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Introduction

Confident prediction is a fundamental problem in statistical learning for which numerous efficient algorithms have been designed, e.g., neural-networks, kernel methods, or k-Nearest-Neighbors (kNN) to name a few. However, even state-of-art methods may fail in some situations, leading to bad decisionmaking. Obvious damageable incidences of an erroneous decision may occur in several fields such as medical diagnosis, where a wrong estimation can be fatal. In this work, we provide a novel statistical procedure designed to handle these cases. In the specific context of regression, we build a prediction algorithm that allows to abstain from predicting when the doubt is too important. As a generalization of the classification with reject option setting [START_REF] Chow | An optimum character recognition system using decision functions[END_REF][START_REF] Chow | On optimum error and reject trade-off[END_REF][START_REF] Denis | Consistency of plug-in confidence sets for classification in semi-supervised learning[END_REF][START_REF] Herbei | Classification with reject option[END_REF][START_REF] Lei | Classification with confidence[END_REF][START_REF] Naadeem | Accuracy-rejection curves (ARCs) for comparing classification methods with a reject option[END_REF][START_REF] Vovk | Algorithmic learning in a random world[END_REF], this framework is naturally referred to as regression with reject option. In the spirit of [START_REF] Denis | Consistency of plug-in confidence sets for classification in semi-supervised learning[END_REF], we opt here for a strategy where the predictor can abstain up to a fraction ε ∈ (0, 1) of the data. The merit of this approach is that it allows human action on the proportion of the data where the prediction is too difficult while standard machine learning algorithms can be exploited to perform the predictions on the other fraction of the data. The difficulty to address a prediction is then automatically evaluated by the procedure. From this perspective, this strategy may improve the efficiency of the human intervention.

In this paper, we investigate the regression problem with reject option when the rejection (or abstention) rate is controlled. Specifically, we provide a statistically principled and computationally efficient algorithm tailored to this problem. We first formally define the regression with reject option framework, and explicitly exhibit the optimal predictor with bounded rejection rate in Section 2. This optimal rule relies on a thresholding of the conditional variance function. This result is the bedrock of our work and suggests the use of a plug-in approach. We propose in Section 3 a two-step procedure which first estimates both the regression function and the conditional variance function on a first labeled dataset and then calibrates the threshold responsible for abstention using a second unlabeled dataset. Under mild assumptions, we show that our procedure performs as well as the optimal predictor both in terms of risk and rejection rate. We emphasize that our procedure can be exploited with any off-the-shell estimator.

As an example we apply in Section 4 our methodology with the kNN algorithm for which we derive rates of convergence. Finally, we perform numerical experiments in Section 5 which illustrate the benefits of our approach. In particular, it highlights the flexibility of the proposed procedure.

Rejection in regression is extremely rarely considered in the literature, an exception being [START_REF] Wiener | Pointwise tracking the optimal regression function[END_REF] that views the reject option from a different perspective. There, the authors used the reject option from the side of ε-optimality, and therefore ensures that the prediction is inside a ball with radius ε around the regression function with high probability. Their methodology is intrinsically associated with empirical risk minimization procedures. In contrast, our method is applicable to any estimation procedure. Closer related works to ours appears in classification with reject option literature [START_REF] Bartlett | Classification with a reject option using a hinge loss[END_REF][START_REF] Chow | An optimum character recognition system using decision functions[END_REF][START_REF] Chow | On optimum error and reject trade-off[END_REF][START_REF] Denis | Consistency of plug-in confidence sets for classification in semi-supervised learning[END_REF][START_REF] Herbei | Classification with reject option[END_REF][START_REF] Lei | Classification with confidence[END_REF][START_REF] Naadeem | Accuracy-rejection curves (ARCs) for comparing classification methods with a reject option[END_REF][START_REF] Vovk | Algorithmic learning in a random world[END_REF]. In particular, the present work can be viewed as an extension of the classification with reject option setting. Indeed, from a general perspective, the present contribution brings a deeper understanding of the reject option. Importantly, the conditional variance function appears to capture the main feature behind the abstention decision. In [START_REF] Denis | Consistency of plug-in confidence sets for classification in semi-supervised learning[END_REF], the authors also provide rates of convergence for plug-in type approaches in the case of bounded rejection rate. However, their rates of convergence holds only under some margin type assumption [START_REF] Audibert | Fast learning rates for plug-in classifiers[END_REF][START_REF] Polonik | Measuring mass concentrations and estimating density contour clusters-an excess mass approach[END_REF] and a smoothness assumption on the considered estimator. On the contrary, we do not require these assumptions to get valid rates of convergence.

Regression with reject option

In this section we introduce the regression with reject option setup and derive a general form of the optimal rule in this context. We additionally highlight the case of fixed rejection rate as our main framework. First of all, before we proceed, let us introduce some preliminary notation. Let (X, Y ) be a random couple taking its values in R d × R: here X denotes a feature vector and Y is the corresponding output. We denote by P the joint distribution of (X, Y ) and by P X the marginal distribution of the feature X. Let x ∈ R d , we introduce the regression function f * (x) = E [Y |X = x] as well as the conditional variance function σ 2 (x) = E (Y -f * (X)) 2 |X = x . We will give due attention to these two functions in our analysis. In addition, we denote by • the Euclidean on R d . Finally, | • | stands for the cardinality when dealing with a finite set.

Predictor with reject option

Let f be some measurable real-valued function which must be viewed as a prediction function. A predictor with reject option Γ f associated to f is defined as being any function that maps R d onto P (R) such for all x ∈ R d , the output Γ f (x) ∈ {∅, {f (x)}}. We denote by Υ f the set of all predictors with reject option that relies on f . Hence, in this framework, there are only two options for a particular x ∈ R d : whether the predictor with reject option outputs the empty set, meaning that no prediction is produced for x; or the output Γ f (x) is of size 1 and the prediction coincides with the value f (x). The framework of regression with reject option naturally brings into play two important characteristics of a given predictor Γ f . The first one is the rejection rate that we denote by r (Γ f ) = P (|Γ f (X)| = 0) and the second one is the L 2 error when prediction is performed

Err (Γ f ) = E (Y -f (X)) 2 | |Γ f (X)| = 1 .
The ultimate goal in regression with reject option is to build a predictor Γ f with a small rejection rate that achieves a small conditional L 2 error as well. A natural way to make this happen is to embed these quantities into a measure of performance. To this end, let consider the following risk

R λ (Γ f ) = E (Y -f (X)) 2 1 {|Γ f (X)|=1} + λ r (Γ f ) ,
where λ ≥ 0 is a tuning parameter which is responsible for compromising error and rejection rate: larger λ's result in predictors Γ f with smaller rejection rates, but with larger errors. Hence, λ can be interpreted as the price to pay for using the reject option. Note that the above risk R λ has already been considered by [START_REF] Herbei | Classification with reject option[END_REF] in the classification framework.

Minimizing the risk R λ , we derive an explicit expression of an optimal predictor with reject option.

Proposition 1. Let λ ≥ 0, and consider

Γ * λ ∈ arg min R λ (Γ f ) ,
where the minimum is taken over all predictors with rejection option Γ f ∈ Υ f and all measurable functions f . Then we have that 1. The optimal predictor with rejected option Γ * λ can be written as

Γ * λ (X) = {f * (X)} if σ 2 (X) ≤ λ ∅ otherwise . (1)
2. For any λ < λ , the following holds

Err (Γ * λ ) ≤ Err (Γ * λ ) and r (Γ * λ ) ≥ r (Γ * λ ) .
Interestingly, this result shows that the oracle predictor relies on thresholding the conditional variance function σ 2 . We believe that this is an important remark that provides an essential characteristic of the reject option in regression but also in classification. Indeed, it has been shown that the optimal classifier with reject option for classification is obtained by thresholding the function f * (see for instance [START_REF] Herbei | Classification with reject option[END_REF]). However, in the binary case where Y ∈ {0, 1}, one has σ 2 (x) = f * (x)(1 -f * (x)), and then thresholding σ 2 and f * are equivalent. The second point of the proposition shows that the error and the rejection rate of the optimal predictor are working in two opposite directions w.r.t. λ and then a compromise is required. We illustrate this aspect with the airfoil dataset, and the kNN predictor (see Section 5) in the contiguous Figure 1. The two curves correspond to the evaluation of the error Err( Γλ ) (blue-solid line) and the rejection rate r( Γλ ) (red-dashed line) as a function of λ. In general any choice of the parameter λ is difficult to interpret. Indeed, one of the major drawbacks of this approach is that any fixed λ (or even an "optimal" value of this parameter) does not allow to control neither of the two parts of the risk function. Especially, the rejection rate can be arbitrary large.

For this reason, we investigate in Section 2.2 the setting where the rejection rate is fixed. We understand this rejection rate as a budget one has beforehand.

Optimal predictor with fixed rejection rate

In this section, we introduce the framework where the rejection rate is fixed or at least bounded. That is to say, for a given predictor with reject option Γ f and a given rejection rate ε ∈ (0, 1), we ask that Γ f satisfies following constraint r (Γ f ) ≤ ε. This kind of constraint has also been considered by [START_REF] Denis | Consistency of plug-in confidence sets for classification in semi-supervised learning[END_REF] in the classification setting. Our objective becomes to solve the constrained problem1 :

Γ * ε ∈ arg min{Err (Γ f ) : r (Γ f ) ≤ ε} . ( 2 
)
In the same vein as Proposition 1, we aim at writing an explicit expression of Γ * ε , referred in what follows to as ε-predictor. However, this expression is not well identified in the general case. Therefore, we make the following mild assumption on the distribution of σ 2 (X), which translates the fact that the function σ 2 is not constant on any set with non-zero measure w.r.t. P X .

Assumption 1. The cumulative distribution function

F σ 2 of σ 2 (X) is continuous.
Let us denote by F -1 σ 2 the generalized inverse of the cumulative distribution F σ 2 defined for all u ∈ (0, 1) as

F -1 σ 2 (u) = inf{t ∈ R : F σ 2 (t) ≥ u}.
Under Assumption 1 and from Proposition 1, we derive an explicit expression of the ε-predictor Γ * ε given by (2).

Proposition 2. Let ε ∈ (0, 1), and let

λ ε = F -1 σ 2 (1 -ε). Under Assumption 1, we have Γ * ε = Γ * λε .
As an immediate consequence of the above proposition and properties on quantile functions is that

r (Γ * ε ) = P (|Γ * ε (X)| = 0) = P σ 2 (X) ≥ λ ε = P F σ 2 (σ 2 (X)) ≥ 1 -ε = ε ,
and then the ε-predictor has rejection rate exactly ε. The continuity Assumption 1 is a sufficient condition to ensure that this property holds true. Besides, from this assumption, the ε-predictor can be expressed as follows

Γ * ε (x) = {f * (x)} if F σ 2 (σ 2 (x)) ≤ 1 -ε ∅ otherwise . ( 3 
)
Finally, as suggested by Proposition 1 and 2, the performance of a given predictor with reject option Γ f is measured through the risk R λ when λ = λ ε . Then, its excess risk is given by

E λε (Γ f ) = R λε (Γ f ) -R λε (Γ * ε ) ,
for which the following result provides a closed formula.

Proposition 3. Let ε ∈ (0, 1). For any predictor Γ f , we have

E λε (Γ f ) = E X (f * (X) -f (X)) 2 1 {|Γ f (X)|=1} + E X |σ 2 (X) -λ ε |1 {|Γ f (X)| =|Γ * ε (X)|}
.

The above excess risk consists of two terms that translates two different aspect of the regression with reject option problem. The first one is related to the L 2 risk of the prediction function f and is rather classical in the regression setting. On contrast, the second is related to the reject option problem. It is dictated by the behavior of the conditional variance σ 2 around the threshold λ ε .

Plug-in ε-predictor with reject option

We devote this section to the study of a data-driven predictor with reject option based on the plug-in principle that mimics the optimal rule derived in Proposition 2.

Estimation strategy

Equation [START_REF] Biau | Lectures on the Nearest Neighbor Method[END_REF] indicates that a possible way to estimate Γ * ε relies on the plug-in principle. To be more specific, Eq. (3) suggests that estimating f * and σ 2 , as well as the cumulative distribution F σ 2 would be enough to get an estimator of Γ * ε . To build such predictor, we first introduce a learning sample D n = {(X i , Y i ), i = 1, . . . , n} which consists of n independent copies of (X, Y ). This dataset helps us to construct estimators f and σ2 of the regression function f * and the conditional variance function σ 2 respectively. In this paper, we focus on estimator σ2 which relies on the residual-based methods [START_REF] Hall | Variance function estimation in regression: The mean effect of estimating the mean[END_REF]. Based on D n , the estimator σ2 is obtained by solving the regression problem of the output variable (Yf (X)) 2 on the input variable X. Estimating the last quantity F σ 2 is rather simple by replacing cumulative distribution function by its empirical version. Since this term only depends on the marginal distribution P X , we estimate it using a second unlabeled dataset D N = {X n+1 , . . . , X n+N } composed of N independent copies of X. This is an important feature of our methodology since unlabeled data are usually easy to get. The dataset D N is assumed to be independent of D n . We set

Fσ 2 (•) = 1 N N i=1 1 {σ 2 (Xn+i)≤•} ,
as an estimator for F σ 2 . With this notation, the plug-in ε-predictor is the predictor with reject option defined for each x ∈ R d as

Γε (x) = f (x) if Fσ 2 (σ 2 (x)) ≤ 1 -ε ∅ otherwise . ( 4 
)
It is worth noting that the proposed methodology is flexible enough to rely upon any off-the-shelf estimators of the regression function f * and the conditional variance function σ 2 .

Consistency of plug-in ε-predictors

In this part, we investigate the statistical properties of the plug-in ε-predictors with reject option. This analysis requires an additional assumption on the following quantity

F σ2 (•) = P X σ2 (X) ≤ •|D n . Assumption 2. The cumulative distribution function F σ2 of σ2 (X) is continuous.
This condition is analogous to Assumption 1 but deals with the estimator σ2 (X) instead of the true conditional variance σ 2 (X). This difference makes Assumption 2 rather weak as the estimator σ2 (X) is chosen by the practitioner. Moreover, we can make any estimator satisfy this condition by providing a smoothed version of it. We illustrate this strategy with kNN algorithm in Section 4. Next theorem is the main result of this section, it establishes the consistency of the predictor Γε to the optimal one. Theorem 1. Let ε ∈ (0, 1). Assume that σ 2 is bounded, f is a consistent estimator of f * w.r.t. the L 2 risk, and σ2 is a consistent estimator of σ 2 w.r.t. the L 1 risk. Under Assumptions 1-2, the followings hold

E E λε Γε -→ n,N →+∞ 0, and E |r( Γε ) -ε| ≤ CN -1/2 ,
where C > 0 is an absolute constant.

This theorem establishes the fact that the plug-in ε-predictor behaves asymptotically as well as the optimal ε-predictor both in terms of risk and rejection rate. The convergence of the rejection rate requires only Assumption 2 which is rather weak and can even be removed following the process detailed in Section 4.2. In particular, the theorem shows that the rejection rate of the plug-in ε-predictor is of level ε up to a term of order O(N -1/2 ). This rate is similar to the one obtained in the classification setting [START_REF] Denis | Consistency of plug-in confidence sets for classification in semi-supervised learning[END_REF]. It relies on the difference between the cumulative distribution F σ2 and its empirical counterpart Fσ 2 that is controlled using Dvoretzky-Kiefer-Wolfowitz Inequality [START_REF] Massart | The tight constant in the dvoretzky-kiefer-wolfowitz inequality[END_REF]. Interestingly, this result applies to any consistent estimators of f * and σ 2 .

The estimation of regression function f * is widely studied and suitable algorithm such as random forests, kernel procedures, or kNN estimators can be used, see [START_REF] Biau | Lectures on the Nearest Neighbor Method[END_REF][START_REF] Györfi | A distribution-free theory of nonparametric regression[END_REF][START_REF] Scornet | Consistency of random forests[END_REF][START_REF] Stone | Consistent nonparametric regression[END_REF][START_REF] Tsybakov | Introduction to Nonparametric Estimation[END_REF]. The estimation of the conditional variance function which relies on the residual-based methods has also been extensively studied based on kernel procedures, see for instance [START_REF] Fan | Efficient estimation of conditional variance functions in stochastic regression[END_REF][START_REF] Hall | Variance function estimation in regression: The mean effect of estimating the mean[END_REF][START_REF] Härdle | Local polynomial estimators of the volatility function in nonparametric autoregression[END_REF][START_REF] Kulik | Nonparametric conditional variance and error density estimation in regression models with dependent errors and predictors[END_REF][START_REF] Shen | Optimal estimation of variance in nonparametric regression with random design[END_REF]. In the next section, we derive rates of convergence in the case where both estimators f and σ2 rely on the kNN algorithm. In particular, we establish rates of convergence for σ2 in sup norm (see Proposition 6 in the supplementary material).

Application to kNN algorithm: rates of convergence

The plug-in ε-predictor Γε relies on estimators of the regression and the conditional variance functions. In this section, we consider the specific case of kNN based estimations. We refer to the resulting predictor as kNN predictor with reject option. Specifically, we establish rates of convergence for this procedure. In addition, since kNN estimator of σ 2 violates Assumption 2, applying our methodology to kNN has the benefit of illustrating the smoothing technique to make this condition be satisfied.

Assumptions

To study the performance of the kNN predictor with reject option in the finite sample regime, we assume that X belongs to a regular compact set C ⊂ R d , see [START_REF] Audibert | Fast learning rates for plug-in classifiers[END_REF]. Besides, we make the following assumptions. Assumption 3. The functions f * and σ 2 are Lipschitz. Assumption 4 (Strong density assumption). We assume that the marginal distribution P X admits a density µ w.r.t to the Lebesgue measure such that for all x ∈ C, we have 0 < µ min ≤ µ(x) ≤ µ max .

These two assumptions are rather classical when we deal with rate of convergence and we refer the reader to the baseline books [START_REF] Györfi | A distribution-free theory of nonparametric regression[END_REF][START_REF] Tsybakov | Introduction to Nonparametric Estimation[END_REF]. In particular, we point out that the strong density assumption has been introduced in the context of binary classification for instance in [START_REF] Audibert | Fast learning rates for plug-in classifiers[END_REF]. The last assumption that we require highlights the behavior of σ 2 around the threshold λ ε .

Assumption 5 (α-exponent assumption). We say that σ 2 has exponent α ≥ 0 (at level λ ε ) with respect to P X if there exists c * > 0 such that for all t > 0

P X 0 < |σ 2 (X) -λ ε | ≤ t ≤ c * t α .
This assumption has been first introduced in [START_REF] Polonik | Measuring mass concentrations and estimating density contour clusters-an excess mass approach[END_REF] and is also referred as Margin assumption in the binary classification setting, see [START_REF] Mammen | Smooth discrimination analysis[END_REF]. For α > 0, Assumption 5 ensures that the random variable σ 2 (X) can not concentrate too much around the threshold λ ε . It allows to derive faster rates of convergence. Note that, if α = 0 there is no assumption.

kNN predictor with reject option

For any x ∈ R d , we denote by (

X (i,n) (x), Y (i,n) (x)), i = 1, . . . n the reordered data according to the 2 distance in R d , meaning that X (i,n) (x) -x < X (j,n) (x) -x
for all i < j in {1, . . . , n}. Note that Assumption 4 ensures that ties occur with probability 0 (see [START_REF] Györfi | A distribution-free theory of nonparametric regression[END_REF] for more details). Let k = k n be an integer. The kNN estimator of f * and σ 2 are then defined, for all x, as follows

f (x) = 1 k n kn i=1 Y (i,n) (x) and σ2 (x) = 1 k n kn i=1 Y (i,n) (x) -f (X (i,n) (x)) 2 .
Conditional on D n , the cumulative distribution function F σ2 is not continuous and then Assumption 2 does not hold. To avoid this issue, we introduce a random perturbation ζ distributed according to the Uniform distribution on [0, u] that is independent from every other random variable where u > 0 is a (small) fixed real number that will be specified later. Then, we define the random variable σ2 (X,

ζ) := σ2 (X) + ζ. It is not difficult to see that, conditional on D n the cumulative distribution F σ2 of σ2 (X, ζ)
is continuous. Furthermore, by the triangle inequality, the consistency of σ2 implies the consistency of σ2 provided that u tends to 0. Therefore, we naturally define the kNN predictor with reject option as follows.

Let (ζ 1 , . . . , ζ N ) be independent copies of ζ and independent of every other random variable. We set

Fσ 2 (.) = 1 N N i=1 1 {σ 2 (Xn+i)+ζi≤•} ,
and the kNN ε-predictor with reject option is then defined for all x and ζ as

Γε (x, ζ) = f (x) if Fσ 2 (σ 2 (x, ζ)) ≤ 1 -ε ∅ otherwise .

Rates of convergence

In this section, we derive the rates of convergence of the kNN ε-predictor in the following framework. We assume that Y is bounded or that Y satisfies

Y = f * (X) + σ(X)ξ , ( 5 
)
where ξ is independent of X and distributed according to a standard normal distribution. Note that these assumptions covers a broad class of applications. Under these assumptions, we can state the following result.

Theorem 2. Grant Assumptions 1, 3, 4, and 5. Let ε ∈ (0, 1), if k n ∝ n 2/(d+2) , and u ≤ n -1/(d+2) , then the kNN ε-predictor Γε satisfies

E E λε Γε ≤ C n -2/(d+2) + log(n) (α+1) n -(α+1)/(d+2) + N -1/2 ,
where C > 0 is a constant which depends on f * , σ 2 , c 0 , c * , α, C, and on the dimension d.

Each part of the above rate describes a given feature of the problem. The first one relies on the estimation error of the regression function. The second one, which depends in part on the parameter α from Assumption 5, is due to the estimation error in sup norm of the conditional variance

E sup x∈C σ2 (x) -σ 2 (x) ≤ C log(n)n -1/(d+2)
stated in Proposition 6 in the supplementary material. Notice that for α = 1, the second term is of the same order (up to logarithmic factor) as the term corresponding to the estimation of the regression function. The last term is directly linked to the estimation of the threshold λ ε . Lastly, for α > 1, we observe, provided that the size of the unlabeled sample N is sufficiently large, that this rate is the same as the rate of f in L 2 norm which is then the best situation that we can expect for the rejection setting.

Numerical experiments

In this section, we present numerical experiments to illustrate the performance of the plug-in ε-predictor. The construction process of this predictor is described in Section 3.1 and relies on estimators of the regression and the conditional variance functions. The code used for the implementation of the plug-in ε-predictor can be found at https://github.com/ZaouiAmed/Neurips2020_RejectOption. For this experimental study, we consider the same algorithm for both estimation tasks and build three plug-in ε-predictors based respectively on support vector machines (svm), random forests (rf), and kNN (knn) algorithms. Besides, to avoid non continuity issues, we add the random perturbation ζ ∼ U[0, 10 -10 ] to all of the considered methods as described in Section 4.2. The performance is evaluated on two benchmark datasets: QSAR aquatic toxicity and Airfoil Self-Noise coming from the UCI database. We refer to these two datasets as aquatic and airfoil respectively. For all datasets, we split the data into three parts (50 % train labeled, 20 % train unlabeled, 30 % test). The first part is used to estimate both regression and variance functions, while the second part is used to compute the empirical cumulative distribution function. Finally, for each ε ∈ {i/10, i = 0, . . . , 9} and each plug-in ε-predictor, we compute the empirical rejection rate r and the empirical error Err on the test set. This procedure is repeated 100 times and we report the average performance on the test set alongside its standard deviation. We employ the 10-fold cross-validation to select the parameter k ∈ {5, 10, 15, 20, 30, 50, 70, 100, 150} of the kNN algorithm. For random forests and svm procedures, we used respectively the R packages randomForest and e1071 with default parameters.

Datasets

The datasets used for the experiments are briefly described bellow: QSAR aquatic toxicity has been used to develop quantitative regression QSAR models to predict acute aquatic toxicity towards the fish Pimephales promelas. This dataset is composed of n = 546 observations for which 8 numerical features are measured. The output takes its values in [0.12, 10.05]. Airfoil Self-Noise is composed of n = 1503 observations for which 5 features are measured. This dataset is obtained from a series of aerodynamic and acoustic tests. The output is the scaled sound pressure level, in decibels. It takes its values in [103,140].

Since the variance function plays a key role in the construction of the plug-in ε-predictor, we display in Figure 2 the histogram of an estimate of σ 2 (X) produced by the random forest algorithm. More specifically, for each i = 1, . . . , n, we evaluate σ2 (X i ) by 10-fold cross-validation and build the histogram of (σ 2 (X i )) i=1,...,n thereafter. Left and right panels of Figure 2 deal respectively with the aquatic and airfoil datasets and reflect two different situations where the use of reject option is relevant. The estimated variance in the airfoil dataset is typically large (about 40% of the values are larger than 10) and then we may have some doubts in the associated prediction. According to the aquatic dataset, main part of the estimated values σ2 is smaller than 1 and then the use of the reject option may seem less significant. However, in this case, the predictions produced by the plug-in ε-predictors would be very accurate.

Results

We present the obtained results in Figure 3 and Table 1. We make a focus on the values of ε ∈ {0, 0.2, 0.5, 0.8}. As a general picture, the results are reflecting our theory: the empirical errors of the plug-in ε-predictors are decreasing w.r.t. ε for both datasets and their empirical rejection rates are very close to their expected values. Indeed, Table 1 displays how precise is the estimation of the rejection rate whatever the method used. This is in accordance with our theoretical findings. Moreover, the empirical errors of the plug-in ε-predictors based on the random forests and kNN algorithms are decreasing w.r.t. ε for both datasets. As expected, the use of the reject option improves the prediction precision. As an illustration, for airfoil dataset and the predictor based on random forests, the error is divided by 2 if we reject 50% of the data. However, we discover that the decrease for the prediction error is not systematic. In the case of plug-in ε-predictor based on the svm algorithm and with the aquatic dataset, we observe a strange curve for the error rate (see Figure 3-left). We conjecture that this phenomenon is due to a poor estimation of the variance. Indeed, in Figure 4, we present the performance of some kind of hybrid plug-in ε-predictors: we still use the svm algorithm to estimate the regression function; the variance function estimation is done based on svm (dashed line), random forests (dotted line), and kNN (dash-dotted line). From Figure 4, we observe that the empirical error Err is now decreasing w.r.t. ε for the hybrid predictors based on svm and random forests, and that the performance is quite good. 

Conclusion

We generalized the use of the reject option to the regression setting. We investigated the particular setting where the rejection rate is bounded. In this framework, an optimal rule is derived, it relies on thresholding of the variance function. Based on the plug-in principle, we derived a semi-supervised algorithm that can be applied on top of any off-the-shelf estimators of both regression and variance functions. One of the main features of the proposed procedure is that it precisely controls the probability of rejection.

We derived general consistency results on rejection rate and on excess risk. We also established rates of convergence for the predictor with reject option when the regression and the variance functions are estimated by kNN algorithm. In future work, we plan to apply our methodology to the high-dimensional setting, taking advantage of sparsity structure of the data.

Broader impact

Approaches based on reject option may be helpful at least from two perspectives. First, when human action is limited by time or any other constraint, reject option is an efficient tool to prioritize the human action. On the other hand, in a world where automatic decisions need to be balanced and considered with caution, abstaining from prediction is one way to prevent from damageable decision-making. In particular, human is more likely able to detect anomalies such as bias in data. In a manner of speaking, the use of the reject option compromises between human and machines! Our numerical and theoretical analyses support this idea, in particular because our estimation of the rejection rate is accurate. While the rejection rate has to be fixed according to the considered problem, it appears that the main drawback of our approach is that border instances may be automatically treated while they would have deserved a human consideration. From a general perspective, this is a weakness of all methods based on reject option. This inconvenience is even stronger when the conditional variance function is poorly estimated.

Supplementary material

This supplementary material is organized as follows. Section A provides all proofs of results related to the optimal predictors (that is, Propositions 1, 2 3). In Sections B and C we prove Theorem 1 that establishes the consistency and Theorem 2 that states the rates of convergence of the plug-in ε-predictor Γε respectively. We further establish several finite sample guarantees on kNN estimator in Section D. To help readability of the paper, we provide in Section E some technical tools that are used for the proofs.

A Proofs for optimal predictors

Proof of Proposition 1. By definition of R λ , we have for any predictor with reject option Γ

f R λ (Γ f ) = E (Y -f (X)) 2 1 {|Γ f (X)|=1} + λP(|Γ f (X)| = 0) = E (Y -f * (X) + f * (X) -f (X)) 2 1 {|Γ f (X)|=1} + λP(|Γ f (X)| = 0) = E (Y -f * (X)) 2 1 {|Γ f (X)|=1} + E (f * (X) -f (X)) 2 1 {|Γ f (X)|=1} +2E (Y -f * (X))(f * (X) -f (X))1 {|Γ f (X)|=1} + λP(|Γ f (X)| = 0) . Since E (Y -f * (X))(f * (X) -f (X))1 {|Γ f (X)|=1} = 0 , and E (Y -f * (X)) 2 1 {|Γ f (X)|=1} = E σ 2 (X)1 {|Γ f (X)|=1} , we deduce, R λ (Γ f ) = E (f * (X) -f (X)) 2 1 {|Γ f (X)|=1} + E σ 2 (X)1 {|Γ f (X)|=1} + λ(1 -1 {|Γ f (X)|=1} ) = E (f * (X) -f (X)) 2 + (σ 2 (X) -λ) 1 {|Γ f (X)|=1} + λ . (6) 
Clearly, on the event {|Γ f (X)| = 1}, the mapping f → (f * (X) -f (X)) 2 + σ 2 (X) -λ achieves its minimum at f = f * . Then, it remains to consider the minimization of

Γ → E (σ 2 (X) -λ) 1 {|Γ(X)|=1} + λ ,
on the set Υ f * , which leads to {|Γ(X)| = 1} = {σ 2 (X) ≤ λ}. Putting all together, we get

{|Γ * λ (X)| = 1} = {σ 2 (X) ≤ λ} and on this event Γ * λ (X) = {f * (X)} ,
and point 1. of Proposition 1 is proven. For the second point, we observe that for 0 < λ < λ ,

{|Γ * λ (X)| = 1} = {σ 2 (X) ≤ λ} ⊂ {σ 2 (X) ≤ λ } = {|Γ * λ (X)| = 1} .
From this inclusion, we deduce r(Γ * λ ) ≤ r(Γ * λ ). Furthermore, using the relation {|Γ * λ (X)| = 1} = {σ 2 (X) ≤ λ} and if we denote by a λ = P (|Γ * λ (X)| = 1) we have

Err (Γ * λ ) -Err (Γ * λ ) = 1 a λ E (Y -f * (X)) 2 1 {σ 2 (X)≤λ} - 1 a λ E (Y -f * (X)) 2 1 {σ 2 (X)≤λ } = 1 a λ - 1 a λ E (Y -f * (X)) 2 1 {σ 2 (X)≤λ} - 1 a λ E (Y -f * (X)) 2 1 {λ<σ 2 (X)≤λ } . ( 7 
)
By definition of σ 2 (X), we can write

E (Y -f * (X)) 2 1 {σ 2 (X)≤λ} = E 1 {σ 2 (X)≤λ} E (Y -f * (X)) 2 |X = E 1 {σ 2 (X)≤λ} σ 2 (X) ≤ λa λ ,
and then

1 a λ - 1 a λ E (Y -f * (X)) 2 1 {σ 2 (X)≤λ} ≤ λ 1 - a λ a λ .
In the same way, we obtain

1 a λ E (Y -f * (X)) 2 1 {λ≤σ 2 (X)≤λ } ≥ λ a λ (a λ -a λ ) = λ 1 - a λ a λ .
From Equation ( 7), we then get Err (Γ * λ ) ≤ Err (Γ * λ ). Proof of Proposition 2. First of all, observe that for any ε ∈ (0, 1), if we set λ ε = F -1 σ 2 (1 -ε), then the optimal predictor Γ * λ given by ( 1) with λ = λ ε is such that, r

Γ * λε = P σ 2 (X) ≥ λ ε = P F σ 2 (σ 2 (X)) ≥ 1 -ε = ε .
We need to prove that any predictor Γ f such that r

(Γ f ) = ε with ε ≤ ε, satisfies Err (Γ f ) ≥ Err Γ * λε . To this end, consider Γ * λ ε with λ ε = F -1 σ 2 (1 -ε ).
On one hand, by optimality of Γ * λ ε (cf. point 1. of Proposition 1), we have

Err (Γ f ) -Err Γ * λ ε = 1 1 -ε R λ ε (Γ f ) -R λ ε Γ * λ ε ≥ 0 .
On the other hand, since ε ≤ ε implies λ ε ≤ λ ε , point 2. of Proposition 1 reads as

Err Γ * λε ≤ Err Γ * λ ε .
Combining these two facts gives the desired result.

Proof of Proposition 3. First, from Equation ( 6), we have the following decomposition

R λε (Γ f ) = E (f * (X) -f (X)) 2 + σ 2 (X) -λ ε 1 {|Γ f (X)|=1} + λ ε = E (f * (X) -f (X)) 2 1 {|Γ f (X)|=1} + E (σ 2 (X) -λ ε )1 {|Γ f (X)|=1} + λ ε .
Therefore, we deduce

E (Γ f ) = E (f * (X) -f (X)) 2 1 {|Γ f (X)|=1} + E σ 2 (X) -λ ε 1 {|Γ f (X)|=1} -1 {|Γ * ε (X)|=1}
, and the result follows from the fact that all non zero values of

1 {|Γ f (X)|=1} -1 {|Γ * ε (X)|=1} equal the sign of σ 2 (X) -λ ε due to the fact that {|Γ * ε (X)| = 1} = σ 2 (X) -λ ε ≤ 0 .

B Proof of the consistency results: Theorem 1

The consistency of Γε consists in the introduction of a pseudo oracle ε-predictor Γε defined for all x ∈ R d by

Γε (x) = f (x) if σ2 (x) ≤ F -1 σ2 (1 -ε) ∅ otherwise . ( 8 
)
This predictor differs from Γε in that it knows the marginal distribution P X and then it has rejection rate exactly ε. Then, we consider the following decomposition

E E λε Γε = E R λε ( Γε ) -R λε ( Γε ) + E E λε Γε , ( 9 
)
and show that both terms in the r.h.s. go to zero.

• Step 1. E E λε Γε → 0. We use Proposition 3 and get the following result.

Proposition 4. Let ε ∈ (0, 1). Under Assumptions 1 and 2, the following holds

E E λε Γε ≤ E ( f (X) -f * (X)) 2 + E |σ 2 (X) -σ 2 (X)| + CE [|F σ2 (λ ε ) -F σ 2 (λ ε )|] ,
where C > 0 is constant which depends on the upper bounds of σ 2 and λ ε .

Proof of Proposition 4. Let ε ∈ (0, 1). First, we recall our notation

F σ2 (•) = P X σ2 (X) ≤ •|D n and λ ε = F -1 σ 2 (1 -ε).
We also introduce λε = F -1 σ2 (1 -ε) for the pseudo-oracle counterpart of λ ε . A direct application of Proposition 3 yields

E Γε ≤ E X f (X) -f * (X) 2 + E X |σ 2 (X) -λ ε |1 {| Γε(X)| =|Γ * ε (X)|} . ( 10 
)
We first observe that if σ 2 (X) ≤ λ ε and σ2 (X) ≥ λε , we have either of the two cases

• λε ≥ λ ε and then |σ 2 (X) -λ ε | ≤ |σ 2 (X) -σ 2 (X)|; • λε ≤ λ ε and then either |σ 2 (X) -λ ε | ≤ |σ 2 (X) -σ 2 (X)| or σ2 (X) ∈ ( λε , λ ε ).
Similar reasoning holds in the case where σ 2 (X) ≥ λ ε and σ2 (X) ≤ λε . Therefore

E |σ 2 (X) -λ ε |1 {| Γε(X)| =|Γ * ε (X)|} |D n ≤ E |σ 2 (X) -λ ε |1 {|σ 2 (X)-λε|≤|σ 2 (X)-σ 2 (X)|} |D n + 1 {λε≤ λε} E |σ 2 (X) -λ ε |1 {λε≤σ 2 (X)≤ λε} |D n + 1 { λε≤λε} E |σ 2 (X) -λ ε |1 { λε≤σ 2 (X)≤λε} |D n .
From the above inequality, since σ 2 is bounded, there exists a constant C > 0 such that

E |σ 2 (X) -λ ε |1 {| Γε(X)| =|Γ * ε (X)|} ≤ E |σ 2 (X) -σ 2 (X)| + CE |F σ2 ( λε ) -F σ2 (λ ε )| .
Now, from Assumptions 1 and 2, we have that

F σ 2 (λ ε ) = 1 -ε = F σ2 ( λε )
. Therefore, we deduce that

E |σ 2 (X) -λ ε |1 {| Γε(X)| =|Γ * ε (X)|} ≤ E |σ 2 (X) -σ 2 (X)| + CE [|F σ 2 (λ ε ) -F σ2 (λ ε )|] .
Putting this into Equation [START_REF] Györfi | A distribution-free theory of nonparametric regression[END_REF] gives the result in Proposition 4.

Since f and σ2 are consistent w.r.t. the L 2 and L 1 risks respectively, the first two terms in the bound of Proposition 4 converge to zero. It remains to study the convergence of the last term. To this end, we prove that

E [|F σ 2 (λ ε ) -F σ2 (λ ε )|] = E |1 {σ 2 (X)≤λε} -1 {σ 2 (X)≤λε} | ≤ P |σ 2 (X) -σ2 (X)| ≥ |σ 2 (X) -λ ε | .
Hence, for any β > 0, using Markov's Inequality we have

E [|F σ 2 (λ ε ) -F σ2 (λ ε )|] ≤ P |σ 2 (X) -λ ε | ≤ β + P |σ 2 (X) -σ2 (X)| ≥ β ≤ P |σ 2 (X) -λ ε | ≤ β + E |σ 2 (X) -σ 2 (X)| β .
Combining this last inequality with Proposition 4 and the consistency of f and σ2 w.r.t. the L 2 and L 1 risks respectively implies that for all β > 0 lim sup

n,N →+∞ E E λε Γε ≤ CP |σ 2 (X) -λ ε | ≤ β .
Since the above inequality holds for all β > 0, under Assumption 1, we deduce that

E E λε Γε → 0 ,
and then this step of the proof is complete.

• Step 2. E R λε ( Γε ) -R λε ( Γε ) → 0. Thanks to Equation ( 6), we have that

R λε ( Γε ) -R λε ( Γε ) = E X (f * (X) -f (X)) 2 + (σ 2 (X) -λ ε ) 1 {| Γε(X)|=1} -1 {| Γε(X)|=1} .
Therefore, since σ 2 is bounded, there exists a constant C > 0 such that

E |R λε ( Γε ) -R λε ( Γε )| ≤ 2E (f * (X) -f (X)) 2 + CE |1 {| Γε(X)|=1} -1 {| Γε(X)|=1} | ≤ 2E (f * (X) -f (X)) 2 + CA ε , ( 11 
)
where

A ε = E |1 {| Γε(X)|=1} -1 {| Γε(X)|=1} | = E 1 { Fσ 2 (σ 2 (X))≥1-ε} -1 {F σ2 (σ 2 (X))≥1-ε} . ( 12 
)
Considering the fact that f is consistent w.r.t. the L 2 risk, it remains to treat the term A ε . We have

A ε ≤ P | Fσ 2 (σ 2 (X)) -F σ2 (σ 2 (X))| ≥ |F σ2 (σ 2 (X)) -(1 -ε)| ,
and then, for all β > 0, the following holds

A ε ≤ P |F σ2 (σ 2 (X)) -(1 -ε)| < β + P | Fσ 2 (σ 2 (X)) -F σ2 (σ 2 (X))| ≥ β . ( 13 
)
Under Assumption 2, the random variable F σ2 (σ 2 (X)) is uniformly distributed on [0, 1] conditionally on D n . Therefore, we deduce that

P |F σ2 (σ 2 (X)) -(1 -ε)| < β = E P X |F σ2 (σ 2 (X)) -(1 -ε)| < β |D n = E [2β|D n ] = 2β . ( 14 
)
According to the second term in the r.h.s. of Equation ( 13). we have that

P | Fσ 2 (σ 2 (X)) -F σ2 (σ 2 (X))| ≥ β ≤ P sup x∈R | Fσ 2 (x) -F σ2 (x)| ≥ β = E P D N sup x∈R | Fσ 2 (x) -F σ2 (x)| ≥ β|D n ,
where P D N is the probability measure w.r.t. the dataset D N . Since, conditionally on D n , Fσ 2 is the empirical counterpart of the continuous cumulative distribution function F σ2 , applying the Dvoretzky-Kiefer-Wolfowitz Inequality [START_REF] Massart | The tight constant in the dvoretzky-kiefer-wolfowitz inequality[END_REF], we deduce that

P | Fσ 2 (σ 2 (X)) -F σ2 (σ 2 (X))| ≥ β ≤ 2 exp(-2N β 2 ) . ( 15 
)
Putting ( 14) and ( 15) into Eq. ( 13), we have that for all β > 0

A ε ≤ 2 β + exp -2N β 2 . ( 16 
)
Since Equation ( 16) holds for all β > 0, we have that A ε → 0 as N, n → +∞. Hence, from the above inequality we get the desired result in Step 2:

E R λε ( Γε ) -R λε ( Γε ) → 0 .
Combining Step 1 and Step 2 yields the convergence: E E λε Γε → 0 as N, n → +∞.

• Bound on E r( Γε ) . To finish the proof of Theorem 1, it remains to control the rejection rate E r( Γε ) and show that it satisfies E r( Γε ) -ε ≤ CN -1/2 for some constant C > 0. We observe that

E r( Γε ) -ε = E r( Γε ) -r( Γε ) ≤ A ε ,
where A ε is given by Eq. [START_REF] Härdle | Local polynomial estimators of the volatility function in nonparametric autoregression[END_REF]. Repeating the same reasoning as in Step 2 above, we bound A ε as in Eq. ( 13), and get from Dvoretsky-Kiefer-Wolfowitz Inequality (see Equation ( 15)), that for all β > 0,

P | Fσ 2 (σ 2 (X)) -F σ2 (σ 2 (X))| ≥ β ≤ 2 exp(-2N β 2 ) ,
and from Equation [START_REF] Kulik | Nonparametric conditional variance and error density estimation in regression models with dependent errors and predictors[END_REF],

P |F σ2 (σ 2 (X)) -(1 -ε)| < β = 2β
. These two bounds combined the classical peeling argument of [START_REF] Audibert | Fast learning rates for plug-in classifiers[END_REF] (see Lemma 3 below) imply the desired result:

A ε ≤ CN -1/2 . ( 17 
)

C Proof of rates of convergence: Theorem 2

In this section, we follow the same strategy as in Section B but here we care about rates of convergence. Moreover, we have to pay attention to the randomness we introduced in the predictor because of the use of kNN. As in Section B, we introduce some pseudo-oracle predictor. However, this one needs to depend on the randomness we introduced in the definition of Γε (x, ζ). Define the pseudo-oracle ε-predictor Γε for all

x ∈ R d and ζ ∈ [0, u] as 2 Γε (x, ζ) = f (x) if σ2 (x, ζ) ≤ F -1 σ2 (1 -ε) ∅ otherwise .
To study the excess risk E E λε Γε of our predictor, we also consider a similar decomposition as in Eq. ( 9) and treat each of the two terms separately.

• Step 1. Study of E E λε Γε . We establish the following result.

Proposition 5. Assume that Assumptions 4 and 5 are fulfilled for some α ≥ 0, then the following inequality holds

E E λε Γε ≤ E f * (X) -f (X) 2 + C E sup x∈C σ2 (x) -σ 2 (x) 1+α + u 1+α ,
where C > 0 depends only on c * and α.

Proof. Let ε ∈ (0, 1). We recall that

λ ε = F -1 σ 2 (1 -ε) and λε = F -1 σ2 (1 -ε). Since ζ is distributed according to a Uniform distribution on [0, u], we observe that σ2 (X, ζ) -σ 2 (X) ≤ sup x∈C σ 2 (x) -σ2 (x) + u := ĥu .
Hence, according to Theorem 2.12 in [START_REF] Bobkov | One-dimensional empirical measures, order statistics and Kantorovich transport distances[END_REF] (recalled in Lemma 4), we have that conditionally on D n λε -λ ε ≤ ĥu . Furthermore, since X and ζ are independent, we can use Proposition 3 and get

E E λε Γε ≤ E f (X) -f * (X) 2 + E |σ 2 (X) -λ ε |1 {| Γε(X,ζ)| =|Γ * ε (X)|} . On the event | Γε (X, ζ)| = |Γ * ε (X) , we note that |σ 2 (X) -λ ε | ≤ |σ 2 (X, ζ) -σ 2 (X)| + | λε -λ ε | .
Therefore, conditional on D n , we deduce the following

E (X,ζ) |σ 2 (X) -λ ε |1 {| Γε(X,ζ)| =|Γ * ε (X)|} ≤ E (X,ζ) |σ 2 (X) -λ ε |1 {|σ 2 (X)-λε|≤|σ 2 (X,ζ)-σ 2 (X)|+| λε-λε|} ≤ E X |σ 2 (X) -λ ε |1 {|σ 2 (X)-λε|≤2 ĥu} ≤ 2 ĥu P X |σ 2 (X) -λ ε | ≤ 2 ĥu .
Finally, applying Assumption 5, we deduce that there exists a constant C > 0 such that

E |σ 2 (X) -λ ε |1 {| Γε(X,ζ)| =|Γ * ε (X)|} ≤ C E sup x∈C σ 2 (x) -σ2 (x) 1+α + u 1+α ,
which ends the proof.

Based on Proposition 5, the control of E E λε Γε requires a bound on E f * (X) -f (X)

2 and on E sup x∈C σ 2 (x) -σ2 (x)
1+α . The first of these two terms relies on estimation of the regression function with kNN algorithm and is rather well studied. In particular, thanks to Proposition 4 we have with the choice

k n ∝ n 2/(d+2) E f (X) -f * (X) 2 ≤ Cn -2/(d+2) , (18) 
where C > 0 is a constant which depends on f * , c 0 , C, and d. Then it remains to bound the second term which is the purpose of Proposition 6 that relies on the rate of convergence of the kNN estimator of the conditional variance σ2 in supremum norm. This result says that under our assumptions and for the choice k n ∝ n 2/(d+2) , we have that

E sup x∈C σ2 (x) -σ 2 (x) 1+α ≤ C log(n) (α+1) n -(α+1)/(d+2) ,
for a constant C > 0 that depends on f * , σ 2 , c 0 , C, and on the dimension d. Putting this last inequality and Eq. ( 18) into the upper bound on the excess risk of Γε from Proposition 5 we show that when we set u = u n ≤ n -1/(d+2) we can write

E E λε Γε ≤ C n -2/(d+2) + log(n) (α+1) n -(α+1)/(d+2) ,
where C > 0 is a constant which depends on f * , σ 2 , c 0 , c * , α, C, and on the dimension d. This ends the first step of the proof.

• Step 2. Study of E R λε ( Γε ) -R λε ( Γε ) .
Since X and ζ are independent, as in Step 2 of the proof of Theorem 1 (cf. Eq. ( 11)), we get

E R λε ( Γε ) -R λε ( Γε ) ≤ 2E f * (X) -f (X) 2 + CA ε ,
where A ε is defined similarly as in Equation ( 12) with a small modification due to the random perturbation we made on σ2 . Similarly we have

A ε ≤ P | Fσ 2 (σ 2 (X, ζ)) -{F σ2 (σ 2 (X, ζ))| ≥ |F σ2 (σ 2 (X, ζ)) -(1 -ε)| .
Therefore using the same arguments as in Step 2 of the proof of Theorem 1 to get [START_REF] Massart | The tight constant in the dvoretzky-kiefer-wolfowitz inequality[END_REF], it is easy to see that there exists C > 0 such that A ε ≤ CN -1/2 . Then, we deduce

E R λε ( Γε ) -R λε ( Γε ) ≤ 2E f * (X) -f (X) 2 + CN -1/2 .
Finally, an application of Theorem 4 yields

E R λε ( Γε ) -R λε ( Γε ) ≤ C n -2/(d+2) + N -1/2 ,
where C > 0 is a constant which depends on f * , c 0 , C, and d. This ends Step 2 of the proof. Lastly, we combine the results in Step 1 and Step 2, together with the decomposition

E E λε Γε = E R λε ( Γε ) -R λε ( Γε ) + E E λε Γε ,
and get the desired bound on the excess risk.

D Rate of convergence for kNN estimator

In this section , we focus on rates of convergence of kNN for the estimation of the regression function f * and the conditional variance function σ 2 . The proofs techniques are largely inspired by those in [START_REF] Biau | Lectures on the Nearest Neighbor Method[END_REF][START_REF] Györfi | A distribution-free theory of nonparametric regression[END_REF], though we provide some additional steps to build for instance finite sample bounds for the sup norm in the problem of conditional variance estimation.

D.1 Regression function estimation

We provide the rate of convergence of the kNN estimator of f * in the regression model for which we make the following assumptions. We assume that f * is Lipschitz (Assumption 3) and that Assumption 4 are fulfilled. We recall that from Assumption 4, we have that P X is supported on a compact set C. Furthermore, we also assume that Y -f * (X) satisfies a uniform noise condition: there exists c 0 > 0 such that sup

x∈C E [exp(λ (Y -f * (X))) | X = x] ≤ exp(c 2 0 λ 2 ), for |λ| ≤ 1 c 0 . ( 19 
)
This assumption is rather weak and requires that conditional on X is sub-exponential uniformly over C (see [START_REF] Vershynin | High-Dimensional Probability: An Introduction with Applications in Data Science[END_REF]). Using the same notation as in Section 3, we recall that the kNN estimator f of f is defined as follows

f (x) = 1 k n kn i=1 Y (i,n) (x) .
The purpose of the appendix is to provide rates of convergence for the kNN estimator f under the above assumption. To this end we require two auxiliary lemmata, which provide a control respectively with high probability and in expectation on the distance between a feature point and its neighbors uniformly over C. , we have

P sup x∈C 1 k n kn i=1 X (i,n) (x) -x ≥ t ≤ C 2 exp log(n) -C 1 t d n/k n .
Proof. For any a ∈ R, let us denote by a the largest integer which is smaller or equal to a. Consider some x ∈ C. Following the same arguments as in proof of Theorem 6.2 in [START_REF] Györfi | A distribution-free theory of nonparametric regression[END_REF], we split the data X 1 , . . . , X n into k n + 1 folds such that the first k n folds have the same size n kn and the last fold contains the remaining data if there are. We denote Xx j the nearest neighbor of x in the jth fold and then obviously kn i=1

X (i,n) (x) -x ≤ kn j=1 Xx j -x .
Let B2 (a, r) be the closed Euclidean ball in R d centered in a with radius r > 0. Since C is compact, we have C ⊂ B2 (0, R) for some R > 0, and therefore there exists an ε-net

C ε of C w.r.t. . such that |C ε | ≤ 3R ε d .
In particular, for all x ∈ C there exists x ε ∈ C ε such that x -x ε ≤ ε. Then, for all x ∈ C and all j ∈ {1, . . . , k n }, there exists

x ε ∈ C ε such that Xx j -x ≤ Xx j -x ε + ε . ( 20 
)
Besides, we observe that Xx

j -x ε ≤ Xxε j -x ε + 2ε . ( 21 
) Indeed, if Xxε j -x ε + 2ε < Xx j -x ε we can write Xxε j -x + ε ≤ Xxε j -x ε + 2ε < Xx j -x ε ≤ Xx j -x + ε ,
which contradicts the fact that Xx j is the nearest neighbor of x in the jth fold. Hence, from Equations ( 20) and ( 21), we deduce that

sup x∈C 1 k n kn i=1 X (i,n) (x) -x ≤ 3ε + sup x∈Cε 1 k n kn j=1 Xx j -x .
From the above inequality, we obtain that for t > 6ε,

P sup x∈C 1 k n kn i=1 X (i,n) (x) -x ≥ t ≤ P   sup x∈Cε 1 k n kn j=1 Xx j -x ≥ t/2   . ( 22 
)
Our goal becomes to bound r.h.s. of the above inequality. Using union bound, we deduce that for all t > 6ε

P   sup x∈Cε 1 k n kn j=1 Xx j -x ≥ t/2   ≤ x∈Cε P   1 k n kn j=1 Xx j -x ≥ t/2   ≤ x∈Cε kn j=1 P Xx j -x ≥ t/2 . ( 23 
)
For each x ∈ C ε and j ∈ {1, . . . , k n }, by definition of Xx j and since (X i ) i=1,...,n are i.i.d., we have

P Xx j -x ≥ t/2 = P X (1, n kn ) -x ≥ t/2 = (P ( X 1 -x ≥ t/2)) n/kn . ( 24 
)
On one hand, observe that for t ≥ 4R, (P ( X 1 -x ≥ t/2) = 0. On the other hand for t ≤ 4R, using the elementary inequality log(1 -a) ≤ -a for all a ∈ [0, 1), we have that

(P ( X 1 -x ≥ t/2)) n/kn ≤ exp - n k n P ( X 1 -x ≤ t/2) ,
which yields, thanks to Assumption 4, there exists C > 0 which depends on µ min and d such that

(P ( X 1 -x ≥ t/2)) n/kn ≤ exp -Ct d n/k n .
We finally deduce from Equation ( 22), [START_REF] Tsybakov | Introduction to Nonparametric Estimation[END_REF], and [START_REF] Vershynin | High-Dimensional Probability: An Introduction with Applications in Data Science[END_REF], that for all t ≥ 6ε

P sup x∈C 1 k n kn i=1 X (i,n) (x) -x ≥ t ≤ k n |C ε | exp -Ct d n/k n .
Choosing ε = ( kn 6 d Cn ) 

X (i,n) (x) -x ≥ t ≤ C 2 exp log(n) -C 1 t d n/k n ,
which yields the expected result.

The second lemma establishes a control in expectation of the uniform distance.

Lemma 2. Under Assumption 4, there exist C > 0, which depends only on C, µ min , and on d such that 

E sup x∈C 1 k n kn i=1 X (i,n) (x) -x p ≤ C k n log(n) n p/
X (i,n) (x) -x ≥ t ≤ C 2 exp log(n) -C 1 t d n/k n .
Therefore an application of Lemma 5 implies directly the result.

Below, we state the main result of section related to the rate of convergence in sup norm of the kNN estimator of the regression function.

Theorem 3. Assume Assumption 4 is satisfied. Moreover, let p ≥ 1 and k

n ∝ n 2/(d+2) . Then E sup x∈C f (x) -f * (x) p ≤ C log(n) p n -p/(d+2) ,
where C > 0 is a constant which depends on f * , c 0 , C, µ min and d.

Proof. First, we have that

f (x) -f * (x) = 1 k n kn i=1 Y (i,n) (x) -f * (X (i,n) (x)) + 1 k n kn i=1 f * (X (i,n) (x)) -f * (x) .
Therefore, since f * is L-Lipschitz, we then deduce that

sup x∈C f (x) -f * (x) ≤ sup x∈C 1 k n kn i=1 Y (i,n) (x) -f * (X (i,n) (x)) + L sup x∈C 1 k n kn i=1 X (i,n) (x) -x , which implies that E sup x∈C f (x) -f * (x) p ≤ 2 p-1 E sup x∈C 1 k n kn i=1 Y (i,n) (x) -f * (X (i,n) (x)) p + 2 p-1 L p E sup x∈C 1 k n kn i=1 X (i,n) (x) -x p . (25) 
Lemma 2 provides a bound on the second term in the r.h.s. of the above inequality. Then it remains to study the first term in the r.h.s. of Eq. ( 25). Let x ∈ C, and denote by 

N kn (x) = {X (1,n) (x), . . . X (kn,n) (x
Y (i,n) (x) -f * (X (i,n) (x)) p ≤ E max j∈{1,...,J} 1 k n kn i=1 Y (i,n) (x j ) -f * (X (i,n) (x j )) p .
Notice that conditional on X 1 , . . . , X n the random variables (Y (i,n) (x j ) -f * (X (i,n) (x j )) i=1,...,kn are independent with zero mean (see Proposition 8.1 in [START_REF] Biau | Lectures on the Nearest Neighbor Method[END_REF]). Besides from Equation ( 19) they are uniformly sub-exponential over C, then we deduce from the Bernstein Inequality (see [START_REF] Vershynin | High-Dimensional Probability: An Introduction with Applications in Data Science[END_REF]) that for all t ≥ 0 and j = 1, . . . , J,

P 1 k n kn i=1 Y (i,n) (x j ) -f * (X (i,n) (x j )) ≥ t ≤ exp -ck n min t 2 K 2 , t K ,
where c > 0 is an absolute and K > 0 depends on c 0 in Eq. [START_REF] Polonik | Measuring mass concentrations and estimating density contour clusters-an excess mass approach[END_REF]. Set v n = (d+2) log(n+1) ckn . Our choice of k n ensures that v n ≤ 1, and then we deduce from the union bound that for t ∈ (Kv n , K), 

P max j∈{1,...,J} 1 k n kn i=1 Y (i,n) (x j ) -f * (X (i,n) (x j )) ≥ t ≤ exp (d + 2) log(n + 1) -ck n t 2 /K
Y (i,n) (x j ) -f * (X (i,n) (x j )) ≥ t ≤ exp ((d + 2) log(n + 1) -ck n t/K) .
Considering these two cases, we can derive an exponential bound on the term

P max j∈{1,...,J} 1 k n kn i=1 Y (i,n) (x j ) -f * (X (i,n) (x j )) ≥ t
for all t ≥ Kv n , therefore we can use similar arguments as in Lemma 5 and conclude that

E sup x∈C 1 k n kn i=1 Y (i,n) (x) -f * (X (i,n) (x)) p ≤ E max j∈{1,...,J} 1 k n kn i=1 Y (i,n) (x j ) -f * (X (i,n) (x j )) p ≤ C log(n) k n p/2 . ( 26 
)
Combining the above inequality, Equation ( 25), and Lemma 2, gives the desired result.

To conclude this section, we also provide the rate of convergence of the kNN estimator in L 2 -norm Theorem 4. Assume Assumption 4 is satisfied and let k n ∝ n 2/(d+2) , then

E f (X) -f * (X) 2 ≤ Cn -2/(d+2) ,
where C > 0 is a constant which depends on f * , c 0 , C, and d.

The proof of this result is provided in [START_REF] Györfi | A distribution-free theory of nonparametric regression[END_REF] for d ≥ 3 (see Theorem 6.2). However, a small change implies that the same proof holds for all d under Assumption 4.

D.2 Conditional variance function estimation

We provide the rate of convergence of the kNN estimator of σ 2 . This proof is largely inspired by [START_REF] Biau | Lectures on the Nearest Neighbor Method[END_REF], though we are interested here in finite sample bounds. Proposition 6. Grant Assumptions 3 and 4. Let k n ∝ n 2/(d+2) , the following holds

E sup x∈C σ2 (x) -σ 2 (x) 1+α ≤ C log(n) (α+1) n -(α+1)/(d+2) ,
for all α ≥ 0, where C > 0 is a constant which depends on f * , σ 2 , c 0 , C, and on the dimension d. 

Y (i,n) (x) -f * (X (i,n) (x)) 2 , ∀x ∈ R d .
The function σ2 is the pseudo-estimator of σ 2 that would be used in the case where the function f * is known. By the triangle inequality, we have that for all x ∈ C, σ2 (x) -σ 2 (x) ≤ σ2 (x) -σ2 (x) + σ2 (x) -σ 2 (x) . , where C 1 , C 2 and C 3 are non negative reals. We finish the proof of the proposition by bounded the above l.h.s. This relies on controls of estimation error of kNN for the regression function f * and the conditional variance function σ 2 . Observe that when Y is either bounded or satisfies the model conditions in Eq. ( 5), we have that the random variables Y -f * (X) and (Y -f * (X)) 2 -σ 2 (X) satisfy the uniform noise condition [START_REF] Polonik | Measuring mass concentrations and estimating density contour clusters-an excess mass approach[END_REF]. Indeed, while this fact is clear for Y -f * (X), it also holds true for (Y -f * (X)) 2 -σ 2 (X) since, conditionally on X, this random variable is either bounded (since σ 2 is bounded as well) or subexponential. Therefore, the result of Theorem 3 applies for the kNN estimators σ2 and f . Furthermore, using the result in Eq. ( 26), we deduce from the above inequality

E sup x∈C σ2 (x) -σ 2 (x) 1+α ≤ C log(n) (α+1) n -(α+1)/(d+2) ,
where C > 0 is a constant which depends on f * , σ 2 , c 0 , C, and the dimension d.

E Technical tools

In this section, we state several results that may help for readability of the paper. The first result is a direct application of the classical peeling argument of [START_REF] Audibert | Fast learning rates for plug-in classifiers[END_REF].

Lemma 3 (Lemma 1 in [START_REF] Denis | Consistency of plug-in confidence sets for classification in semi-supervised learning[END_REF]). Let X be a real random variable, (X n ) n≥1 be a sequence of real random variables and t 0 ∈ R. Assume that there exist C 1 > 0 and γ 0 > 0 such that The next result describes the representation of distance (W ∞ ) on the real line. Let Z ∞ (R) be the collection of all compactly supported probability measures on R. Lemma 4 (Theorem 2.12 in [START_REF] Bobkov | One-dimensional empirical measures, order statistics and Kantorovich transport distances[END_REF]). Let µ and ν be probability measures in Z ∞ (R) with respective distribution functions F and G. Then, W ∞ (µ, ν) := sup 0<t<1 |F -1 (t) -G -1 (t)| is the infimum over all h ≥ 0 such that G(x -h) ≤ F (x) ≤ G(x + h) for all x ∈ R.

P X (|X -t 0 | ≤ δ) ≤ C 1 δ γ0 , ∀δ > 0 ,
The following result provides a bound on moments of a positive random variable provided a tail control. 
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 1 Figure 1: Err Γλ and r Γλ vs. λ.
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 2 Figure 2: Histogram of the estimates of σ 2 (X)
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 3 Figure 3: Visual description of the performance of three plug-in ε-predictors on the aquatic, and airfoil datasets.
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 4 Figure 4: Additional description of the performance of the plug-in procedure on aquatic dataset.

Lemma 1 .

 1 Assume Assumptions 3-4 hold. Then there exist C 1 > 0, which depends only on C, µ min , and on d and C 2 > 0, which depends on C and on d, such that for all t ≥ log(n)kn C1n 1/d

f≤C 1

 1 * (X (i,n) (x)) -f (X (i,n) (x)) 2(Y (i,n) (x) -f * (X (i,n) (x))) + f * (X (i,n) (x)) -f (X (i,n) (x)) .Therefore, we deducesup x∈C σ2 (x) -σ 2 (x) ≤ sup x∈C σ2 (x) -σ 2 (x) + sup x∈C f (x) -f * (x) i,n) (x) -f * (X (i,n) (x)) .From the above inequality, using the fact that (a + b + c) p ≤ 3 p-1 (a p + b p + c p ) for p ≥ 1, a, b, c ∈ R and applying the Cauchy-Schwartz Inequality, we obtainE sup x∈C σ2 (x) -σ 2 (x) 1+α E sup x∈C σ2 (x) -σ 2 (x) 1+α + C 2 E sup x∈C f (x) -f * (x) i,n) (x) -f * (X (i,n) (x))

  and a sequence of positive numbers a n tends towards infinity, C 2 , C 3 some positive constants such thatP Xn (|X n -X| ≥ δ|X) ≤ C 2 exp -C 3 a n δ 2 , ∀δ > 0, ∀n ∈ N.Then, there exists C > 0 depending only on C 1 , C 2 and C 3 , such that|E [1 Xn≥t0 -1 X≥t0 ] | ≤ Ca -γ0/2 n .

Lemma 5 . 1 Ev p e -v m dv + C 2 u p +∞ 0 e

 510 Let a ≥ 1, let b, c be two non negative real numbers, and let m ∈ N. Consider Z a positive random variable such thatP (Z ≥ t) ≤ c exp (a -bt m ) ,for all t ≥ (a/b) 1/m . Then for all p ≥ 1, there exists a constant C > 0 such thatE [Z p ≤ C(a/b) p/m .Proof. Using the following equality which holds for any positive random variable Z, and any p ≥[Z p ] = +∞ 0 P (Z ≥ t) pt p-1 dt , (27)and the condition in Lemma 5, we deduceE [Z p ] ≤ u 0 pt p-1 dt + c +∞ u exp (a -bt m )pt p-1 dt , (28)where u = (a/b) 1/m and where we used the trivial inequality P (Z ≥ t) ≤ 1 to bound the first term in the r.h.s. Since (a) m -(b ) m ≥ (a -b ) m for all a , b ∈ R such that a ≥ b ≥ 0, we can write that exp (a -bt m ) ≤ exp (-(t -u) m b) , which yields +∞ u exp (a -bt m )pt p-1 dt ≤ +∞ u exp (-(t -u) m b) pt p-1 dt ≤ 1 u +∞ u exp (-(t -u) m b) pt p dt = the changing of variable v = ((t -u) m b) 1/m in the last equality. Finally, using that (a + b ) p ≤ 2 p-1 ((a ) p + (b ) p ) for all p ≥ 1, a , b ∈ R and given that u ≥ (1/b) 1/m , we show from the above inequality that +∞ u exp (a -bt m )pt p-1 dt ≤ C 1 -v m dv ≤ C 3 u p ,for positive constants C 1 , C 2 , C 3 . Inject this into Eq.(28) leads to the result.

Table 1 :

 1 Performances of the three plug-in ε-predictors on the real datasets aquatic, and airfoil.

	aquatic

  1/d , we get that for t ≥ ( kn Cn ) 1/d ,

	P sup x∈C	1 k n	kn i=1

  Since Assumption 4 holds, we can use Lemma 1. Then there exist two non negative constants C 1 and C 2 such that for all t ≥ log(n)kn

			1/d
			C1n	, we have
	P sup x∈C	1 k n	kn i=1

d . Proof.

By abuse of notation, we refer to Γ * λ as the solution of the penalized problem and to Γ * ε as the solution of the constrained problem.

The only difference between Γε(x, ζ) and Γε(x) given in (8) is the dependency in ζ that is hidden inside σ2 . To avoid useless additional notation, we write Γε for both pseudo-oracles.