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Abstract

In the context of bipolar argumentation (argumentation with two kinds of interaction,
attacks and supports), we present an axiomatic approach for taking into account a special
interpretation of the support relation, the necessary support. We propose constraints that
should be imposed to a bipolar argumentation system using this interpretation. Some of
these constraints concern the new attack relations, others concern acceptability. We extend
basic Dung’s framework in different ways in order to propose frameworks suitable for en-
coding these constraints. By the way, we propose a formal study of properties of necessary
support.
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1 Introduction

The main feature of argumentation framework is the ability to deal with incomplete and / or
contradictory information, especially for reasoning [14; 2]. Moreover, argumentation can be
used to formalize dialogues between several agents by modeling the exchange of arguments in,
e.g., negotiation between agents [4]. An argumentation system (AS) consists of a collection of
arguments interacting with each other through a relation reflecting conflicts between them, called
attack. The issue of argumentation is then to determine “acceptable” sets of arguments (i.e., sets
able to defend themselves collectively while avoiding internal attacks), called “extensions”, and
thus to reach a coherent conclusion. Formal frameworks have greatly eased the modeling and
study of AS. In particular, the framework of [14] allows for abstracting the “concrete” meaning
of the arguments and relies only on binary interactions that may exist between them.

In this paper, we are interested in bipolar AS (BAS), which handle a second kind of in-
teraction, the support relation. This relation represents a positive interaction between argu-
ments and has been first introduced by [17; 26]. In [8], the support relation is left general
so that the bipolar framework keeps a high level of abstraction. However there is no single
interpretation of the support, and a number of researchers proposed specialized variants of
the support relation: deductive support [5], necessary support [20; 21], evidential support [22;
23], backing support [12]. Each specialization can be associated with an appropriate modelling
using an appropriate complex attack. These proposals have been developed quite independently,
based on different intuitions and with different formalizations. [10] presents a comparative study
in order to restate these proposals in a common setting, the bipolar argumentation framework
(see also [12] for another survey). The idea is to keep the original arguments, to add complex
attacks defined by the combination of the original attack and the support, and to modify the
classical notions of acceptability. An important result of [10] is the highlight of a kind of duality
between the deductive and the necessary specialization of support, which results in a duality in
the modelling by complex attacks. In this context, new different papers have recently been writ-
ten: some of them give a translation between necessary supports and evidential supports [24];
others propose a justification of the necessary support using the notion of subarguments [25]; an
extension of the necessary support is presented in [19]. From all these works it seems interesting
to focus on the necessary support. However, different interpretations remain possible, leading
to different ways of introducing new attacks and different ways to define acceptability of sets of
arguments.

Our purpose is to propose a kind of “axiomatic approach” for studying how necessary support
should be taken into account. Indeed we propose requirements (or constraints) that should be
imposed to a bipolar argumentation system as “axioms” describing a desired behaviour of this
system. Some of these constraints concern the new attack relations, others concern acceptability.
We extend basic Dung’s framework in different ways in order to propose frameworks suitable
for encoding these contraints. By the way, we propose a formal study of properties of necessary
support.

Some background is given in Section 2 for AS and BAS, in particular the duality identified
in [10]. Section 3 presents constraints that should be imposed for taking into account necessary
support. Then different frameworks for handling these constraints are described in Section 4.
Section 5 concludes and suggests perspectives of our work. The proofs are given in Appendix A.
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2 Background on abstract bipolar argumentation systems

Bipolar abstract argumentation systems extend Dung’s argumentation systems. So first we recall
Dung’s framework for abstract argumentation systems.

2.1 Dung’s framework

Dung’s abstract framework consists of a set of arguments and only one type of interaction
between them, namely attack. The important point is the way arguments are in conflict.

Def. 1 (Dung AS) A Dung’s argumentation system (AS, for short) is a pair 〈A,R〉 where
A is a finite and non-empty set of arguments and R is a binary relation over A (a subset of
A×A), called the attack relation.

An argumentation system can be represented by a directed graph, called the interaction
graph, in which nodes represent arguments and edges are defined by the attack relation: ∀a, b ∈
A, aRb is represented by a 6→ b.

Def. 2 (Admissibility in AS) Given 〈A,R〉 and S ⊆ A.
• S is conflict-free in 〈A,R〉 iff1 there are no arguments a, b ∈ S, s.t.2 aRb.
• a ∈ A is acceptable in 〈A,R〉 wrt3 S iff ∀b ∈ A s.t. bRa, ∃c ∈ S s.t. cRb.
• S is admissible in 〈A,R〉 iff S is conflict-free and each argument in S is acceptable wrt S.

Standard semantics introduced by Dung (preferred, stable, grounded) enable to characterize
admissible sets of arguments that satisfy some form of optimality.

Def. 3 (Extensions) Given 〈A,R〉 and S ⊆ A.
• S is a preferred extension of 〈A,R〉 iff it is a maximal (wrt ⊆) admissible set.
• S is a stable extension of 〈A,R〉 iff it is conflict-free and for each a 6∈ S, there is b ∈ S s.t.
bRa.
• S is the grounded extension of 〈A,R〉 iff it is the least (wrt ⊆) admissible set X s.t. each
argument acceptable wrt X belongs to X.

Ex. 1 Let AS be defined by A = {a, b, c, d, e} and R = {(a, b), (b, a), (b, c), (c, d), (d, e), (e, c)}.
AS is represented by the following graph.

a b c d

e

/ /

|/

/

/

There are two preferred extensions ({a} and {b, d}), one stable extension ({b, d}) and the
grounded extension is the empty set.

2.2 Abstract bipolar argumentation systems

The abstract bipolar argumentation framework presented in [8; 9] extends Dung’s framework
in order to take into account both negative interactions expressed by the attack relation and
positive interactions expressed by a support relation (see [3] for a more general survey about
bipolarity in argumentation).

1if and only if
2such that
3with respect to
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Def. 4 (BAS) A bipolar argumentation system (BAS, for short) is a tuple 〈A,Ratt,Rsup〉
where A is a finite and non-empty set of arguments, Ratt is a binary relation over A called
the attack relation and Rsup is a binary relation over A called the support relation.

A BAS can still be represented by a directed graph4, called the bipolar interaction graph,
with two kinds of edges. Let ai and aj ∈ A, aiRattaj (resp. aiRsupaj) means that ai attacks aj
(resp. ai supports aj) and it is represented by a 6→ b (resp. a → b).

Ex. 2 For instance, in the following graph representing a BAS, there is a support from g to d
and an attack from b to a

a b c d g

e f

/ /

/

Handling support and attack at an abstract level has the advantage to keep genericity. An
abstract bipolar framework is useful as an analytic tool for studying different notions of complex
attacks, complex conflicts, and new semantics taking into account both kinds of interactions
between arguments. However, the drawback is the lack of guidelines for choosing the appro-
priate definitions and semantics depending on the application. For solving this problem, some
specializations of the support relation have been proposed and discussed recently. The distinc-
tion between deductive and necessary support has appeared first. Then, several interpretations
have been given to the necessary support (sub-argument relation [25], evidential support [22;
23; 24], backing support [12]).

2.2.1 Deductive support

The deductive support has first appeared in [5]. This variant is intended to enforce the following
constraint: If bRsupc then “the acceptance of b implies the acceptance of c”, and as a consequence
“the non-acceptance of c implies the non-acceptance of b”.

In relevant literature, this interpretation is usually taken into account by adding two kinds
of complex attack. The idea is to produce a new AS, containing original and new attacks, and
then to use standard semantics.

The first new attack, called mediated attack in [5], occurs when bRsupc and aRattc: “the
acceptance of a implies the non-acceptance of c” and so “the acceptance of a implies the non-
acceptance of b”.

Def. 5 ([5] Mediated attack)
Let BAS = 〈A,Ratt,Rsup〉. There is a mediated attack from a to b iff there is a sequence
a1Rsup . . .Rsupan−1, and anRattan−1, n ≥ 3, with a1 = b, an = a.

Another complex attack, called supported attacks in [9] occurs when aRsupc and cRattb: “the
acceptance of a implies the acceptance of c” and “the acceptance of c implies the non-acceptance
of b”; so, “the acceptance of a implies the non-acceptance of b”.

Def. 6 ([9] Supported attack)
Let BAS = 〈A,Ratt,Rsup〉. There is a supported attack from a to b iff there is a sequence
a1R1 . . .Rn−1an, n ≥ 3, with a1 = a, an = b, ∀i = 1 . . . n− 2, Ri = Rsup and Rn−1 = Ratt.

4This is an abuse of language since, stricly speaking, this is an edge-labeled graph (with two labels) rather
than a directed graph.
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So, with the deductive interpretation of the support, new kinds of attack, from a to b, can
be considered in the following cases:

Supported attacks: Mediated attacks:

a . . . c b/
b . . . c

a
|

2.2.2 Necessary support

The necessary support has been first proposed by [20; 21] with the following interpretation: If
cRsupb then “the acceptance of c is necessary to get the acceptance of b”, or equivalently “the
acceptance of b implies the acceptance of c”. A example of this kind of support could be:

Ex. 3 A dialog between three customers about the qualities of services of their hotel:
• “This hotel is very well managed.” (Argument a)
• “Yes. In particular, the hotel staff is very competent.” (Argument b)
• “They are not competent! The rooms are dirty.” (Argument c)

Here b necessarily supports a and c attacks b (c 6→ b → a). The link between b and a is similar
to the notion of subargument used in [25].

As for deductive support, the idea is to add complex attacks in order to use standard seman-
tics on a new AS. The first added complex attack, called extended attack in [20] and secondary
attack in [9] has been proposed in the following case: Suppose that aRattc and cRsupb. “The
acceptance of a implies the non-acceptance of c” and so “the acceptance of a implies the non-
acceptance of b”. Another kind of complex attack may be considered when cRsupa and cRattb:
“the acceptance of a implies the acceptance of c” and “the acceptance of c implies the non-
acceptance of b”. So, “the acceptance of a implies the non-acceptance of b”. This new attack
from a to b has been proposed in [21].

The formal definition of these two attacks is:

Def. 7 ([21] Extended attack) Let BAS = 〈A,Ratt,Rsup〉. There is an extended attack
from a to b iff
• either aRattb (direct attack),
• or there is a sequence a1Ratta2Rsup . . .Rsupan, n ≥ 3, with a1 = a, an = b (Case 1),
• or there is a sequence a1Rsup . . .Rsupan, and a1Rattap, n ≥ 2, with an = a, ap = b (Case 2).

So, with the necessary interpretation of the support, new kinds of attack, from a to b, can
be considered in the following cases:

Extended attacks – Case 1 Extended attacks – Case 2:
(secondary attacks):

a c . . . b/
c b

. . . a

/

2.2.3 Duality between deductive and necessary support

Deductive support and necessary support have been introduced independently. Nevertheless,

they correspond to dual interpretations of the notion of support. Let us denote a
D
→ b (resp. a

N
→ b) when there exists a deductive (resp. necessary) support from a to b. As a

D
→ b means that
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“the acceptance of a implies the acceptance of b”, and a
N
→ b means that “the acceptance of a is

necessary to get the acceptance of b”, it follows that a
N
→ b is equivalent to b

D
→ a.

Following this duality, it is easy to see that the mediated attack obtained by combining
the attack relation Ratt and the support relation Rsup exactly corresponds to the secondary
attack obtained by combining the attack relation Ratt and the support relation R

−1
sup which

is the symmetric relation of Rsup (R−1
sup = {(b, a)|(a, b) ∈ Rsup}). Similarly, the supported

attack obtained by combining the attack relation Ratt and the support relation Rsup exactly
corresponds to the second case of extended attack obtained by combining the attack relation
Ratt and the support relation R

−1
sup.

So in the following, we only focus on the necessary support since, taking advantage of the
duality, all the results we obtain can be easily translated into results for deductive supports.

3 Axiomatic approach for handling necessary support

In relevant literature, as described in the previous section, taking into account support generally
leads to add new attacks. It is the case for instance with the necessary support that leads to
extended attacks. However, a deeper analysis of the original interpretation of necessary support
suggests other ways to handle this support. In this section, we discuss several constraints
induced by the intended meaning of necessary support, and we show that new frameworks must
be proposed for encoding these constraints.

Let us come back to the original interpretation of necessary support: If cRsupb, “the accep-
tance of c is necessary to get the acceptance of b”. Analysing this interpretation leads to at least
four kinds of constraints.

Transitivity (TRA) This first requirement concerns the relation Rsup alone. It expresses
transitivity5 of the necessary support. It induces that a sequence of supports is considered
as a support:

Def. 8 (Constraint TRA) ∀a, b ∈ A, if ∃n > 1 such that a = a1Rsup . . .Rsupan = b,
then a supports b.

Closure (CLO) A second constraint also concerns the relation Rsup alone and expresses the
fact that if cRsupb, then “the acceptance of b implies the acceptance of c”. So, if cRsupb,
and there exists an extension S containing b, then S also contains c. This constraint can
be expressed by the property of closure of an extension under R

−1
sup:

6

Def. 9 (Constraint CLO) Let s be a semantics and E be an extension under s. ∀a, b ∈
A, if aRsupb and b ∈ E, then a ∈ E.

Moreover, an interesting variant of this constraint could be induced by a slightly different
reading of the original interpretation: “the acceptance of c is necessary to get the acceptance
of b” because c is the only attacker of a particular attacker of b. This reading implies
that there implicitly exists a special attack to b which can be only defeated by c. This
interpretation will lead us to propose a framework with meta-arguments (see Section 4.2).

5Irreflexivity has also been considered for instance in [20; 21].
6Note that if cRsupb and cRattb, as an extension must be conflict-free, there is no extension containing both

c and b, so the constraint trivially holds. Some works, as for instance [10], exclude the case when cRsupb and
cRattb.
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Conflicting sets (CFS) Now, we consider constraints induced by the presence of both attacks
and supports in a BAS. Starting from the original interpretation, if aRattc and cRsupb,
“the acceptance of a implies the non-acceptance of c” and “the acceptance of b implies the
acceptance of c”. So, using contrapositives, “the acceptance of a implies the non-acceptance
of b”, and then “the acceptance of b implies the non-acceptance of a”. Thus, we obtain
a symmetric constraint involving a and b. However, the fact that “the acceptance of a
implies the non-acceptance of b” is not equivalent to the fact that there is an attack from
a to b. We have only the sufficient condition. So, the creation of a complex attack (here
a secondary attack) from a to b can be viewed in some sense too strong. Hence, faced
with the case when aRattc and cRsupb, we propose to assert a conflict between a and b,
or in other words that the set {a, b} is a conflicting set. Similarly, if cRattb and cRsupa,
“the acceptance of a implies the acceptance of c” and so “the acceptance of a implies the
non-acceptance of b”.

Def. 10 (Constraint CFS) ∀a, b, c ∈ A. If (aRattc and c supports b) or (cRattb and
c supports a) then {a, b} is a conflicting set.

Note that the Dung’s abstract framework is not suitable for expressing such a constraint.
So we will present in Section 4.1 a new framework for handling conflicting sets of arguments.

Addition of new attacks (nATT and n+ATT) Beyond these properties, according to the
applications and the previous works presented in literature, we may impose stronger con-
straints corresponding to the addition of new attacks. Two cases may be considered:

Def. 11 (Constraint nATT) If aRattc and cRsupb, then there is a new attack from a
to b.

Def. 12 (Constraint n+ATT) If (aRattc and cRsupb) or (cRattb and cRsupa), then
there is a new attack from a to b.

nATT (resp. n+ATT) corresponds to the addition of secondary (resp. extended) attacks.
In Section 4.3 we present two frameworks for handling these constraints.

Continuing the discussion one step further, if the fact that “the acceptance of a implies
the non-acceptance of b” is represented by an attack from a to b, due to contrapositive, this
new attack must be symmetric. However, in that case, each attack should be turned into a
symmetric one. Thus, we move towards symmetric argumentation frameworks which have been
studied in [13]. We will not consider this case in the current paper. Some of the above constraints
can he handled in a Dung’s abstract framework (CLO, TRA, nATT and n+ATT) with the
advantage of reusing all known Dung’s results. However, as we noticed above, constraint CFS
cannot be encoded in a Dung’s framework. So in the next section we propose different variants of
Dung’s framework and of the bipolar framework in order to take into account these constraints.

4 New frameworks for handling necessary supports

Starting from the constraints discussed in Section 3, we propose several frameworks for handling
necessary support. The first two are driven by Constraint CLO whereas the last two are
driven by the constraints nATT and n+ATT. The section will end by a comparison of these
frameworks.
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4.1 Handling conflicting sets of arguments

We propose a generalized bipolar abstract argumentation framework consisting of a set of ar-
guments, a binary relation representing an attack between arguments, a binary relation rep-
resenting a support between arguments and a set of conflicting sets of arguments. Intuitively,
knowing that a attacks b is stronger than knowing that {a, b} is a conflicting set of arguments.
Knowing that a set of arguments S is conflicting will only prevent any extension from containing
S. Moreover, a conflicting set may contain more than two arguments.

Def. 13 (Generalized BAS, GBAS) A generalized bipolar argumentation system is a tuple
〈A,Ratt,Rsup,C〉 where
• A is a finite and non-empty set of arguments,
• Ratt is a binary relation over A called the attack relation,
• Rsup is a binary relation over A called the support relation and
• C is a finite set of subsets of A such that ∀(a, b) ∈ Ratt, {a, b} ∈ C.

Conflict-freeness in a generalized bipolar argumentation system is defined as follows:

Def. 14 (Conflict-freeness in a GBAS) Let 〈A,Ratt,Rsup,C〉 be a GBAS and S ⊆ A. S
is conflict-free in the GBAS iff there does not exist C ∈ C such that C ⊆ S.

However, the definition of semantics depends on the interpretation of the support and also on
the constraints that have to be enforced. The generalized bipolar framework can be instantiated
for encoding necessary support, due to the following definition:

Def. 15 Let BAS = 〈A,Ratt,Rsup〉 with Rsup being a set of necessary supports. The tuple
GBAS = 〈A,Ratt,Rsup,C〉 with

C = {{a, b}|(a, b) ∈ Ratt}

∪ {{a, b}|aRattc and c supports b}

∪ {{a, b}|cRattb and c supports a}

is the generalized argumentation system associated with BAS.

It is easy to see that the generalized argumentation system associated with BAS enables
to enforce the constraints TRA and CFS, whereas it satisfies neither Constraint nATT, nor
Constraint n+ATT.

The next step is the study of acceptability in a GBAS in order to check whether Contraint
CLO is taken into account. For that purpose, the first proposal is to use conflict-freeness as
defined in Def. 14 and admissible, preferred and stable extensions as defined in Dung’s systems.
In this case, it can be proved that every stable extension is closed under R

−1
sup.

Prop. 1 Let BAS = 〈A,Ratt,Rsup〉 and its associated GBAS. Let S ⊆ A. If S is conflict-free
in GBAS, and for each a 6∈ S, there is b ∈ S s.t. bRatta, then S is closed under R

−1
sup.

However, this approach produces many conflicts, without adding any attacks. So in many
cases, there will be no stable extension. Moreover, Constraint CLO is generally not satisfied
with the preferred semantics. The following example illustrates these two drawbacks.

Ex. 4 Consider BAS represented by the following graph.
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x c b

a

/

C = {{x, c}, {x, b}, {a, c}}. Using the classical definition of semantics with conflict-freeness as
defined in Def. 14, the preferred extensions of the associated GBAS are {a, x} and {a, b}, and
there is no stable extension. Moreover, the preferred extension {a, b} is not closed under R

−1
sup.

The preferred semantics has to be redefined in order to enforce Constraint CLO. So, our
second proposal is to enforce a notion of coherence by combining conflict-freeness and closure
under R

−1
sup. Moreover it can be proven that:

Prop. 2 Let 〈A,Ratt,Rsup〉 and its associated GBAS. Let S ⊆ A. If S is closed under R
−1
sup

then (S is conflict-free in GBAS iff S is conflict-free in 〈A,Ratt〉).

Def. 16 (Coherence in a GBAS) Let 〈A,Ratt,Rsup,C〉 be a GBAS and S ⊆ A. S is co-
herent in the GBAS iff S is conflict-free in 〈A,Ratt〉 and S is closed under R

−1
sup.

Using coherence in place of conflict-freeness leads to new definitions:

Def. 17 (Admissibility in a GBAS) Let 〈A,Ratt,Rsup,C〉 be a GBAS and S ⊆ A.
• S is admissible in the GBAS iff S is coherent in the GBAS and ∀a ∈ S, ∀b ∈ A s.t. bRatta,
∃c ∈ S s.t. cRattb.
• S is a preferred extension of the GBAS iff it is a maximal (wrt ⊆) admissible set.
• S is a stable extension of the GBAS iff S is coherent7 in the GBAS and for each a 6∈ S,
there is b ∈ S s.t. bRatta.

Ex. 4 (cont’d) Taking into account coherence, as in Def.17, {a, x} is the unique preferred
extension of the associated GBAS, and it is closed under R

−1
sup.

So, using Def.17 and 16, the associated GBAS enables to enforce Constraint CLO.8 Moreover,
as in Dung’s framework, stable extensions are also preferred.

Prop. 3 Let 〈A,Ratt,Rsup,C〉 be a GBAS and S ⊆ A. If S is a stable extension of the GBAS
then S is also a preferred extension of the GBAS.

A thorough study of the generalized bipolar abstract argumentation framework would de-
mand to define other semantics such as grounded one. However, this is not our purpose in this
paper. We focus on the way to enforce different kinds of constraints related to necessary support.

4.2 A meta-framework encoding necessary support

The fact that “the acceptance of c is necessary to get the acceptance of b” can be encoded in
another way. As explained in Section 3, the idea is to assume the existence of a special argument
attacking b for which c is the only attacker. More precisely, if cRsupb, we create a new argument
Ncb and two attacks cRattNcb and NcbRattb. As c is the unique attacker of Ncb, “the acceptance
of b implies the acceptance of c”. The meaning of Ncb could be that the support from c to b is
not active. A similar idea can be found in [27; 11] for the more general purpose of representing
recursive and defeasible attacks and supports.

7Due to Proposition 1, coherent may be replaced by conflict-free.
8Note that enforcing coherence makes the set C useless due to Prop.2.
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Def. 18 Let BAS = 〈A,Ratt,Rsup〉 with Rsup being a set of necessary supports. Let An =
{Ncb|(c, b) ∈ Rsup} and Rn = {(c,Ncb)|(c, b) ∈ Rsup} ∪ {(Ncb, b)|(c, b) ∈ Rsup}. The tuple MAS

= 〈A ∪An,Ratt ∪Rn〉 is the meta-argumentation system 9 associated with BAS.

Let us check whether the minimal requirements are satisfied. Let us first consider constraint
TRA. From aRsupb and bRsupc, we obtain the sequence of attacks aRattNabRattbRattNbcRattc.
So, the acceptance of c implies the acceptance of b, which in turn implies the acceptance of a,
as if we had directly encoded aRsupc. So, TRA is taken into account. The same result holds
for CLO:

Prop. 4 Let BAS = 〈A,Ratt,Rsup〉 and its associated MAS. Let S ⊆ A∪An. If S is admissible
in MAS, then S ∩A is closed under R

−1
sup in BAS.

Constraint CFS is not enforced. We only have the following property:

Prop. 5 Let BAS = 〈A,Ratt,Rsup〉 and its associated MAS. Let a, b, c be arguments of A. If
(aRattc and c supports b) or (cRattb and c supports a) then no admissible set in MAS contains
{a, b}.

Note that this result is weaker than CFS since it does not imply that {a, b} is a conflicting
set.

Obviously, stronger constraints such as nATT or n+ATT are not directly enforced. If
aRattc and cRsupb, we obtain the sequence aRattcRattNcbRattb. No attack from a to b is added.
However, we will see in Section 4.4 that the meta-argumentation framework associated with BAS

enables to recover the extensions obtained when enforcing Constraint nATT.

4.3 A framework with complex attacks

In this subsection we discuss two frameworks enabling to handle necessary support through
the addition of complex attacks. According to the various interpretations of the necessary
support, all the complex attacks are not justified. For instance, if the necessary support models
a subargument relation as in [25], only the secondary attack makes sense. Other works [21] have
considered both cases of extended attack. However, to the best of our knowledge, there has been
no formal study of the properties of these extended attacks, and of the consequences of these
attacks on the acceptable sets of arguments.

From Def. 7, new attacks called n+-attacks can be generated inductively as follows:

Def. 19 (n+-attacks) Let BAS = 〈A,Ratt,Rsup〉 with Rsup being a set of necessary supports.
There exists a n+-attack from a to b iff
• either aRattb, or there is a (case 1 or case 2) extended attack from a to b,
• or there exists an argument c s.t. a n+-attacks c and c supports b,
• or there exists an argument c s.t. c supports a and c n+-attacks b.

N
+Rsup

Ratt
denoted the set of n+-attacks generated by Rsup on Ratt. The AS defined by 〈A,N+Rsup

Ratt
〉

is denoted by AS
N+

.

Obviously Constraints TRA, nATT and n+ATT are enforced in AS
N+

.
Let us now consider the case when the extended attacks are restricted to secondary attacks

(Case 1 of extended attacks). Following the above definition, our purpose is to define a n-attack

from a to b when either aRattb, or there exists a secondary attack from a to b, or there exists

9Note that it is an argumentation system in Dung’s sense.
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an argument c s.t. a n-attacks c and c supports b. Indeed, it is easy to prove that the formal
definition of this n-attack can be simplified as follows:

Def. 20 (n-attack) Let BAS = 〈A,Ratt,Rsup〉. There is n-attack from a to b iff
• either aRattb,
• or there is a secondary attack from a to b.

N
Rsup

Ratt
denoted the set of n-attacks generated by Rsup on Ratt. The AS defined by 〈A,N

Rsup

Ratt
〉

is denoted by AS
N .

Note that both AS
N and AS

N+

are Dung’s argumentation systems; so the classical notions
given in Def. 2 and 3 can be applied without restriction, nor redefinition.

Obviously Constraints TRA and nATT are enforced in AS
N , whereas Constraint n+ATT

is not.
Def. 19 looks complex. However the following proposition enables to rewrite n+-attacks

and n-attacks in a form which will be much easier to handle for studying their properties.

Prop. 6 Let BAS = 〈A,Ratt,Rsup〉. There is an n+-attack from a to b iff there is a sequence
a1Rattb1Rsup . . .Rsupbm, with bm = b and m ≥ 1, and a sequence a1Rsup . . .Rsupan with an = a
and n ≥ 1.

n+-attacks corresponding to this proposition can be illustrated by the following figure:

a1 b1 . . . bm = b m ≥ 1

a2 . . . an = a n ≥ 1

/

Moreover, Prop. 6 can be used for identifying the following particular cases:
• The case when m = n = 1 corresponds to a direct attack from a to b.
• The case when n = 1 and m ≥ 1 corresponds to a n-attack from a to b (direct or secondary
attacks, see Def. 20).
• The case when n = 1 and m > 1 corresponds to an extended attack - Case 1 (secondary
attack) from a to b (see Def. 7).
• The case when n > 1 and m = 1 corresponds to an extended attack - Case 2 from a to b (see
Def. 7).

An obvious consequence of this proposition is:

Corol. 1 Let BAS = 〈A,Ratt,Rsup〉 and its associated AS
N and AS

N+

. Let S ⊆ A. If S is

conflict-free in AS
N+

, then S is conflict-free in AS
N .

As said above, in some works necessary support can be handled by only considering n-attacks,
that is by adding secondary attacks. However, although both cases of extended attacks are in-
dependent, we show that taking into account only n-attacks is already enough for inducing
constraints on AS

N+

.

Prop. 7 Let BAS = 〈A,Ratt,Rsup〉 and its associated AS
N . If a n+-attack from a to b can be

built from BAS, there exists no admissible set in AS
N containing {a, b}.

As an immediate consequence (contrapositive of Prop. 7), we have:

Corol. 2 Let BAS = 〈A,Ratt,Rsup〉 and the associated AS
N and AS

N+

. Let S ⊆ A. If S is

admissible in AS
N , then S is conflict-free in AS

N+

.

10



Ex. 5 Consider BAS represented by the following graph:

c b

a

/

The associated AS
N only contains the original attack from c to b (there is no secondary attack).

If we consider only n-attacks, there is no conflict between a and b. However, it can be proved
that no admissible set in AS

N contains {a, b}.

The following results establish links between extensions in AS
N and AS

N+

.

Prop. 8 Let BAS = 〈A,Ratt,Rsup〉 and the associated AS
N and AS

N+

. Let S ⊆ A. If S is

admissible in AS
N , then S is also admissible in AS

N+

.

The converse of Prop 8 generally does not hold as shown by the following example.

Ex. 6 Consider BAS and its associated AS
N and AS

N+

represented by the following graphs:

d c b

a

/ /

The associated AS
N and AS

N+

are represented by the following graphs:

AS
N

: AS
N+

:

d c b

a

/ / d c b

a

/ /

−−

The set {a, b} is admissible in AS
N+

but is not admissible in AS
N (since a does not attack c in

AS
N ).

However, the converse of Prop. 8 holds for maximal admissible sets:

Prop. 9 Let BAS = 〈A,Ratt,Rsup〉 and its associated AS
N and AS

N+

. Let S ⊆ A. S is

maximal admissible in AS
N+

iff S is maximal admissible in AS
N .

The same holds for stable semantics:

Prop. 10 Let BAS = 〈A,Ratt,Rsup〉 and its associated AS
N and AS

N+

. Let S ⊆ A. S is stable

in AS
N+

iff S is stable in AS
N .

We conclude this section by providing results about the property of closure under the relation
R

−1
sup.

Prop. 11 Let BAS = 〈A,Ratt,Rsup〉 and its associated AS
N+

. Let S ⊆ A and a, b ∈ A.

• If S is conflict-free in AS
N+

, a ∈ S and bRsupa, then S ∪ {b} is conflict-free in AS
N+

.

• If S is maximal (wrt ⊆) conflict-free in AS
N+

, then S is closed for the relation R
−1
sup.

11



Prop. 11 does not hold when considering AS
N instead of AS

N+

, as shown by the following
example.

Ex. 5 (cont’d) S = {a, b} is maximal conflict-free in AS
N but it is not closed under R

−1
sup. We

have cRsupa but S ∪ {c} is not conflict-free in AS
N .

However, the property of closure under R
−1
sup is recovered in AS

N , if preferred (resp. stable)
extensions are considered.

Prop. 12 Let BAS = 〈A,Ratt,Rsup〉 and the associated AS
N and AS

N+

. Let S ⊆ A.

• If S is a preferred extension in AS
N (resp. AS

N+

), then S is closed for the relation R
−1
sup.

• If S is stable in AS
N (resp. AS

N+

), then S is closed for the relation R
−1
sup.

Due to Prop. 12, each stable (resp. preferred) extension of AS
N (resp. AS

N+

) is closed under

R
−1
sup. In that sense, Constraint CLO is enforced in AS

N (resp. AS
N+

).

It remains to consider Constraint CFS. This constraint is obviously satisfied by AS
N+

since
a new attack is built for each conflict in the sense of CFS, whereas the Dung’s argumentation
system AS

N does not capture all the conflicts induced by CFS, as illustrated by the following
example.

Ex. 4 (cont’d) In the associated AS
N , there is one n-attacks from x to c and one from x to b.

{a, x} is the unique preferred extension of AS
N . It is also stable. Note that {a, c} is conflict-free

in AS
N . Nevertheless {a, c} is a conflicting set in the sense of CFS.

4.4 Comparison between the different frameworks

In the previous sections, starting from a set of constraints, several frameworks (GBAS, MAS,

AS
N and AS

N+

) have been proposed for handling necessary support. In this section, we compare
these frameworks wrt two different points of view: the satisfaction of the constraints and the
extensions that are produced.

First, the following table synthesizes the previous results:

GBAS MAS AS
N

AS
N+

TRA X X X X
CLO X X X X
CFS X − − X

nATT − − X X
n+ATT − − − X

X (resp. −) means that the corresponding property is (resp. not) satisfied in the
corresponding framework.

Now, let us consider AS
N and GBAS. We know that AS

N does not satisfy CFS whereas
GBAS does. However, due to Prop. 7, if S is a conflicting set of GBAS, it is conflicting in AS

N+

and then there is no admissible set of AS
N containing S. Moreover, it can be proved that each

preferred extension of GBAS is (generally strictly) included in a preferred extension of AS
N .

This is illustrated by the following example.

Ex. 7 Consider BAS represented by:

x c e

a b d

/ /

/
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In the associated GBAS, we have C = {{x, c}, {x, b}, {c, e}, {b, d}, {a, c}, {b, e}}. The unique
preferred extension of GBAS is {a, x, e}.
In the associated AS

N , the n-attacks from x to b is used for ensuring the acceptability of d wrt
{a, x, e}. So, the unique preferred extension is {a, d, x, e}.

Prop. 13 Let BAS = 〈A,Ratt,Rsup〉 and its associated GBAS and AS
N . Let S ⊆ A.

• If S is admissible in GBAS, then S is also admissible in AS
N .

• If S is a preferred extension in GBAS, then S is included in a preferred extension of AS
N .

• If S is a stable extension in GBAS, then S is also a stable extension of AS
N .

Note that Prop. 13 holds when considering AS
N+

instead of AS
N , due to Prop. 8, 9 and 10.

The next issue concerns the comparison between AS
N and the associated MAS of BAS.

It seems that encoding a necessary support cRsupb by a meta-argument Ncb and the sequence
aRattcRattNcbRattb is less strong than encoding n-attacks. However, there is a correspondence
between the extensions which are obtained in each framework.

Prop. 14 Let BAS = 〈A,Ratt,Rsup〉 and its associated MAS and AS
N .

• Let S ⊆ A ∪An. If S is admissible in MAS, then S ∩A is also admissible in AS
N .

• Let S ⊆ A. If S is a preferred extension in AS
N , there exists S′ admissible in MAS such that

S = S′ ∩A.
• Let S ⊆ A ∪An. If S is stable in MAS, then S ∩A is also stable in AS

N .
• Let S ⊆ A. If S is a stable extension in AS

N , then there exists S′ stable in MAS such that
S = S′ ∩A.

From Prop. 13 and 14, the following comparison between GBAS and MAS can be easily
established.

Prop. 15 Let BAS = 〈A,Ratt,Rsup〉 and its associated MAS and GBAS. Let S ⊆ A.
• If S is a preferred extension of GBAS, then there exists S′ preferred in MAS such that S ⊆
S′ ∩A.
• If S is a stable extension of GBAS, then there exists S′ stable in MAS such that S = S′ ∩A.

The following example illustrates the above propositions.

Ex. 7 (cont’d) Consider the associated MAS represented by:

x c e

Nxa Ncb

a b d

/ /

/

−−

−−

−−

−−

In GBAS, the unique preferred (and also stable) extension is the set {a, x, e}. In AS
N , the unique

preferred (and also stable) extension is the set {a, x, e, d}. In MAS, the unique preferred (and
also stable) extension is the set {a, x, e,Ncb, d}.

5 Conclusion and future works

Recent studies in argumentation have addressed the notion of support, with several interpre-
tations (such as deductive, evidential, necessary, backing) and several approaches developed
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independently. In this paper we focus on necessary support and show that the intended mean-
ing of necessary support can induce different ways to handle it. Our main contribution is to
propose an axiomatic approach that is helpful for understanding and comparing the different
existing proposals for handling support. First, we have proposed different kinds of constraints
that should be imposed to a bipolar argumentation system using necessary supports. Then we
have studied different frameworks suitable for encoding these contraints.

This paper reports a preliminary work that could be pursued along different lines. First, our
study must be deepened in order to give a more high-level analysis and comparison of all these
frameworks. Then the axiomatic approach could be enriched by considering other constraints,
such as for instance the strong requirement leading to the addition of symmetric attacks in the
case of a necessary support. Moreover, it would be interesting to define such an axiomatic for
other interpretations of support, or to consider other frameworks which do not explicitely define
a notion of support, such as Abstract Dialectical Frameworks [6]. Another direction for further
research would be to study how to encode necessary (or other variants) support by the addition
of attacks of various strengths (see for instance [18; 7; 15; 16]). Moreover it would be interesting
to see the link between our approaches and the ranking semantics proposed by [1].
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A Proofs

Proof of Prop. 1: Let S ⊆ A be conflict-free in GBAS. Let b ∈ S and c ∈ A such that cRsupb. If

c /∈ S, there exists a ∈ S such that aRattc. So {a, b} is a conflicting set in GBAS, which contradicts the

fact that S is conflict-free in GBAS. Hence, c ∈ S and S is closed under R
−1
sup. ✷

Proof of Prop. 2: Let S ⊆ A closed under R
−1
sup. Let AS = 〈A,Ratt〉 be the associated AS of GBAS.

⇒ Following Def.13 and 14, it is obvious that S conflict-free in GBAS implies that S conflict-free in AS.
⇐ Consider that S is conflict-free in AS. Assume that S is not conflict-free in GBAS. So there exist
a ∈ S and b ∈ S such that:
• either aRattc and c supports b: since b ∈ S and S closed under R

−1
sup, then c ∈ S; since a attacks c,

S is not conflict-free in AS; contradiction;
• or cRattb and c supports a: since a ∈ S and S closed under R

−1
sup, then c ∈ S; since c attacks b, S

is not conflict-free in AS; contradiction.

So if S is closed for R
−1
sup then (S conflict-free in AS implies that S conflict-free in GBAS). ✷

Proof of Prop. 3: Let S ⊆ A be a stable extension of the GBAS. By definition, S is coherent. Consider
z ∈ S. There are two cases:
• Either z is unattacked and so z is acceptable wrt S.
• Or z is attacked by x. Since S is stable, x 6∈ S and there y ∈ S such that y attacks x; so z is also
acceptable wrt S.

Thus S is admissible. Moreover, assume that S is not maximal for set-inclusion among the admissible

sets of the GBAS; then there exists S′ admissible in the GBAS such that S ⊂ S′; consider a ∈ S′ \ S;

since S is stable then S attacks a and so S′ is not conflict-free; contradiction. So S is maximal for

set-inclusion among the admissible sets of the GBAS and thus S is a preferred extension of the GBAS.

✷

Proof of Prop. 4: Let S ⊆ A∪An be admissible in MAS. Let a ∈ S ∩A and b ∈ A such that bRsupa.
In MAS we have the sequence bRattNbaRatta. As S is admissible, there exists c ∈ S such that c attacks
Nba in MAS. Due to Def. 18, the only argument that attacks Nba in MAS is b. Hence b = c ∈ S. We
have proved that S ∩A is closed under R

−1
sup in BAS.

✷

Proof of Prop. 5: Let a, b, c be arguments of A.
• Let aRattc and cRsupb in BAS. In MAS we have the sequence aRattcRattNcbRattb. Assume that
there exists E admissible in MAS containing {a, b}. As c is the unique attacker of Ncb, E must contain
c. The fact that E contains a contradicts the fact that E is conflict-free. Hence E does not exist.
If aRattc and c supports b, we prove the result by induction on the length of the sequence supports.
• Let cRattb and cRsupa in BAS. In MAS we have the sequences cRattb and cRattNcaRatta. Assume
that there exists E admissible in MAS containing {a, b}. As c is the unique attacker of Nca, E must
contain c, which attacks b. That contradicts the fact that E is conflict-free.
If cRattb and c supports a, we prove the result by induction on the length of the sequence supports.

✷

Proof of Prop. 6: Let us denote by C(a, b) the fact that there is a sequence a1Rattb1Rsup . . .Rsupbm,
with bm = b and m ≥ 1, and a sequence a1Rsup . . .Rsupan with an = a and n ≥ 1.
⇒) We proceed by induction, following Def. 19.
Basic case : If aRattb, C(a, b) trivially holds with n = m = 1. If there is an extended attack-Case 1
(resp. Case 2) from a to b, C(a, b) holds with n = 1 (resp. m = 1).
General case : First, let us assume that C(a, c) holds and c supports b. So we have a new sequence
a1Rattb1Rsup . . .Rsupbm = cRsupb, and the sequence a1Rsup . . .Rsupan = a. Hence C(a, b) holds. Now,
let us assume that C(c, b) holds and c supports a. So we have a new sequence a1Rsup . . .Rsupan = cRsupa
and the sequence a1Rattb1Rsup . . .Rsupbm = b. Hence C(a, b) holds.
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⇐) We proceed by induction on the length of the sequences.
Basic case n = 1: C(a, b) means that there is an extended attack-Case 1 from a to b.
Basic case m = 1: C(a, b) means that there is an extended attack-Case 2 from a to b.
General case: Assume that the result holds for n ≥ 1,m ≥ 1. Let us first consider C(a, b) with (n+1,m).
We have a sequence a1Rattb1Rsup . . .Rsupbm = b and a sequence a1Rsup . . .RsupanRsupan+1 = a. By
induction hypothesis, there is a n+-attack from an to b and anRsupa. By the third item of Def. 19, we
conclude that there is a n+-attack from a to b.
Now let us consider C(a, b) with (n,m+1). We have a sequence a1Rattb1Rsup . . .RsupbmRsupbm+1 = b
and a sequence a1Rsup . . .Rsupan = a. By induction hypothesis, there is a n+-attack from a to bm and
bmRsupb. By the second item of Def. 19, we conclude that there is a n+-attack from a to b.

✷

Proof of Prop. 7: Assume that S ⊆ A is an admissible set in AS
N containing {a, b}.

As S is conflict-free in AS
N , there is no n-attack between a and b. So the n+-attack from a to b has

the following form: a1Rattb1Rsup . . .Rsupbm = b and a1Rsup . . .Rsupan = a with n > 1,m ≥ 1. Hence

there is a n-attack from a1 to b.

As S is admissible in AS
N and b ∈ S, there is a n-attack from S to a1. There exists x ∈ S such that x

n-attacks a1. Either xRatta1 or there is a secondary attack from x to a1.

In the first case, we have xRatta1Rsup . . .Rsupan = a, which shows a n-attack from x to a.

In the second case, we have xRattyRsup . . .Rsupa1Rsup . . .Rsupan = a, which also shows a n-attack

from x to a.

As S is conflict-free in AS
N , there cannot exist any n-attack from x(∈ S) and a(∈ S). Hence the initial

hypothesis does not hold. ✷

Proof of Prop. 8: Assume that S ⊆ A is an admissible set in AS
N . Due to Corollary 2, S is conflict-free

in AS
N+

. It remains to prove that each element of S is acceptable wrt S in AS
N+

.
Let b ∈ S and a such that a n+-attacks b. Due to Prop. 6 we have the two following sequences:
a1Rattb1Rsup . . .Rsupbm = b, and a1Rsup . . .Rsupan = a with m ≥ 1, n ≥ 1. Hence there is a n-attack

from a1 to b.
As S is admissible in AS

N , there exists x ∈ S such that x n-attacks a1, or equivalently such that there
is a direct or secondary attack from x to a1.
In the first case, we have xRatta1Rsup . . .Rsupan = a, which shows a n-attack from x to a.
In the second case, we have xRattyRsup . . .Rsupa1Rsup . . .Rsupan = a, which also shows a n-attack

from x to a.
Hence there is a n-attack from x to a and so also a n+-attack from x to a. That proves that b is

acceptable wrt S in AS
N+

.

✷

Proof of Prop. 9:

⇒) Assume that S is maximal admissible in AS
N+

. Obviously, S is conflict-free in AS
N . We have to

prove that S is admissible in AS
N and then that S is maximal admissible.

• We prove that S is admissible in AS
N . If S is not admissible in AS

N , there exists x ∈ S such that x
is not acceptable wrt S in AS

N . So there is a n-attack from b to x such that S does not n-attack b.

As S is admissible in AS
N+

there exists a ∈ S such that a n+-attacks b. Hence we have the following
sequences: a1Rattb1Rsup . . .Rsupbm = b, and a1Rsup . . .Rsupan = a with m ≥ 1, n ≥ 1. Moreover,

as S does not n-attack b we are sure that n > 1 and a1 /∈ S. As S is maximal admissible in AS
N+

,

S ∪ {a1} is not admissible in AS
N+

. Hence, either S ∪ {a1} is not conflict-free in AS
N+

, or a1 is not

acceptable wrt S in AS
N+

.

In the first case, as a1Rsup . . .Rsupan = a and a ∈ S, if there is a conflict between S and a1 in AS
N+

,

following Def. 19, there is also a conflict between S and a in AS
N+

. That is impossible since a ∈ S and
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S is conflict-free in AS
N+

.
In the second case, there exists a n+-attack from an argument d to a1 such that there is no n+-attack

from S to d. Following again Def. 19, we obtain a n+-attack from d to a. The fact that there is no

n+-attack from S to d contradicts the fact that S is admissible in AS
N+

. Hence the initial hypothesis
does not hold and we have proved that S is admissible in AS

N .
• It remains to prove that S is maximal admissible in AS

N . If it is not the case, there exists S′ ⊆ A

such that S′ is admissible in AS
N and S ⊂ S′. Due to Prop. 8, S′ is also admissible in AS

N+

, which

contradicts the fact that S is maximal admissible in AS
N+

.
⇐) Assume that S is maximal admissible in AS

N . Due to Prop. 8, S is admissible in AS
N+

. If S

is not maximal admissible in AS
N+

, there exists S′ ⊆ A such that S′ is maximal admissible in AS
N+

and S ⊂ S′. Due to the first item S′ is maximal admissible in AS
N , which contradicts the fact that S is

maximal admissible in AS
N .

✷

Proof of Prop. 10:

⇒) Assume that S is stable in AS
N+

. Obviously, S is conflict-free in AS
N . Let b /∈ S. There exists

a ∈ S such that a n+-attacks b. If we do not have a n-attacks b, we have the following sequences:
a1Rattb1Rsup . . .Rsupbm = b, and a1Rsup . . .Rsupan = a with m ≥ 1, n > 1.

If a1 /∈ S, as S is stable in AS
N+

there exists c ∈ S such that c n+-attacks a1. Following Def. 19, we

obtain a n+-attack from c to a, which contradicts the fact that S is conflict-free in AS
N+

. So a1 ∈ S
and S n-attacks b.

⇐) Assume that S is stable in AS
N . Then S is admissible in AS

N . Due to Corollary 2 S is conflict-

free in AS
N+

. Let b /∈ S, there exists a ∈ S such that a n-attacks b and so a n+-attacks b. Hence S

is stable in AS
N+

. ✷

Proof of Prop. 11: a, b ∈ A.

• Let S be conflict-free in AS
N+

, a ∈ S and bRsupa. Assume that S ∪ {b} is not conflict-free in AS
N+

.
As S is conflict-free, there exists a n+-attack between b and an element c of S. Either c n+-attacks
b or b n+-attacks c. Following Def. 19, we obtain a n+-attack from c to a in the first case and a

n+-attack from a to c in the second case. That contradicts the fact that S is conflict-free in AS
N+

.
• Let S be maximal (wrt ⊆) conflict-free in AS

N+

, a ∈ S and bRsupa. Due to the first item, S ∪ {b}

is conflict-free in AS
N+

. As S is maximal conflict-free, b must belong to S. Hence S is closed under
R

−1
sup.

✷

Proof of Prop. 12:

• Let S be a preferred extension in AS
N+

. If S is not closed for the relation R
−1
sup, there exists a ∈ S and

b /∈ S such that bRsupa. Due to Prop. 11, S∪{b} is conflict-free in AS
N+

. As S is maximal admissible,

it follows that b is not acceptable wrt S in AS
N+

. Hence there exists c such that c n+-attacks b and
S does not n+-attack c. Following Def. 19, we obtain a n+-attack from c to a. The fact that S does
not n+-attack c contradicts the fact that S is admissible. Hence the initial hypothesis does not hold
and S is closed for the relation R

−1
sup.

The same holds if S is a preferred extension in AS
N due to Prop. 9.

• Let S be a stable extension in AS
N+

. S is also a preferred extension of AS
N+

. Due to the first item,
we conclude that S is closed for the relation R

−1
sup.

✷

Proof of Prop. 13:
• Let S be admissible in GBAS. S is coherent in GBAS and each element of S is acceptable wrt S in
GBAS. Following Def.s 14, 15 and 16, as S is coherent in GBAS it is clear that S is conflict-free in
AS

N .
It remains to prove that each element of S is acceptable wrt S in AS

N . Let b ∈ S and assume there exists
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a n-attack from an argument a to b. Either aRattb or there is a sequence aRattb1Rsup . . .Rsupbm = b.
In the second case, as S is closed for the relation R

−1
sup, b1 ∈ S. As we have aRattb1, b1 ∈ S and S

admissible in GBAS, there exists c ∈ S such that cRatta. The same holds in the first case. Hence we
have proved that b is acceptable wrt S in AS

N .
• As a consequence of the result proved by the first item, if S is a preferred extension in GBAS, then
S is admissible in AS

N and then is included in a preferred extension of AS
N .

• Let S be a stable extension of GBAS. Following Prop. 3, S is a preferred extension of GBAS, so S is
admissible in GBAS. Moreover, following the first item of the current proposition, S is admissible in
AS

N and then S is conflict-free in AS
N . Consider a 6∈ S. Since S is stable in GBAS, there exists x ∈ S

such that xRatta. Since Ratt is included in the n-attacks, xRatta in AS
N and S is stable in AS

N .

✷

Proof of Prop. 14:
• Let S ⊆ A∪An, S admissible in MAS. Due to Prop. 5, we know that if there is a n-attack between
two arguments a and b of A, no admissible set in MAS contains {a, b}. Hence S ∩A is conflict-free in
AS

N .
Let b ∈ S∩A such that there is a n-attack from an argument a to b in A. Either there is a direct or a
secondary attack from a to b. That is we have the sequence aRattb1Rsup . . .Rsupbm = b, with m ≥ 1. If
m > 1, we obtain the following sequence in MAS: aRattb1RattNb1b2Rattb2 . . .RattNbm−1bmRattbm = b.
As S is admissible in MAS and b ∈ S, we have bm−1 ∈ S, . . . , b2 ∈ S, b1 ∈ S and there exists x ∈ S
such that x attacks a in MAS. Note that if m = 1 the sequence in MAS is reduced to aRattb which
also implies that there exists x ∈ S such that x attacks a in MAS. So we have in AS

N :

x a b1 . . . bm = b/ /

/

and in MAS:

x a b1 Nb1b2 . . . Nbm−1bm bm = b/ / / / / /

If x ∈ A we have found x ∈ (S ∩ A) such that xRatta. Otherwise, x ∈ An and x = Na1a with
a1RattNa1aRatta. That means that there is a support a1Rsupa in BAS. As x = Na1a belongs to S,
a1 is attacked in MAS. By iterating the process, we build a sequence a1, a2, . . .. Let us consider the
longest sequence that can be built. It has the form: akRsup . . .Rsupa1Rsupa n-attacks b with ak being
attacked in MAS by xk ∈ S∩A. So we have the sequence xkRattakRsup . . .Rsupa1Rsupa n-attacks b
which proves that xk n-attacks a:

xk ak . . . a . . . b/
/

/

Hence there is n-attack from S ∩A to a, and we have proved that S ∩A is admissible in AS
N .

• Let S ⊆ A, S preferred extension in AS
N . Obviously, S is conflict-free in MAS, since the attacks in

MAS between elements of A are direct attacks coming from BAS. Assume that S is not admissible in
MAS. Let x ∈ S which is not acceptable wrt S in MAS. There exists b in MAS such that x is attacked
by b and no argument of S attacks b in MAS.
If b ∈ An, b has the form Nyx and there is a sequence yRattbRattx in MAS, which corresponds to a
support yRsupx in BAS. Due to Prop. 12, S is closed under R

−1
sup, so y ∈ S. However that contradicts

the fact that no argument of S attacks b in MAS.
Hence, if x is attacked by b such that no argument of S attacks b in MAS, b ∈ A. Let us consider all
the arguments bi of that form (i.e. such that x is attacked by bi and no argument of S attacks bi in
MAS). Each bi belongs to A. As S is admissible in AS

N , for each bi there exists yi ∈ S and a n-attack

from yi to bi. This n-attack cannot be a direct attack due to the assumption on bi. It is a secondary
attack involving at least one support:

yi ak . . . a1 = bi x/ /

/

Let Nx denote the set of all the arguments of An that are used for coding all the secondary attacks
from yi to bi for each bi. It is easy to see that all the arguments of Nx are acceptable wrt S in MAS, and
that S ∪Nx is admissible in MAS. Hence, if we add to S all the Nx such that x ∈ S is not acceptable
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wrt S in MAS, we still obtain an admissible set of MAS whose restriction to A is S. We call it the
extension of S to MAS in the following.
• Let S ⊆ A ∪An, S stable in MAS. As S is stable in MAS, S is also admissible in MAS. From the
first item, we know that S ∩A is conflict-free in AS

N . Let a ∈ A such that a /∈ S. As S is stable in
MAS, there exists x ∈ S such that x attacks a in MAS. If x ∈ S ∩ A, the proof is done. Otherwise,
x ∈ An and x has the form Na1a and there is a sequence a1RattxRatta in MAS, which corresponds to
a support a1Rsupa in BAS. Since S is admissible in MAS, there exists x1 ∈ S such that x1 attacks a1
in MAS. If x1 ∈ S ∩A we obtain a n-attack from x1 to a in BAS and the proof is done. Otherwise,
x1 is of the form Na2a1

. By iterating the process, we build a sequence a1, a2, . . .. Let us consider the
longest sequence that can be built. It has the form: akRsup . . .Rsupa1Rsupa with ak being attacked
in MAS by xk ∈ S ∩A. So we have the sequence xkRattakRsup . . .Rsupa1Rsupa which proves that xk

n-attacks a.

xk ak . . . a1 a/

/

Hence S ∩A is also stable in AS
N .

• Let S ⊆ A, S stable in AS
N . Obviously, S is conflict-free in MAS. Let b ∈ A such that b /∈ S and

there is no direct attack from S to b. As S is stable in AS
N , there exists ai ∈ S such that ai n-attacks

b. That is we have a sequence aiRattb1Rsup . . .Rsupbm = b, with m > 1. So we have the following
sequence in MAS: aiRattb1RattNb1b2Rattb2 . . .RattNbm−1bmRattbm = b.
Let Nb denote the set of all the arguments of An that are used for coding all the secondary attacks
from ai to b for each ai ∈ S. Let us add to S all the Nb such that b ∈ A \ S. We obtain a set denoted
by S1.
Then we add to S1 all the arguments b ∈ An such that there is no attack from S to b in MAS. We
obtain a set denoted by S2.
By construction, S2 attacks each argument of A ∪ An \ S in MAS and there is no attack between
S2 ∩An and S. Moreover, S is conflict-free and there is no attack between arguments of An. So S2 is
conflict-free in MAS. That proves that S2 is stable in MAS.

✷

Proof of Prop. 15: Let BAS = 〈A,Ratt,Rsup〉 and its associated AS
N , GBAS, and MAS. Let S ⊆ A.

• If S is a preferred extension of GBAS then, following Prop. 13, there exists S′′ preferred in AS
N such

that S ⊆ S′′; and then, following Prop. 14, there exists S′ preferred in MAS such that S′′ ⊆ S′ ∩A.
So S ⊆ S′ ∩A.
• If S is a stable extension of GBAS then, following Prop. 13, S is a stable extension of AS

N ; and then,
following Prop. 14, there exists S′ stable in MAS such that S = S′ ∩A.

✷
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