
HAL Id: hal-02884027
https://hal.science/hal-02884027

Submitted on 29 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Formation of environmentally persistent free radicals
and reactive oxygen species during the thermal

treatment of soils contaminated by polycyclic aromatic
hydrocarbons

Jinbo Liu, Hanzhong Jia, Kecheng Zhu, Song Zhao, Eric Lichtfouse

To cite this version:
Jinbo Liu, Hanzhong Jia, Kecheng Zhu, Song Zhao, Eric Lichtfouse. Formation of environmentally
persistent free radicals and reactive oxygen species during the thermal treatment of soils contaminated
by polycyclic aromatic hydrocarbons. Environmental Chemistry Letters, 2020, 18, pp.1329 - 1336.
�10.1007/s10311-020-00991-1�. �hal-02884027�

https://hal.science/hal-02884027
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Environmental Chemistry Letters (2020) 18:1329–1336 
https://doi.org/10.1007/s10311-020-00991-1

Formation of environmentally persistent free radicals and reactive 
oxygen species during the thermal treatment of soils contaminated 
by polycyclic aromatic hydrocarbons

Jinbo Liu1 · Hanzhong Jia1 · Kecheng Zhu1 · Song Zhao1 · Eric Lichtfouse2 

Abstract
Environmentally persistent free radicals (EPFRs) are emerging contaminants of increasing concern due to their toxicity for 
life and ecosystems, yet their formation, behavior and fate are poorly known. In particular, there is actually no knowledge 
on the formation of those radicals during the thermal treatment of soils containing polycyclic aromatic hydrocarbons. Such 
knowledge is important because thermal treatment is a remediation method used to decontaminate soils by removing and 
degrading PAHs. Here, we studied the formation of radicals in three types of cultivated soils, bauxite soil, fluvo-aquic soil 
and chernozem soil, artificially contaminated by benzo[a]pyrene, during thermal treatment from 100 to 200 °C for 1 h, 
using electron paramagnetic resonance. Results show spins densities of radicals up to of 2.079 × 1017 spins/g for bauxite 
soil, 1.481 × 1017 spins/g for fluvo-aquic soil and 8.592 × 1016 spins/g for chernozem soil at 175 °C. The formed radicals 
exhibited multiple decays during their observable time and the shortest 1/e lifetimes of radicals up to 757.58 h. These find-
ings are strengthened by EPFR-induction of reactive oxygen species (ROS), O2

·− and ·OH, which increased in concentrations 
from 100 to 200 °C. Overall, our results demonstrates for the first time that thermal treatment of PAHs-contaminated soils 
induces the formation of EPFRs and suggests that thermal treatment might not be a fully clean remediation method for soils 
as thermal treatment creates new contaminants.

Keywords  Thermal treatment · Polycyclic aromatic hydrocarbons · Risk · Environmentally persistent free radicals · PAHs · 
EPFRs · ROS

Introduction

Polycyclic aromatic hydrocarbons (PAHs) are priority pol-
lutants of global concern because they induce teratogenic, 
carcinogenic and mutagenic effects on organisms (Samanta 
et  al. 2002; Li et  al. 2008). Due to their hydrophobic 

properties, around 90% of PAHs in the environment are ulti-
mately deposited into soils and sediments (Eriksson et al. 
2000). After entering the soil, PAHs are stable or degrade 
slowly due to their chemical stability and as a result of soil 
conditions that inhibit degradation, e.g., physical sequestra-
tion and anoxia (Lichtfouse et al. 1997; Chiou et al. 1998). 
Chemical oxidation (Do et al. 2009), bioremediation (Gan 
et al. 2009), photo-degradation (Wang et al. 2015; Jia et al. 
2015a, b) and thermal treatment (Li et al. 2018) have been 
used to remediate soils contaminated by PAHs. Thermal 
treatment is widely used to decontaminate industrial soils 
because this method is fast and has low cost and high effi-
ciency (Henner et al. 1997; Gan et al. 2009). For instance, 
soils from the two major ancient gasworks in Paris, which 
were heavily contaminated, have been remediated by ther-
mal treatment, notably for the rapid construction of a major 
soccer stadium.

Volatilization is considered to be the main phenom-
enon for the removal of organic contaminants by thermal 
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treatment (Gilot et al. 1997; Falciglia et al. 2011). None-
theless, recent reports indicated that transformation of 
organic pollutants might occur during thermal treatment. 
For example, Cruz et al. (2012) found that pentachlorophe-
nol was converted to pentachlorophenoxyl during thermal 
treatment, which was explained mainly by thermal oxida-
tion. Zhang et al. (2019) also found that thermal oxidation 
occurred during thermal treatment of soil contaminated 
by catechol. Furthermore, Jia and Wang (2013) found that 
PAHs oxidation occurred even under natural conditions. 
Oxidation may involve electron transfer from organic com-
pounds to electron-lacking sites, which may, in turn, lead 
to the formation of environmentally persistent free radicals 
(Jia et al. 2016).

Environmentally persistent free radicals (EPFRs) are 
emerging contaminants that are raising high concerns due 
to their adverse effects on human and ecological health 
(Pryor et  al. 1983; Lomnicki et  al. 2008). Currently, 
EPFRs have been mainly detected in cigarette tar, combus-
tion-generated particles, atmospheric particulate matters 
and soil contaminated by organic pollutants (Fang et al. 
2014; Wang et al. 2018). The formation of EPFRs in soil 
is drawing attention because soils are vast reservoirs of 
complex chemical pollutants such as metals and organics 
(Zhang et al. 2019). The presence of EPFRs in PAHs-con-
taminated soil was recently detected at room temperature 
(Jia et al. 2017). Nevertheless, to date, there is no report on 
the potential formation, stability and environmental effects 
of EPFRs during thermal treatment of PAHs-contaminated 
soils. Moreover, the effect of soil properties on the forma-
tion of EPFRs during thermal treatment is unknown. Such 
information is critical for evaluating the potential risks of 
thermal treatment of PAH-contaminated soils. Here, we 
investigated the formation of EPFRs and reactive oxygen 
species (ROS) during the heating of three types of soils, 
bauxite soil, fluvo-aquic soil and chernozem soil, spiked 
with benzo[a]pyrene, from 100 to 200 °C.

Materials and methods

Chemicals

Benzo[a]pyrene (98%), methanol (HPLC grade), dime-
thyl sulfoxide (DMSO, 99%) and high-purity 5,5-dime-
thyl-1-pyrroline-N-oxide (DMPO, 98%) were purchased 
from J&K Chemical Ltd., Beijing. Dichloromethane and 
acetone were of analytical grade from Sinopharm Chemi-
cal Reagent Co., Shanghai. Quartz particles in the form of 
acid purified sand were purchased from Kemiou Chemical 
Reagent Co., Tianjin.

Preparation of soils contaminated by benzo[a]
pyrene

Three different cultivated soils, including bauxite soil, 
fluvo-aquic soil and chernozem soil, were sampled from 
surface of the 0–20 cm soil layer in Shaanxi, Henan and 
Heilongjiang provinces of China. These soils are rep-
resentative soils of China; they differ in the amount of 
soil components such as clay mineral, organic matter and 
transition metals. Soil samples were air-dried for 24 h 
at ~ 23 °C and then sieved through 100 mesh before analy-
sis. The soil texture, organic carbon (OC), clay and metal 
contents, pH and cation exchange capacity (CEC) were 
analyzed systemically. Benzo[a]pyrene was undetectable 
in the original soils. Details of the methods are provided 
in Text S1 (Supporting information). Results are provided 
in Table S1.

The preparation of benzo[a]pyrene-contaminated soils 
was previously described (Jia et al. 2018). Briefly, 1 g of 
soil sample was mixed with 1 mL of acetone solution con-
taining 500 mg L−1 of benzo[a]pyrene. The soil–benzo[a]
pyrene suspension was rapidly stirred for 30 min to pro-
mote the interaction between soil and benzo[a]pyrene 
molecules. Benzo[a]pyrene-containing soil samples were 
placed in the dark at about ~ 23 °C until the acetone was 
completely evaporated. The benzo[a]pyrene-contaminated 
soils were then stored at − 4 °C for subsequent experi-
ments. The final concentration of benzo[a]pyrene in sam-
ples was in the range of 497–502 mg kg−1. The samples of 
benzo[a]pyrene-spiked quartz particle were prepared using 
the same method as mentioned above.

Thermal treatment of samples contaminated 
by benzo[a]pyrene

Thermal treatment was performed using an experimental 
apparatus under a continuous flow of N2 with a flow rate 
of 1 L min−1 (Scheme S1). The apparatus consisted of an 
oil bath heater (DragonLAB, MS-H-Pro + , China), a two-
necked round bottom flask with soil sample loading, two 
porous gas washing bottles for capturing of volatile organ-
ics by a 1/1 v/v solution of acetone and dichloromethane 
and a round-bottomed flask filled with water to absorb 
exhaust gases. Before thermal treatment, the air inside the 
device was removed by flushing N2 for 5 min. Then, 5 g 
of contaminated soil was placed in the two-necked round 
bottom flask, which was transferred into the oil bath and 
held there at the desired temperature for 1 h. After cooling 
down to ∼23 °C, the soil was stored in sealed polyethyl-
ene bags prior to analysis. A blank experiment involved 
non-polluted quartz particles and uncontaminated three 



cultivated soils was heated under the same conditions as 
above. And a control experiment involved benzo[a]pyrene-
spiked quartz particles was carried out under the same 
conditions as mentioned above. Parallel experiments were 
repeated for three times.

The residual concentration of benzo[a]pyrene in soils 
after thermal treatment was quantified by high-performance 
liquid chromatography (HPLC, Thermo Fisher Scientific 
U3000), as described previously by Jia et al. (2018), and the 
specific methods are provided in Text S2.

Electron paramagnetic resonance

EPR measurements were performed at ∼ 23  °C using a 
Bruker EMXmicro-6/1/P/L spectrometer (Karlsruhe). Spe-
cifically, 50 mg of thermally treated soil was immediately 
put into a 1.5 mL centrifuge tube and vortex mixed with 300 
μL of acetone and dichloromethane 1/1 v/v. A syringe was 
used to draw a certain amount of the mixture and passed 
through a 0.45 μm filter. The filtrate was extracted by capil-
lary and placed in EPR tube to detect EPFRs. For the detec-
tion of reactive oxygen species (ROS), 50 mg of thermally 
treated soil was suspended into 200 μL 0.1 M DMPO aque-
ous solution or 0.1 M DMPO in DMSO. Subsequently, the 
mixture was shaken for 1 min by a vortex oscillator, and the 
suspension was filtered through a 0.45 μm filter. Then, the 
filtrate was put in a capillary and placed in EPR tube for 

detection of reactive oxygen species (ROS). EPR instrument 
operating parameters are provided in Text S3.

Persistence of environmentally persistent free 
radicals

The persistency of EPFRs in soils after thermal treatment 
was detected by aging the soil samples in ~ 23 °C under dark 
and anaerobic environment. The detailed method is given in 
supplementary Text S4.

Results and discussion

Formation of environmentally persistent free 
radicals during soil thermal treatment at 100–200 °C

We tested the potential generation of environmentally per-
sistent free radicals (EPFR) in thermally treated soils. The 
control experiment, i.e., the benzo[a]pyrene-containing 
quartz sample, and three types of cultivated soils, bauxite 
soil, fluvo-aquic soil and chernozem soil, were analyzed by 
electron paramagnetic resonance (EPR) after thermal treat-
ment at 100–200 °C for 1 h.

Results show that negligible EPR signals are observed 
in the quartz control (Fig. 1a). This is explained partly the 
absence of transition metals in quartz (Table S1), since the 

Fig. 1   Formation of environ-
mentally persistent free radicals 
(EPFRs) in benzo[a]pyrene-
contaminated samples of quartz 
particles (a, control), bauxite 
soil (b), fluvo-aquic soil (c) and 
chernozem soils (d) after 1 h of 
thermal treatment at 100–
200 °C. Note the near absence 
of signal in quartz particles, 
meaning that soil active compo-
nents were needed to produce 
EPFRs. Note also the increasing 
signal intensity with tempera-
ture up to 175 °C, meaning that 
radicals were formed by thermal 
treatment

3440 3480 3520 3560 3440 3480 3520 3560

3440 3480 3520 35603440 3480 3520 3560

Field (G)

ytisnetnI
evitaleR

200 oC

175 oC

150 oC

125 oC

100 oC

Field (G)

R
el

at
iv

e 
In

te
ns

ity

200 oC

175 oC

150 oC

125 oC

100 oC

Field (G)

 dc

b

200 oC

175 oC

150 oC

125 oC

100 oC

R
el

at
iv

e 
In

te
ns

ity

a

Field (G)

ytisnetnI
evitaleR

200 oC

175 oC

150 oC

125 oC

100 oC



formation of EPFRs has been shown to result from inter-
actions between organic pollutants and transition metals 
(Kuzina et al. 2004; Han and Chen 2017). The interaction 
between aromatic compounds with transition metals, e.g., Ni 
and Cu, might involve the activation of aromatic compounds 
R–C–H, followed by H transfer from organic compounds 
to electron-deficient sites, thus inducing the formation of 
intermediate radicals (Sarkar et al. 2019; Trinh et al. 2016). 
The negligible EPR signals observed for quartz may be also 
explained by the absence of clay minerals and organic mat-
ter. Our finding agrees with our previous report showing that 
benzo[a]pyrene is mainly removed by volatilization in quartz 
sands, whereas benzo[a]pyrene is mainly removed by ther-
mal transformation when clay minerals and organic matter 
are present in soils, thus generating radicals (Jia et al. 2020).

Results also show distinct signals for the three soils after 
thermal treatment (Fig. 1b–d). Moreover, the EPR intensity 
increased with temperature up to 175 °C. This finding means 
that EPFRs are formed by increasing the temperature. The 
control of radical formation both by temperature and by the 
presence of benzo[a]pyrene is confirmed by further con-
trol experiments showing that EPR signal is small without 
benzo[a]pyrene (Figs. S1 and S2).

We further identified the types of EPFRs via EPR 
signals characteristics such as the g-factor (Table  1). 
We found g-factor was 2.00280–2.00297 for the baux-
ite soil, 2.00294–2.00299 for the fluvo-aquic soil and 
2.00269–2.00291 for the chernozem soil. These values are 
typical of free organic radicals. All spectra are consistent 
with the characteristics of benzo[a]pyrene-EPFR (Jia et al. 
2018). According to previous studies, free radicals with 
g-factor lower than 2.0030 are considered as carbon-centered 
radicals; the g-factor of oxygen-centered radicals is greater 
than 2.0040; and free radicals with g-factors in the range of 
2.0030–2.0040 are mixed radicals of carbon- and oxygen-
centered radicals (Zhu et al. 2019). Here, the g-values of 
the EPR signals ranged from 2.0025 to 2.0030, indicating 
that more carbon-centered radicals were formed during the 
thermal treatment of benzo[a]pyrene-contaminated soils.

The range of  EPFRs spins  densi t ies  was 
3.93 × 1016–2.08 × 1017 spins/g for the bauxite soil, 

3.29 × 1016–1.48 × 1017 spins/g for the fluvo-aquic soil and 
2.95 × 1016–8.59 × 1016 spins/g for the chernozem soil. The 
spins densities of EPFRs increased in all soils from 100 
to 175 °C and then decreased (Table 1). At the same time, 
the residual benzo[a]pyrene concentration decreased with 
temperature (Fig. S3). These results suggest that thermal 
treatment induced the transformation of benzo[a]pyrene into 
benzo[a]pyrene–EPFRs. This interpretation is supported by 
the work of Karimi-Lotfabad et al. (1996) who suggested 
that the EPR intensity is increased by the decomposition 
of benzo[a]pyrene into aromatic subunits and free organic 
radicals.

At 200 °C, the spins densities decreased for all soils 
(Table 1). These decreases could be explained by several 
phenomena. For instance, EPFRs may form new compound, 
e.g., through Eley–Rideal or Langmuir–Hinshelwood sur-
face reactions (Lomnicki and Dellinger 2003). Alternatively, 
EPFRs may be thermally decomposed or stabilized by radi-
cal–radical recombination, leading to the formation of new, 
secondary, molecular contaminants (Maskos and Dellinger 
2008).

Overall our results show that 1) thermal treatment at rela-
tively low temperatures induces the formation of EPFR, 2) 
the concentration of EPFR increases up to a peak at 175 °C, 
and 3) the formation of EPFR involves in the interaction 
between benzo[a]pyrene and soil active components.

Persistence of radicals in soils

We studied the persistence of EPFR because EPFR has 
longer half-lives than traditional free radicals, e.g., ·OH and 
O2

·−. As a consequence, EPFR may exhibit toxicity risks 
in the long run. Figure 2 presents spins densities and spin 
decay rate of EPFR in the dark at room temperature, after 
175 °C thermal treatment for 1 h. Results show that EPFR 
spin densities in the three soils decrease with time (Fig. 2a). 
Noteworthy, the bauxite soil displays a sharper spin density 
decrease versus the fluvo-aquic and chernozem soils.

Results further show that decay rates decrease from 
the bauxite soil, with k of 0.00538, to the chernozem soil, 
with k of 0.00141 (Fig. 2b). In addition, the decays of 

Table 1   Electron paramagnetic resonance (EPR) of benzo[a]pyrene-contaminated cultivated soils and quartz

n.d. signifies that EPR signals were not detected; EDL means that the measured spins densities were below detection limit

Temp (°C) Bauxite soil Fluvo-aquic soil Chernozem soil Quartz

g-factor Spins (e16/g) g-factor Spins (e16/g) g-factor Spins (e16/g) g-factor Spins (e16/g)

100 2.00294 ± 0.000042 3.934 ± 0.3747 2.00299 ± 0.000051 3.842 ± 0.5382 2.00286 ± 0.000039 2.947 ± 0.2649 n.d EDL
125 2.00297 ± 0.000037 4.950 ± 0.2318 2.00298 ± 0.000036 4.524 ± 0.5226 2.00289 ± 0.000045 4.512 ± 0.5413 n.d EDL
150 2.00280 ± 0.000046 8.478 ± 0.5226 2.00296 ± 0.000058 12.148 ± 0.7642 2.00269 ± 0.000052 5.088 ± 0.4562 n.d EDL
175 2.00295 ± 0.000029 20.790 ± 0.9830 2.00298 ± 0.000041 14.813 ± 0.5276 2.00290 ± 0.000034 8.592 ± 0.5347 n.d EDL
200 2.00294 ± 0.000015 18.142 ± 0.7352 2.00294 ± 0.000037 3.286 ± 0.9137 2.00291 ± 0.000038 2.976 ± 0.1589 n.d EDL



EPFRs can be split into two time periods: a rapid decrease 
from 0 h to about 48–72 h and then a slower decrease. 
This change of decay rate was more pronounced for baux-
ite and fluvo-aquic soils. Accordingly, 1/e lifetimes of 
185.87 h were higher for the bauxite soils during the first 
48 h of soil storage, versus 757.58 h from 48 to 168 h, 
for instance.

The overall decay can be explained by the transfor-
mation of intermediate radicals into stable compounds, 
according to Zhao et al. (2019). The change in decay rates 
after 48–72 h can be explained by the survival of the 
most stable aromatic radicals, as suggested by Cruz et al. 
(2012). This hypothesis is strengthened by the presence of 
at least three superimposed peaks in the resonance signals 
of soils just after thermal treatment (Fig. 1). The differ-
ences in decay rate evolution with time for the three soils 
are likely to result from the presence of organic matter. 
Indeed, the higher decay rate of k of 0.00538 is observed 
for the bauxite soil, which is the poorest in organic mat-
ter, of 0.956%w, whereas the lowest decay is observed 
for the chernozem soil, which is the richest in organic 
matter, of 2.07%. This assumption is in agreement with 
the stabilization of radicals by organic matter through 
π-stacking and hydrophobic associations, thus resulting 
in longer half-lives (Coates et al. 2002).

Overall, our results show that the decay of EPFRs in 
benzo[a]pyrene-spiked soils heated at 175 °C decreases 
with time in two stages, which are likely to be due to 
the presence of free organic radicals of various stabili-
ties. The lowest decay observed for the chernozem soil is 
most probably due to the presence of organic matter that 
stabilizes the radicals.

Generation of reactive oxygen species

EPFRs can induce the formation of reactive oxygen species 
(ROS), which are considered toxic because these species 
cause oxidative stress on organs and cells (Ayres et al. 2008; 
Saravia et al. 2013). Therefore, we studied the formation of 
O2

·− and ·OH in benzo[a]pyrene-spiked soils heated from 
100 to 200 °C. Results show the presence of O2

·− and ·OH 
in heated the bauxite soil, with typical resonances (Fig. 3a, 
b). O2

·− and ·OH were also founded in the heated fluvo-aquic 
soil and heated chernozem soil (data not shown). In addi-
tion, the ROS were absent in control and blank experiments. 
These findings mean that the formation of O2

·− and ·OH is 
dependent on the formation of EPFRs.

Results also show that the concentrations of O2
·− and ·OH 

increased with temperature (Fig. 3c, d). This finding can be 
explained by the conversion of EPFRs into O2

·− and ·OH 
because the concentration of EPFRs is decreasing at high 
temperature, in agreement with findings of Maskos and Del-
linger (2008). The formation of O2

·− could also be explained 
by the reduction in O2 into O2

·− by EPFRs as reducing agents 
(Khachatryan et al. 2011). Moreover, we observed that the 
bauxite soil produced the highest concentrations of O2

·−, 
whereas the chernozem soil produced the highest concen-
trations of ·OH. This finding might be explained by the 
highest content in transition metals of the chernozem soil 
(Table S1). Indeed, as reported previously, transition metal 
oxides promote the formation of ·OH (Amaniampong et al. 
2018, 2019; Trinh et al. 2018; Jia and Wang 2013).

Overall, our findings show an increasing formation of 
ROS such as O2

·− and ·OH with temperature of soil heat-
ing. Since ROS are considered toxic for life (Zhao et al. 
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rates of environmentally persistent radicals (EPFR) in benzo[a]pyr-
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2019), this finding implied that thermal treatment of soils 
might not be a perfect technique to remediate PAHs-pol-
luted soils.

Conclusion

We studied the formation of EPFRs in benzo[a]pyrene 
contaminated soils heated at 100–200  °C during 1  h. 
Results showed that the concentration of EPFRs increased 
up to maximum at 175 °C and then decreased. Moreover, 
the 1/e lifetimes of EPFRs formed by heat treatment were 
very long, reaching to at least 757.58 h. The thermally 
treated soil readily induced the generation of ROS, includ-
ing O2

·− and ·OH, which correlated with the formation of 
benzo[a]pyrene–EPFRs in soil. Our findings imply that 
soil treatment at low temperature may not be so sustain-
able and clean as previously assumed because EPFRs may 
induce toxicity for living organisms.
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Text S1 Soil texture was determined by the hydrometer method (Wen et al. 2002). The content of OC was measured using a total 

organic carbon (TOC) analyzer from Elementar vario series, Hesse-Darmstadt. For metal contents, soil samples were completely 

digested by microwave using the Aqua Regia solution of 3/1 37%HCl / 97%HNO3 (Janssen et al. 1997). Concentration of metal ions 

in digestion solutions was measured by an inductively coupled plasma atomic emission spectrometer (ICP-AES) from 

Thermo-ICAP6300, Waltham. For pH determination, a 1/5 w/v mixture of soil in Milli-Q water with soil and solution was placed into 

a shaker for 1h, then settled before measuring pH. Cation exchange capacity (CEC) was obtained by adding 0.2 M NH4Cl to 

substitute exchangeable cations, such as K+, Na+, Ca2+, Mg2+, Al3+, into supernatant from the three consecutive washes, then were 

analyzed by ICP-AES. The clay granulometric fraction, referring to less than 2 mm particles, was analyzed semi-quantitatively by 

X-ray diffraction analysis (XRD, D8-ADVANCE) to identify the constitution of clay minerals in soils. 
 

Text S2 Specifically, 50 mg soil was extracted by 1 mL acetone and dichloromethane 1/1 v/v under sonication for 15min. The 

suspension was then centrifuged for 5 min at 20,000 g to separate the solid from solvents. To ensure the complete extraction of 

organic compounds from soil samples, the extracting procedure was conducted for three times. Supernatants were collected and 

filtered using a syringe equipped with a 0.45 µm membrane filter. Finally, the filtrate was placed in amber vial and analyzed for the 

concentration of benzo[a]pyrene using a HPLC equipped with a 25 cm × 4.6 mm, 5 µm Cosmosil C18 column. A sample volume of 

10 µL was injected into the HPLC by an autosampler. The total run time was 10 min. HPLC conditions were: 100% methanol as 

mobile phase; flow rate of 1 mL min-1; oven temperature 30 °C; UV wavelength of benzo[a]pyrene at 384 nm.  
 

Text S3 EPR instrument operating parameters were center field 3500 G; microwave frequency 9.8 GHz; microwave power 2.0 mW; 

modulation frequency 4.0 G; modulation amplitude 4.0 G; sweep width 200 G; receiver gain 3.54 × 104; time constant 41.0 ms; 

sweep time 15 s; 15 scans. Radical concentrations were calculated by comparing the signal peak area, as derived from (ΔHp-p)2 

multiplied by the relative intensity, to a 2,2-diphenyl-1-picrylhydrazyl standard. Radical quantification was evaluated using Bruker’s 

Xenon program according to the quantitative theory of spin calculation. Solution spectra were simulated with the Spin Fit (Bruker’s 

Xenon program); the software provided an automatic fit to the experimental spectrum and determined the relative intensity of each 

spin adducts. 
 

Text S4 After soil storage during 12-168 h in the dark, samples were extracted and subjected to EPR analysis. EPR spectra were 

calculated to obtain the spins density of radicals as a function of time. Subsequent analyses were normalized to initial concentration 

of EPFRs. In order to calculate the decay rate constants and 1/e lifetimes of EPFRs, the plotted date was subjected to exponential 

regression. The 1/e lifetimes of EPFRs were evaluated using the following mathematical expression for the first-order decay: 

Ln (R/R0) = -kt, and t1/e = 1/k 

Where R0 was the initial highest concentration of EPFRs, and R was the concentration of the detected EPR signal periodically. Rate 

constant k was obtained from the slope of the correlation between logarithm of radical concentration change (R/R0) versus time, and 

1/e lifetimes were calculated accordingly. 



Table S1. Physicochemical properties of sampled soils and quartz particles. 

Soil  
characteristic 

Soil sample 

A B C D 

 
Location 

Shannxi 
34o11′N 
113o01′E 

Henan 
35o00′N 
113o41′E 

Heilongjiang 
45o40′N 
126o37′E 

 

Soil type Bauxite soil Fluvo-aquic 
soil 

Chernozem 
soil 

Quartz  
particles  

pH 7.90 8.07 6.27 7 
OC*, wt % 0.956 1.032 2.07 n.d. 
Clay, wt % 26.01 18.18 19.33 n.d. 
CEC**, cmol/kg 22.37 16.01 28.59 n.d. 
Total Fe, g/kg 17.13 20.76 25.56 n.d. 
Total Mn, g/kg 0.37 0.46 0.63 n.d. 
Total Cu, g/kg / / / n.d. 
Total Zn, g/kg 0.06 0.07 0.13 n.d. 
Total Pb, g/kg / / 0.09 n.d. 
Total Mg, g/kg 5.72 7.98 5.20 n.d. 
Total Ca, g/kg 90.89 141.28 23.24 n.d. 

n.d.: not detected 
*OC: organic carbon.  
**CEC: cation exchange capacity. 

 
 

 
 
Scheme S1. Pictorial diagram of the experimental device. A, two-necked round bottom flask; B and C, porous gas 
washing bottles; D, round-bottomed flask filled with water. The samples in A was collected and extracted after thermal 
treatment, then the residual benzo[a]pyrene, the environmentally persistent free radicals (EPFRs) and reactive oxygen 
species (ROS) were measured.   



 

 

Figure S1 Environmentally persistent free radicals (EPFRs) signals after thermal treatment in non-polluted quartz 
particles and uncontaminated soils: quartz particles (a), bauxite (b), fluvo-aquic soil (c) and chernozem (d). Note the 
small signal in quartz particles and three soils, meaning that benzo[a]pyrene is needed to produce radicals. 
 

 
Figure S2 Environmentally persistent free radicals (EPFR) signals before thermal treatment in noncontaminated soils, 
quartz particles (a) and benzo[a]pyrene contaminanted soils, quartz particles (b). Note the small signals in quartz 
particles and three soils, meaning that thermal treatment is needed to produce radicals. 
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Figure S3 Residual concentration of benzo[a]pyrene in three soils after thermal treatment at 100-200°C. Note the 
residual concentration of benzo[a]pyrene in all three soils decreased with increasing temperature. 
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