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Abstract. This paper presents an efficient screening tool, based on the 2D strip method,
which allows the study of the dynamics of the vortex-induced vibration (VIV) phenomenon
with almost the same accuracy of a fully 3D Fluid-Structure interaction (FSI) CFD-
based approach, but with a reduction in computational times by a factor of nearly 20
compared to the 3D approach. Such a large reduction makes the use of CFD-based
analysis feasible on a workstation within a reasonable time frame and opens the possibility
of CFD approaches in a subsea pipeline design process.

1 INTRODUCTION

When a body of circular section is subjected to flow, a vortex shedding behavior devel-
ops which can induce an oscillatory displacement of the structure that will depend on the
fluctuation of the efforts. This induced displacement, known as vortex-induced vibration
(VIV), can excite the natural frequencies of the structure and make the system resonate,
causing a premature fatigue failure.

To evaluate the risks of fatigue, engineers use tools developed and sufficiently vali-
dated to predict the fatigue of simple structures. Nevertheless, these simplified analysis
tools are not adapted to the prediction of VIV of more complex, oscillating structures,
such as spools and subsea jumpers which can exhibit complex, multi-modal responses.
Consequently, there is an industrial need for more accurate analysis methods.
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Significant improvements can be achieved using three-dimensional fluid-structure in-
teraction (FSI) simulations, based on computational fluid dynamics (CFD). However,
detailed meshes, long simulation times and high performance computing are required.
Knowing that industrial design processes demand the evaluation of various geometries
and different structural designs of a large number of spools, a 3D FSI simulation that
takes about two days for a single spool computation, is prohibitively slow for practical
design use.

It is within this context, and after confirming the lack of precision of existing design
analysis methods and classification society rules, that a collaboration between Total E&P
and K-Epsilon was created. The main objective consists in developing a screening tool
to estimate spool vibration phenomena within affordable industrial times, with moderate
computational resources. Here the stated goal is to assess VIV behavior of a spool in a
few hours on a high end work station with an accuracy sufficient for design analysis.

2 STATE OF ART

This section focuses on previous researches and results of different methods used to
model the VIV phenomena. For a detailed description of the physics of VIV, the reader
can refer to the review of Le Cunff [1], or for a deeper insight, to the references given by
Willden [3].

The work of Le Cunff [1] gives a global overview of models that are used to predict the
lifespan of cylindrical structures subjected to a flow. The presented methods, developed
at the French Petrol Institute IFP, range from a simple modal analysis approach to cou-
pled fluid-structure computations with resolution of the Navier-Stokes equations. Three
of the methods are discussed below.

The modal approach presented in [1] performs a modal analysis to determine and select
the potentially excited modes of the structure. Later, the modal amplitude is calculated
and the lifting force of the cylinder is obtained from a large database of empirical data.
Finally, a fatigue analysis is carried out to know the fatigue lifespan of the structure and
to locate the most likely failure points. Although this method is fast, it is limited to
studies of cross-flow displacements (CF). In addition, codes based on modal approaches
use empirical coefficients which can lead to different results depending on the software for
the same case, due to the large degree of scatter observed in experimental VIV data.

Looking for more accurate results, the fluid model is improved using a wake oscillator,
based on the Van der Pol oscillator equation. This approach searches to model the fluc-
tuating nature of a turbulent flow, allowing the consideration of the oscillatory release of
vortices, but giving no direct indication on the fluid flow. The model is more complete
than the modal methods, and is fast enough to be used during the design phase.
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Finally, the results of a previous strip method approach developed at the institute
are discussed. The work of Etienne [4], combines a fully coupled, two-dimensional FSI
method, using the stream function-vorticity formulation of the Navier Stokes equations,
with a strip approach. Although no indication is given regarding the computation time
scale of any of the above methods, the validation of the strip method, with experiments,
shows that this method is both qualitatively and quantitatively able to capture the VIV
phenomena.

Among others researchers using this method, there are also the contributions of Willden
[3] and Duan [2]. These two works present approaches based on a loosely coupling between
a set of two-dimensional flow calculations with a three-dimensional structural dynamics
model.

The work of Chaplin [6] presents an experimental study carried out on a vertical riser
exposed to a uniform stepped current (Re ≈ 4500) with a set of different top tensions. In
the tests, the lower 45% of the riser is subjected to the current, with the upper section
in calm water. The riser is free to move in the in-line and cross-flow direction. Both the
bottom and top ends are fixed using universal joints that fully constrain the displacement
of the riser ends, but allow arbitrary rotation. Tension is applied to the upper end of the
riser with a spring tensioning system. The experimental setup used in this work shown
in Figure 1.

Figure 1: Experimental setup [6]

A parallel work of Chaplin [7], presented a com-
parison between the laboratory measurements and
and a series of different numerical models. Para-
phrasing the report, it is concluded that, in gen-
eral, empirical codes were more successful at pre-
dicting cross-flow displacements and curvatures than
codes based on CFD. In-line curvatures, potentially
the cause of the largest fatigue damage, could not
be computed by any of the empirically based codes,
and in general, those based on CFD were also in very
poor agreement with the measurements.

3 THE STRIP METHOD

In the strip method approach, a series of two-dimensional computational planes are
placed along a structure perpendicular to the spanwise axis. Each slice or plane is solved
with the same method, but is individually solved and there is no transfer of information
between the planes. The motions of the series of two-dimensional flow calculations is
linked through the resolution of a three-dimensional structure.
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Inherent to the strip method is that the three-dimensional effects in the fluid are ne-
glected as only the local two-dimensional dynamics is resolved. Although three-dimensional
eddies may develop in the wake of a cylinder (Re > 180), as it is mentioned by Willden
[3], the VIV lock-in effect actually increases the coherence of the flow along the cylinder
and makes the local flux essentially two-dimensional. Here, the lock-in effect refers to the
synchronization of the vortex shedding and structural oscillatory frequencies such that,
vortex shedding occurs at the natural frequency of the structure.

As mentioned also in [3], in order to capture the excitation and damping effect of the
flow, a minimum of three slices are required per half-wavelength of vibration, therefore,
the number of slices of simulation can be determined by considering either the highest
vibration mode that is likely to be excited or the highest mode of interest.

4 PROPOSED NUMERICAL METHOD

Through the commercial coupling tool K-FSI, the strip method proposed in this work
fully couples a velocity-pressure formulation of the two-dimensional, Navier Stokes equa-
tions with a three-dimensional, non-linear FEM model of the structure.

The K-FSI tool consists of the coupling between the structural code K-Struct and
the fluid solver ISIS-CFD, included in the FINETM/Marine suite. ISIS-CFD is based
on the finite volume method and solves the incompressible, unsteady Reynolds-averaged
Navier-Stokes equations (URANS). FINETM/Marine is coupled in a segregated manner to
K-Struct, the non-linear, unsteady finite element method structure solver, which forms
the core of the K-FSI fluid-structure interaction suite.

Figure 2: Coupling algorithm

In particular, for the present work, each fluid com-
putation slice uses the same mesh, however, each plane
can be placed at different angles of incidence. The
developed tool transfers information between the dif-
ferent 2D slices and the 3D structure through ports
called sockets, using the ZeroMQ distributed mes-
sage library. The use of sockets allows the com-
munication of multiple fluid calculations, which are
executed in parallel and independently, with a sin-
gle structural calculation. Each fluid computation
may in turn also be computed locally in paral-
lel using the message passing interface (MPI) proto-
col.

The following algorithm is executed: several 2D CFD calculations are run indepen-
dently on different processors. Once each of the fluid domains is resolved, the resultant
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fluid efforts are sent to the structural solver at each non-linear iteration. The structural
solver then uses the information obtained from each one of the fluid computations to
load the structure and computes the displacements. Finally, it communicates the new
displacements to each of the fluid computations. Each fluid calculation communicates
independently with the structure solver using a particular socket.

5 SIMULATION SETUP

The numerical model of this paper follows the experimental setup presented in the
work of Chaplin [6].Two FSI models are simulated, a fully 3D fluid simulation and the
proposed strip method. The structural and fluid configuration, common to both models,
is presented below. Information particular to each model is detailed later on.

The structural mesh consists of 180 Euler-Bernoulli beam elements. The top and bot-
tom ends of the riser are fully constrained in translation and free in rotation to model
the universal joints at each end. A constant tension of 405 N is applied at the top of the
riser. The structural properties presented in Table 1 have been used for model. Both the
effect of gravity and buoyancy are represented in the structure model.

For both fluid approaches, the meshes used are non-structured, hexahedral/quadrilateral
meshes. A no-slip boundary condition is used on the riser surface. The meshes were de-
signed with a target y+ value of y+ = 0.5. Refinement boxes are used to capture the
near and far wake. The k − ω (SST-Menter) model is used to model the turbulence, the
water density is considered as ρf = 999.207 kg · m3, and the dynamic viscosity is defined
as µf = 0.001002 Pa · s.

L (m)
Diameter

(m)
L/D

EA
(kN)

EI
(N · m2)

GJ
(N · m2)

Top
tension
(N)

Linear
mass

(kg · m−1)

13.12 0.028 469 5880 29.880 80.660 405 1.848

Table 1: Structural parameters used to model the riser

5.1 Fully 3D fluid model

To ensure a reasonable mesh size, the cells are stretched along the Z axis, whereas
an isotropic discretization is kept in the X and Y directions, to correctly capture the
cylinder and the near wake. In order to match the experimental set-up, the fluid domain
is confined for Z > 5.904 m to represent the vacuum tank containing the upper 55 %
of the riser. A view of the lower and upper sections of the mesh is given in Figures 3a
and 3b, respectively. Boundary conditions are presented in Table 2. Riser motions are
captured using mesh deformation in an arbitrary Lagrangian Eulerian (ALE) approach.
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Type Faces Riser height

Outlet Constant pressure Xmax Z < 5.904 m
Inlet Constant velocity (0.16 m · s−1) Xmin, Ymin, Ymax Z < 5.904 m
Wall Slip condition Xmin, Xmax, Ymin, Ymax, Zmax Z > 5.904 m
Wall Slip condition Zmin, Zmax Z < 5.904 m

Table 2: Boundary conditions imposed on the fully 3D fluid domain

(a) Lower portion of domain exposed to
current

(b) Upper portion of domain in vacuum
tank

Figure 3: Fully 3D fluid domain

5.2 Strip method (2D Fluid calculations - 3D structure)

Figure 4: 2D fluid domain

To assess the proposed strip method, two
calculations have been executed with a to-
tal of 20 and 40 slices, respectively. Half of
the slices are positioned at Z < 5.904 m,
and the other half at Z > 5.904 m. An
identical 2D mesh is used, for each and ev-
ery one of the slices along the riser, even for
Z > 5.904 m.

This is done under the consideration that 3D
interactions are neglected by the strip model,
and that no confinement effect is expected,
given the distance from the riser to the walls, according to the experimental set-up.
The 2D fluid mesh is shown in Figure 4. Unlike, the 3D simulations, the riser motions
may be treated using rigid body translations of the fluid domain and hence, the cost of
mesh deformation is avoided.

To improve the capture of the vortex shedding, a slightly larger refinement box is used
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in comparison to the fully 3D model. The imposed boundary conditions are presented in
Table 3.

Type Faces Position of plane

Outlet Constant pressure Xmax all
Inlet Null velocity (0 m · s) Xmin, Ymin, Ymax Z > 5.904 m
Inlet Constant velocity (0.16 m · s−1) Xmin, Ymin, Ymax Z < 5.904 m
Wall Mirror condition Zmin, Zmax all

Table 3: Boundary conditions imposed on each 2D fluid domain

6 NUMERICAL RESULTS

Taking as the reference the experimental results of Chaplin [6], a comparison of the two
approaches is done for the the in-line (IL) and cross-flow (CF) direction displacements.

Figure 5: Mean (IL) displacement(A/D)

A summary of the in-line displacement re-
sults is presented in Table 4. The mean IL dis-
placement and the displacement envelopes are
shown in Figures 5 and 5. Note, that the mean
displacement has been filtered out of the IL re-
sponse in Figure 6a to make the differences in
IL oscillations more apparent.

Both, the fully 3D approach and the strip
method, underestimate the maximum of the
mean displacement for the in-line direction,
however the 3D method provides a better repre-
sentation of the IL oscillation amplitudes. The
vertical position of the maximum amplitude is
well predicted with both methods. See Figure
5.

Regarding the amplitudes of the in-line os-
cillations, the fully 3D model overestimates the
envelopes but properly predicts the position of the anti-nodes and nodes. Regardless of
the number of slices, a better match with the experiment is observed for the slice method.
The envelopes of the cross-flow displacement are underestimated by both methods, but
are slightly weaker for the strip method. The position of the nodes and anti-nodes is
correct regardless of the method, (see Figure 6b).
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Method Maximum displacement (D) Z-Position (m) Z-Position / L

Experiment 1.102 4.422 33.7%
3D 1.009 4.048 30.9%

20 Slices 0.857 4.373 33.3%
40 Slices 0.889 4.155 31.7%

Table 4: Comparison of the mean in-line direction results

(a) (IL) envelopes, no mean disp. (A/D) (b) (CF) envelopes (A/D)

Figure 6: Displacement envelopes

6.1 Spectral analysis

Examining the frequency content by spectral analysis, the dominant mode for the in-
line (IL) direction of both methods is the 4th mode. Although the corresponding frequency
of the 4th mode is similar, the range of frequency for the 3D method (1.4 to 2.1 Hz) is a bit
wider than that of the strip method (1.7 to 2.1 Hz). The anti-node showing the maximum
amplitude corresponds to the second lowest anti-node, according to the 3D method, and
to the bottom most, for the strip method for both, 20 and 40 slices.

Both methods indicate that the dominant mode for the cross-flow (CF) direction cor-
respond to the 2nd mode. As with the in-line spectral analysis, the range of the dominant
mode is somewhat larger for the 3D method (0.3 Hz for the strip method, and 0.5 Hz for
the 3D method). Both methods point to the bottom anti-node as the one with maximum
displacement.
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(a) Fully 3D (b) 20 slices (c) 40 slices

Figure 7: Spectral analysis, (IL) displacement

(a) Fully 3D (b) 20 slices (c) 40 slices

Figure 8: Spectral analysis, (CF) displacement

6.2 Simulation time

Computational time has been measured for both methods and, as shown in Table 5,
a gain has been verified with the strip method. Considering the total of the CPU hours,
and compared with the full 3D method, the strip method using 20 slices is 18.6 times
faster, whereas the one using 40 slices is 10.4 times faster than the 3D computation. To
give an example, 9 hours are required to get a result comparable to a 3D simulation using
a desktop computer, with 20 cores and 20 slices.

3D 20 slices 40 slices

Simulation time for the same number of time steps (hours) 51 9 16
Number of processors 64 20 20

Total CPU hours 3262 176 313

Table 5: Comparison of the computational cost

6.3 Comparison with others tools

This section presents a comparison between the proposed strip method developed
within the K-FSI suite and the results of the tools assessed in the work of [7]. These tools
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are: USP, Norsk Hydro, Orcaflex vortex tracking, VIVANA, VIVIC, VICoMo, ABAVIV,
and SHEAR7. The empirical and wake oscillator tools VIVANA, SHEAR7, VICoMo and
ABAVIV were not developed to determine the in-line deformation of a riser.

6.3.1 In-line (IL)

Figure 9: Comparison mean displace-
ment (IL) direction of the different tools

All of the tools underestimate the in-line
deformation, but the position of the maxi-
mum in-line deformation is globally well cap-
tured. In general, the methods developed in
the present work stand out from the other ones.
In particular the mean in-line displacement and
the in-line envelopes are more accurately cap-
tured. Only the two K-FSI approaches and
Orcaflex predicts nodes and anti-nodes, though
only the two K-FSI results presented here suc-
ceed to determine the right number of anti-
nodes and the proper dominant mode. In
contrast, Orcaflex incorrectly predicted a fifth
mode response.

(a) Minimum displacement envelopes (b) Maximum displacement envelopes

Figure 10: Comparison envelopes (IL) direction of the different tools
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6.3.2 Cross-flow (CF)

The majority of the software give the right mode for the cross-flow envelopes with
reasonably correct amplitudes. Nevertheless, some are not suited to predict the CF dis-
placement (Orcaflex : wrong mode, Norks Hydro : wrong mode and wrong amplitude).

(a) Minimum displacement envelopes (b) Maximum displacement envelopes

Figure 11: Comparison of the envelopes for the different tools, (CF) direction

7 CONCLUSIONS AND FUTURE WORK

The results of the present study are compared with benchmark presented in Chaplin [6]
and lead to the following conclusions:

• It emerges from all these simulations that the strip method offers results comparable
to those of the 3D method while offering a significant time saving.

• In general, the strip method leads to a good agreements with the experimental
data, and increasing the number of slices has been shown to yield a gain in precision
though at the cost of greater computation time.

• Compared with some of the more recognized tools used in the oil industry, the
K-FSI tool presented here yielded the closest results to the experiments.

• Both the fully 3D FSI and the strip approach developed were found to be reliable,
robust and precise methods.

• The proposed approach makes it possible to perform an FSI simulation on a riser
in a few hours, on a desktop machine dating from 2013.
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Given the fact that past simulations proved to be incapable of predicting the defor-
mations and frequencies associated with the VIV on a riser, the obtained results are very
encouraging. Considering the possibility of making a specific solver for the VIV analysis,
and the capacity of new processors, a drastic reduction in computational time can be
expected. The developed strip method could be extended to handle more complicated
geometry configurations such as spools and tandem riser configurations where the wake
of one cylinder influences the behavior of the other. Examination of the case of the
experimentally measured spool of [8] is the focus of ongoing work.
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