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Abstract

In this paper, we address a new problem in the field of argumentation theory:
the link between two different change operations, namely addition and removal
of an argument. We define two concepts of duality reflecting this link. They are
used to propose new results about an operation from existing results concerning
its dual operation. Finally, the propositions that are obtained are studied for
characterizing the change operations.

Keywords: Argumentation, Dynamics in abstract argumentation.
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1 Introduction
Mr Pink knows that a given argument could be fatal to Mr White’s
argumentation, but this argument is lacking. Another way to win
could be to remove one of Mr White’s arguments (e.g. by doing an
objection). However, Mr Pink does not know all the consequences of
this removal. So the study of the connection between addition and
removal of an argument is helpful.

The growing field of argumentation is becoming a key approach to deal
with incomplete and / or contradictory information, especially for reasoning
Dung [1995], Amgoud and Cayrol [2002]. It can moreover represent dialogues
between several agents by modeling the exchange of arguments in, for example,
negotiation between agents Amgoud et al. [2000].

Argumentation usually consists of a collection of arguments interacting with
each other through a relation reflecting conflicts between them, called attack.
The issue of argumentation is then to determine “acceptable” sets of arguments
(i.e., sets able to defend themselves collectively while avoiding internal attacks),
called “extensions”, and thus to reach a coherent conclusion. Another form of
analysis of an argumentation system is the study of the particular status of
each argument, status based on the membership (or non-membership) to the
extensions.

The creation and use of formal frameworks have greatly eased the modeling
and study of argumentation systems. In particular, the formal framework of
Dung [1995] allows to completely abstract the “real” meaning of the arguments
and relies only on binary interactions that may exist between them. This ap-
proach enables the user to focus on other aspects of argumentation, including
its dynamic side. Indeed, in the course of a discussion or during the acquisition
of new information, an argumentation system can undergo changes such as the
addition of a new argument or the removal of an argument considered as illegal.
Thus, it is interesting to examine these changes, namely to focus on their char-
acterization, i.e., the new necessary and sufficient conditions that hold when
adding or removing an argument. The study of the links between addition and
removal through the concept of duality is a way to directly circumscribe the
characterization of removal through the work previously done on addition, and
conversely.

Although the research on dynamics of argumentation systems is growing
Boella et al. [2009b,a], Baumann and Brewka [2010], Moguillansky et al. [2010],
Liao et al. [2011], the removal of argument has so far been little considered. An
attempt to justify the use of removal may nevertheless be found in Bisquert et al.
[2011] (exclusively devoted to removal). A fortiori, the relationship between
addition and removal of argument has not, to our knowledge, been treated so
far. However, these change operations can be considered dual to each other.

In this work, we therefore propose to initiate a theoretical study of the
relationship existing between operations of addition and removal of argument
and examine the impact this may have on the analysis of the dynamics of an

1



argumentation system.
The paper is organized as follows: Sect. 2 recalls some key concepts of the

theory of abstract argumentation and introduces new definitions relevant to our
study. Section 3 displays properties of a change operation reflecting possible
modifications of an argumentation system. Various notions of duality, and the
results of our study are presented in Sect. 4. Finally, Sect. 5 concludes and
suggests perspectives of our work.

2 Formal Framework
Before going further into the subject of this article, we should recall some basic
backgrounds.

2.1 Argumentation System
The work presented in this paper falls within the formal framework of Dung
[1995].

Definition 1 (Argumentation System). An argumentation system is a pair
〈A, R〉, where A is a finite nonempty set of arguments and R is a binary relation
on A, called attack relation. Let A, B ∈ A, ARB means that A attacks B.
〈A, R〉 will be represented by an argumentation graph G whose vertices are the
arguments and whose edges correspond to R1.

In the remainder of this article, we will need an extended notion of the
attack, namely the attack of an argument to a set and vice versa.

Definition 2 (Attack from and to a set). Let A ∈ A and S ⊆ A,

• S attacks A iff2 ∃X ∈ S such that XRA.

• A attacks S iff ∃X ∈ S such that ARX.

The acceptable sets of arguments (“extensions”) are determined according
to a given semantics whose definition is usually based on the following concepts:

Definition 3 (Conflict-free set, defense and admissibility). Let A ∈ A
and S ⊆ A,

• S is conflict-free iff there does not exist A, B ∈ S such that ARB.

• S defends an argument A iff each attacker of A is attacked by an argument
of S. The set of the arguments defended by S is denoted by F(S); F is
called the characteristic function of 〈A, R〉. More generally, S indirectly
defends A iff A ∈

⋃
i≥1 F i(S).

1In this work we use freely 〈A, R〉 or G to refer to an argumentation system. Similarly, if
there is no ambiguity, we use without distinction A and G.

2iff = if and only if.
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• S is an admissible set iff it is conflict-free and it defends all its elements.

The set of extensions of 〈A, R〉 is denoted by E (with E1, . . . , En standing
for the extensions). For instance, for the grounded semantics, one of the most
traditional semantics proposed by Dung [1995], we have:

Definition 4 (Grounded semantics). Let E ⊆ A, E is the only grounded
extension iff E is the least fixed point (with respect to ⊆) of the characteristic
function F .

The status of an argument is determined by its presence in the extensions of
the selected semantics. For example, an argument can be “skeptically accepted”
(resp. “credulously”) if it belongs to all the extensions (resp. at least to one
extension) and be “rejected” if it does not belong to any extension.

2.2 Change Operations: Addition and Removal
Moreover, since we study the change in an argumentation system, we need to
give a definition of a change operation. We rely on the work of Cayrol et al.
[2010] which have distinguished four change operations; here are the formal
definitions of the two operations of interest in this work, namely the operations
of addition and removal of an argument and its interactions.

Definition 5 (Change operations). Let 〈A, R〉 be an argumentation system,
Z be an argument and Iz be a set of interactions concerning Z.

• Adding Z /∈ A and Iz 6⊆ R is a change operation, denoted by ⊕, providing
a new argumentation system such that:

〈A, R〉 ⊕ (Z, Iz) = 〈A ∪ {Z}, R ∪ Iz〉

• Removing Z ∈ A and Iz ⊆ R is a change operation, denoted by 	, pro-
viding a new argumentation system such that:

〈A, R〉 	 (Z, Iz) = 〈A \ {Z}, R \ Iz〉

We denote by O a change operation (⊕ or 	). The new argumentation system
〈A′, R′〉 obtained by the application of O will be represented by the argumenta-
tion graph G′ = O(G).3

The set of extensions of 〈A′, R′〉 is denoted by E′ (with E ′1, . . . , E ′n standing
for the extensions). Note that, in the course of this work, we will only consider
cases where the semantics remains the same before and after a change.

3
• We assume that Z does not attack itself and ∀(X, Y ) ∈ Iz , we have either (X = Z and

Y 6= Z, Y ∈ A) or (Y = Z and X 6= Z, X ∈ A).
• In case of removing, Iz is the set of all the interactions concerning Z in 〈A, R〉.
• The symbols ⊕ and 	 used here correspond to the symbols ⊕a

I and 	a
I of Cayrol

et al. [2010], where a stands for “argument” and I for “interactions”, meaning that the
operation concerns an argument and its interactions.
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It is also important to note that a change operation is a non injective ap-
plication. Thanks to Definition 5, we know that ∀G, G′ = O(G) is unique.
However, for a given G′, there may be several G.

Example 1. With O = 	, three systems can be changed into G′, such that
O(G1) = O(G2) = O(G3) = G′ (see Table 1 which also gives the grounded
extension of each system).

Table 1: On the non injective nature of the removal operation.

System before the System after the
removal of Z removal of Z

G1 : A B

C Z

EG1 = {{C, Z}}

G2 : A B

C Z

G′ : A B

C

EG2 = {{B}} E′ = {{B}}

G3 : A B

C Z

EG3 = {{A, B, Z}}

The impact of a change operation will be studied through the notion of
change property. A change property P can be seen as a set of pairs (G,G′),
where G and G′ are argumentation graphs.

Example 1 (cont.). Let P be the property defined by:

P(G,G′) holds iff “Any extension of G′ is included in at least one
extension of G.”

Thus, P(G1,G′) does not hold while P(G2,G′) and P(G3,G′) hold.

In the remainder of this work, we will often refer to the fact that an operation
satisfies a particular property:

Definition 6 (Operation satisfying a property). A change operation O
satisfies a property P iff ∀G, P(G,O(G)) holds.
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Example 1 (cont.). The argumentation system G1 is such that P(G1,G′) does
not hold. Thus, the change operation O does not satisfy P.

2.3 Some Propositions About the Addition
The following propositions list the main results obtained for characterizing the
operation of addition under the grounded semantics. Proposition 1 is directly
taken from Cayrol et al. [2010]:

Proposition 1. When adding an argument Z under the grounded semantics,

1. (Prop. 7) If X ∈ E and Z does not indirectly attack X, then X ∈ E ′.

2. (Prop. 9, item 3) If E = ∅ and Z is attacked by G, then E ′ = ∅.

3. (Prop. 9, item 4) If E = ∅ and Z is not attacked by G, then E ′ =
{Z} ∪

⋃
i≥1 F ′i({Z}).

Proposition 2 is a generalization of some propositions given in Cayrol et al.
[2010]. The proof given in Appendix takes into account some properties con-
cerning the addition of the argument Z in the special case where E = ∅. These
properties allow us to remove the condition E 6= ∅ in the initial propositions:

Proposition 2. When adding an argument Z under the grounded semantics,

1. (Prop. 10) If Z does not attack E, then E ⊆ E ′.

2. (Prop. 11, item 1) If Z does not attack E and E does not defend Z, then
E ′ = E.

3. (Prop. 11, item 2 part 1) If Z does not attack E and E defends Z, then
E ′ = E ∪ {Z} ∪

⋃
i≥1 F ′i({Z}).

4. (Prop. 11, item 2 part 2) If Z does not attack G and E defends Z, then
E ′ = E ∪ {Z}.

5. (Prop. 13) E ′ = ∅ iff Z attacks each unattacked argument of G and Z is
attacked by G.

Proposition 3 is a new proposition about the conservation of the status
“rejected” of an argument (see proof in Appendix):

Proposition 3. When adding an argument Z under the grounded semantics,
∀X ∈ G, if X /∈ E and Z does not indirectly defend X, then X /∈ E ′.

3 Some Change Properties
Change properties express structural modifications of an argumentation sys-
tem that are caused by a change operation. In this section, we focus on these
modifications and try to define them in order to obtain a clear and accurate
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classification. For that purpose, a new partition, inspired by the work of Cay-
rol et al. [2010] and based on three possible cases of evolution of the set of
extensions, has been defined:

• the extensive case, in which the number of extensions increases,

• the restrictive case, in which the number of extensions decreases,

• the constant case, in which the number of extensions remains the same.

Note that in this article, due to space limitations, we do not address the
extensive and restrictive cases4, but we focus exclusively on the constant case.

Note also that for the sake of clarity, we will say that a change satisfying a
property P is a “P change”; for example, a change that satisfies the constant
property is said constant change. Here is the formal definition of this change:

Definition 7 (Constant change). The change from G to G′ is constant iff
|E| = |E′|.

Restricting our scope to the constant case allows us to focus on other criteria
than the number of extensions of G and G′, namely inclusions between the var-
ious possible extensions (G to G′ and vice versa), emptiness of these extensions,
etc. Here are the definitions of these various sub-cases5:

Definition 8. The change from G to G′ is:

1. c-conservative iff E = E′.

2. c-decisive iff E = {{}} and E′ = {E ′}, with E ′ 6= ∅.

3. c-destructive iff E = {E}, with E 6= ∅ and E′ = {{}}.

4. c-expansive iff

• E 6= ∅, |E| = |E′|,
• ∀Ei ∈ E,∃E ′j ∈ E′,∅ 6= Ei ⊂ E ′j and
• ∀E ′j ∈ E′,∃Ei ∈ E,∅ 6= Ei ⊂ E ′j.

5. c-narrowing iff

• E 6= ∅, |E| = |E′|,
• ∀Ei ∈ E,∃E ′j ∈ E′,∅ 6= E ′j ⊂ Ei and
• ∀E ′j ∈ E′,∃Ei ∈ E,∅ 6= E ′j ⊂ Ei.

6. c-altering iff |E| = |E′| and it is neither c-conservative, nor c-decisive,
nor c-destructive, nor c-expansive, nor c-narrowing.

4For the same reason, we do not address other types of properties, including those related
to the status of a specific argument.

5Note that the names of these sub-cases are prefixed with the letter c to highlight the fact
that they follow from the constant property.
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Definitions 8.1, 8.2, 8.3 and 8.6 are fairly straightforward. Definition 8.4
states that a c-expansive change is a change where all the extensions of G,
which are not initially empty, are increased by some arguments. A c-narrowing
change, according to Definition 8.5, is a change where all the extensions of G
are reduced by some arguments without becoming empty.

4 Usefulness of Duality
4.1 Two Definitions of Duality
As far as we know, the problem of removing an argument and, a fortiori, the
link between addition and removal of an argument have been little discussed.
However, we believe it can be worthy to use the links between these operations
for the study of the properties characterizing the changes that may impact an
argumentation system. For that purpose, we will rely on the notion of duality.

We focus on two concepts of duality. We will first define a duality at the level
of change operations, the duality based on the notion of inverse, expressing the
opposite nature of two operations, then a duality at the level of change proper-
ties, the duality based on the notion of symmetry, conveying a correspondence
between two properties.

Definition 9 (Duality based on the notion of inverse). Two change op-
erations O and O′ are the inverse of each other iff:

∀G,∀G′, O(G) = G′ iff O′(G′) = G.

Obviously, following the former definition, it is clear that the operations of
addition and removal of an argument defined in Sect. 2 are the inverse of each
other.

Definition 10 (Duality based on the notion of symmetry). Two proper-
ties P and P ′ are symmetric iff:

∀G, ∀G′, P ′(G′,G) holds iff P(G,G′) holds.

From these definitions, we can draw a condition for the satisfaction of a
property by a change operation.

Proposition 4. Let O and O′ two inverse change operations and P and P ′ two
symmetric properties. O satisfies P iff O′ satisfies P ′.

Both concepts of duality defined above can be used for linking the change
properties.

Proposition 5. A change is constant iff the inverse change is constant as well.

Proposition 6. A change is c-destructive iff the inverse change is c-decisive.

Proposition 7. A change is c-conservative iff the inverse change is c-conservative
as well.
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Proposition 8. A change is c-narrowing iff the inverse change is c-expansive.

Proposition 9. A change is c-altering iff the inverse change is c-altering as
well.

Figure 1 graphically summarizes the above results; their proofs are in Ap-
pendix.

Constant

c-decisive

c-destructive

c-expansive

c-narrowing

c-conservative

c-altering

Figure 1: Presentation of the duality of the constant property and its sub-cases.

4.2 Methodology for Using Duality
This part describes how to use duality in order to obtain new propositions for
the operation of removal, starting from propositions relating to addition6. Note
first that, in this article, we restrict our study to the grounded semantics (see
Definition 4).

Let us describe this methodology: using Proposition 3, we show how duality
enables us to obtain a new proposition about the removal of an argument.

Let us first proceed to a renaming in order to clarify the presentation. The
graphs and the extensions are going to be indexed by two capital letters - IA,
OA, IR and OR - representing respectively the Input system for the Addition,
the Output system for the Addition, the Input system for the Removal and
the Output system for the Removal. Thus, Proposition 3 can be rewritten as
follows:

Proposition 3.1. When adding an argument Z under the grounded semantics,
if X /∈ EIA and Z does not indirectly defend X, then X /∈ EOA.

Let P be a property and P−1 its symmetric. Thanks to Proposition 4, we
can write:

⊕ satisfies P iff 	 satisfies P−1

6This methodology can also be used the other way round from removal to addition.
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And thanks to Definition 6, we know that a change operation O satisfies a
property P if and only if ∀G, it holds that P(G,O(G)). So we can write:

∀GIA, P(GIA,⊕(GIA)) holds iff ∀GIR, P−1(GIR,	(GIR)) holds

Moreover, thanks to Definition 10, we have:

∀GIR, P−1(GIR,	(GIR)) holds iff P(	(GIR),GIR) holds

And so, we have:

∀GIA, ∀GIR, P(GIA,⊕(GIA)) holds iff P(	(GIR),GIR) holds

Let GOA = ⊕(GIA) and GOR = 	(GIR). Since we know that Property
P holds for the operation of addition, we can rewrite it for the operation of
removal:

Proposition 3.2. When removing an argument Z under the grounded seman-
tics, if X /∈ EOR and Z does not indirectly defend X, then X /∈ EIR.

Which is equivalent to:

Proposition 3.3. When removing an argument Z under the grounded seman-
tics, if X ∈ EIR and Z does not indirectly defend X, then X ∈ EOR.

Thus, for the operation of removal, we obtain a proposition analogous to
Proposition 3 denoted by Proposition 3	; in the remainder of this article, the
exponent (⊕ or 	) will represent the correspondence between a proposition and
the one obtained by applying the duality methodology.

Proposition 3	. When removing an argument Z under the grounded seman-
tics, if X ∈ E and Z does not indirectly defend X, then X ∈ E ′.

So, using the methodology presented here, the propositions of Cayrol et al.
[2010] summarized by Proposition 1 and Proposition 2 can be translated.

4.3 Propositions Obtained by Duality
This section is divided into two parts: the first part concerns the propositions
on which the application of the methodology is directly meaningful, and the
second part concerns the propositions that should be transformed in order to
make sense.

4.3.1 Straightforward Application

Here, we deal with the propositions on which our methodology gives analogous
propositions that can be used directly.

From Proposition 1.1, we find a proposition that gives a sufficient condition
for the conservation of the rejection of an argument X when Z is removed.
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Proposition 1.1	. When removing an argument Z under the grounded seman-
tics, if X /∈ E and Z does not indirectly attack X, then X /∈ E ′.

Similarly, Propositions 1.2 and 1.3 give sufficient conditions for a non c-
destructive change.

Proposition 1.2	. When removing an argument Z under the grounded seman-
tics, if E 6= ∅ and Z is attacked by G, then E ′ 6= ∅.

Proposition 1.3	. When removing an argument Z under the grounded seman-
tics, if E 6= {Z} ∪

⋃
i≥1 F i({Z}) and Z is not attacked by G, then E ′ 6= ∅.

The two previous propositions also give a necessary condition for a c-destructive
change.

Corollary 1. When removing an argument Z under the grounded semantics,
if the change is c-destructive, then Z is not attacked by G and E = {Z} ∪⋃

i≥1 F i({Z}).

From Proposition 2.5, we obtain a proposition that characterizes a change
either c-conservative or c-decisive.

Proposition 2.5	. When removing an argument Z under the grounded seman-
tics, E = ∅ iff Z attacks each unattacked argument of G \{Z} and Z is attacked
by G \ {Z}.

4.3.2 Not So Straightforward Application

Now, we deal with propositions requiring additional work to be usable; for
example when the proposition uses a condition on the output system, we must
consider what it means on the input system.

From Proposition 2.1, we obtain:

Proposition 2.1	. When removing an argument Z under the grounded seman-
tics, if Z does not attack E ′ in G, then E ′ ⊆ E.

This proposition uses a condition on the output argumentation system (Z
does not attack E ′). Lemma 1 expresses the meaning of this condition for the
input argumentation system in the case of a removal. For this lemma, we need
a new notation.

Notation 1. Let U ⊆ G, U is the set of unattacked arguments in G \ {Z}.

Informally, Lemma 1 means that if an argument X is attacked by Z, X is
also attacked by another argument Y 6= Z which prevents X to belong to the
grounded extension E ′.

Lemma 1. When removing an argument Z under the grounded semantics, Z
does not attack E ′ in G iff ∀X ∈ G′, if Z attacks X then (X is attacked by
G \ {Z} and X is not indirectly defended by U in G \ {Z}).
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Using Lemma 1, we can rewrite the proposition, which gives us a suffi-
cient condition for the fact that no argument non accepted before the change
is accepted after. Hence, the change is either c-conservative, c-destructive or
c-narrowing.

Proposition 2.1	 (v2). When removing an argument Z under the grounded
semantics, if ∀X ∈ G, if Z attacks X then (X is attacked by G \ {Z} and X is
not indirectly defended by U in G \ {Z}), then E ′ ⊆ E.

From Proposition 2.2, we obtain:

Proposition 2.2	. When removing an argument Z under the grounded seman-
tics, if Z does not attack E ′ in G and E ′ does not defend Z in G, then E = E ′.

Similarly, we need to express the condition E ′ does not defend Z in G by
a condition for the input argumentation system. Such a condition is given by
Lemma 2.

Lemma 2. When removing an argument Z under the grounded semantics, if
Z does not attack E ′, then the following equivalence holds:

Z ∈
⋃

i≥1 F i(U) iff E ′ defends Z in G.

Thanks to Lemmata 1 and 2, we can rewrite the proposition, which gives us
a sufficient condition for the c-conservative change:

Proposition 2.2	 (v2). When removing an argument Z under the grounded
semantics, if

• ∀X ∈ G, if Z attacks X then (X is attacked by G \ {Z} and X is not
indirectly defended by U in G \ {Z}) and

• Z /∈
⋃

i≥1 F i(U),

then E = E ′.

From Proposition 2.3, we obtain:

Proposition 2.3	. When removing an argument Z under the grounded seman-
tics, if Z does not attack E ′ in G and E ′ defends Z in G, then E = E ′ ∪ {Z} ∪⋃

i≥1 F i({Z}).

Let NZ = (
⋃

i≥1 F i({Z}) ∪ {Z}) \ E ′ ; thus, we have NZ ⊆ E . NZ contains
Z and the arguments of G \ {Z} which could not be defended without using
Z. In other words, if X 6= Z, X ∈ NZ if and only if Z is required for proving
that X ∈ E . Obviously, the pair (E ′, NZ) constitutes a partition of E . So,
E ′ = E \NZ .

Thanks to Lemmata 1 and 2, we can rewrite the proposition, which gives us
a sufficient condition for the c-narrowing change:
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Proposition 2.3	 (v2). When removing an argument Z under the grounded
semantics, if

• ∀X ∈ G, if Z attacks X then (X is attacked by G \ {Z} and X is not
indirectly defended by U in G \ {Z}) and

• Z ∈
⋃

i≥1 F i(U),

then E ′ = E \NZ .

From Proposition 2.4, we obtain:

Proposition 2.4	. When removing an argument Z under the grounded seman-
tics, if Z does not attack G′ and E ′ defends Z in G, then E = E ′ ∪ {Z}.

Thanks to Lemma 2, we can rewrite the proposition, which also gives us a
sufficient condition for the c-narrowing change:

Proposition 2.4	 (v2). When removing an argument Z under the grounded
semantics, if

• Z ∈
⋃

i≥1 F i(U) and

• Z does not attack G \ {Z},

then Z ∈ E and E ′ = E \ {Z}.

5 Discussion and Conclusion
In this paper, we studied the link between addition and removal of an argu-
ment. To this end, after recalling the basis of abstract argumentation theory,
we first took up and refined the change properties of Cayrol et al. [2010] into a
clear partition for a special case (the cardinality of the set of extensions remains
unchanged). We then defined two notions of duality, namely the duality based
on the notion of inverse and the duality based on the notion of symmetry, in
order to link these change properties and change operations. This allowed us,
after describing a particular methodology based on the two dualities, to discover
propositions for an operation thanks to the propositions already known for its
dual operation. More specifically, we obtained propositions characterizing the
removal operation thanks to propositions for the addition operation; they are
organized in Table 2. Some of these new propositions have however revealed a
difficulty preventing a naive application of our methodology: indeed, the propo-
sition obtained by the application of our methodology may contain conditions
on the output argumentation system and can thus not be directly used. We
then look for equivalent conditions on the input argumentation system.

Thus, despite the interest of such a methodology allowing to get new propo-
sitions for an operation in a easy way, it is important to note that a “post-
processing” is sometimes necessary in order to ensure that the result makes
sense.
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Table 2: Synthesis of the necessary and sufficient conditions for constant properties
under the grounded semantics.

Propositions Change properties

Prop. 1.2	 CS for non c-destructive

Prop. 1.3	 CS for non c-destructive

Corollary 1 CN for c-destructive

Prop. 2.1	

CS for
• c-conservative or
• c-destructive or
• c-narrowing

Prop. 2.2	 CS for c-conservative

Prop. 2.3	 CS for c-narrowing

Prop. 2.4	 CS for c-narrowing

Prop. 2.5	
CNS for
• c-conservative or
• c-decisive

Let us come back to the example presented in the introduction. For Mister
Pink, adding a new argument attacking a specific argument of Mister White
without threatening his own accepted arguments corresponds to Proposition
1.1. Proposition 3	, on the other hand, allows him to ensure that the removal
of his opponent’s argument achieves the same result if this argument is not
giving assistance to any of his own accepted arguments. Thereby, instead of
using Proposition 1.1, Mister Pink can benefit from Proposition 3	 thanks to
our methodology.

This kind of work deals with a facet of the argumentation theory that has
not been studied so far. Hence, many points are to be deepened or explored
further; here are some issues that seem to be of short-term importance:

• In this work, we have focused on the grounded semantics and studied
only two of the four operations of Cayrol et al. [2010]. A first issue is to
extend our work to the two missing operations, addition and removal of
an interaction, and also to other semantics.

• Moreover, we could consider the addition or removal of a set of arguments.
These special operations may be seen as a sequence of change operations
and their study seems essential in order to approach minimal change prob-
lems.

• Due to lack of space, we have outlined here a small subset of the possible
change properties. It would be interesting to study and evaluate all the
remaining properties through the duality methodology.
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• The obligation to perform a post-processing of some of the propositions
obtained by our approach is a sore point. We should find new ways to avoid
this post-processing or at least to find criteria for identifying propositions
that would require transformations.

A Proofs
Proof of Proposition 2. Proposition 2 has already been proven in Cayrol et al.
[2010] under the condition E 6= ∅: when adding an argument Z under the
grounded semantics,

• (Prop. 10) If E 6= ∅ and Z does not attack E , then E ⊆ E ′.

• (Prop. 11, item 1) If E 6= ∅ and Z does not attack E and E does not
defend Z, then E ′ = E .

• (Prop. 11, item 2 part 1) If E 6= ∅ and Z does not attack E and E defends
Z, then E ′ = E ∪ {Z} ∪

⋃
i≥1 F ′i({Z}).

• (Prop. 11, item 2 part 2) If E 6= ∅ and Z does not attack G and E defends
Z, then E ′ = E ∪ {Z}.

• (Prop. 13) If E 6= ∅, then E ′ = ∅ iff Z attacks each unattacked argument
of G and Z is attacked by G.

It only remains to prove this propositions under the condition E = ∅:

• If E = ∅ then we trivially have E ⊆ E ′.

• If E does not defend Z, then Z is attacked by G. Moreover, by Proposition
1.2, we know that if E = ∅ and Z is attacked by G, then E ′ = ∅ and thus
E = E ′.

• If E = ∅, then it always holds that Z does not attack E . Moreover, if
E = ∅ defends Z, then Z is not attacked by G. Thus, when adding Z, we
trivially have E ′ = E ∪ {Z} ∪

⋃
i≥1 F ′i({Z}). Furthermore, if Z does not

attack G, then Z does not defend any argument so we have E ′ = E ∪ {Z}.

• If E = ∅ then there is no unattacked argument in G. Then, if we add an
argument Z such that Z is attacked by G, we can conclude that there is
also no unattacked argument in G′ and E ′ = ∅.
Moreover, if E = ∅ and E ′ = ∅, then the added argument Z is inevitably
attacked by G. And since there is no unattacked argument in G, Z trivially
attacks each unattacked argument of G.

So we can generalize the previous propositions by removing the condition
E 6= ∅.
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Proof of Proposition 3. To prove this proposition, we will focus on its contra-
position: when adding an argument Z under grounded semantics, if X ∈ E ′ and
X 6= Z and Z does not indirectly defend X, then X ∈ E .

We know, thanks to Definition 1, that R is finite and thus, according to
Dung [1995], we have E =

⋃
i≥1 F i(∅) et E ′ =

⋃
i≥1 F ′i(∅). Let us prove by

induction on i ≥ 1 that if X ∈ F ′i(∅) and X 6= Z and Z does not indirectly
defend X, then X ∈ F i(∅).

• Basic case (i = 1): if X ∈ F ′(∅) then X is not attacked by G′ and if
X 6= Z then X ∈ G. Thus, X is not attacked by G and thus X ∈ F(∅).

• Induction hypothesis (for 1 ≤ i ≤ p, the proposition holds): let X ∈
F ′p+1(∅) = F ′(F ′p(∅)). In order to prove that X ∈ Fp+1(∅) = F(Fp(∅)),
we have to prove that Fp(∅) defends X in G. Assume that X is attacked
by Y in G. Since we are within the context of the addition of the argu-
ment Z, X is attacked by Y in G′. As X ∈ F ′(F ′p(∅)), F ′p(∅) defends X
against Y . So, there exists an argument W ∈ F ′p(∅) such that W attacks
Y . We know that Z does not indirectly defend X, so W 6= Z and Z does
not indirectly defend W . Using the induction hypothesis for W , we have
W ∈ Fp(∅), thus Fp(∅) defends X against Y , and thus X ∈ Fp+1(∅).

Proof of Proposition 4. It follows directly from Definitions 6, 9 and 10.

Proof of Proposition 5. Following its definition, the constant property is the set
of pairs (G,G′), where G and G′ are argumentation graphs such that |E| = |E′|.
According to Proposition 4, a change O satisfies the constant property if and
only if its inverse change O′ satisfies the symmetric of the constant property.
And, according to Definitions 10 and 7, the symmetric of the constant property
is the constant property itself. So a change is constant if and only if its inverse
change is constant as well.

The proofs of Propositions 6 to 8 are similar to the one of Proposition 5.

Proof of Proposition 9. Knowing that the different change properties that we
have defined constitute a partition of all possible changes (in the constant case),
and relying on previous propositions, a change is c-altering if and only if its
inverse change is c-altering as well.

Proof of Lemma 1. The fact that Z does not attack E ′ is equivalent to the
fact that if Z attacks an argument X ∈ G′ then X /∈ E ′. Let U be the set
of unattacked arguments of G′, i.e. the set of arguments different from Z
unattacked by G \ {Z}. We have E ′ = U ∪

⋃
i≥1 F ′i(U). Thus, we have X /∈ E ′

if and only if X /∈ U and X /∈
⋃

i≥1 F ′i(U), that is to say if and only if X is
attacked by G \ {Z} and X is not indirectly defended by U in G \ {Z}.

The proof of Lemma 2 needs some intermediary results that are given in
Lemmata 3 to 7.
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Lemma 3. When removing an argument Z under the grounded semantics, if
Z does not attack U , then U ⊆ F(U) and so for each i ≥ 1, F i(U) ⊆ F i+1(U).

Proof of Lemma 3. By definition, U is the set of the unattacked arguments in
G \ {Z}. So, if Z does not attack U , no argument of U is attacked by G.
Thus, U ⊆ F(U). Moreover, since F is monotonic, for each i ≥ 1, F i(U) ⊆
F i+1(U).

Lemma 4. Let S ⊆ G\{Z}. When removing an argument Z under the grounded
semantics, F(S) \ {Z} ⊆ F ′(S).

Proof of Lemma 4. Let Y ∈ F(S) \ {Z}. Two cases are possible. First, if Y
is unattacked by G′, Y trivially belongs to F ′(S). Secondly, suppose that Y is
attacked by G′. ∀W ∈ G′ such that W attacks Y in G′, as Y ∈ F(S), S attacks
W in G. Since S ⊆ G \ {Z}, S defends Y in G′ and thus Y ∈ F ′(S).

Lemma 5. When removing an argument Z under the grounded semantics, if
Z does not attack U , then ∀i ≥ 1, if Z /∈ F i(U), then F i(U) ⊆ F ′i(U).

Proof of Lemma 5. Let us prove by induction on i ≥ 1 that if Z does not attack
U and Z /∈ F i(U), then F i(U) ⊆ F ′i(U).

• Basic case (i = 1): Z /∈ F(U). Using Lemma 4 with S = U , we obtain
F(U) ⊆ F ′(U).

• Induction hypothesis (for 1 ≤ i ≤ p, the proposition holds): let Z /∈
Fp+1(U), due to Lemma 3, Z /∈ Fp(U). Moreover, Fp+1(U) = F(Fp(U)).
Using Lemma 4 with S = Fp(U), we obtain Fp+1(U) ⊆ F ′(Fp(U)). Us-
ing the induction hypothesis (since Z /∈ Fp(U)), we have F ′(Fp(U)) ⊆
F ′(F ′p(U)), so by transitivity Fp+1(U) ⊆ F ′p+1(U).

Lemma 6. Let S ⊆ G. When removing an argument Z under the grounded
semantics, if Z does not attack F ′(S), then F ′(S) ⊆ F(S).

Proof of Lemma 6. Let X ∈ F ′(S). Since we are within the context of the
removal of the argument Z, we know that X 6= Z. We have to prove that
X ∈ F(S). Let Y ∈ G be an argument that attacks X in G. Since Z does not
attack F ′(S), we know that Y 6= Z, hence Y attacks X in G′. So there exists an
argument W ∈ S such that W attacks Y in G′, so W 6= Z and W also attacks
Y in G, and thus X ∈ F(S).

Lemma 7. When removing an argument Z under the grounded semantics, if
Z does not attack E ′, then ∀k ≥ 1, F ′k(U) ⊆ Fk(U).

Proof of Lemma 7. Let us prove by induction on k ≥ 1 that if Z does not attack
E ′, then F ′k(U) ⊆ Fk(U).
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• Basic case (k = 1): since Z does not attack E ′, so Z does not attack F ′(U)
(since U ⊆ E ′ and F ′(U) ⊆ F ′(E ′) = E ′). So using Lemma 7, we have
F ′(U) ⊆ F(U).

• Induction hypothesis (for 1 ≤ k ≤ p, the proposition holds): we have to
prove that F ′p+1(U) ⊆ Fp+1(U). By definition, F ′p+1(U) = F ′(F ′p(U)).
Using Lemma 6, we have F ′(F ′p(U)) ⊆ F(F ′p(U)) (with S = F ′p(U)). Us-
ing the induction hypothesis, we have F ′p(U) ⊆ Fp(U). Hence, F ′p+1(U) ⊆
Fp+1(U).

Proof of Lemma 2.

(⇒) Let us show that if Z does not attack E ′ and Z ∈
⋃

i≥1 F i(U), then E ′
defends Z in G: let Y ∈ G be an argument that attacks Z in G. Let us
recall that, by Definition 5, an argument can not attack itself, so Y 6= Z.
Using Lemma 3, since Z does not attack E ′ and thus Z does not attack U ,
we have U ⊆ F(U) and thus the F i(U) are nested. Let i be the smallest
index ≥ 1 such that Z ∈ F i(U), hence Z /∈ F i−1(U).

• i = 1: Z ∈ F(U). By definition, U defends Z, and U ⊆ E ′ thus E ′
defends Z in G.

• i > 1: Z ∈ F i(U) = F(F i−1(U)) and Z /∈ F i−1(U). Using Lemma 5,
we have F i−1(U) ⊆ E ′. Hence, Z ∈ F(E ′), so E ′ defends Z in G.

(⇐) Let us show that if Z does not attack E ′ and E ′ defends Z in G, then
Z ∈

⋃
i≥1 F i(U):

• If Z is not attacked by G, then we trivially have Z ∈
⋃

i≥1 F i(U).
• Let us suppose that Z is attacked by G. By definition, we have
E ′ = U ∪

⋃
i≥1 F ′i(U). Hence, ∃i ≥ 0 such that F ′i(U) defends Z in

G.
– i = 0: U defends Z in G and so Z ∈

⋃
i≥1 F i(U).

– i ≥ 1: We know that Z does not attack E ′. Using Lemma 7,
we deduce that F ′i(U) ⊆ F i(U). Since F ′i(U) defends Z, F i(U)
defends Z. Thus, Z ∈

⋃
j≥1 F j(U).
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