inferred by Σ).

Note that the logical representation of BAS differentiates the Case 2-extended attacks (namely
the secondary attacks), since they are more difficult to determine.

6.2 Comparing two logical representations of ASAF

In Sect. 5.1, we can find a logical encoding of a BAS and a direct logical encoding of an ASAF.
In Sect. 3.2, a translation of an ASAF into a necessary BAS has been described. So, there are
two ways for obtaining a logical representation of an ASAF. The purpose of this section is to
compare these two ways.

Consider ASAF = 〈A,Ratt,Rsup〉, the associated BAS will be denoted by BAS
′ = 〈A′, Ratt

′,
Rsup

′〉 (Def. 20). Let Σ denote the knowledge base associated with ASAF (Def. 29) and Σ′ denote
the base associated with BAS

′ (Def. 27). First, we compare the models of Σ with those of Σ′.

Ex. 12 (cont’d) Case of ASAF1

ΣASAF1
=

{Aα, a → Inc,

Inc, c →,

Aα ↔ ¬b,
Iα ↔ b}

Σ′

ASAF1

=

{α → Pra,

Pra → a,

α → Inc,

Inc, c →,

β → Prb,

Prb → b,

β → Inα,

Inα, α →}

The unique A−prime implicate of ΣASAF1
is ¬a ∨ b ∨ ¬c.
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We want to compare the models of ΣASAF1
and those of Σ′

ASAF1
. Let VASAF1

(resp. V ′

ASAF1
)

be the set of propositional variables appearing in ΣASAF1
(resp. Σ′

ASAF1
).

A model IASAF1
of ΣASAF1

can be easily “extended into” a model I ′

ASAF1
of Σ′

ASAF1
considering

that:
• ∀x ∈ (VASAF1

∩ V ′

ASAF1
), I ′

ASAF1
(x) = IASAF1

(x) and
• ∀x ∈ {Pra, Prb, α, β, Inα}, I ′

ASAF1
(x) =false.

However, the converse does not hold. Indeed, consider I ′

ASAF1
a model of Σ′

ASAF1
such that

I ′

ASAF1
(a) = I ′

ASAF1
(c) =true and I ′

ASAF1
(b) = I ′

ASAF1
(Inc) =false (all the other variables being

assigned to false). Obviously, this model cannot be extended to any model of ΣASAF1
since ΣASAF1

infers ¬a ∨ b ∨ ¬c. This models corresponds to the fact that the attack α is inactive whereas its
source argument is accepted and the interaction β that attacks α is also inactive. It is surprizing
since, in this case, α should be active. The fact that b is false implies that β is false (β is
inactive). However, it does not imply that α is true, as would be expected. Indeed, there could
be another attack against α. The logical encoding of the attack from β to α does not completely
capture the meaning of “being active” in that particular case where there is only one attack against
α (the one from β).

The above example raises several issues which deserve further investigation:

1. With the first logical encoding producing ΣASAF1
, we have encoded the equiv-

alence Aα ↔ ¬b. The part Aα → ¬b of this equivalence is used for finding the
unique A−prime implicate of ΣASAF1

and for restricting the models. The equiva-
lence is justified by the fact that there exists at most one attack against α (following
the MIM approach). Whereas in the second encoding producing Σ′

ASAF1
, we just

encode the implication β → Inα and we do not encode the fact that if β is inactive
then α is active (or equivalently if α is inactive then β is active). Indeed, we have
used the translation of an ASAF into a BAS. So we have replaced a context by a
meta-argument (α) before encoding the attack (β, α). However, in argumentation
semantics, the meaning of an attack (a, b) is only that if a is accepted then b is
not accepted. If a is not accepted, b could be attacked by another argument, so it
might be not accepted.

2. The semantics of argumentation graphs encoded in logic cannot be completely
captured by the notion of model. So a comparison between two logical bases needs
not only to compare the models, but also to find a mapping from particular models
and to compare particular subsets of the bases.

3. In a recent work about recursive interactions in bipolar argumentation (see [7]), it
has been shown that two notions should be considered for an interaction : validity
and groundness. Roughly speaking, an interaction α = (a, b) is active if it is
grounded and valid. It is grounded if its source a is accepted. It is valid if any
attacker is inactive and any (necessary) supporter is active. It would be interesting
to study a logical encoding for all these notions.

7 Conclusion and future works

In this paper, we have presented a preliminary study about logical encodings of argumentation
graphs themselves. This work is inspired by a similar approach in bioinformatics that consists
in logically encoding molecular networks (called MIM). Indeed, some correspondences can be
established between these maps and argumentation graphs where two different interactions ap-
pear (attacks and supports) and where some interactions are recursive (i.e. an interaction can
be defined between either two arguments, or an argument and another interaction).
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We have also given some properties that allow for a comparison between different approaches
for taking into account bipolar and recursive interactions.

As future works, we propose to:
• Complete the study of the proposed translations.
• Restate the main concepts used in abstract argumentation (particularly, the different notions
of acceptability) in terms of logical issues and vice-versa.
• Propose efficient algorithms for encoding these concepts.
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