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Abstract

We investigate the use of a second-order cone programming (SOCP) framework for com-
puting complex 3D steel assemblies in the context of elastoplasticity and limit analysis.
Displacement and stress-based variational formulations are considered and appropriate
finite-element discretization strategies are chosen, yielding respectively an upper and lower
bound estimate of the exact solution. An efficient interior-point algorithm is used to solve
the associated optimization problems. The discrete solution convergence is estimated by
comparing both static and kinematic solutions, offering a way to perform local mesh adap-
tation. The proposed framework is illustrated on the design of a moment-transmitting
assembly, its performance is assessed by comparison with classical elastoplastic computa-
tions using Abaqus and, finally, T-stub resistance and failure mechanisms when assessing
the strength of a column base plate are compared with the Eurocodes design rules.
Keywords: second-order cone programming, interior point method, elastoplasticity, limit
analysis, equilibrium finite elements, steel assembly

1. Introduction

The verification of steel assemblies poses formidable challenges to the designer when
the steel joint geometry becomes complex. On the one hand, normative design methods
involve lots of manual verification and, on the other hand, the use of numerical simulation
by civil engineers is often limited to crude elastic computations and elastic limit checks,
largely underestimating the steel assembly plastic capacity which is taken into account
by the design norms. Resorting to a fully non-linear elastoplastic computation on a large
scale 3D model is still extremely rare in today’s engineering practices, mostly due to the
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difficulty of running such computations which require both time and expertise and often
suffer robustness issues which may be detrimental to the structure safety.

Limit analysis theory [1], or more generally yield design theory [2, 3], has been widely
used as the basis of many design methods in civil engineering e.g. slope stability factors
and footing bearing capacities [4], strut-and-tie models [5], yield line methods for slabs
and metal plates [6–8], etc. With the advent of efficient conic programming solvers using
interior-point algorithms and dedicated finite-element solution strategies, limit analysis
problems can now be solved numerically at a moderate cost. The robustness of such solvers
in the context of estimating a structure ultimate load is a decisive advantage over traditional
Newton-Raphson-based techniques. Interior-point solvers for conic programming problems
has now emerged as the state-of-the-art method for this kind of problems [9–12].

Some contributions also explored the use of this framework for other applications such
as granular media [13, 14], contact [15–17], viscoplastic flows [18, 19] or elastoplastic com-
putations [15, 20–22]. The latter case is of interest since limit analysis does not guarantee
a unique solution as regards failure mechanisms nor does it enable to compute the struc-
ture displacements and total strains. Including elastic strains in a limit analysis model i.e.
aiming at computing the ultimate load with an elastoplastic computation circumvents the
previously mentioned limitations. Beyond assessing the structure load-bearing capacity, it
therefore also enables to check for ultimate strain limits in yielded regions.

In this manuscript, we consider the formulation of elastoplastic problems in a convex
optimization framework, sharing therefore close similarities with the formulation of limit
analysis problems. This approach was initiated by Maier [23–25] where the incremental
problem is reduced to a convex quadratic problem in the case of a piecewise-linear yield
criterion. The standard elastic predictor/plastic corrector approach is obtained when the
local minimization problem over plastic strain variables is solved exactly (return mapping
step) and the stress field balance equations (optimality condition on the displacement field)
is expressed as a non-linear function of the total strain. Other approaches may include non-
smooth Newton methods [26, 27], general interior-point methods [20], sequential quadratic
programming, [28], accelerated proximal gradient methods [29], etc. One can also mention
the use of a bi-potential method for non-associative behaviours [30, 31].

Generalizing the results of limit analysis problems and their conic representation de-
pending on the chosen plasticity yield criterion [21, 32], the obtained elastoplastic opti-
mization problem can belong to the class of quadratic programming (QP), second-order
cone programming (SOCP) or semi-definite programming (SDP) problems. For instance,
one obtains QP problems for piecewise-linear yield surfaces, SOCP for 2D or 3D von Mises
yield surface [15, 22] or SDP for 3D Mohr-Coulomb yield criterion [11]. Solvers based on the
interior-point method (IPM) [33–36] have now emerged as the state-of-the-art technique for
solving QP, SOCP or SDP problems. When applied to an elastoplastic computation, this
technique exhibits a fundamental difference with classical elastic predictor/plastic corrector
schemes coupled with a Newton-Raphson procedure. Indeed, contrary to the latter which
alternates between satisfying global equilibrium and verifying the plasticity conditions, the
IPM method will produce a sequence of iterates which satisfy none of the two conditions
except at convergence. This specific feature is at the origin of the good robustness of the
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method in this context [28].
When discretizing in time the rate equations of plasticity, it is assumed that the evo-

lution is monotonous over time during the time increment (no elastic unloading occurs)
so that the obtained formulation is that of holonomic or finite-deformation plasticity. In
many cases of interest, one looks for an ultimate state solution under proportional loading
for which such formulations are appropriate. Otherwise, one needs to discretize the en-
tire load path into smaller increments over which holonomic plasticity formulations can be
adopted. In the former case, we advocate for the use of a single large load increment for
computing the structure elastoplastic ultimate state if one is not interested in details by
the elastic phase. The robustness of the IPM enables to solve this large load step efficiently,
contrary to more classical procedures.

The purpose of the present manuscript is to provide a general framework for computing
efficiently the ultimate state of complex steel assemblies including plasticity. Following on
the ideas of [17], we will resort to a dual finite-element discretization involving kinematic
displacement-based elements as well as static equilibrium-based elements providing, re-
spectively, an upper and lower bounds estimate to the exact solution and, in particular, to
the exact structure ultimate load. Both computations can be also be used to compute a
constitutive error indicator which can be used in a remeshing algorithm.

The present paper will therefore include:

– a presentation of the incremental variational formulations of elastoplastic boundary
value problems and their extension to limit analysis/yield design (sections 2 and 3);

– the finite-element discretizations used in both approaches along with some comments
on the interior-point solution procedure (section 4);

– illustrative examples aiming at:

• showing how the method can be used to analyse a typical steel assembly and be
a valuable tool for the design procedure (section 5.1);
• assessing its performance and accuracy with respect to classical elastoplastic

solution strategies (section 5.2);
• validate the method against Eurocodes design norms (section 5.3) .

2. Variational formulation for elastoplasticity

In the following, u will denote the displacement field on the solid domain Ω, ε(u) = ∇Su
the linearized strain tensor, σ for the Cauchy stress tensor and εp for plastic strains.
Imposed displacements and surface tractions will be respectively denoted by ud (prescribed
on Γu) and td (prescribed on Γt). Body forces will be noted b and we will restrict here
to quasi-static loadings. The normal vector n pointing outwards will be used to orient
free faces and surfaces. Finally, Σσ will denote an internal surface of potential stress
discontinuities (see figure 1).
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Figure 1: Reference model

We will consider an elasto-plastic von Mises material with linear isotropic hardening,
although more general hardening models could well be considered. Its free energy density
is given by:

ψ(ε, εp, p) = 1
2(ε− εp) : C : (ε− εp) + 1

2Ehp
2 (2.1)

where C is the elasticity stiffness tensor, Eh the hardening modulus and p(t) =
∫ t

0

√
2
3‖ε̇p‖dt

the accumulated plastic strain where ‖a‖ = √aijaij. The plastic dissipation potential is
given by:

φ(ε̇p) =

√

2
3σ0‖ε̇p‖ if tr(ε̇p) = 0

+∞ otherwise
(2.2)

corresponding to the von Mises plastic yield criterion:

f(σ, p) =
√

3
2‖dev(σ)‖ − (σ0 + Eh.p) (2.3)

We now focus on an incremental formulation between times [tn, tn+1] among the total
time interval [0, T ]. Knowing all mechanical fields at time tn, the unknown fields at time
tn+1 can be obtained from the solution of the following incremental variational formula-
tion [37, 38]:

arg min
u,εp,p

∫
Ω

∫ tn+1

tn
(ψ̇(ε, εp, p) + φ(ε̇p))dtdΩ−

∫ tn+1

tn
Pext(u̇)dt (2.4)

where Pext is the power of external loads.
An approximate solution to (2.4) can be obtained by restricting the above variational

formulation to evolutions on [tn, tn+1] in which plastic strain rates are assumed to be
constant over the time interval:

ε̇p(t) = εpn+1 − εpn
tn+1 − tn

(2.5)
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where we wrote explicitly the time dependence but not the spatial one, ε̇p, εpn+1, ε
p
n all

being tensorial fields.
More generally, we get the same final result if restricting to the more general case of

plastic strain rates following radial evolutions over [tn, tn+1] i.e.:

ε̇p(t) = λ̇(t) εpn+1 − εpn
λ(tn+1)− λ(tn) (2.6)

so that
∫ tn+1
tn ε̇p(t)dt = εpn+1 − εpn. In the above, λ(t) is any increasing scalar field i.e. with

λ̇(t) ≥ 0 and obviously encompasses (2.6) for λ(t) = t. With these assumptions and owing
to the fact that φ is positively-homogeneous, we get that:

∫ tn+1

tn
φ(ε̇p)dt =

∫ tn+1

tn

λ̇(t)
λ(tn+1)− λ(tn)φ(εpn+1 − εpn)dt = φ(εpn+1 − εpn) (2.7)

As a result, an approximate solution to (2.4) is given by:

(un+1, ε
p
n+1, pn+1) = arg min

u,εp,p

∫
Ω

(ψ(ε, εp, p)− ψ(εn, εpn, pn) + φ (εp − εpn)) dΩ

−Pext(u− un)
(2.8)

The optimality conditions of this incremental problem yield the classical relations of holo-
nomic plasticity. The solution also coincides with that obtained from classical return
mapping procedure using a backward Euler discretization in time. Let us recall again
that the obtained solution is only approximate but usually of good quality, especially for
proportional loadings.

Denoting by ∆ε = εn+1 − εn the strain increment and injecting (2.1) and (2.2), the
minimization problem becomes:

min
∆u,∆εp,∆p

∫
Ω

(1
2(∆ε−∆εp) : C : (∆ε−∆εp) + σn : (∆ε−∆εp)

+1
2Eh∆p

2 + Ehpn∆p+
√

2
3σ0‖∆εp‖

 dΩ− Pext(∆u)

s.t. tr(∆εp) = 0

(2.9)

Since ṗ =
√

2
3‖ε̇p‖, we also have ∆p =

√
2
3‖∆εp‖ therefore

Ehpn∆p+
√

2
3σ0‖∆εp‖ =

√
2
3σY,n‖∆ε

p‖

and
1
2Eh(∆p)

2 = 1
3Eh‖∆ε

p‖2

with σY,n = σ0 + Eh.pn.
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Writing explicitly the link between the displacement and total strain increments and
the Dirichlet boundary conditions, we have:

min
∆u,∆εp

∫
Ω

1
2(∆ε−∆εp) : C : (∆ε−∆εp) + (εn − εpn) : C : (∆ε−∆εp)

+ 1
3Eh‖∆ε

p‖2 +
√

2
3σY,n‖∆ε

p‖
dΩ− Pext(∆u) (2.10a)

subject to ∆ε = ∇S(∆u) in Ω (2.10b)
∆u+ un = ud,n+1 on Γu (2.10c)
tr(∆εp) = 0 in Ω (2.10d)

This optimization problem fits into the conic programming framework for which interior
point methods are well suited. Indeed, one can for instance introduce an auxiliary scalar
variable ∆γ such that ∆γ ≥ ‖∆εp‖. The previous problem can then be equivalently
reformulated as:

min
∆u,∆εp,∆γ

∫
Ω

1
2(∆ε−∆εp) : C : (∆ε−∆εp) + (εn − εpn) : C : (∆ε−∆εp)

+ 1
3Eh(∆γ

2) +
√

2
3σY,n∆γ

dΩ− Pext(∆u) (2.11a)

subject to ∆ε = ∇S(∆u) in Ω (2.11b)
∆u+ un = ud,n+1 on Γu (2.11c)
tr(∆εp) = 0 in Ω (2.11d)
‖∆εp‖ ≤ ∆γ in Ω (2.11e)

The traceless constraint on ∆εp can be removed by introducing directly the deviatoric
operator dev() in the elastic constitutive relation as shown in [22] :

σn+1 = σn + C : (∆ε− dev(∆εp)) (2.12)
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The previous optimisation problem is then changed to:

Jkin = min
∆u,∆εp,∆γ

∫
Ω

1
2(∆ε− dev(∆εp)) : C : (∆ε− dev(∆εp)) + σn : (∆ε− dev(∆εp))

+ 1
3Eh(∆γ)2 +

√
2
3σY,n∆γ

dΩ− Pext(∆u) (2.13a)

subject to ∆ε = ∇S(∆u) in Ω
(2.13b)

∆u+ un = ud,n+1 on Γu
(2.13c)

‖∆εp‖ ≤ ∆γ in Ω
(2.13d)

Similarly, the dual minimisation problem acting on statically admissible stress fields
σ ∈ SA(Ω) is expressed as follows [15, eq. (11.61)]

Jstat = min
σn+1, σY,n+1

∫
Ω

1
2(σn+1 − σn) : C−1 : (σn+1 − σn) + 1

2Eh
(σY,n+1 − σY,n)2

dΩ

−
∫

Γu

(σn+1.n).(ud,n+1 − ud,n)dΓ (2.14a)

subject to Div(σn+1) + bn+1 = 0 in Ω
(2.14b)

Jσn+1K.n = 0 on Σσ

(2.14c)
σn+1.n = td,n+1 on Γt

(2.14d)√
3
2‖dev(σn+1)‖ ≤ σY,n+1 in Ω

(2.14e)

As a result, both objective functions are opposite −Jstat = Jkin for the true elastoplastic
solution. When restricting both minimum problems to finite-dimensional subspace ob-
tained from a finite-element discretization for instance, both objective functions will differ
and under careful choice on how discretization is performed, the kinematic approach will
yield an upper bound to the true solution, whereas the static approach will yield a lower
bound: −Jstat,h ≤ −Jstat = Jkin ≤ Jkin,h. It must be kept in mind that the discrete op-
timization problems associated with Jstat,h and Jkin,h are not dual to each other in the
convex optimization sense since they are associated with different discretization strategies.
They however offer a bracketing of the true solution since the accuracy of the discretized
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solution can be compared by computing Jkin,h + Jstat,h (see [17]). We later refer to this
quantity as the primal-dual gap i.e. the discretization gap between the primal (kinematic)
discretization and the dual (static) discretization.

The increment solution of an elasto-plastic problem can then be obtained from the
resolution of a convex optimization problem in terms of the displacement and plastic strain
increments for the kinematic formulation or in terms of the new stress and yield limit at
time tn+1 for the dual static formulation. With a von Mises material, both problems fall into
the class of second-order cone programming problems for which interior-point algorithms
are well suited. Let us mention that we can also add unilateral or associated frictional
contact conditions to both formulations following the lines of [17] without changing the
second-order cone nature of the problem.

3. Modification for yield analysis optimisation problems

Upper and lower bound yield analysis theorems enable to estimate the load bearing
capacity of a structure subject to a given strength criterion. The numerical resolution of
finite-element discretized yield analysis can also be efficiently achieved using interior point
methods for conic programming [9, 10, 39, 40]. One can easily obtain these two lower
and upper bound problems from formulations (2.13a) and (2.14a) by considering a rigid
perfectly plastic material i.e. C→∞ hence ε = εp and Eh = 0. Besides, in order to obtain
the maximum load factor, we consider that the loading consist of a fixed part (e.g. the
body forces b) and a reference loading scaled by a load multiplier α (e.g. for the surface
tractions αt) which we want to maximize. In this case, the work of external loads take the
following form:

αPext(u) + Pext,0(u) = α
∫

Γt

t · udΓ +
∫

Ω
b · udΩ

Considering only homogeneous Dirichlet boundary conditions for simplicity, problems (2.13a)
and (2.14a) respectively become:

αupper = min
u, εp, γ

∫
Ω

√
2
3σ0γdΩ− Pext,0(u)

subject to εp = ∇Su in Ω
u = 0 on Γu
Pext(u) = 1
tr(εp) = 0 in Ω
‖εp‖ ≤ ∆γ in Ω

(3.1)
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αlower = maximize
α,σ

α

subject to Div(σ) + b = 0 in Ω
JσK.n = 0 on Σσ

σ.n = αtd on Γt√
3
2‖dev(σ)‖ ≤ σ0 in Ω

(3.2)

in which the optimal objective values respectively produce an upper and lower bound
estimate of the true collapse load multiplier α+: αlower ≤ α+ ≤ αupper.

4. Finite-element discretizations and solution procedure

In this section, we briefly describe the different finite-element discretizations that we
can use for solving problem (2.13a) or (2.14a).

4.1. Kinematic approach
4.1.1. Continuous discretization

Standard continuous displacement-type discretization with 10-node quadratic tetrahe-
dra are used to solve the upper bound problem (2.13a) . The element degrees of freedom
(DoF) are the following:

- 3× 10 = 30 nodal displacement increments ∆u;

- 6× nG plastic strain increments ∆εp at each integration point;

- nG scalar auxiliary variables ∆γ at each integration point;

where nG is the number of quadrature points per tetrahedron for numerical integration
(minimum 4). Let x be the aggregation of of a single tetrahedron DoF i.e. for nG = 4:

x = (30 ∆u, 24 ∆εp, 4∆γ)

Let B be the strain-displacement matrix operator and D the deviatoric matrix operator.
The elementary stiffness matrix for each tetrahedron can then be calculated taking into
account the traceless condition for ∆εp as follows:

Ke =



BTCB −BTCD 0

−DTCB DTCD 0

0 0 2
3Eh


(4.1)
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Problem (2.13a) can then be expressed after assembling the global stiffness matrix K̂,
the nodal plastic dissipation vector d̂ and the nodal force vector f̂ as a conic minimization
problem using the SOCP formalism as follows:

min
x̂

1
2∆x̂TK̂∆x̂T + K̂x̂n∆x̂T + d̂T∆x̂T − f̂Tn+1∆x̂T

s.t. ∆û+ ûn = ûd,n+1 on Γu
‖∆εp‖ ≤ ∆γ at each integration point

(4.2)

in which the primal optimization variables are x̂ = (∆û,∆ε̂p,∆γ). As mentioned previ-
ously, contact constraints can be added and enforced at all 6 nodes of each face following
[17]. After introducing a proper change of variable, the contact conditions can be easily
transformed into a standard second-order cone constraint using a Lorentz cone. Let us
finally mention that, for the above formulation to yield a true upper bound of the exact
response, quadrature points (i.e. the location at which plastic flow rule will be enforced)
have to be located at the tetrahedra vertices (see [10]). However, in practice, choosing
standard Gauss points yields a very close response.

4.1.2. Discontinuous mesh
The plastic condition is known for inducing volumetric locking problems, even for

quadratic tetrahedra. One possible remedy consists in considering a fully discontinuous
displacement interpolation and accounting for the displacement jump contribution to the
plastic dissipation potential:

φ(J∆uK) =

√

1
3σ0‖J∆u.tK‖ if J∆u.nK = 0

+∞ otherwise
(4.3)

Note that only tangential discontinuities are allowed and that the full displacement
jump contributes to the plastic potential, meaning that no discontinuity will occur during
the purely elastic phase. Similarly to the bulk plastic dissipation, an auxiliary scalar
variable ∆ζ must be introduced such that ∆ζ ≥ ‖J∆u.tK‖ in order to fit into the conic
formalism.

The introduction of discontinuities prevents volumetric locking and also improves the
discretization accuracy as will be shown in section 5. However, it introduces additional
degrees of freedom since each tetrahedron displacements are now independent. This implies
higher computational times which can reach 4 to 10 times those of the continuous kinematic
approach.

4.1.3. Hybrid formulation
One other remedy for mitigating locking effects is to resort to a so-called mixed, or

hybrid, discretization in which the traceless condition (2.11d) is enforced only on average
on each element, instead of being enforced at each quadrature point as it should be. Note
that, in this case, the bounding character of the kinematic approach is inevitably lost.
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4.2. Static approach
For the static approach, we use improved equilibrium elements based on the formula-

tions given in [41–43] but accounting for some changes to fit into the convex optimization
framework. To simplify notations isotropic hardening is not considered and the time in-
crements are dropped so that problem (2.14a) becomes:

min
σ

∫
Ω

1
2σ : C−1 : σdΩ−

∫
Γu

(σ.n).uddΓ (4.4a)

s.t. Div (σ) + b = 0 in Ω (4.4b)

JσK.n = 0 on Σσ (4.4c)

σ.n = td on Γt (4.4d)√
3
2‖ dev(σ)‖ ≤ σ0 in Ω (4.4e)

When introducing Lagrange multipliers associated with the linear constraint (4.4c),
these can be interpreted as displacements of each internal facet of the mesh. Similarly,
Lagrange multipliers associated with constraint (4.4d) can be interpreted as displacement
of faces lying on the boundary Γt. Denoting by u both internal and external face displace-
ments and prescribing explicitly u = ud on Γu, the previous minimisation problem can be
rewritten as follows:

min
σ,u

∫
Ω

1
2σ : C−1 : σdΩ−

∫
Σσ

JσK.n.udΓ−
∫
Γt

td.udΓ (4.5a)

s.t. Div (σ) + b = 0 in Ω (4.5b)

u = ud on Γu (4.5c)√
3
2‖ dev(σ)‖ ≤ σ0 in Ω (4.5d)

Next, appropriate interpolations are chosen for σ and u. To do so, the stress distribu-
tion inside an element is chosen in order to satisfy local equilibrium equations with body
forces [41–43] such as:

σ(x) = S(x)q + σb(x) (4.6)
where S is a matrix of independent shape functions of degree p, the columns of which Sk
all verify Div(Sk) = 0. They can be obtained either from Morera [44] or Maxwell [45]
stress potentials. In the following, we consider only linear stress shape functions (p = 1)
i.e. S is of dimension (6× 21). The 21 variables q are the generalized stresses and are not
related to any nodes but to the entire finite-element volume. σb is a particular solution
for the equilibrium equations with b 6= 0 and taken as equal to zero in absence of body
forces. For simplicity, we will consider the latter case in the following. The expressions for
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the polynomial functions S can be found in [46].
Since, stress fields vary in a linear fashion, equations (4.4c) and (4.4d) can be enforced

exactly using a linear interpolation for the face displacement Lagrange multipliers u. For
face j, the nodal displacement vector is u(j) = {ux1, uy1, . . . , uz3} so that the displacement
of an arbitrary point of face j is:

u(x) = Pj(x)u(j) (4.7)

with Pj being linear shape functions. We later denote by ue = {u(1), . . . ,u(4)} the nodal
displacements of all faces and by P the corresponding aggregated shape function matrix.

Using all of these, the elementary matrix for each tetrahedron can be calculated using
the first variation of the objective function (4.5a):

δqTFq + δqTHTue + δuTeHq = δuTe f ∀(δq, δue) (4.8)
where

F =
∫

Ωe

STC−1SdΩ (4.9)

H =
∫
∂Ωe

P TNSdΓ (4.10)

f =
∫
∂Ωe∩Γt

P T tddΓ (4.11)

Equation (4.8) can be rewritten in matrix form : F HT

H 0



q

ue

 =


0

f

 (4.12)

The obtained matrix is singular. As shown in [42], it has 6 zero eigenvalues corresponding
to the rigid body movements, and 9 more corresponding to spurious kinematic modes
(SKM).

These spurious modes can be eliminated using the super-element method, consisting in
considering one tetrahedral element as an assembly of four sub-tetrahedra based on each
four faces and sharing a common inner vertex lying at the center of the macro-tetrahedron.
This combination results in 4 tetrahedrons (4× 21 = 84 generalized stresses q̂), 4 external
faces (4× 9 = 36 external face displacements ûe) and 6 internal faces (6× 9 = 54 internal
faces displacements ûi) yielding the corresponding elementary matrix:

F̂ ĤT
i ĤT

e

Ĥi 0 0

Ĥe 0 0





q̂

ûi

ûe


=



0

0

f̂e


(4.13)
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in which the ?̂ symbol is used to denote aggregated matrix/vector over the corresponding
degrees of freedom.

The final element matrix is obtained by performing static condensation over the internal
degrees of freedom ûi:  F̂ Ĥc

Ĥe 0



q̂

ûe

 =


0

f̂e

 (4.14)

where
Ĥc = ĤT

e − ĤT
i .(ĤiF̂

−1ĤT
i )−1.(ĤiF̂

−1ĤT
e ) (4.15)

Assembling the elementary matrices to a global matrix Â leads to a minimization problem
of the following form:

min
x̂

1
2 x̂

T Âx̂− f̂T x̂ (4.16a)

s.t. ûe = ud on Γu (4.16b)√
3
2‖DSq̂‖ ≤ σ0 at each vertex (4.16c)

where x̂ is the global vector of degrees of freedom containing both q̂ and ûe for all elements.
Note that since the stress field is piecewise linear inside each sub-tetrahedra, it is enough to
check the plasticity criterion at each vertex of each sub-tetrahedra to guarantee the lower
bound status of the static approach. Similarly, contact constraint can be easily added to
the above conic optimization problem. Including back time increments and body forces will
only change expressions of right-hand side terms whereas including hardening will have to
include the new yield stress as an additional optimization variable with its corresponding
quadratic energy term.

4.3. Primal-dual interior point method for SOCP
All final discretized optimization problems (4.2) and (4.16a) (or their variants) share a

common structure of the following form:

min
x

1
2x

TKx− fTx (4.17a)

s.t. Ax = b (4.17b)

x ∈ K (4.17c)

where K is a product of cones which can either be the full real line R (free variable), the
positive orthant or Lorentz second-order cones (see [17]). More precisely, the optimization
variables can be split in two different groups: x = (xg,xl) where xg denotes global degrees
of freedom (coupled by equilibrium equations or the gradient operator) and xl denotes
local degrees of freedom which are uncoupled from one element to another. For instance,
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in the kinematic approach (4.2), global degrees of freedom are the displacement increments
xg = ∆û whereas plastic strain increments and auxiliary variables are local degrees of
freedom xl = (∆ε̂p,∆γ). Similarly, in the static approach (4.16a), the face displacements
are global degrees of freedom xg = ûe whereas generalized stresses are local degrees of
freedom xl = q̂. For both cases, it turns out that conic constraints act only on local degrees
of freedom at each quadrature point. Besides, linear constraints involve only global degrees
of freedom so that the previous problem has in fact the following more specific structure:

min
xg,xl

1
2x

TKx− fTx (4.18a)

s.t. Axg = b (4.18b)

xl ∈ Kl at each quadrature point (4.18c)

The above problem is then solved with a primal-dual interior point method (IPM) as
described in [19, 35], see in particular [17] for more implementation details, and specifically
tailored for second-order cone programs. Each iteration of the IPM amounts to solving a
Newton system corresponding to the optimality conditions of the above problem. Without
going into much details, the specific "local" structure of the problem, in particular the fact
that each cone involves local variables which are not coupled by a global operator makes
it possible to perform a static condensation for these variables, therefore reducing each
Newton iteration to a linear problem of the form:Kgg AT

A 0

xgλ
 = r (4.19)

where Kgg is similar to a tangent matrix, A is the global constraint matrix (for boundary
conditions enforcement for instance), λ the associated Lagrange multiplier and the right-
hand side r a residual vector. As a result, apart from λ, each Newton step requires
solving a linear problem of size ∆û for the kinematic approach and of size ûe for the static
approach. The computational cost of one IPM iteration is therefore similar to a standard
Newton-Raphson iteration in classical computational elasto-plasticity. IPM classically use
direct solvers for solving the linear system. The memory cost is therefore dominated by
the Newton system factorization and will also be similar to a standard Newton-Raphson
procedure using a direct linear solver. In particular, adding more cones (more plasticity
checking points or contact points) do not increase the size of the reduced linear system.
However, it has an impact (although quite small in practice compared to Newton-Raphson
methods) on the global convergence behaviour of the IPM. As mentioned in [19], the
IPM does not require to perform a return mapping on the plasticity surface but instead
will enforce the plastic flow rule and yield condition only at the final convergence of the
procedure. One attractive aspect is that both equilibrium and behaviour residuals are
decreased at the same rate during the procedure. This specific feature makes the solving
procedure very robust, especially to large load steps, as it will be illustrated next.
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4.4. Dual error estimator and remesh scheme
Finally, following the remeshing strategy considered in [17], we adapt the constitutive

error indicator to the case of plasticity, see for instance [47], in addition to the constitutive
error induced by surfaces in contact. Using results from both the static and kinematic
approaches, the computed error indicator on each element will be used to compute a new
mesh-size target map and perform adaptive mesh refinement.

5. Illustrative examples

5.1. Study of a moment-transmitting assembly
This first example aims at illustrating the efficiency of the solving and remesh proce-

dures when applied to a real steel assembly consisting of a particular joint designed for
transmitting axial forces and bending moments. This specific joint is not covered by the
Eurocodes design rules and must therefore be assessed numerically. Figure 2 gives a general
description of the steel assembly and the bolts disposition. It consists of two HEB500 beams
of grade S275 (fy = 275 MPa) attached to one another using welded 40 mm end-plates of
grade S355 (fy = 355 MPa) and 20 M27 bolts of grade 8.8 (fy = 800 MPa) with no initial
stress. The depth of the weld throat is 15 mm thus verifying 2×15 = 30 mm ≥ tw = 28 mm
and its yield limit is taken as fy = 400 MPa. Steel is modelled as an elastic perfectly plas-
tic material with Young modulus E = 210 GPa, Poisson ratio ν = 0.3 and yield stress
σ0 = fy. Frictionless contact conditions are imposed over the end-plates forbidding pen-
etration. Moreover, the beams are supposed disconnected from the plates so that forces
will be transmitted through the welds, thus simulating a small construction gap between
the beam ends and the plates.

Figure 2: Description of the studied steel assembly
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The displacements of all the nodes belonging to the foremost left IPE surface are
blocked, and a prescribed displacement composed of a compressive axial displacement
(2 mm), a downward vertical displacement (8 mm) and a rotation is imposed (8 mrad),
thus simulating an assembly transmitting simultaneously an axial force and a bending
moment typically located at mid-span in a structure where shear forces are negligible.
Reaction forces are then calculated from the finite element solution.

5.1.1. Convergence analysis
We first perform a convergence analysis of the quantities of interest by solving both

kinematic and static approaches in an elasto-plastic setting with a single load-increment
step. A 7.5% objective gap between −Jstat,h and Jkin,h is requested at the beginning of the
study and the whole calculation–error maps–remesh scheme is repeated until the desired
value is obtained. A total of 4 meshes (one initial mesh and 3 remeshes, see figure 3)
were necessary for the gap between the static approach and the kinematic approach with
no discontinuities to reach 7.1%, as shown in figure 4. The gap between the static and
the kinematic approach with discontinuous elements reaches 3% on the second remesh and
an 1.8% on the third remesh. As regards the differences on reaction forces, they followed
the same tendency: 9.5% between the static approach and the kinematic approach with
no discontinuities and 2.0% between the static and the discontinuous kinematic approach.
The different meshes can be seen in figure 3. Figures 5 and 6 show the evolution of the
reaction forces in the 4 different meshes.

(a) Initial mesh (b) First remesh iteration

(c) Second remesh iteration (d) Third remesh iteration

Figure 3: Initial and adapted meshes for the first example, isovalues represent the local computed error
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Figure 4: Convergence analysis with respect to objective functions for example 1: Jkin,h for the kinematic
approach and −Jstat,h for the static approach
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Figure 5: Convergence analysis with respect to the reaction force for example 1
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Figure 6: Convergence analysis with respect to the reaction moment for example 1

5.1.2. Determining the interaction diagram
The previous assembly is now compared to a complete HEB500 beam and a hollow

beam designed for optimizing material use. Figure 7 describes the hollow beam geometry,
typical of those found in practice. The chosen diameter-to-height ratio is taken here equal
to 1.45 with a steel grade S275 (fy = 275 MPa). As regards the assembly, we consider in
fact two different cases:

– Assembly 1: a weaker, badly-designed assembly, where the depth of the weld throat
is 10 mm thus being less than the thickness of the flanges;

– Assembly 2: the well-designed assembly introduced before (see figure 2).

In this example, we consider upper and lower bound yield design computations as
described in section 3. The reference loading consists of a prescribed bending moment M
around the strong axis of the beam and a normal force N . For a fixed value of (N,M), we
maximize the load multiplier factor α such that (αN, αM) corresponds to the maximum
normal force and bending moment for the chosen reference values. By varying the reference
load direction (N,M) in the normal force-bending moment space, we compute different
values of the load multiplier α, corresponding to different points on the failure domain,
describing, in the end, the beam section interaction diagram. We restrict here the diagram
computation to only one quarter, corresponding to tensile forceN ≥ 0 and positive moment
M ≥ 0.
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Figure 7: Description of the hollow beam
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Figure 8: Axial force-bending moment interaction diagram
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Figure 8 shows the interaction diagram obtained by following the previous procedure
using either upper or lower bound approaches. For each configuration, the corresponding
exact interaction diagram boundary lies inside the shaded area delimited by the lower and
upper bound calculations. As expected, the hollow beam presents a smaller strength than
the entire beam. As regards the assembly, the first topology (assembly 1) with weaker
welds exhibits a significantly reduced strength whereas the second one exhibits a strength
comparable to that of the hollow beam. In practice, the second assembly presents a better
design since the engineer would be able to completely utilize the beam and the assembly
strengths. With the first assembly design, the beam would not be fully utilized since failure
would be dictated by the weaker assembly. The proposed method provides the engineer
the ability to estimate the yielding domain of the studied structure and therefore can be
used to give insight on bad conceptions and the possible failure modes which can then be
improved. This will ensure a safer and more economical design.

5.2. Performance and result comparison with Abaqus
5.2.1. Convergence analysis

This second example is taken from [17] with some minor changes in boundary con-
ditions. Figure 9 gives the general description of the model. The aim of this example
is to assess the proposed procedure computational cost and quality of the obtained re-
sults by comparing it with computations made using Abaqus [48]. Abaqus uses classical
approaches such as a Newton-Raphson algorithm so solve the global non-linear balance
equations along with a return mapping algorithm to correct local plasticity and either a
penalty or an augmented Lagragian method to tackle contact conditions. Conversely, our
proposed method based on convex optimisation and the interior point algorithm treats all
three aspects simultaneously, with plasticity and contact conditions expressed using conic
constraints. Aiming at a fair comparison, the same series of 3 iteratively refined meshes is
used in all the studies, both for our implementation and for Abaqus computations. Since
Abaqus offers continuous displacement-based elements only, the calculation times are com-
pared with respect to our kinematic approach using continuous interpolation. In order to
closely compare the numerical performance of both algorithms, all the calculations were
made using the same computer (see Table 1). OpenMP technology was used to parallelize
over 8 threads.

Figure 9 gives a general description of the model and the three mesh iterations are
represented on figure 10. The considered example consists of a HEB200 central column
with two IPE360 beams attached over the flanges using welded end-plates and bolts. The
end-plates have a 15 mm thickness and 6 M18 bolts are used to connect each beam. We
suppose that the bolt hole is equal to its diameter and, to prevent rigid body motions, one
of the bolts heads is glued to the plate. For the HEB column, the thickness is 12.7 mm,
the same as the IPE flange thickness. The steel grade for all beams and plates is S275
(fy = 275 MPa), the bolts are of grade 8.8 (fy = 800 MPa) with no initial stress and the
yield limit of the welds is taken equal to fy = 400 MPa, no hardening being considered
here.
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Table 1: Computer specifications

Processor Intel core i7-4700MQ
Number of cores 4
Number of threads 8
Base frequency 2.40 GHz
Maximum frequency 3.40 GHz
Cache 6 MB –SmartCache
RAM 16.0 GB (15.7 GB usable)

A 3 cm vertical displacement is prescribed over the top section of the HEB column and
the average displacements of the two end sections of the IPE are blocked.

Figure 9: Description of the used model
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(a) Initial mesh (b) First remesh iteration

(c) Second remesh iteration

Figure 10: Initial and adapted meshes for the second example, isovalues represent the local computed error
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Table 2 shows the CPU times for the different analyses using the 3 different meshes:
the kinematic IPM method and Abaqus penalty and augmented Lagrangian methods for
treating contact. In this first case, we aim at testing the robustness of the algorithms
regarding large load steps. For this purpose, one displacement increment of 3 cm of vertical
displacement has been applied to the column. Each solver, using its default options, is given
enough time to converge. While with the interior point method, convergence was always
ensured with a steady number of iterations (18 − 21), Abaqus could not find a solution
in a single load-step and relied on its automatic load incrementation to find a sequence
of converged increments until reaching the final prescribed displacement. The number of
increments needed depends on the type of approach to solve contact: the penalty approach
(PEN) needed 4 to 10 load subdivisions to converge whereas the augmented Lagrangian
(AL) required 10 to 13. As a result, although for each increment, the number of iterations to
reach convergence is usually smaller than the IPM, in total, the final number of iterations
is much higher than the IPM. This obviously has an impact on the total computation
cost since one iteration has a similar cost for all methods. One can also note that the
IMP method scales well with the system size since the number of iterations only weakly
increases. The IPM is largely comparable to Abaqus PEN approach in terms of CPU times
with even a small speed-up factor, and compared to the AL approach, a speed-up factor
of up to 4.1 can be reached for the last mesh. We therefore obtain similar conclusions in
presence of plasticity as those obtained in [17] when considering only contact.

One should note that the dual solution requires as much time to calculate as the primal
one since the linear system is roughly the same size. The cost of the error calculation
is a simple post-processing step which takes less than 1% of the time needed for the
whole resolution which is negligible. As regards the kinematic approach with internal
discontinuities, the number of DoF is greater than its continuous counterpart. The solving
time is therefore much larger but the results are of better quality. In particular, it is known
that volumetric locking appears when dealing with incompressible plasticity. Ten-noded
tetrahedra suffer from such a numerical difficulty and hybrid formulations must therefore
be used to mitigate the locking effect. On the contrary, discontinuous interpolations are
free of any locking problem.

Table 2: CPU times and speed-up factors of the IPM over Abaqus augmented Lagrangian approach and
penalty approach for example 2

Remesh
iteration

Mesh
Size

IPM kinematic
approach

(s)[Ninc](Niter)

Abaqus AL
approach

(s)[Ninc](Niter)

Speed-up
factor

Abaqus Penalty
approach

(s)[Ninc](Niter)

Speed-up
factor

0 10045 37.5 [1] (18) 137.0 [10] (75) 3.6 45.0 [4] (45) 1.2
1 34017 140.3 [1] (20) 517.0 [13] (93) 3.7 319.0 [9] (55) 2.3
2 63137 243.8 [1] (21) 992.0 [13] (90) 4.1 536.0 [10] (52) 2.2

Global convergence levels with mesh refinement can be assessed using figures 11 and
12. The influence of mesh size over the relative difference between the static and kinematic
IP approaches has been represented in figure 11. We can notice that the discontinuous
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kinematic approach offers better convergence gaps. A relative difference of nearly less than
10% can be reached with only 2 remesh steps. Regarding the energy values and reaction
forces shown in figure 12, we can see that the IPM results coincide with Abaqus AL
approach which is known to provide quality results. As for the PEN approach, the values
are quite different and that can be explained by some violations of contact constraints as
shown in [17].
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Figure 11: Convergence analysis for example 2

5.2.2. Force to displacements curve
The final mesh obtained from the convergence analysis is used to draw the typical force–

displacement curves for the structural system. The prescribed displacement varies from 0
to 3 cm and the total vertical reaction force is then calculated. Figure 13 shows the different
curves obtained using the developed approaches and using Abaqus. The adequacy between
solutions is clear: Abaqus C3D10I elements provide the same solution as the continuous
kinematic approach, the C3D10H hybrid elements provide the same solution as our own
implementation of the continuous hybrid approach; all of these solutions are located over
the discontinuous kinematic solution which has an upper bound status, itself being larger
than the static solution which has a lower bound status.

24



1 2 34.20

4.40

4.60

4.80

5.00

5.20

5.40

5.60

5.80

6.00

mesh iteration

En
er
gy

[k
J]

Energy

1 2 30.17

0.18

0.19

0.20

0.21

0.22

0.23

0.24

0.25

0.26

mesh iteration

R
ea
ct
io
n
Fo

rc
e

[M
N

]

Total reaction force

Kinematic approach – No discontinuities
Kinematic approach – With discontinuities
Static approach
Abaqus AL approach
Abaqus PEN approach
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5.3. Estimation of the ultimate strength of a steel assembly
5.3.1. T-stub resistance

A typical steel-assembly verification according to Eurocode 3 relies on the components
method where the complex assembly is divided into basic components. We limit ourselves
for more simplicity to the tensile case where the equivalent T-stub method should be
used to determine the ultimate resistance. The first step consists in determining the set
of components subject to tensile loading under different configurations and subsequently
calculating their equivalent T-stub lengths called Leff (see Figure 14). The assembly
strength will be obtained as the lowest tensile strength of its different components. In
order to validate our proposed yield analysis approach, we compute the strength of a
single T-stub and compare it with the semi-analytical formulae proposed by the Eurocode.
The description of the various variables in the considered model are represented in figure 15
which is adapted based on Fig. 6.2 of the EN1993-1-8. More precisely, we consider three
different variants described in table 3 and, for each of them, the base flange thickness tf
will be varied. The thickness variation will allow us to test the different failure modes
proposed by the Eurocode (cf. EN1993-1-8 Table 6.2) and described in figure. 16:

– Mode 1: failure by complete flexural yielding of the flange characterized by the
apparition of 4 plastic hinges

FT,1,Rd = 4.Mpl,1,Rd

m
(5.1)

– Mode 2: failure by partial flexural yielding of the flange characterized by the appari-
tion of 2 plastic hinges, and partial tensile yielding of the bolts

FT,2,Rd = 2.Mpl,2,Rd + n
∑
Ft,Rd

n+m
(5.2)

– Mode 3: failure by complete tensile yielding of the bolts

FT,3,Rd =
∑
nbolts

Ft,Rd (5.3)

– Mode 4: failure by complete tensile yielding of the web

FT,4,Rd = Leff .tw.fy,d (5.4)

– Mode 5: failure by complete shear yielding of the welds

FT,5,Rd = Leff .(2aw,T ).fvw,d (5.5)

The detailed description and formulas can be found in Table 6.2 of the EN1993-1-8 and
specifically for:
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– Mpl,1,Rd which is the plastic resisting moment of the flange under failure mode 1;

– Mpl,2,Rd which is the plastic resisting moment of the flange under failure mode 2;

– n = min(e, 1.25m) which is a geometrical parameter that depends of the position of
the bolts.

Figure 14: A descriptive explanation of the components method

Stiff bolts are used in model 1, therefore no yielding is expected in the bolts. Since
2a ≤ tw, we expect that the welds will yield before the web since their yield strength under
shear loading is less than the one for the web under tensile loading. We then expect a
failure of type 1 for thin flanges and of type 5 for thick flanges. In models 2 and 3, smaller
bolts are used, therefore modes 2 and 3 are expected to appear depending of the thickness
of the flanges. In model 3, we chose 2a > tw so that the yielding will occur in the web.

Table 3: Descriptions

Model
name

Length
L

(mm)

Web Flange Welds Bolts Expected
failure
modes

tw
(mm)

hw
(mm)

fuw
(MPa)

tf
(mm)

bf
(mm)

fuf
(MPa)

a
(mm)

fvw
(MPa) Type fub

(MPa)
e

(mm)
Model 1 100 10 100 355 Variable 300 355 5 205 M20-10.9 1000 50 1 – 5
Model 2 100 10 100 355 Variable 300 355 5 205 M14-10.9 1000 50 1 – 2 – 5
Model 3 100 11 100 355 Variable 300 355 8 205 M14-10.9 1000 50 1 – 2 – 3

The obtained results are presented in figure 17. Using the upper and lower bound yield
analysis, we obtain a very satisfying estimate of the T-stub strength as proposed by the
Eurocode. The obtained failure mechanisms are in accordance with the expected modes.
For example, figure 18 illustrates the three different failure modes obtained with the third
model when varying the flange thickness: complete flexural yielding of the flange (Mode
1) for a thin flange (tf = 10 mm), partial flexural yielding of the flange and tensile yielding
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Figure 15: Description of the used model

of the bolts (Mode 2) for a moderately thick flange (tf = 25 mm) and a complete yielding
of the bolts (Mode 3) with a thick flange (tf = 40 mm). The small differences observed in
figure 17 with respect to the Eurocode semi-analytical formulae are due to the fact that
the latter are obtained from 2D failure modes while our model is fully 3D. For instance,
yield lines of modes 1 and 2 are considered straight of length Leff , while our computations
produce curved yield lines depending on the depth of the analysed model.

5.3.2. Resistance of a base column under tensile loading
The proposed approach can be generalized to more complex assemblies, such as a

classical base column under tensile loading as shown in figure 19. The HEB column is
welded to a base plate which is bolted to its final support. In order to determine the
resistance of this assembly, more than 20 sub-components should be analysed. For each
of them, all failure modes of the corresponding equivalent T-stub should be checked. The
yield design approach can provide valuable insight on the failure mode and the shape
of the yield lines as seen in figure 21, therefore reducing considerably the computational
effort required to verify this assembly. A complete Eurocode check identifies the yield line
mechanism of figure 20 as the most critical one. The manual computation of this simplified
mechanism gives a yield strength of FT,rd = 312 kN while the proposed approaches give
FT,upper = 354 kN using the upper bound approach and FT,lower = 335 kN using the lower
bound approach. The small difference is again due to the fact that the Eurocode does not
take into consideration 3D effects nor the complete curvature seen in the yield line nor the
contribution of the bolt heads to the assembly strength. The resistance value given by the
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(a) Failure mode 1 (b) Failure mode 2 (c) Failure mode 3

(d) Failure mode 4 (e) Failure mode 5

Figure 16: Different failure modes proposed by the Eurocode

Eurocode is therefore slightly more conservative.
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Figure 17: Results comparisons with the Eurocode (NF EN 1993-1-8)
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(a) Model 3 – tf = 10 mm – Failure mode 1 (b) Model 3 – tf = 25 mm – Failure mode 2

(c) Model 3 – tf = 40 mm – Failure mode 3

Figure 18: Different failure modes obtained for 3 configurations of the third model (colours correspond to
the plastic dissipation)
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Figure 19: Description of the used model

Figure 20: Expected yield mechanism (the dashed red lines represent yield lines)
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(a) Failure mode obtained by the upper bound yield analysis

(b) Plastic dissipation concentration matches the expected shape of the yield lines in figure 20

Figure 21: Solution of the upper bound yield analysis approach
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6. Conclusions and perspectives

Modelling three-dimensional elasto-plastic steel structures (including also contact) us-
ing SOCP and IPM has been investigated in this paper. Two kinematic and static varia-
tional principles are considered, leading to the formulation of convex minimization prob-
lems. Computation of the structure ultimate load using limit analysis concepts can be
obtained as a particular case of the elasto-plastic variational problems with only minor
modifications. Besides, assuming a radial loading path, limit loads can also be computed
from the elasto-plastic problems using a single large load step, without the need to perform
a step-by-step load subdivision. Robustness of the solution procedure to large load steps
is ensured by resorting to a primal-dual interior point method which is really efficient for
SOCP problems.

The use of a dual analysis based on both a kinematic and static approach enables to
assess the solution convergence by comparing their associated energies. The comparison
of local fields also enables to compute an error indicator used for adaptive remeshing. The
static-based solution has also the interesting property of being a lower-bound to the true
solution. It is, therefore, a safer solution in terms of stress quantities than a displacement-
based solution, which is appealing in the context of safety verification including elasto-
plastic behaviour and limit load computations.

The robustness and efficiency of the solution procedure has been compared against
Abaqus elasto-plastic computations. When aiming at computing a fully yielded solution,
the computational benefit of performing only one large load step compared to a standard
step-by-step Newton procedure is quite important. Limit load computations can therefore
be obtained at reasonable computational cost and offer a very useful design aid for the
engineer as shown by the considered example. In particular, we have demonstrated that
our numerical tool enables to retrieve the different failure modes of a T-stub considered
by the Eurocodes, both qualitatively and quantitatively but also offers a very useful way
to analyse a complex assembly without having to consider all potential individual failure
modes of its different components.

Further developments may include a more realistic description of the frictional be-
haviour as indicated in [17] or an improvement of the computational cost of the IPM for
large 3D problems by resorting to iterative solver for solving the different Newton steps.
Devising efficient warm-start strategies such as [15, 22], currently not exploited by our IPM
implementation, would be a valuable improvement to the overall procedure efficiency. An-
other interesting line of development would be to investigate how geometrically non-linear
effects could be included in the proposed numerical analysis.
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