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We prove the global wellposedness of the 2D non-rotating primitive equations with noslip boundary conditions in a thin strip of width ε for small data which are analytic in the tangential direction. We also prove that the hydrostatic limit (when ε → 0) is a couple of a Prandtl-like system for the velocity with a transport-diffusion equation for the temperature.

Introduction

In this paper, we study the two-dimensional Navier-Stokes system coupled with an evolution equation of the temperature in the thin-striped domain and provided with Dirichlet boundary conditions. Let S ε = {(x, y) ∈ R 2 : 0 < y < ε} where ε is the width of the strip. Then, our system writes (1.1)

         ∂ t U ε + U ε .∇U ε -ε 2 ∆U ε + ∇P ε = 0 T ε F r in S ε ×]0, ∞[ ∂ t T ε + U ε .∇T ε -∆ ε T ε = 0 in S ε ×]0, ∞[ div U ε = 0 in S ε ×]0, ∞[,
where U ε (t, x, y) = (U ε 1 (t, x, y), U ε 2 (t, x, y)) denotes the velocity of the fluid and P ε (t, x, y) the scalar pressure function which guarantees the divergence-free property of the velocity field U ε ; T ε (t, x, y) is the temperature of the system, and F r is the Froude number measuring the importance of stratification, which is supposed to be εF where F = 1, as in the formulation introduced by Majda (see [START_REF] Embid | Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity[END_REF]). The system (1.1) is complemented by the no-slip boundary condition

U ε |y=0 = U ε |y=ε = 0 and T ε |y=0 = T ε |y=ε = 0.
Here, in the equation of the velocity, the Laplacian is ∆ = ∂ 2

x + ∂ 2 y and in the equation of the temperature, the anisotropic Laplacian ∆ ε = ∂ 2

x + ε 2 ∂ 2 y reflects the difference between the horizontal and the vertical scales.

1.1. Physical motivations. For a geophysical fluid in a large volume scale (compared to the earth scale, for example, an ocean or the atmosphere), two main phenomena are important: the earth rotation and the density vertical stratification. The earth rotation induces two additional accelerations in the fluid equations: the centrifugal force which is included in the gravity gradient term and the Coriolis force which is characterized by the so-called Rossby number. The stratification forces the fluid masses to have a vertical distribution: heavier layers lay under lighter ones. Internal movements in the fluid tend to disturb this structure and the gravity basically tries to restore it constantly. The estimate of the importance of this rigidity on the movement leads to the comparison between the typical time scale of the system with the Brunt-Väisälä frequency and the definition of the Froude number F r. For more details and physical considerations, we refer to [START_REF] Chemin | Mathematical Geophysics: An introduction to rotating fluids and to the Navier-Stokes equations[END_REF], [START_REF] Cushman-Roisin | Introduction to geophysical fluid dynamics[END_REF], [START_REF] Pedlosky | Geophysical fluid dynamics[END_REF], and [START_REF] Bougeault | Dynamique de l'atmosphère et de l'océan[END_REF] for example. In this paper, we will neglect the effect of the rotation and only focus on the effect of the vertical stratification as in the system (1.1). The combined effect of the rotation and the stratification in the full primitive equations will be studied in a forthcoming paper.

In order to describe hydrodynamical flows on the earth, in geophysics, it is usually assumed that vertical motion is much smaller than horizontal motion and that the fluid layer depth is small compared to the radius of the sphere, thus they are good approximation of global atmospheric flow and oceanic flow. The thin-striped domain in the system (1.1) is considered to take into account this anisotropy between horizontal and vertical directions. Under this assumption, it is believed that the dynamics of fluids in large scale tends towards a geostrophic balance (see [START_REF] Gill | Atmosphere-Ocean Dynamics[END_REF], [START_REF] Holton | An Introduction to Dynamic Meteorology[END_REF] or [START_REF] Plougonven | Lagrangian approach to the geostrophic adjustment of frontal anomalies in a stratified fluid[END_REF]). In a formal way, as in [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF], taking into account this anisotropy, we also consider the initial data in the following form,

U ε |t=0 = U ε 0 = u 0 x, y ε , εv 0 x, y ε in S ε and T ε |t=0 = T ε 0 x, y ε .
In our paper, we look for solutions in the form

(1.2)           
U ε (t, x, y) = u ε t, x, y ε , εv ε t, x, y ε T ε (t, x, y) = T ε t, x, y ε P ε (t, x, y) = p ε t, x, y ε .

Performing the scaling change y = y ε and let S = {(x, y) ∈ R 2 : 0 < y < 1}, we can rewrite the system (1.1) as follows

(1.3)                      ∂ t u ε + u ε ∂ x u ε + v ε ∂ y u ε -ε 2 ∂ 2 x u ε -∂ 2 y u ε + ∂ x p ε = 0 in S×]0, ∞[ ε 2 ∂ t v ε + u ε ∂ x v ε + v ε ∂ y v ε -ε 2 ∂ 2 x v ε -∂ 2 y v ε + ∂ y p ε = T ε in S×]0, ∞[ ∂ t T ε + u ε ∂ x T ε + v ε ∂ y T ε -∆T ε = 0 in S×]0, ∞[ ∂ x u ε + ∂ y v ε = 0 in S×]0, ∞[ (u ε , v ε , T ε ) | t=0 = (u 0 , v 0 , T 0 ) in S (u ε , v ε , T ε ) | y=0 = (u ε , v ε , T ε ) | y=1 = 0.
Formally taking ε → 0 in the system (1.3), and writing y instead of y when there is no confusion, we obtain the following hydrostatic primitive equations, which are the couple of a Prandtl-like system with a transport-diffusion equation of the temperature (1.4)

                     ∂ t u + u∂ x u + v∂ y u -∂ 2 y u + ∂ x p = 0 in S×]0, ∞[ ∂ y p = T in S×]0, ∞[ ∂ t T + u∂ x T + v∂ y T -∆T = 0 in S×]0, ∞[ ∂ x u + ∂ y v = 0 in S×]0, ∞[ u| t=0 = u 0 in S T | t=0 = T 0 in S,
where the velocity U = (u, v) and the temperature T satisfy the Dirichlet no-slip boundary condition

(1.5) (u, v, T ) | y=0 = (u, v, T ) | y=1 = 0.
We remark that in the system (1.4), we have to deal with the same difficulty as for Prandtl equations due to its degenerate form and the nonlinear term v∂ y u which will lead to the loss of one derivative in the tangential direction in the process of energy estimates. For a more complete survey on this very challenging problem and we suggest the reader to the works [START_REF] Alexandre | Well-posedness of The Prandtl Equation in Sobolev Spaces[END_REF][START_REF]Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation[END_REF][START_REF] Enquist | Blow up of solutions of the unsteady Prandtl's equation[END_REF][START_REF] Gérard-Varet | On the ill-posedness of the Prandtl equation[END_REF][START_REF] Masmoudi | Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods[END_REF] and references therein. To overcome this difficulty, one has to impose a monotonic hypothesis on the normal derivative of the velocity or an analytic regularity on the velocity. After the pioneer works of Oleinik [START_REF] Oleinik | Mathematical Models in Boundary Layers Theory[END_REF] using the Crocco transformation under the monotonic hypothesis, Sammartino and Caflisch [START_REF] Sammartino | Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half-space, I. Existence for Euler and Prandtl equations[END_REF] solved the problem for analytic solutions on a half space and later, the analyticity in normal variable y was removed by Lombardo, Cannone and Sammartino in [START_REF] Lombardo | Well-posedness of the boundary layer equations[END_REF]. The main argument used in [START_REF] Sammartino | Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half-space, I. Existence for Euler and Prandtl equations[END_REF][START_REF] Lombardo | Well-posedness of the boundary layer equations[END_REF] is to apply the abstract Cauchy-Kowalewskaya (CK) theorem. We also mention a well-posedness result of Prandtl system for a class of data with Gevrey regularity [START_REF] Gérard-Varet | Well-posedness for the Prandtl system without analyticity or mono-tonicity[END_REF]. Lately, for a class of convex data, Gérard-Varet, Masmoudi and Vicol [START_REF] Gérard-Varet | Well-posedness of the hydrostatic Navier-Stokes equations[END_REF] proved the well-posedness of the Prandtl system in the Gevrey class. We also want to remark that unlike the case of Prandtl equations, in the system (1.4), the pressure term is not defined by the outer flows using Bernoulli's law but by temperature via the relation ∂ y p = T . One of the novelties of the paper is to find a way to treat the pressure term using the temperature equation.

We also want to recall some results concerning the system (1.3). This system was studied in the 90's by Lions-Temam-Wang [START_REF] Lions | New formulations of the primitive equations of the atmosphere and applications[END_REF][START_REF] Lions | On the equations of the large-scale ocean[END_REF][START_REF] Lions | Mathematical study of the coupled models of atmosphere and ocean (CAO III)[END_REF], where the authors considered full viscosity and diffusivity, and establish the global existence of weak solutions. Concerning the strong solutions for the 2D case, the locale existence result was established by Guillén-Gonzàlez, Masmoudi and Rodriguez-Bellido [START_REF] Guillén-González | Anisotropic estimates and strong solutions of the primitive equations[END_REF], while the global existence for 2D case was achieved by Bresch, Kazhikhov and Lemoine in [START_REF] Bresch | On the two-dimensional hydrostatic Navier-Stokes equations[END_REF] and by Temam and Ziane in [START_REF] Temam | Some mathematical problems in geophysical fluid dynamics[END_REF]. In our paper we also want to establish the global well posedness of the system (1.3) in 2D case but in a thin strip.

1.2. Functional framework. In order to introduce our results, we will briefly recall some elements of the Littlewood-Paley theory and introduce the function spaces and techniques using throughout our paper. Let ψ be an even smooth function in C ∞ 0 (R) such that the support is contained in the ball B R (0, 4 3 ) and ψ is equal to 1 on a neighborhood of the ball B R (0, 3 4 ). Let ϕ(z) = ψ z 2 -ψ(z). Thus, the support of ϕ is contained in the ring z ∈ R : 3 4 ≤ |z| ≤ 8 3 , and ϕ is identically equal to 1 on the ring z ∈ R : 4 3 ≤ |z| ≤ 3 2 . The functions ψ and ϕ enjoy the very important properties (1.6) ∀z ∈ R, ψ(z)

+ j∈N ϕ(2 -j z) = 1, and ∀ j, j ∈ N, |j -j | ≥ 2, supp ϕ(2 -j •) ∩ supp ϕ(2 -j •) = ∅. Let F h and F -1 h
be the Fourier transform and the inverse Fourier transform respectively in the horizontal direction. We will also use the notation u = F h u. We introduce the following definitions of the homogeneous dyadic cut-off operators. Definition 1.1. For all tempered distribution u in the horizontal direction (of x variable) and for all q ∈ Z, we set

∆ h q u(x, y) = F -1 h ϕ(2 -q |ξ|) u(ξ, y) , S h q u(x, y) = F -1 h ψ(2 -q |ξ|) u(ξ, y) .
We refer to [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] and [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF] for a more detailed construction of the dyadic decomposition. This definition, combined with the equality (1.6), implies that all tempered distributions can be decomposed with respect to the horizontal frequencies as

u = q∈Z ∆ v q u.
The following Bernstein lemma gives important properties of a distribution u when its Fourier transform is well localized. We refer the reader to [START_REF] Chemin | Fluides parfaits incompressibles[END_REF] for the proof of this lemma.

Lemma 1.2. Let k ∈ N, d ∈ N * and r 1 , r 2 ∈ R satisfy 0 < r 1 < r 2 .
There exists a constant C > 0 such that, for any a, b ∈ R, 1 ≤ a ≤ b ≤ +∞, for any λ > 0 and for any u ∈ L a (R d ), we have

supp ( u) ⊂ ξ ∈ R d | |ξ| ≤ r 1 λ =⇒ sup |α|=k ∂ α u L b ≤ C k λ k+d( 1 a -1 b ) u L a , and 
supp ( u) ⊂ ξ ∈ R d | r 1 λ ≤ |ξ| ≤ r 2 λ =⇒ C -k λ k u L a ≤ sup |α|=k ∂ α u L a ≤ C k λ k u L a .
We now introduce the function spaces used throughout the paper. As in [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF], we define the Besov-type spaces B s , s ∈ R as follows.

Definition 1.3. Let s ∈ R and S = R×]0, 1[. For any u ∈ S h (S), i.e., u belongs to S (S) and lim q→-∞ S h q u L∞ = 0, we set

u B s def = q∈Z 2 qs ∆ h q u L 2 .
(i) For s ≤ 1 2 , we define

B s (S) def = {u ∈ S h (S) : u B s < +∞} . (ii) For s ∈ ]k -1 2 , k + 1 2 ], with k ∈ N * , we define B s (S) as the subset of distributions u in S h (S) such that ∂ k x u ∈ B s-k (S).
For a better use of the smoothing effect given by the diffusion terms, we will work in the following Chemin-Lerner type spaces and also the time-weighted Chemin-Lerner type spaces. 

u Lp t,f (t) (B s (S)) def = q∈Z 2 qs t 0 f (t ) ∆ h q u(t ) p L 2 dt 1 p . 1.
3. Main results. Our main difficulty relies in finding a way to estimate the nonlinear terms, which allows to exploit the smoothing effect given by the above function spaces. Using the method introduced by Chemin in [START_REF] Chemin | Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray[END_REF] (see also [START_REF] Chemin | Global regularity for some classes of large solutions to the Navier-Stokes equations[END_REF], [START_REF] Paicu | Global regularity for the Navier-Stokes equations with some classes of large initial data[END_REF] or [START_REF] Paicu | On the hydrostatic approximation of the Navier-Stokes equations in a thin strip[END_REF]), for any f ∈ L 2 (S), we define the following auxiliary function, which allows to control the analyticity of f in the horizontal variable x,

f φ (t, x, y) = e φ(t,Dx) f (t, x, y) def = F -1 h (e φ(t,ξ) f (t, ξ, y)) with φ(t, ξ) = (a -λθ(t))|ξ|, (1.7)
where the quantity θ(t), which describes the evolution of the analytic band of f , satisfies

(1.8) ∀ t > 0, θ(t) ≥ 0 and θ(0) = 0.
The main idea of this technique consists in the fact that if we differentiate, with respect to the time variable, a function of the type e φ(t,Dx) f (t, x, y), we obtain an additional "good term" which plays the smoothing role. More precisely, we have

d dt e φ(t,Dx) f (t, x, y) = -θ(t) |D x | e φ(t,Dx) f (t, x, y) + e φ(t,Dx) ∂ t f (t, x, y),
where -θ(t) |D x | e φ(t,Dx) f (t, x, y) gives a smoothing effect if θ(t) ≥ 0. This smoothing effect allows to obtain our global existence and stability results in the analytic framework. Remark that the existence in the Prandtl case, we only have the local existence and the convergence is still an open question! Besides, Prandtl system is known to be very unstable.

Our main results are the following theorems.

Theorem 1.6 (Global wellposedness of the hydrostatic limit system). Let a > 0. There exists a constant c 0 > 0 sufficiently small, independent of ε and there holds the compatibility condition 1 0 u 0 dy = 0, such that, for any data (u 0 , v 0 , T 0 ) satisfying

e a|Dx| u 0 B 1 2 + e a|Dx| T 0 B 1 2 ≤ c 0 a, the system (1.4) has a unique global solution (u, v, T ) satisfying e Rt (u φ , T φ ) L∞ (R + ;B 1 2 ) + 1 2 e Rt ∂ y u φ L2 (R + ;B 1 2 ) ≤ 2C e a|Dx| (u 0 , T 0 ) B 1 2 , (1.9)
where u φ is determined by (1.7). Furthermore, if e a|Dx| u 0 ∈ B for some c 1 sufficiently small, then there exists a positive constant C so that for λ = C 2 (1 + e a|Dx| u 0 B 

e Rt (∂ t u) φ L2 t (B 3 2 ) + 1 2 e Rt ∂ y u φ L∞ t (B 3 2 ) 
C e a|Dx| ∂ y u 0 B .

(1.11)

Theorem 1.7 (Global wellposedness of the primitive system). Let a > 0. There exists a constant c 2 > 0 sufficiently small, independent of ε, such that, for any data (u 0 , v 0 , T 0 ) satisfying e a|Dx| (u 0 , v 0 )

B 1 2 + e a|Dx| T 0 B 1 2 ≤ c 2 a, then the system (1.4) has a unique global solution (u, v) satisfying e Rt (u Θ , εv Θ , T Θ ) L∞ (R + ;B 1 2 ) + e Rt ∂ y (u Θ , εv Θ ) L2 (R + ;B 1 2 ) + ε e Rt ∂ x (u Θ , εv Θ ) L2 (R + ;B 1 2 ) + e Rt ∇T Θ L2 t (R + ;B 1 2 ) ≤ C e a|Dx| (u 0 , εv 0 , T 0 ) B 1 2 ,
where (u Θ , v Θ ) is determined by (3.31) and the constant R is determined by Poincaré inequality on the strip S.

Theorem 1.8 (Convergence to the hydrostatic limit system). Let a > 0 and (u Θ , v Θ ) satisfy the initial condition of the theorem (1.7). Let u 0 satisfy

e a|Dx| u 0 ∈ B 1 2 ∩ B 5 2 , e a|Dx| ∂ y u 0 ∈ B 3 2 , e a|Dx| T 0 ∈ B 1 2 ∩ B 3 2 ,
and there holds (1.10) for some c 1 sufficiently small and the compatibility condition

1 0 u 0 dy = 0. Then we have (w 1 ϕ , εw 2 ϕ ) L∞ t (B 1 2 ) + ∂ y (w 1 ϕ , εw 2 ϕ ) L2 t (B 1 2 ) + ε (w 1 ϕ , εw 2 ϕ ) L2 t (B 3 2 ) ≤ C e a|Dx| (u ε 0 -u 0 , ε(v ε 0 -v 0 )) B 1 2 + C e a|Dx| (T ε 0 -T 0 ) B 1 2 + M ε .
(1.12)

Where w 1 = u -u, w 2 = v -v, θ = T -T and v 0 is determined from u 0 via the free divergence and the boundary condition of the initial data with respect y, and (w 1 ϕ , w 2 ϕ ) is given by (4.51) and M ≥ 1 is a constant independent to .

The proofs of our main theorems rely on the following lemmas which will be proved in the appendix. Lemma 1.9. Let s ∈]0, 1], T > 0 and φ be defined as in (1.7), with θ(t) = ∂ y u φ (t) B 1 2 . There exist C ≥ 1 such that, for any t > 0, φ(t, ξ) > 0 and for any w ∈ L2 t, θ(t) (B s+ 1 2 ), we have

q∈Z 2 2qs t 0 e Rt ∆ h q (u∂ x w) φ , e Rt ∆ h q w φ L 2 dt ≤ C e Rt w φ 2 L2 t, θ(t) (B s+ 1 2 )
. (1.13) Lemma 1.10. For any s ∈]0, 1] and t ≤ T * , there exist C ≥ 1 such that, q∈Z

2 2qs t 0 e Rt ∆ h q (v∂ y u) φ , e Rt ∆ h q u φ L 2 dt ≤ C e Rt u φ 2 L2 t, θ(t) (B s+ 1 2 ) . (1.14) and q∈Z 2 2qs t 0 e Rt ∆ h q (v∂ y T ) φ , e Rt ∆ h q T φ L 2 dt ≤ C u φ B 1 2
e Rt ∇T φ L2 t (B s ) .

(1.15)

1.4. Organisation of the paper. Our paper will be divided into several sections as follows. In Section 2, we prove the global wellposedness of the system (1.4) for small data in analytic framework. Section 3 is devoted to the study of the system (1.3) and the proof of Theorem 1.7. In Section 4, we prove the convergence of the system (1.3) towards the system (1.4) when ε → 0. Finally, in the appendix, we give the proofs of Lemmas 1.9 and 1.10.

Global wellposedness of the hydrostatic limit system

The goal of this section is to prove Theorem 1.6. We remark that the construction of a local smooth solution of the system (1.4) follows a standard parabolic regularization method, similar to the case of Prandtl system, which consists of adding an addition horizontal smoothing term of the type δ∂ 2

x and then taking δ → 0. The difficulty here consists in the presence of the unknown pressure term ∂ x p in the first equation of (1.4). However, as in [START_REF] Cao | On the well-posedness of reduced 3D primitive geostrophic adjustment model with weak dissipation[END_REF], we can reformulate the problem by writing v and ∂ x p as functions of u and T . First, we remark that the Dirichlet boundary condition (u, v)| t=0 = (u, v)| t=1 = 0 and the incompressibility condition div u

= ∂ x u + ∂ y v = 0 imply v(t, x, y) = y 0 ∂ y v(t, x, s)ds = - y 0 ∂ x u(t, x, s)ds. (2.16)
We want now to find the equation for the pressure. Due to the Dirichlet boundary condition (u, v, T )| y=0 = 0, we deduce from the incompressibility condition

∂ x u + ∂ y v = 0 that ∂ x 1 0 u(t, x, y) dy = - 1 0 ∂ y v(t, x, y) dy = v(t, x, 1) -v(t, x, 0) = 0. (2.17)
Integrating the equation ∂ y p = T with respect y in [0, y], we obtain p(t, x, y) = p(t, x, 0) + y 0 T (t, x, s)ds. (2.18) Next, differentiating (2.18) with respect to x and using the first equation of the system (1.4), we get

∂ x p(t, x, 0) = - y 0 ∂ x T (t, x, y )dy + ∂ x p(t, x, y) = - y 0 ∂ x T (t, x, y )dy -∂ t u + u∂ x u + v∂ y u -∂ 2 y u (t, x, y)
Integrating the above equation with respect to y ∈ [0, 1] and performing integration by part lead to

∂ x p(t, x, 0) = - 1 0 y 0 ∂ x T (t, x, y )dy dy + ∂ y u(t, x, 1) -∂ y u(t, x, 0) -ċ(t) -∂ x 1 0 u 2 (t, x, y)dy
with c(t) = t 0 u(t, x, y)dy, then we replace we get

∂ x p(t, x, y) = y 0 ∂ x T (t, x, s) - 1 0 y 0 ∂ x T (t, x, y )dy dy + ∂ y u(t, x, 1) -∂ y u(t, x, 0) -ċ(t) -∂ x 1 0 u 2 (t, x , y)dy. 
Let (u φ , v φ , T φ ) be defined as in (1.7) and (1.8). Direct calculations from (1.4) show that (u φ , v φ , T φ ) satisfy the system

(2.19)                      ∂ t u φ + λ θ(t)|D x |u φ + (u∂ x u) φ + (v∂ y u) φ -∂ 2 y u φ + ∂ x p φ = 0 in S×]0, ∞[, ∂ y p φ = T φ ∂ t T φ + λ θ(t)|D x |T φ + (u∂ x T ) φ + (v∂ y T ) φ -∆T φ = 0 ∂ x u φ + ∂ y v φ = 0, u φ | t=0 = u 0 , T φ | t=0 = T 0 ,
where |D x | denotes the Fourier multiplier of symbol |ξ|. In what follows, we recall that we use "C" to denote a generic positive constant which can change from line to line.

Applying the dyadic operator ∆ h q to the system (2.19), then taking the L 2 (S) scalar product of the first and the third equations of the obtained system with ∆ h q u φ and ∆ h q T φ respectively, we get

(2.20) 1 2 d dt ∆ h q u φ (t) 2 L 2 + λ θ(t) |D x | 1 2 ∆ h q u φ 2 L 2 + ∆ h q ∂ y u φ (t) 2 L 2 = -∆ h q (u∂ x u) φ , ∆ h q u φ ) L 2 -∆ h q (v∂ y u) φ , ∆ h q u φ L 2 -∆ h q ∂ x p φ , ∆ h q u φ L 2 , and (2.21) 1 2 d dt ∆ h q T φ (t) 2 L 2 + λ θ(t) |D x | 1 2 ∆ h q T φ 2 L 2 + ∆ h q ∂ y T φ (t) 2 L 2 + ∆ h q ∂ x T φ (t) 2 L 2 = -∆ h q (u∂ x T ) φ , ∆ h q T φ L 2 -∆ h q (v∂ y T ) φ , ∆ h q T φ L 2 .
Multiplying (2.20) and (2.21) with e 2Rt and then integrating with respect to the time variable, we have

(2.22) e Rt ∆ h q u φ (t) 2 L ∞ t L 2 + λ t 0 θ(t ) e Rt |D x | 1 2 ∆ h q u φ 2 L 2 dt + e Rt ∆ h q ∂ y u φ (t) 2 L 2 t L 2 = ∆ h q u φ (0) 2 L 2 + D 1 + D 2 + D 3 , and 
(2.23) e Rt ∆ h q T φ (t) 2 L ∞ t L 2 + λ t 0 θ(t ) e Rt |D x | 1 2 ∆ h q T φ 2 L 2 dt + e Rt ∆ h q ∇T φ (t) 2 L 2 t L 2 = ∆ h q T φ (0) 2 L 2 + D 4 + D 5 .
Next, Lemmas 1.9 and 1.10 yield

|D 1 | = t 0 e Rt ∆ h q (u∂ x u) φ , e Rt ∆ h q u φ ) dt ≤ Cd 2 q 2 -2qs e Rt u φ 2 L2 t, θ(t) (B s+ 1 2 ) |D 2 | = t 0 e Rt ∆ h q (v∂ y u) φ , e Rt ∆ h q u φ dt ≤ Cd 2 q 2 -2qs e Rt u φ 2 L2 t, θ(t) (B s+ 1 2 ) |D 4 | = t 0 e Rt ∆ h q (u∂ x T ) φ , e Rt ∆ h q T φ dt ≤ Cd 2 q 2 -2qs e Rt T φ 2 L2 t, θ(t) (B s+ 1 2 )
and

|D 5 | = t 0 e Rt ∆ h q (v∂ y T ) φ , e Rt ∆ h q T φ dt ≤ Cd 2 q 2 -2qs u φ B 1 2
e Rt ∇T φ

L2

t (B s ) . Now, for the pressure term, using the Dirichlet boundary condition (u, v, T )| y=0 = 0, and the incompressibility condition ∂ x u + ∂ y v = 0 and the relation ∂ y p = T , we can perform integrations by parts, use Poincaré's inequality and get [START_REF] Lombardo | Well-posedness of the boundary layer equations[END_REF]) and (2.23) by 2 2qs and summing with respect to q ∈ Z, we obtain

∆ h q ∂ x p φ , ∆ h q u φ = ∆ h q p φ , ∆ h q ∂ x u φ = ∆ h q p φ , ∆ h q ∂ y v φ = ∆ h q ∂ y p φ , ∆ h q v φ = ∆ h q T φ , ∆ h q v φ = ∆ h q T φ , ∆ h q y 0 ∂ x u φ dy = ∆ h q ∂ x T φ , ∆ h q y 0 u φ dy ≤ ∆ h q ∂ x T φ L 2 ∆ h q u φ L 2 ≤ C ∆ h q ∂ x T φ 2 L 2 + 1 2 ∆ h q ∂ y u φ 2 L 2 . Thus, |D 3 | = t 0 e Rt ∆ h q ∂ x p φ , e Rt ∆ h q u φ dt ≤ Cd 2 q 2 -2qs e Rt ∂ x T φ 2 L2 t (B s ) + 1 2 e Rt ∆ h q ∂ y u φ (t) 2 L 2 t L 2 . Multiplying (2.
(2.24) e Rt u φ 2 L∞ t (B s ) + λ e Rt u φ 2 L2 t, θ(t) (B s+ 1 2 ) + e Rt ∂ y u φ 2 L2 t (B s ) ≤ u φ (0) 2 B s + C e Rt u φ 2 L2 t, θ(t) (B s+ 1 2 ) + C e Rt ∂ x T φ 2 L2 t (B s ) + 1 2 e Rt ∂ y u φ (t) 2 L2 t (B s ) , and 
(2.25) e Rt T φ 2 L∞ t (B s ) + λ e Rt T φ 2 L2 t, θ(t) (B s+ 1 2 ) + e Rt ∇T φ 2 L2 t (B s ) ≤ T φ (0) 2 B s + C e Rt T φ 2 L2 t, θ(t) (B s+ 1 2 ) + C u φ B 1 2 e Rt ∇T φ 2 L2 t (B s ) .
From (2.25), we remark that

e Rt ∂ x T φ 2 L2 t (B s ) ≤ T φ (0) 2 B s + C e Rt T φ 2 L2 t, θ(t) (B s+ 1 2 ) + C u φ B 1 2 e Rt ∇T φ 2 L2 t (B s ) . Thus, choosing (2.26) C ≥ max 4, 1 2R ,
and taking the sum of (2.24) and (2.25), we have

(2.27) e Rt (u φ , T φ ) 2 L∞ t (B s ) + λ e Rt (u φ , T φ ) 2 L2 t, θ(t) (B s+ 1 2 ) + 1 2 e Rt ∂ y u φ 2 L2 t (B s ) + e Rt ∇T φ 2 L2 t (B s ) ≤ 2C e a|Dx| (u 0 , T 0 ) 2 B s + 2C 2 e Rt (u φ , T φ ) 2 L2 t, θ(t) (B s+ 1 2 ) + 2C 2 u φ B 1 2 e Rt ∇T φ 2 L2 t (B s ) .
We set

(2.28)

T def = sup t > 0 : u φ B 1 2 ≤ 1 2C 2 and θ(t) ≤ a λ .
We choose initial data such that

C e a|Dx| u 0 B 1 2 + e a|Dx| T 0 B 1 2 < min 1 2C 2 , a 2λ ,
then, combining with the fact that θ(0) = 0, we deduce that T > 0. We choose now λ = 2C 2 . For any 0 < t < T , we deduce from (2.27) that

e Rt (u φ , T φ ) 2 L∞ t (B s ) + 1 2 e Rt ∂ y u φ 2 L2 t (B s ) ≤ 2C e a|Dx| (u 0 , T 0 ) 2 B s . (2.29)
We then deduce from (2.29), using (2.26), that, for any 0 < t < T ,

u φ B 1 2 ≤ e Rt (u φ , T φ ) L∞ t (B s ) ≤ C e a|Dx| (u 0 , T 0 ) B s ≤ C e a|Dx| u 0 B 1 2 + e a|Dx| T 0 B 1 2 < 1 2C 2 .
Now, we recall that we already defined θ(t) = ∂ y u φ (t)

B 1
2 with θ(0) = 0. Then, for any 0 < t < T , Inequality (2.29) yields

θ(t) = t 0 ∂ y u φ (t) B 1 2 dt ≤ t 0 e -Rt e Rt ∂ y u φ (t ) B 1 2 dt ≤ t 0 e -2Rt dt 1 2 t 0 e Rt ∂ y u φ (t ) 2 B 1 2 dt 1 2 ≤ C e a|Dx| u 0 B 1 2 + e a|Dx| T 0 B 1 2 < a 2λ .
A continuity argument implies that T = +∞ and we have (2.29) is valid for any t ∈ R + .

In order to end the proof of Theorem 1.6, we only need to prove Inequality (1.11). For that, we apply ∆ h q to (2.19) and take the L 2 inner product of resulting equation with ∆

h q (∂ t u) φ . That yields ∆ h q (∂ t u) φ 2 L 2 = ∆ h q ∂ 2 y u φ , ∆ h q (∂ t u) φ L 2 -∆ h q (u∂ x u) φ , ∆ h q (∂ t u) φ L 2 -∆ h q (v∂ y u) φ , ∆ h q (∂ t u) φ L 2 -∆ h q ∂ x p φ , ∆ h q (∂ t u) φ L 2 . The fact that (∂ t u) φ = ∂ t u φ + λ θ(t)|D x |u φ implies ∆ h q ∂ 2 y u φ , ∆ h q (∂ t u) φ L 2 = - 1 2 d dt ∆ h q ∂ y u φ 2 L 2 + λ θ(t)2 q ∆ h q ∂ y u φ 2 L 2 ,
from which, we deduce that

∆ h q (∂ t u) φ 2 L 2 + 1 2 d dt ∆ h q ∂ y u φ 2 L 2 ≤ I 1 + I 2 + I 3 ,
where

I 1 = ∆ h q (u∂ x u) φ , ∆ h q (∂ t u) φ L 2 I 2 = ∆ h q (v∂ y u) φ , ∆ h q (∂ t u) φ L 2 I 3 = ∆ h q ∂ x p φ , ∆ h q (∂ t u) φ L 2 . Since ∂ x u + ∂ y v = 0, using (2.16
) and integrations by parts, we find

I 3 = ∆ h q ∂ x p φ , ∆ h q (∂ t u) φ L 2 ≤ ∆ h q ∂ x T φ L 2 ∆ h q (∂ t u) φ L 2 ≤ 1 2 ∆ h q ∂ x T φ 2 L 2 + 1 2 ∆ h q (∂ t u) φ 2 L 2 .
For I 1 , I 2 we have

I 1 = ∆ h q (u∂ x u) φ , ∆ h q (∂ t u) φ L 2 ≤ 1 2 ∆ h q (u∂ x u) φ 2 L 2 + 1 10 ∆ h q (∂ t u) φ 2 L 2 I 2 = ∆ h q (v∂ y u) φ , ∆ h q (∂ t u) φ L 2 ≤ 1 2 ∆ h q (v∂ y u) φ 2 L 2 + 1 10 ∆ h q (∂ t u) φ 2 L 2 .
Then, we deduce that

∆ h q (∂ t u) φ 2 L 2 + 1 2 d dt ∆ h q ∂ y u φ 2 L 2 ≤ C ∆ h q (u∂ x u) φ 2 L 2 + ∆ h q (v∂ y u) φ 2 L 2 + ∆ h q ∂ x T φ 2 L 2 .
Multiplying the result by e 2Rt and integrating over [0, t], we get

e Rt ∆ h q (∂ t u) φ 2 L 2 t (L 2 ) + 1 2 e Rt ∆ h q ∂ y u φ 2 L ∞ t (L 2 ) ≤ C ∆ h q ∂ y e a|Dx| u 0 2 L 2 + e Rt ∆ h q (u∂ x u) φ 2 L 2 t (L 2 ) + e Rt ∆ h q (v∂ y u) φ 2 L 2 t (L 2 ) + e Rt ∆ h q ∂ x T φ 2 L 2 t (L 2
) . Multiplying the above inequality by 2 3q , then taking the square root of the resulting estimate, and finally summing up the obtained equations with respect to q ∈ Z, we obtain

(2.30) e Rt (∂ t u) φ L2 t (B 3 2 ) + 1 2 e Rt ∂ y u φ L∞ t (B 3 2 ) ≤ C e a|Dx| ∂ y u 0 B 3 2 + e Rt (u∂ x u) φ L2 t (B 3 2 ) + e Rt (v∂ y u) φ L2 t (B 3 2 ) + e Rt ∂ x T φ L2 t (B 3 2 
) . Next, it follows from the law of product in anisotropic Besov spaces and Poincaré inequality that

e Rt (u∂ x u) φ L2 t (B 3 2 ) ≤ C u φ L∞ (B 1 2 ) e Rt ∂ y u φ L2 t (B 5 2 ) ; e Rt (v∂ y u) φ L2 t (B 3 2 ) ≤ C u φ L∞ (B 1 2 ) e Rt ∂ y u φ L2 t (B 5 2 ) + u φ L∞ (B 5 2 ) e Rt ∂ y u φ L2 t (B 1 2 ) .
Inserting the above estimates into (2.30) and then using the smallness condition

u φ B 1 2 ≤ 1 2C 2 , we finally obtain e Rt (∂ t u) φ L2 t (B 3 2 ) + 1 2 e Rt ∂ y u φ L∞ t (B 3 2 ) ≤ C e a|Dx| ∂ y u 0 B 3 2 + e a|Dx| ∂ y u 0 B 5 2 + e Rt ∂ x T φ L2 t (B 3 
2 ) .

Theorem 1.6 is then proved.

3. Global well-posedness of the 2D non-rotating primitive equations in a thin strip

The goal of this section is to prove Theorem 1.7 and to establish the global well-posedness of the system (1.3) with small analytic data. As in Section 2, for any locally bounded function Θ on R + × R and any f ∈ L 2 (S), we define the analyticity in the horizontal variable x by means of the following auxiliary function

f ε Θ (t, x, y) = F -1 ξ→x (ε Θ(t,ξ) f ε (t, ξ, y)). (3.31)
The width of the analyticity band Θ is defined by

Θ(t, ξ) = (a -λτ (t))|ξ|,
where λ > 0 with be precised later and τ (t) will be chosen in such a way that Θ(t, ξ) > 0, for any (t, ξ) ∈ R + × R and τ (t) = τ (t) = -λ Θ(t) ≥ 0. In our paper, we will choose

τ (t) = ∂ y u ε Θ (t) B 1 2 + ε ∂ y v ε Θ (t) B 1 2 with τ (0) = 0. (3.32)
In what follows, for the sake of the simplicity, we will neglect the script ε and write (u Θ , v Θ , T Θ ) instead of (u Θ , v Θ , T Θ ). Direct calculations from (1.3) and (3.31) show that (u Θ , v Θ , T Θ ) satisfies the system:

(3.33)                ∂ t u Θ + λ τ (t)|D x |u Θ + (u∂ x u) Θ + (v∂ y u) Θ -ε 2 ∂ 2 x u Θ -∂ 2 y u Θ + ∂ x p Θ = 0, ε 2 ∂ t v Θ + (u∂ x v) Θ + (v∂ y v) Θ -ε 2 ∂ 2 x v Θ -∂ 2 y v Θ + ∂ y p Θ = T Θ , ∂ t T Θ + (u∂ x T ) Θ + (v∂ y T ) Θ -∆T Θ = 0, ∂ x u Θ + ∂ y v Θ = 0, (u Θ , v Θ , T Θ ) | y=0 = (u Θ , v Θ , T Θ ) | y=1 = 0, (u Θ , v Θ , T Θ ) | t=0 = (u 0 , v 0 , T 0 ) .
We remark that the pressure term is not really an unknown and can be determined as functions of (u Θ , T Θ ) as we did for the hydrostatic limit system (see also [START_REF] Cao | On the well-posedness of reduced 3D primitive geostrophic adjustment model with weak dissipation[END_REF] for more details). In what follows, we recall that we use "C" to denote a generic positive constant which can change from line to line. Before we give the proof of Theorem 1.7, we will introduce the following lemma, which allows to control the term v∂ y v. Lemma 3.1. For any s ∈]0, 1] and t ≤ T * , and Θ be defined as in (3.31), with

τ (t) = ∂ y u ε Θ (t) B 1 2 + ε ∂ y v ε Θ (t) B 1 2 .
Then, there exists C ≥ 1 such that, for any t > 0, Θ(t, ξ) > 0 and for any u ∈ L2 t, τ (t) (B s+ 1 2 ), we have

ε 2 q∈Z 2 2qs t 0 e Rt ∆ h q (v∂ y v) Θ , e Rt ∆ h q v Θ L 2 dt ≤ C e Rt (u Θ , εv Θ ) 2 L2 t, τ (t) (B s+ 1 2 )
.

We will postpone the proof of this lemma to the end of this section. Applying the dyadic operator in the horizontal variable ∆ h q to the system (3.33), then taking the L 2 (S) scalar product of the first three equations of the obtained system with ∆ h q u φ , ∆ h q v φ and ∆ h q T φ respectively, we get 1 2

d dt ∆ h q (u Θ , εv Θ )(t) 2 L 2 + λ τ (t)(|D x |∆ h q (u Θ , εv Θ ), ∆ h q (u Θ , εv Θ )) L 2 (3.34) + ∂ y ∆ h q (u Θ , εv Θ ) 2 L 2 + ε 2 ∂ x ∆ h q (u Θ , εv Θ ) 2 L 2 = -∆ h q (u∂ x u) Θ , ∆ h q u Θ L 2 -∆ h q (v∂ y u) Θ , ∆ h q u Θ L 2 -∇∆ h q p Θ , ∆ h q (u Θ , v Θ ) L 2 -ε 2 ∆ h q (u∂ x v) Θ , ∆ h q v Θ L 2 -ε 2 ∆ h q (v∂ y v) Θ , ∆ h q v Θ L 2 + 2 ∆ h q T Θ , ∆ h q v Θ L 2 ,
and (3.35) by e 2Rt and integrating the obtained equations with respect to the time variable lead to

(3.35) 1 2 d dt ∆ h q T Θ (t) 2 L 2 + λ τ (t)(|D x |∆ h q T Θ , ∆ h q T Θ ) L 2 + ∇∆ h q T Θ 2 L 2 = -∆ h q (u∂ x T ) Θ , ∆ h q T Θ L 2 -∆ h q (v∂ y T ) Θ , ∆ h q T Θ L 2 . Multiplying (3.34) and
(3.36) e Rt ∆ h q (u Θ , εv Θ )(t) 2 L ∞ t (L 2 ) + λ t 0 τ (t ) e Rt |D x | 1 2 ∆ h q (u Θ , εv Θ )(t ) L 2 dt + e Rt ∂ y ∆ h q (u Θ , εv Θ ) 2 L 2 t (L 2 ) + ε 2 e Rt ∂ x ∆ h q (u Θ , εv Θ ) 2 L 2 t (L 2 ) = ∆ h q (u Θ , εv Θ )(0) 2 L 2 + F 1 + F 2 + F 3 + F 4 , and 
(3.37) e Rt ∆ h q T Θ (t) 2 L ∞ t L 2 + λ t 0 τ (t ) e Rt |D x | 1 2 ∆ h q T Θ 2 L 2 dt + e Rt ∆ h q ∇T Θ (t) 2 L 2 t L 2 = ∆ h q T Θ (0) 2 L 2 + F 5 + F 6 .
Next, Lemmas 1.9, 1.10 and 3.1 yield

|F 1 | = t 0 e Rt ∆ h q (u∂ x u) Θ , e Rt ∆ h q u Θ L 2 + e Rt ∆ h q (v∂ y u) Θ , e Rt ∆ h q u Θ L 2 dt ≤ Cd 2 q 2 -2qs e Rt u Θ 2 L2 t, τ (t) (B s+ 1 2 )
,

|F 2 | = ε 2 t 0 e Rt ∆ h q (u∂ x v) Θ , e Rt ∆ h q v Θ L 2 + e Rt ∆ h q (v∂ y v) Θ , e Rt ∆ h q v Θ L 2 dt ≤ Cd 2 q 2 -2qs e Rt (u Θ , εv Θ ) 2 L2 t, τ (t) (B s+ 1 2 )
and

|F 5 | = t 0 e Rt ∆ h q (u∂ x T ) Θ , e Rt ∆ h q T Θ dt ≤ Cd 2 q 2 -2qs e Rt T Θ 2 L2 t, τ (t) (B s+ 1 2 ) |F 6 | = t 0 e Rt ∆ h q (v∂ y T ) Θ , e Rt ∆ h q T Θ dt ≤ Cd 2 q 2 -2qs u Θ B 1 2 e Rt ∇T Θ 2 L2 t (B s
) . The term F 3 can be calculated using the divergence-free property ∂ x u Θ + ∂ y v Θ = 0, and integrating by part

|F 3 | = t 0 e Rt ∇∆ h q p Θ , e Rt ∆ h q (u Θ , v Θ ) L 2 dt = 0.
In order to estimate the last term F 4 , we first use the boundary condition (u Θ , v Θ ) | y∈{0,1} = 0, and the fact that

v Θ (t, x, y) = - y 0 ∂ x u Θ (t, x, s)ds, we get 2 e Rt ∆ h q T Θ , e Rt ∆ h q v Θ L 2 = 2 e Rt ∆ h q T Θ , e Rt ∆ h q y 0 -∂ x u Θ ds L 2 ≤ 2 ∆ h q e Rt T Θ L 2 ∆ h q e Rt ∂ x u Θ L 2 ≤ C ∆ h q e Rt T Θ 2 L 2 + ε 2 ∆ h q e Rt ∂ x u Θ 2 L 2 .
Then,

(3.38) |F 4 | = t 0 e Rt ∆ h q T Θ , e Rt ∆ h q v Θ L 2 dt ≤ Cd 2 q 2 -2qs e Rt ∆ h q T Θ 2 L 2 t (B s ) + ε 2 e Rt ∆ h q ∂ x u Θ 2 L 2 t (L 2 ) .
Multiplying now (3.36) and (3.37) by 2 2qs and summing with respect q ∈ Z, we obtain

(3.39) e Rt (u Θ , εv Θ ) 2 L∞ t (B s ) + λ e Rt (u Θ , εv Θ ) 2 L2 t, τ (t) (B s+ 1 2 ) + e Rt ∂ y (u Θ , εv Θ ) 2 L2 t (B s ) + ε 2 e Rt ∂ x (u Θ , εv Θ ) 2 L2 t (B s ) ≤ (u Θ , εv Θ )(0) 2 B s + C e Rt (u Θ , εv Θ ) 2 L2 t, τ (t) (B s+ 1 2 ) + C e Rt T Θ 2 L2 t (B s ) + 2 10 e Rt ∂ x u Θ 2 L2 t (B s ) . and (3.40) e Rt T Θ 2 L∞ t (B s ) + λ e Rt T Θ 2 L2 t, τ (t) (B s+ 1 2 ) + e Rt ∇T Θ 2 L2 t (B s ) ≤ T Θ (0) 2 B s + C e Rt T Θ 2 L2 t, τ (t) (B s+ 1 2 ) + C u Θ B 1 2 e Rt ∇T Θ 2 L2 t (B s ) ,
which also implies that

e Rt T Θ 2 L2 t (B s ) ≤ T Θ (0) 2 B s + C e Rt T Θ 2 L2 t, τ (t) (B s+ 1 2 ) + C u Θ B 1 2 e Rt ∇T Θ 2 L2 t (B s ) .
In what follows, we choose

(3.41) C ≥ max 4, 1 2R
.

Taking the sum of (3.39) and (3.40), we have

e Rt (u Θ , εv Θ , T Θ ) 2 L∞ t (B s ) + λ e Rt (u Θ , εv Θ , T Θ ) 2 L2 t, τ (t) (B s+ 1 2 ) + e Rt ∇T Θ 2 L2 t (B s ) + e Rt ∂ y (u Θ , εv Θ ) 2 L2 t (B s ) + ε 2 e Rt ∂ x (u Θ , εv Θ ) 2 L2 t (B s ) ≤ 2C (u Θ , εv Θ )(0) 2 B s + 2C T Θ (0) 2 B s + 2C 2 e Rt (u Θ , εv Θ ) 2 L2 t, τ (t) (B s+ 1 2 ) + 2C 2 e Rt T Θ 2 L2 t, τ (t) (B s+ 1 2 ) + 2C 2 u Θ B 1 2 e Rt ∇T Θ 2 L2 t (B s ) ,
from which we deduce

(3.42) e Rt (u Θ , εv Θ , T Θ ) 2 L∞ t (B s ) + λ e Rt (u Θ , εv Θ , T Θ ) 2 L2 t, τ (t) (B s+ 1 2 ) + e Rt ∇T Θ 2 L2 t (B s ) + e Rt ∂ y (u Θ , εv Θ ) 2 L2 t (B s ) + ε 2 e Rt ∂ x (u Θ , εv Θ ) 2 L2 t (B s ) ≤ 2C e a|Dx| (u 0 , εv 0 , T 0 ) 2 B s + 2C 2 e Rt (u Θ , εv Θ , T Θ ) 2 L2 t, τ (t) (B s+ 1 2 ) + 2C 2 u Θ B 1 2 e Rt ∇T Θ 2 L2 t (B s ) . We set (3.43) T def = sup t > 0 : u Θ B 1 2 ≤ 1 2C 2 and τ (t) ≤ a λ ,
and we choose initial data such that C e a|Dx| (u 0 , εv 0 )

B 1 2 + e a|Dx| T 0 B 1 2 < min 1 2C 2 , a 2λ .
The fact that τ (0) = 0 implies already that T > 0. If λ = 2C 2 , for any 0 < t < T , we have

(3.44) e Rt (u Θ , εv Θ , T Θ ) 2 L∞ t (B s ) + e Rt ∇T Θ 2 L2 t (B s ) + e Rt ∂ y (u Θ , εv Θ ) 2 L2 t (B s ) + ε 2 e Rt ∂ x (u Θ , εv Θ ) 2 L2 t (B s ) ≤ 2C e a|Dx| (u 0 , T 0 ) 2 B s .
¿From (3.44) and (3.41), we get that, for any 0 < t < T ,

u Θ B 1 2 ≤ e Rt (u Θ , εv Θ , T Θ ) L∞ t (B s ) ≤ C e a|Dx| (u 0 , εv 0 , T 0 ) B s ≤ C e a|Dx| (u 0 , εv 0 ) B 1 2 + e a|Dx| T 0 B 1 2 < 1 2C 2 .
Now, we recall that we already defined τ (t) = ∂ y u ε Θ (t)

B 1 2 + ε ∂ y v ε Θ (t) B 1 
2 with τ (0) = 0. Then, for any 0 < t < T , Inequality (3.44) yields

τ (t) = t 0 ∂ y u ε Θ (t ) B 1 2 + ε ∂ y v ε Θ (t ) B 1 2 dt ≤ t 0 e -Rt e Rt ∂ y u ε Θ (t ) B 1 2 + ε e Rt ∂ y v ε Θ (t ) B 1 2 dt ≤ t 0 e -2Rt dt 1 2 t 0 ( e Rt ∂ y u ε Θ (t) B 1 2 + ε e Rt ∂ y v ε Θ (t) B 1 2 ) 2 dt 1 2 ≤ C e Rt (ε∂ y v ε Θ , ∂ y u ε Θ ) L2 t (B 1 2 ) 
≤ C e a|Dx| (u 0 , εv 0 )

B 1 2 + C e a|Dx| T 0 B 1 2 < a 2λ .
A continuity argument implies that T = +∞ and we have (3.44) is valid for any t ∈ R + .

Proof of Lemme 3.1. Using Bony's homogeneous decomposition into paraproducts and remainders as in Definition 1.1, we can write

v∂ y v = T h v ∂ y v + T h ∂yv v + R h (v, ∂ y v),
where

T a b = q∈Z S h q-1 a∆ h q b and R h (a, b) = |q -q|≤1 ∆ h q a∆ h q b.
So, we have

ε 2 t 0 e Rt ∆ h q (v∂ y v) Θ , e Rt ∆ h q v Θ L 2 dt ≤ I 1,q + I 2,q + I 3,q ,
where

I 1,q = ε 2 t 0 e Rt ∆ h q (T h v ∂ x v) Θ , e Rt ∆ h q v Θ L 2 dt I 2,q = ε 2 t 0 e Rt ∆ h q (T h ∂xv v) Θ , e Rt ∆ h q v Θ L 2 dt I 3,q = ε 2 t 0 e Rt ∆ h q (R h (v, ∂ x v)) Θ , e Rt ∆ h q v Θ L 2 dt .
Using the support properties given in [[3], Proposition 2.10], the definition of T h v ∂ y v and the fact that ∂ y v = -∂ x u, we infer

I 1,q = ε 2 t 0 e Rt ∆ h q (T h v ∂ x v) Θ , e Rt ∆ h q v Θ L 2 dt ε 2 |q -q|≤4 t 0 e 2Rt S h q -1 v Θ (t) L ∞ ∆ h q ∂ y v Θ (t) L 2 ∆ h q v Θ (t) L 2 ε 2 |q -q|≤4 t 0 e 2Rt S h q -1 v Θ (t) L ∞ ∆ h q ∂ x u Θ (t) L 2 ∆ h q v Θ (t) L 2 ε 2 |q -q|≤4 t 0 e 2Rt 2 -q 2 S h q -1 v Θ (t) L ∞ 2 q 2 ∆ h q ∂ x u Θ (t) L 2 ∆ h q v Θ (t) L 2 ε 2 |q -q|≤4 t 0 e 2Rt 2 -q 2 S h q -1 v Θ (t) L ∞ ∂ x u Θ (t) B 1 2 ∆ h q v Θ (t) L 2 .
Estimate (2.16) implies

∆ h q v Θ (t) L ∞ ≤ 1 0 ∆ h q ∂ x u Θ (t, ., y ) L ∞ h dy 2 q 2 × 1 0 ∆ h q ∂ x u Θ (t, ., y ) L 2 h dy 2 q 2 × 2 q ∆ h q u Θ (t) L 2 2 3q 2 ∆ h q u Θ (t) L 2 .
For s ≤ 1, we have

I 1,q ε |q -q|≤4 t 0 e 2Rt 2 -q 2 S h q -1 v Θ (t) L ∞ ε ∂ x u Θ (t) B 1 2 ∆ h q v Θ (t) L 2 ε |q -q|≤4 t 0 e 2Rt 2 q ∆ h q u Θ (t) L 2 ε ∂ x u Θ (t) B 1 2 ∆ h q v Θ (t) L 2 ε |q -q|≤4 2 q t 0 ε ∂ x u Θ B 1 2 e 2Rt ∆ h q u Θ (t ) 2 L 2 dt 1 2 t 0 ε ∂ x u Θ B 1 2 e 2Rt ∆ h q v Θ (t) 2 L 2 dt 1 2
The definition of τ (t) and Definition 1.5 allow to write

t 0 τ (t )e 2Rt ∆ h q u Θ (t ) 2 L 2 dt 1 2 2 -q(s+ 1 2 ) d q (u Θ ) e Rt u Θ L2 t, τ (B s+ 1 
2 ) .

Then,

I 1,q 2 -2qs d 2 q e Rt u Θ L2 t, τ (B s+ 1 2 ) ε e Rt v Θ L2 t, τ (B s+ 1 
2 ) , where

d 2 q = d q (v Θ )   |q-q |≤4 d q (u φ )2 (q-q )(s-1 2 )
  form a summable sequence, which implies q∈Z

2 2qs I 1,q e Rt u Θ L2 t, τ (B s+ 1 2 ) ε e Rt v Θ L2 t, τ (B s+ 1 2 ) . (3.45)
The second term I 2,q can be controlled in a similar way. Using the support properties given in [[3], Proposition 2.10], the definition of T h v ∂ y v and the fact that ∂ y v = -∂ x u, we have

I 2,q = t 0 e Rt ∆ h q (T h ∂yv v) Θ , e Rt ∆ h q v Θ L 2 dt ≤ |q -q|≤4 t 0 e 2Rt S h q -1 ∂ y v Θ (t ) L ∞ ∆ h q v Θ (t ) L 2 ∆ h q v Θ (t ) L 2 dt |q -q|≤4 t 0 e 2Rt S h q -1 ∂ x u Θ (t ) L ∞ ∆ h q v Θ (t ) L 2 ∆ h q v Θ (t ) L 2 dt ,
By Poincaré's inequality, on the interval {0 < y < 1}, we have the inclusion Ḣ1 y → L ∞ y and,

(3.46) ∆ h q ∂ x u Θ (t ) L ∞ 2 q 2 ∆ h q ∂ x u Θ (t ) L 2 h (L ∞ v ) 2 3q 2 ∆ h q ∂ y u Θ (t ) L 2 d q (u Θ )2 q ∂ y u Θ (t ) B 1 2
, where {d q (u Θ )} is a square-summable sequence with d q (u Θ ) 2 = 1. As a consequence,

S h q -1 u Θ (t ) L ∞ 2 q ∂ y u Θ (t ) B 1 2 , which implies I 2,q |q -q|≤4 t 0 e 2Rt 2 q ∂ y u Θ (t ) B 1 2 ∆ h q v Θ (t ) L 2 ∆ h q v Θ (t ) L 2 |q -q|≤4 2 q t 0 ∂ y u Θ (t ) B 1 2 e 2Rt ∆ h q v Θ (t ) 2 L 2 dt 1 2 t 0 ∂ y u Θ (t ) B 1 2 e 2Rt ∆ h q v Θ (t ) 2 L 2 dt 1 2
.

Using the definition of τ (t) and Definition 1.5, we write

t 0 τ (t )e 2Rt ∆ h q v Θ (t ) 2 L 2 dt 1 2 2 -q(s+ 1 2 ) d q (v Θ ) e Rt v Θ L2 t, τ (B s+ 1 
2 ) .

Then,

I 2,q 2 -2qs d 2 q e Rt v Θ 2 L2 t, τ (B s+ 1 2 )
, where

d 2 q = d q (v Θ )   |q-q |≤4 d q (v Θ )2 (q-q )(s-1 2 )
  form a summable sequence, which implies

q∈Z 2 2qs I 2,q e Rt v Θ 2 L2 t, τ (B s+ 1 2 ) . (3.47)
To end this proof, it remains to estimate I 3,q . Using the support properties given in [[3], Proposition 2.10], the definition of R h (v, ∂ y v), the divergence-free property and Bernstein lemma 1.2, we can write

I 3,q = t 0 e Rt ∆ h q (R h (v, ∂ y v)) Θ , e Rt ∆ h q v Θ L 2 dt ≤ t 0 2 q 2 q ≥q-3 e 2Rt ∆ h q v Θ (t ) L 2 ∆h q ∂ y v Θ (t ) L 2 h (L ∞ v ) ∆ h q v Θ (t ) L 2 dt 2 q 2 q ≥q-3 t 0 e 2Rt ∆ h q v Θ (t ) L 2 ∆h q ∂ x u Θ (t ) L 2 h (L ∞ v ) ∆ h q v Θ (t ) L 2 dt . The fact that ∆h q ∂ x u Θ (t ) L 2 h (L ∞ v ) ≤ 2 q ∆h q ∂ y u Θ (t ) L 2 , implies, I 3 2 q 2 q ≥q-3 t 0 e 2Rt ∆ h q v Θ (t) L 2 2 q ∆h q ∂ y u Θ (t) L 2 ∆ h q v Θ (t) L 2 2 q 2 q ≥q-3 t 0 e 2Rt ∆ h q v Θ (t) L 2 2 q 2 ∂ y u Θ (t) B 1 2 ∆ h q v Θ (t) L 2 2 q 2 q ≥q-3 2 q 2 t 0 ∂ y u Θ (t ) B 1 2 e 2Rt ∆ h q v Θ (t ) 2 L 2 dt 1 2 t 0 ∂ y u Θ (t ) B 1 2 e 2Rt ∆ h q v Θ (t ) 2 L 2 dt 1 2
Next, the definition of τ (t) and Definition 1.5 yield

t 0 τ (t )e 2Rt ∆ h q v Θ (t ) 2 L 2 dt 1 2 2 -q(s+ 1 2 ) d q (v Θ ) e Rt v Θ L2 t, τ (B s+ 1 
2 ) . Thus,

I 3,q 2 -2qs d 2 q e Rt v Θ 2 L2 t, τ (B s+ 1 2 )
, where

d 2 q = d q (v Θ )   |q-q |≤4 d q (v Θ )2 (q-q )(s-1 2 )
  form a summable sequence, which implies q∈Z 

2 2qs I 3,q e Rt v Θ 2 L2 t, τ (B s+

The convergence to the hydro-static Navier-Stokes coupled with temperature

The goal of this section is to prove Theorem 1.8, which justifies the convergence of the scaled anisotropic Navier-Stokes coupled with temperature towards the hydro-static Navier-Stokes coupled with temperature in a 2D striped domain. To this end, we introduce

w ε 1 = u ε -u and w ε 2 = v ε -v, q ε = p ε -p and θ ε = T ε -T.
Then, systems (1.3) and (1.4) imply that (w 1 ε , w 2 ε , q ε , θ ε ) verifies (4.49)

               ∂ t w ε 1 -ε 2 ∂ 2 x w ε 1 -∂ 2 y w ε 1 + ∂ x q ε = R 1,ε in S×]0, ∞[, ε 2 ∂ t w ε 2 -ε 2 ∂ 2 x w ε 2 -∂ 2 y w ε 2 + ∂ y q ε = θ ε + R 2,ε , ∂ t θ ε -∂ 2 x θ ε -∂ 2 y θ ε = R 3,ε ∂ x w ε 1 + ∂ y w ε 2 = 0, (w ε 1 , w ε 2 , θ ε ) | t=0 = (u ε 0 -u 0 , v ε 0 -v 0 , T ε 0 -T 0 ) , (w ε 1 , w ε 2 , θ ε ) | y=0 = (w ε 1 , w ε 2 , θ ε ) | y=1 = 0
, where v 0 is a function of u 0 , using (2.16) and the remaining terms R i,ε , with i = 1, 2, 3, are given by 

     R 1,ε = ε 2 ∂ 2 x u -(u ε ∂ x u ε -v ε ∂ y u ε ) -(u∂ x u -v∂ y u), R 2,ε = -ε 2 ∂ t v -ε 2 ∂ 2 x v -∂ 2 y v + u ε ∂ x v ε + v ε ∂ y v ε , R 3,ε = -(u ε ∂ x T ε + v ε ∂ y T ε ) + (u∂ x T + v∂ y T ) .
f ϕ (t, x, y) = F -1
ξ→x e ϕ(t,ξ) f (t, ξ, y) where ϕ(t, ξ) = (a -µη(t)) |ξ|, (4.51) where µ ≥ λ will be determined later, and η(t) is given by

η(t) = t 0 (∂ y u ε Θ , ε∂ x u ε Θ )(t ) B 1 2 + ∂ y u Φ (t ) B 1 2
dt .

We can observe that, if we take c 0 and c 1 small enough in Theorems 1.6 and 1.7 then ϕ(t) ≥ 0 and

0 ≤ ϕ(t, ξ) ≤ min (Φ(t, ξ), Θ(t, ξ)) .
In what follows, for simplicity, we drop the script ε and we will write (w 1 ϕ , w 2 ϕ , q ϕ , θ ϕ , R i ϕ ) instead of (w ε,1 ϕ , w ε,2 ϕ , q ε , θ ε ϕ , R i,ε ϕ ). Direct calculations show that (w 1 ϕ , w 2 ϕ , q ϕ , θ ϕ ) satisfies (4.52)

               ∂ t w 1 ϕ + µ|D x | η(t)w 1 ϕ -ε 2 ∂ 2 x w 1 ϕ -∂ 2 y w 1 ϕ + ∂ x q ϕ = R 1 ϕ in S×]0, ∞[, ε 2 ∂ t w 2 ϕ + µ|D x | η(t)w 2 ϕ -ε 2 ∂ 2 x w 2 ϕ -∂ 2 y w 2 ϕ + ∂ y q ϕ = θ ϕ + R 2 ϕ , ∂ t θ ϕ + µ|D x | η(t)θ ϕ -∂ 2 x θ ϕ -∂ 2 y θ ϕ = R 3 ϕ ∂ x w 1 ϕ + ∂ y w 2 ϕ = 0, w 1 ϕ , w 2 ϕ , θ ϕ | t=0 = (u ε 0 -u 0 , v ε 0 -v 0 , T ε 0 -T 0 ) , w 1 ϕ , w 2 ϕ , θ ϕ | y=0 = w 1 ϕ , w 2 ϕ , θ ϕ | y=1 = 0.
As in the previous sections, we will use "C" to denote a generic positive constant which can change from line to line.

Applying the dyadic operator in the horizontal variable ∆ h q to the system (4.52), then taking the L 2 (S) scalar product of the first, second and the third equations of the obtained system with ∆ h q w 1 ϕ , ∆ h q w 2 ϕ and ∆ h q θ ϕ respectively, we obtain (4.53) 1 2

d dt ∆ h q (w 1 ϕ , εw 2 ϕ )(t) 2 L 2 + µ η(t)(|D x |∆ h q (w 1 ϕ , εw 2 ϕ ), ∆ h q (w 1 ϕ , εw 2 ϕ )) L 2 + ∂ y ∆ h q (w 1 ϕ , εw 2 ϕ ) 2 L 2 + ε 2 ∂ x ∆ h q (w 1 ϕ , εw 2 ϕ ) 2 L 2 = ∆ h q R 1 ϕ , ∆ h q w 1 ϕ L 2 + ∆ h q R 2 ϕ , ∆ h q w 2 ϕ L 2 -∆ h q ∇q ϕ , ∆ h q (w 1 ϕ , εw 2 ϕ ) L 2 + ∆ h q θ φ , ∆ h q w 2 φ L 2 and (4.54) 1 2 d dt ∆ h q θ ϕ (t) 2 L 2 + µ η(t) |D x |∆ h q θ Θ , ∆ h q θ ϕ L 2 + ∇∆ h q θ ϕ 2 L 2 = ∆ h q R 3 ϕ , ∆ h q θ ϕ L 2 .
Integrating (4.53) and (4.54) with respect to the time variable, we have

(4.55) ∆ h q (w 1 ϕ , εw 2 ϕ )(t) 2 L ∞ t (L 2 ) + µ t 0 η(t ) |D x |∆ h q (w 1 ϕ , εw 2 ϕ ), ∆ h q (w 1 ϕ , εw 2 ϕ ) L 2 dt + ∂ y ∆ h q (w 1 ϕ , εw 2 ϕ ) 2 L 2 t (L 2 ) + ε 2 e Rt ∂ x ∆ h q (w 1 ϕ , εw 2 ϕ ) 2 L 2 t (L 2 ) ≤ ∆ h q (w 1 ϕ , εw 2 ϕ )(0) 2 L 2 + G q 1 + G q 2 + G q 3 + G q 4 , and 
(4.56) ∆ h q θ ϕ (t) 2 L 2 + λ t 0 η(t ) |D x |∆ h q θ Θ , ∆ h q θ ϕ L 2 dt + ∇∆ h q θ ϕ 2 L 2 ≤ ∆ h q θ ϕ (0) 2 L 2 + G q 5 ,
where the terms G q i , i = 1, . . . , 5, will be precised and controlled in what follows. We will start with G q 3 for that, using the fact that ∂ x w 1 ϕ + ∂ y w 2 ϕ = 0 and integrating by parts, we have

G q 3 = t 0 ∇∆ h q q ϕ , ∆ h q (w 1 ϕ , w 2 ϕ ) L 2 dt = t 0 ∆ h q q ϕ , div (∆ h q (w 1 ϕ , w 2 ϕ )) L 2 dt = 0. Boundary condition (u Θ , v Θ ) | y=0 = (u Θ , v Θ ) | y=1 = 0, incompressibility property ∂ x w 1 ϕ + ∂ y w 2 ϕ = 0 and Poincaré inequality with respect to y ∈]0, 1[ yield G q 4 = t 0 ∆ h q θ ϕ , ∆ h q w 2 ϕ L 2 dt = t 0 ∆ h q θ ϕ , -∆ h q y 0 ∂ x w 1 ϕ (x, s)ds L 2 dt = t 0 ∆ h q ∂ x θ ϕ , ∆ h q y 0 w 1 ϕ (x, s)ds L 2 dt ≤ t 0 ∆ h q ∂ x θ ϕ L 2 ∆ h q w 1 ϕ L 2 dt ≤ C ∆ h q ∂ x θ ϕ 2 L 2 t (L 2 ) + ε 100 ∆ h q w 1 ϕ 2 L 2 t (L 2 )
Using the two above estimates, we will rewrite (4.55) as follows

(4.57) ∆ h q (w 1 ϕ , εw 2 ϕ )(t) 2 L ∞ t (L 2 ) + µ t 0 η(t ) |D x |∆ h q (w 1 ϕ , εw 2 ϕ ), ∆ h q (w 1 ϕ , εw 2 ϕ ) L 2 dt + ∂ y ∆ h q (w 1 ϕ , εw 2 ϕ ) 2 L 2 t (L 2 ) + ε 2 e Rt ∂ x ∆ h q (w 1 ϕ , εw 2 ϕ ) 2 L 2 t (L 2 ) = ∆ h q (w 1 ϕ , εw 2 ϕ )(0) 2 L 2 + G q 1 + G q 2 + C ∆ h q ∂ x θ ϕ 2 L 2 , where G q 1 = t 0 ∆ h q R 1 ϕ , ∆ h q w 1 ϕ L 2 dt G q 2 = t 0 ∆ h q R 2 ϕ , ∆ h q w 2 ϕ L 2 dt ,
with R i ϕ being defined in (4.50). The remaining of this section consists in controlling the two terms G q 1 et G q 2 . We will start with G q 1 by observing that

R 1 ϕ = (ε 2 ∂ 2 x u -(u ε ∂ x u ε + v ε ∂ y u ε ) -(u∂ x u -v∂ y u)) ϕ = (ε 2 ∂ 2 x u -(u ε ∂ x w 1 + w 1 ∂ x u) -(v ε ∂ y w 1 + w 2 ∂ y u)) ϕ , so, G q 1 = t 0 ∆ h q R 1 ϕ , ∆ h q w 1 ϕ L 2 dt = t 0 ∆ h q (ε 2 ∂ 2 x u -(u ε ∂ x w 1 + w 1 ∂ x u) -(v ε ∂ y w 1 + w 2 ∂ y u)) ϕ , ∆ h q w 1 ϕ L 2 dt ≤ I q 1 + I q 2 + I q 3
, where

I q 1 = t 0 ∆ h q (ε 2 ∂ 2 x u) ϕ , ∆ h q w 1 ϕ L 2 dt I q 2 = t 0 ∆ h q (u ε ∂ x w 1 + w 1 ∂ x u) ϕ , ∆ h q w 1 ϕ L 2 dt I q 3 = t 0 v ε ∂ y w 1 + w 2 ∂ y u)) ϕ , ∆ h q w 1 ϕ L 2 dt .
Using integration by parts and Poicaré inequality, we have

I q 1 = ε 2 t 0 ∆ h q (∂ 2 x u) ϕ , ∆ h q w 1 ϕ L 2 dt = ε 2 t 0 ∆ h q (∂ x u) ϕ , ∆ h q ∂ x w 1 ϕ L 2 dt ≤ Cd 2 q 2 -q ε ∂ x u ϕ L2 t (B 1 2 ) ε∂ x w 1 ϕ L2 t (B 1 2 ) ≤ Cd 2 q 2 -q ε ∂ y u ϕ L2 t (B 3 2 ) εw 1 ϕ L2 t (B 3 
2 ) , Summing with respect to q ∈ Z, we obtain q∈Z

2 q I q 1 = ε 2 q∈Z 2 q t 0 ∆ h q (∂ 2 x u) ϕ , ∆ h q w 1 ϕ L 2 dt Cε ∂ y u ϕ L2 t (B 3 2 ) εw 1 ϕ L2 t (B 3 
2 ) . (4.58) For I q 2 , we write

I q 2 = t 0 ∆ h q (u ε ∂ x w 1 + w 1 ∂ x u) ϕ , ∆ h q w 1 ϕ L 2 dt ≤ I q 21 + I q 22 ,
where

I q 21 = t 0 ∆ h q (u ε ∂ x w 1 ) ϕ , ∆ h q w 1 ϕ L 2 dt I q 22 = t 0 ∆ h q (w 1 ∂ x u) ϕ , ∆ h q w 1 ϕ L 2 dt .
Lemma (1.9) implies

I q 21 = t 0 ∆ h q (u ε ∂ x w 1 ) ϕ , ∆ h q w 1 ϕ L 2 dt ≤ Cd 2 q 2 -q w 1 ϕ 2 L2
t, η(t) (B 1 ) , and then, q∈Z

2 q I q 21 = q∈Z 2 q t 0 ∆ h q (u ε ∂ x w 1 ) ϕ , ∆ h q w 1 ϕ L 2 dt ≤ Cd 2 q 2 -q w 1 ϕ 2 L2 t, η(t) (B 1 ) , (4.59) 
For I q 22 , using Bony's decomposition for the horizontal variable, we write

w 1 ∂ x u = T h ∂xu w 1 + T h w 1 ∂ x u + R h (w 1 , ∂ x u)
, and then, we have the following bound

I q 22 = t 0 ∆ h q (T h ∂xu w 1 + T h w 1 ∂ x u + R h (w 1 , ∂ x u)) ϕ , ∆ h q w 1 ϕ L 2 dt ≤ I q 22,1 + I q 22,2 + I q 22,3
with

I q 22,1 = t 0 ∆ h q (T h ∂xu w 1 ) ϕ , ∆ h q w 1 ϕ L 2 dt I q 22,2 = t 0 ∆ h q (T h w 1 ∂ x u) ϕ , ∆ h q w 1 ϕ L 2 dt I q 22,3 = t 0 ∆ h q (R h (w 1 , ∂ x u) ϕ , ∆ h q w 1 ϕ L 2 dt .
Using the support properties given in [[3], Proposition 2.10] and the definition of T h ∂x w 1 , we have

I q 22,1 ≤ |q-q |≤4 t 0 S h q -1 w 1 ϕ L ∞ h (L 2 v ) ∆ h q ∂ x u ϕ L 2 h (L ∞ v ) ∆ h q w 1 ϕ L 2 ≤ |q-q |≤4 t 0 2 q 2 S h q -1 w 1 ϕ L 2 ∆ h q ∂ x u ϕ L 2 h (L ∞ v ) ∆ h q w 1 ϕ L 2 . Since ∆ h q ∂ x u ϕ L 2 h (L ∞ v ) d q (u ϕ ) u ϕ 1 2 B 3 2 ∂ y u ϕ 1 2 B 1 2
, then,

I q 22,1 = t 0 ∆ h q (T h ∂xu w 1 ) ϕ , ∆ h q w 1 ϕ |q-q |≤4 t 0 2 q 2 S h q -1 w 1 ϕ L 2 d q (u ϕ ) u ϕ 1 2 B 3 2 ∂ y u ϕ 1 2 B 1 2 ∆ h q w 1 ϕ L 2 |q-q |≤4 t 0 d q (u ϕ )2 q 2 2 -q 2 ∂ y w 1 ϕ B 1 2 u ϕ 1 2 B 3 2 ∂ y u ϕ 1 2 B 1 2 2 -q d q (w 1 ϕ ) w 1 ϕ B 1 d 2 q 2 -q u ϕ 1 2 L∞ t (B 3 
2 )

∂ y w 1 ϕ L2 t (B 1 2 ) w 1 ϕ L2 t, η(t) (B 1 )
where d 2 q is a summable sequence, which implies q∈Z

2 q I q 22,1 = q∈Z 2 q t 0 ∆ h q (T h ∂xu w 1 ) ϕ , ∆ h q w 1 ϕ u ϕ 1 2 L∞ t (B 3 2 
)

∂ y w 1 ϕ L2 t (B 1 2 ) w 1 ϕ L2 t, η(t) (B 1 ) . (4.60) 
Now, we recall that

∆ h q ∂ x u ϕ L ∞ ≤ l≤q-2 2 3l 2 ∆ h l u ϕ 1 2 L 2 ∆ h l ∂ y u ϕ 1 2 L 2 2 q ∂ y u ϕ B 1 2 ,
so we can deduce

I q 22,2 = t 0 ∆ h q (T h w 1 ∂ x u) ϕ , ∆ h q w 1 ϕ ≤ |q-q |≤4 t 0 S h q -1 ∂ x u ϕ L ∞ ∆ h q w 1 ϕ L 2 ∆ h q w 1 ϕ L 2 |q-q |≤4 t 0 2 q ∂ y u ϕ B 1 2 ∆ h q w 1 ϕ L 2 ∆ h q w 1 ϕ 2 |q-q |≤4 2 q t 0 ∂ y u ϕ B 1 2 ∆ h q w 1 ϕ 2 L 2 dt 1 2 t 0 ∂ y u ϕ B 1 2 ∆ h q w 1 ϕ 2 L 2 dt 1 2
Using the definition of η(t) and Definition 1.5 we have

t 0 ∂ y u ϕ B 1 2 ∆ h q w 1 ϕ 2 L 2 dt 1 2 2 -q d q (w 1 ϕ ) w 1 ϕ L2 t, η(t) (B 1 ) .
Then,

I q 22,2 2 -q d 2 q w 1 ϕ 2 L2 t, η(t) (B 1 )
, where

d 2 q = d q (w 1 ϕ )   |q-q |≤4 d q (w 1 ϕ )   form a summable sequence, which implies q∈Z 2 q I q 22,2 w 1 ϕ 2 L2 t, η(t) (B 1 ) . (4.61) 
In a similar way, we have

I q 22,3 = t 0 ∆ h q (R h (w 1 , ∂ x u)) ϕ , ∆ h q w 1 ϕ dt 2 q 2
q ≥q-3

t 0 ∆ h q w 1 ϕ L 2 ∆h q ∂ x u ϕ L 2 h (L ∞ v ) ∆ h q w 1 ϕ L 2 dt 2 q 2
q ≥q-3

t 0 2 q 2 ∆ h q w 1 ϕ L 2 ∂ y u ϕ B 1 2 ∆ h q w 1 ϕ L 2 2 q 2 q ≥q-3 2 q 2 t 0 ∂ y u ϕ B 1 2 ∆ h q w 1 ϕ L 2 dt t 0 ∂ y u ϕ B 1 2 ∆ h q w 1 ϕ L 2 dt d 2 q 2 -q w 1 ϕ 2 L2 t, η(t) (B 1 )
, form a summable sequence, which implies q∈Z 2 q I q 22,3

w 1 ϕ 2 L2 t, η(t) (B 1 ) . (4.62)
Summing the estimates (4.60), (4.61) and (4.62) we obtain q∈Z

2 q I q 22 w 1 ϕ L2 t, η(t) (B 1 ) w 1 ϕ L2 t, η(t) (B 1 ) + u ϕ 1 2 L∞ t (B 3 2 
)

∂ y w 1 ϕ L2 t (B 1 2 
) . (4.63)

For the term I q 3 , we write

I q 3 = t 0 v ε ∂ y w 1 + w 2 ∂ y u)) ϕ , ∆ h q w 1 ϕ L 2 dt ≤ I q 31 + I q 32 , (4.64) 
where

I q 31 = t 0 ∆ h q (v ε ∂ y w 1 ) ϕ , ∆ h q w 1 ϕ L 2 dt I q 32 = t 0 ∆ h q (w 2 ∂ y u) ϕ , ∆ h q w 1 ϕ L 2 dt . Since v ε ∂ y w 1 = (w 2 + v)∂ y w 1 = w 2 ∂ y w 1 + v∂ y w 1 ,
we get

I q 31 ≤ I q 31,1 + I q 31,2 , with I q 31,1 = t 0 ∆ h q (w 2 ∂ y w 1 ) ϕ , ∆ h q w 1 ϕ L 2 dt I q 31,2 = t 0 ∆ h q (v∂ y w 1 ) ϕ , ∆ h q w 1 ϕ L 2 dt .
Lemma (1.10) implies q∈Z

2 q I q 31,1 = q∈Z 2 q t 0 ∆ h q (w 2 ∂ y w 1 ) ϕ , ∆ h q w 1 ϕ L 2 dt w 1 ϕ L2 t, η(t) (B 1 ) . (4.65) 
For the term I q 31,2 , we apply Bony's decomposition with respect to the horizontal variable

v∂ y w 1 = T h v ∂ y w 1 + T h ∂yw 1 v + R h (v, ∂ y w 1
). Using (2.16), we have

S h q -1 v ϕ L ∞ = S h q -1 y 0 ∂ x u ϕ (t, x, s)ds L ∞ l≤q -2 2 3l 2 ∆ h l u ϕ 1 2 L 2 ∆ h l ∂ y u ϕ 1 2 L 2 2 q 2 u ϕ 1 2 B 3 2 ∂ y u ϕ 1 2 B 1 2
, from which, we infer

t 0 ∆ h q (T h v ∂ y w 1 ) ϕ , ∆ h q w 1 ϕ L 2 dt |q -q|≤4 t 0 S h q -1 v ϕ L ∞ ∆ h q ∂ y w 1 ϕ L 2 ∆ h q w 1 ϕ L 2 dt |q -q|≤4 t 0 2 q 2 u ϕ 1 2 B 3 2 ∂ y u ϕ 1 2 B 1 2 ∆ h q ∂ y w 1 ϕ L 2 ∆ h q w 1 ϕ L 2 dt ≤ d 2 q 2 -q u ϕ 1 2 L∞ t (B 3 2 
)

∂ y w 1 ϕ L2 t (B 1 2 ) w 1 ϕ L2 t, η(t) (B 1 )
, where d 2 q forms a summable sequence. Thus,

q∈Z 2 q t 0 ∆ h q (T h v ∂ y w 1 ) ϕ , ∆ h q w 1 ϕ L 2 u ϕ 1 2 L∞ t (B 3 2 
)

∂ y w 1 ϕ L2 t (B 1 2 ) w 1 ϕ L2 t, η(t) (B 1 ) . (4.66) 
In the same way, we have

∆ h q v ϕ (t, x, y) L 2 h (L ∞ v ) u ϕ 1 2 B 3 2 ∂ y u ϕ 1 2 B 1 2
, from which, we infer

t 0 ∆ h q (T h ∂yw 1 v) ϕ , ∆ h q w 1 ϕ L 2 dt |q -q|≤4 t 0 S h q -1 ∂ y w 1 ϕ L ∞ h (L 2 v ) ∆ h q v ϕ L 2 h (L ∞ v ) ∆ h q w 1 ϕ L 2 dt |q -q|≤4 t 0 u ϕ 1 2 B 3 2 S h q -1 ∂ y w 1 ϕ L ∞ h (L 2 v ) ∂ y u ϕ 1 2 B 1 2 ∆ h q w 1 ϕ L 2 dt ≤ d 2 q 2 -q u ϕ 1 2 L∞ t (B 3 2 
)

∂ y w 1 ϕ L2 t (B 1 2 ) w 1 ϕ L2 t, η(t) (B 1 )
, where d 2 q forms a summable sequence. Multiply the above estimates by 2 q , and summing over q ∈ Z, we obtain q∈Z

2 q t 0 ∆ h q (T h ∂yw 1 v) ϕ , ∆ h q w 1 ϕ L 2 dt u ϕ 1 2 L∞ t (B 3 2 
)

∂ y w 1 ϕ L2 t (B 1 2 ) w 1 ϕ L2 t, η(t) (B 1 ) . (4.67) 
Finally, we have

t 0 ∆ h q (R h (v, ∂ y w 1 )) ϕ , ∆ h q w 1 ϕ L 2 dt 2 q 2 q ≥q-3 t 0 ∆ h q v ϕ L 2 h (L ∞ v ) ∆h q ∂ y w 1 ϕ L 2 ∆ h q w 1 ϕ L 2 dt 2 q 2 q ≥q-3 t 0 u ϕ 1 2 B 3 2 ∆h q ∂ y w 1 ϕ L 2 ∂ y u ϕ 1 2 B 1 2 ∆ h q w 1 ϕ L 2 dt ≤ d 2 q 2 -q u ϕ 1 2 L∞ t (B 3 2 
)

∂ y w 1 ϕ L2 t (B 1 2 ) w 1 ϕ L2 t, η(t) (B 1 ) , which implies q∈Z 2 q t 0 ∆ h q (R h (v, ∂ y w 1 )) ϕ , ∆ h q w 1 ϕ L 2 dt u ϕ 1 2 L∞ t (B 3 2 
)

∂ y w 1 ϕ L2 t (B 1 2 ) w 1 ϕ L2 t, η(t) (B 1 ) . (4.68) 
Taking the sum of (4.66), (4.67) and (4.68), we arrive to

q∈Z 2 q I q 31,2 u ϕ 1 2 L∞ t (B 3 2 
)

∂ y w 1 ϕ L2 t (B 1 2 ) w 1 ϕ L2 t, η(t) (B 1 ) . (4.69) 
We now estimate the term I q 32 in (4.64). Bony's decomposition for the horizontal variable implies

I q 32 = t 0 ∆ h q (T h w 2 ∂ y u + T h ∂yu w 2 + R h (w 2 , ∂ y u)) ϕ , ∆ h q w 1 ϕ L 2
dt ≤ I q 32,1 + I q 32,2 + I q 32,3 , where

I q 32,1 = t 0 ∆ h q (T h w 2 ∂ y u) ϕ , ∆ h q w 1 ϕ L 2 dt I q 32,2 = t 0 ∆ h q (T h ∂yu w 2 ) ϕ , ∆ h q w 1 ϕ L 2 dt I q 32,3 = t 0 ∆ h q (R h (w 2 , ∂ y u)) ϕ , ∆ h q w 1 ϕ L 2 dt .
We first observe that

I q 32,1 |q -q|≤4 t 0 S h q -1 w 2 ϕ L ∞ ∆ h q ∂ y u ϕ L 2 ∆ h q w 1 ϕ L 2 dt |q -q|≤4 t 0 2 -q 2 S h q -1 w 2 ϕ L ∞ ∂ y u ϕ B 1 2 ∆ h q w 1 ϕ L 2 dt .
Due to the fact that w 2 (t, x, y) = -y 0 ∂ x w 1 (t, x, s)ds, we deduce

S h q -1 w 2 ϕ L ∞ y 0 S h q -1 ∂ x w 1 ϕ (t, x, s) L ∞ h ds 2 3q 2 S h q -1 w 1 ϕ L 2 ,
and then from which, we have

I q 32,1 |q -q|≤4 t 0 2 -q 2 S h q -1 w 2 ϕ L ∞ ∂ y u ϕ B 1 2 ∆ h q w 1 ϕ L 2 |q -q|≤4 t 0 2 -q 2 2 3q 2 S h q -1 w 1 ϕ L 2 ∂ y u ϕ B 1 2 ∆ h q w 1 ϕ L 2 dt d 2 q 2 -q t 0 ∂ y u ϕ B 1 2 S h q -1 w 1 ϕ 2 L 2 dt 1 2 t 0 ∂ y u ϕ B 1 2 ∆ h q w 1 ϕ 2 L 2 dt 1 2
, Taking into account the definition of η(t) and Definition 1.5 we obtain

t 0 ∂ y u ϕ B 1 2 ∆ h q w 1 ϕ 2 L 2 dt 1 2 2 -q d q (w 1 ϕ ) w 1 ϕ L2 t, η(t) (B 1 ) .
Then,

I q 32,1 2 -q d 2 q w 1 ϕ 2 L2 t, η(t) (B 1 ) ,
where

d 2 q = d q (w 1 ϕ )   |q-q |≤4 d q (w 1 ϕ )
  form a summable sequence, which implies q∈Z 2 q I q 32,1

w 1 ϕ 2 L2
t, η(t) (B 1 ) .

(4.70)

Now, for I q 32,2 , we have

I q 32,2 |q -q|≤4 t 0 S h q -1 ∂ y u ϕ L ∞ h (L 2 v ) ∆ h q w 1 ϕ L 2 h (L ∞ v ) ∆ h q w 1 ϕ L 2 dt |q -q|≤4 t 0 2 q 2 ∂ y u ϕ B 1 2 2 q 2 ∆ h q w 1 ϕ L 2 ∆ h q w 1 ϕ L 2 dt |q -q|≤4 2 q t 0 ∂ y u ϕ B 1 2 ∆ h q w 1 ϕ 2 L 2 dt 1 2 t 0 ∂ y u ϕ B 1 2 ∆ h q w 1 ϕ 2 L 2 dt 1 2 d 2 q 2 -q w 1 ϕ 2 L2 t, η(t) (B 1 ) , which implies q∈Z 2 q I q 32,2 w 1 ϕ 2 L2
t, η(t) (B 1 ) .

(4.71)

Estimates for the last term I q 32,3 are also similar. We have

I q 32,3 2 q 2 q ≥q-3 t 0 ∆ h q w 2 ϕ L 2 h (L ∞ v ) ∆h q ∂ y u ϕ L 2 ∆ h q w 1 ϕ L 2 dt 2 q 2 q ≥q-3 t 0 2 q 2 ∆ h q w 1 ϕ L 2 ∂ y u ϕ B 1 2 ∆ h q w 1 ϕ L 2 dt 2 q 2 q ≥q-3 2 q 2 t 0 ∂ y u ϕ B 1 2 ∆ h q w 1 ϕ 2 L 2 dt 1 2 t 0 ∂ y u ϕ B 1 2 ∆ h q w 1 ϕ 2 L 2 dt 1 2 d 2 q 2 -q w 1 ϕ 2 L2
t, η(t) (B 1 ) , which implies q∈Z 2 q I q 32,3 

w 1 ϕ 2 L2
q∈Z 2 q G q 1 = q∈Z 2 q t 0 ∆ h q R 1 ϕ , ∆ h q w 1 ϕ L 2 dt ε ∂ y u ϕ L2 t (B 3 2 ) εw 1 ϕ L2 t (B 3 2 
)

+ u ϕ 1 2 L∞ t (B 3 2 
)

∂ y w 1 ϕ L2 t B 1 2 ) w 1 ϕ L2 t, η(t) (B 1 ) + w 1 ϕ 2 L2
t, η(t) (B 1 ) .

We will now study the second term G q 2 in (4.57). Using the definition of R 2 ϕ , we write G q 2 as follows G q 2 ≤ J q 1 + J q 2 + J q 3 + J q 4 + J q 5 , where divergence-free property and and Poicaré inequality already imply that q∈Z

2 q J q 1 = ε 2 q∈Z 2 q t 0 ∆ h q (∂ t v) ϕ , ∆ h q w 2 ϕ L 2 dt ε 2 (∂ t u) ϕ L2 t (B 3 
2

) ∂ y w 2 ϕ L2 t (B 1 2 ) , q∈Z 2 q J q 2 = ε 2 q∈Z 2 q t 0 ∆ h q (∂ 2 y v) ϕ , ∆ h q w 2 ϕ L 2 dt ε 2 ∂ y u ϕ L2 t (B 3 
2

) ∂ y w 2 ϕ L2 t (B 1 2 ) , q∈Z 2 q J q 3 = ε 4 q∈Z 2 q t 0 ∆ h q (∂ 2 x v) ϕ , ∆ h q w 2 ϕ L 2 ε 4 ∂ y u ϕ L2 t (B 5 
2 ) w 2

ϕ L2 t (B 3 
2 ) .

In order to give an estimate of G q 2 , we will only need to control

J q 4 = ε 2 t 0 ∆ h q (u ε ∂ x v ε ) ϕ , ∆ h q w 2 ϕ L 2 dt and J q 5 = ε 2 t 0 ∆ h q (v ε ∂ y v ε ) ϕ , ∆ h q w 2 ϕ L 2 dt .
We write J q 4 ≤ ε 2 (J q 41 + J q 42 ) , where

J q 41 = t 0 ∆ h q (u ε ∂ x w 2 ) ϕ , ∆ h q w 2 ϕ L 2 dt J q 42 = t 0 ∆ h q (u ε ∂ x v) ϕ , ∆ h q w 2 ϕ L 2 dt .
It follows from Lemma 1.9 that q∈Z 2 q J q 41 = q∈Z

2 q t 0 ∆ h q (u ε ∂ x w 2 ) ϕ , ∆ h q w 2 ϕ L 2 dt w 2 ϕ 2 L2
t, η(t) (B 1 ) .

For the second term, Bony's decomposition for the horizontal variable gives

J q 42 = t 0 ∆ h q (u ε ∂ x v) ϕ , ∆ h q w 2 ϕ L 2 dt ≤ J q 421 + J q 422 + J q 423 , with J q 421 = t 0 ∆ h q (T h u ε ∂ x v) ϕ , ∆ h q w 2 ϕ L 2 dt J q 422 = t 0 ∆ h q (T h ∂xv u ε ) ϕ , ∆ h q w 2 ϕ L 2 dt J q 423 = t 0 ∆ h q (R h (u ε , ∂ x v)) ϕ , ∆ h q w 2 ϕ L 2 dt .
Using the estimate

S h q -1 u ε ϕ L ∞ u ε ϕ 1 2 B 1 2 ∂ y u ε ϕ 1 2 B 1 2
, and the relation (2.16), we have

J q 421 = t 0 ∆ h q (T h u ε ∂ x v) ϕ , ∆ h q w 2 ϕ L 2 dt |q -q|≤4 t 0 S h q -1 u ε ϕ L ∞ ∆ h q ∂ x v ϕ L 2 ∆ h q w 2 ϕ L 2 dt |q -q|≤4 t 0 u ε ϕ 1 2 B 1 2 ∂ y u ε ϕ 1 2 B 1 2 
2 2q ∆ h q u ϕ L 2 ∆ h q w 2 ϕ L 2 dt d 2 q 2 -q u ε ϕ 1 2 L∞ t (B 1 2 
)

∂ y u ϕ L2 t (B 2 ) w 2 ϕ L2
t, η(t) (B 1 ) . Multiply the above inequality by 2 q and summing over q ∈ Z, we obtain (4.75)

q∈Z 2 q J q 421 u ε ϕ 1 2 L∞ t (B 1 2 
)

∂ y u ϕ L2 t (B 2 ) w 2 ϕ L2 t, η(t) (B 1 )
.

In a similar way, the fact that

S h q -1 ∂ x v ϕ L ∞ y 0 S h q -1 ∂ x (∂ x u ϕ (t, x, s) L ∞ ds 2 q 2 ∂ y u ϕ B 2 ,
leads to

J q 422 = t 0 ∆ h q (T h ∂xv u ε ) ϕ , ∆ h q w 2 ϕ L 2 dt d 2 q 2 -q u ε ϕ 1 2 L∞ t (B 1 2 
)

∂ y u ϕ L2 t (B 2 ) w 2 ϕ L2 t, η(t) (B 1 )
.

So multiply by 2 q and summing over q ∈ Z imply (4.76)

q∈Z 2 q J q 422 u ε ϕ 1 2 L∞ t (B 1 2 ) ∂ y u ϕ L2 t (B 2 ) w 2 ϕ L2 t, η(t) (B 1 ) .
For the last term J q 423 , we have

J q 423 = t 0 ∆ h q (R h (∂ x v, u ε )) ϕ , ∆ h q w 2 ϕ L 2 d 2 q 2 -q u ε ϕ 1 2 L∞ t (B 1 2 
)

∂ y u ϕ L2 t (B 2 ) w 2 ϕ L2 t, η(t) (B 1 ) .
Multplying the result by 2 q , and summing over q ∈ Z, we get (4.77)

q∈Z 2 q J q 423 u ε ϕ 1 2 L∞ t (B 1 2 
)

∂ y u ϕ L2 t (B 2 ) w 2 ϕ L2 t, η(t) (B 1 )
.

Summing Inequalities (4.75), (4.76) and (4.77) finally yields

q∈Z 2 q J q 42 u ε ϕ 1 2 L∞ t (B 1 2 
)

∂ y u ϕ L2 t (B 2 ) w 2 ϕ L2 t, η(t) (B 1 )
. Now for J q 5 , we use the following identity

v ε ∂ y v ε = v∂ y w 2 + w 2 ∂ y w 2 + v∂ y v + w 2 ∂ y v.
Lemma 1.10 yields

ε 2 q∈Z 2 q t 0 ∆ h q (w 2 ∂ y w 2 ) ϕ , ∆ h q w 2 ϕ L 2 dt (w 1 ϕ , εw 2 ϕ ) 2 L2 t, η(t) (B 1 ) .
From (4.69), we have

q∈Z 2 q t 0 ∆ h q (v∂ y w 2 ) ϕ , ∆ h q w 2 ϕ L 2 dt u ϕ 1 2 L∞ t (B 3 
2 ) ∂ y w 2 ϕ L2 t (B 1 
2 ) w 2 ϕ L2

t, η(t) (B 1 ) .

As for (4.63), we obtain

q∈Z 2 q t 0 ∆ h q (w 2 ∂ x u) ϕ , ∆ h q w 2 ϕ L 2 dt w 2 ϕ L2 t, η(t) (B 1 ) w 2 ϕ L2 t, η(t) (B 1 ) + u ϕ 1 2 L∞ t (B 3 
2 ) ∂ y w 2 ϕ L2 t (B 1 
2 ) .

Then, we deduce from the proof of (4.69) that q∈Z

2 q t 0 ∆ h q (v∂ y v) ϕ , ∆ h q w 2 ϕ L 2 u ϕ 1 2 L∞ t (B 3 
2 ) ∂ y v ϕ L2 t (B 1 
2 ) w 2 ϕ L2 t, η(t) (B 1 ) d 2 q 2 -q u ϕ 1 2 L∞ t (B 3 
2 ) ∂ y u ϕ L2 t (B 3 
2 ) w 2 ϕ L2 t, η(t) (B 1 ) . As a result, it come out q∈Z 2 q J q 5 (w 1 ϕ , εw 2 ϕ ) 2 L2 t, η(t) (B 1 ) + ε 2 u ϕ 1 2 L∞ t (B 3 
2 ) ∂ y w 2 ϕ L2 t (B 1 
2 ) + ∂ y w 2 ϕ L2 t (B 3 2 ) 
w 2 ϕ L2

t, η(t) (B 1 ) .

(4.78)

We have the following bound

t 0 e Rt ∆ h q (u∂ x w) φ , e Rt ∆ h q w φ L 2 dt ≤ A 1,q + A 2,q + A 3,q , where A 1,q = t 0 e Rt ∆ h q (T h u ∂ x w) φ , e Rt ∆ h q w φ L 2 dt A 2,q = t 0 e Rt ∆ h q (T h ∂xw u) φ , e Rt ∆ h q w φ L 2 dt A 3,q = t 0 e Rt ∆ h q (R h (u, ∂ x w)) φ , e Rt ∆ h q w φ L 2 dt .
Using the support properties given in [[3], Proposition 2.10] and the definition of T h u ∂ x w, we infer

A 1,q ≤ |q-q |≤4 t 0 e 2Rt S h q -1 u φ (t ) L ∞ ∆ h q ∂ x w φ (t ) L 2 ∆ h q w φ (t ) L 2 dt .
By Poincaré's inequality, on the interval {0 < y < 1}, we have the inclusion Ḣ1 y → L ∞ y and,

(A.84) ∆ h q u φ (t ) L ∞ 2 q 2 ∆ h q u φ (t ) L 2 h (L ∞ v ) 2 q 2 ∆ h q ∂ y u φ (t ) L 2 d q (u φ ) ∂ y u φ (t ) B 1 2
, where {d q (u φ )} is a square-summable sequence with d q (u φ ) 2 = 1. Then,

S h q -1 u φ (t ) L ∞ ∂ y u φ (t ) B 1 
2 , which, combining with Hölder inequality, implies that

A 1,q |q-q |≤4 2 q t 0 ∂ y u φ (t ) B 1 2 e Rt ∆ h q w φ (t ) L 2 e Rt ∆ h q w φ (t ) L 2 dt |q-q |≤4 2 q t 0 ∂ y u φ B 1 2 e 2Rt ∆ h q w φ 2 L 2 dt 1 2 t 0 ∂ y u φ B 1 2 e 2Rt ∆ h q w φ 2 L 2 dt 1 2
.

We already define θ(t) = ∂ y u φ (t) B 1 2 and using Definition 1.5 we have

t 0 θ(t )e 2Rt ∆ h q w φ 2 L 2 dt 1 2 2 -q(s+ 1 2 ) d q (w φ ) e Rt w φ L2 t, θ (B s+ 1 
2 ) .

Then,

A 1,q 2 -2qs d 2 q e Rt w φ 2 L2 t, θ (B s+ 1 2 )
, where

d 2 q = d q (w φ )   |q-q |≤4 d q (w φ )2 (q-q )(s-1 2 )   form a summable sequence, which implies q∈Z 2 2qs A 1,q e Rt w φ 2 L2 t, θ (B s+ 1 2 ) . (A.85)
Using the support properties given in [[3], Proposition 2.10] and the definition of T h u ∂ x w, we can estimate A 2,q in a similar way as we did for A 1,q . As in (A.84), we can write

∆ h q u φ L 2 h (L ∞ v ) ∆ h q ∂ y u φ L 2 2 -q 2 d q (u φ ) ∂ y u φ B 1 2 . Then, I q = ∆ h q (T h ∂xw u) φ , ∆ h q w φ L 2 ≤ |q-q |≤4 S h q -1 ∂ x w φ L ∞ h (L 2 v ) ∆ h q u φ L 2 h (L ∞ v ) ∆ h q w φ L 2 ≤ |q-q |≤4 2 -q 2 d q (u φ ) S h q -1 ∂ x w φ L ∞ h (L 2 v ) ∂ y u φ B 1 2 ∆ h q w φ L 2 .
Since 0 < s ≤ 1, we have

e 2Rt I q ≤ |q-q |≤4 e 2Rt 2 -q 2 d q (u φ ) S h q -1 ∂ x w φ L ∞ h (L 2 v ) ∂ y u φ B 1 2 ∆ h q w φ L 2 ≤ |q-q |≤4 e 2Rt 2 -q 2 d q (u φ ) l q -2 2 3l 2 ∆ h l w φ L 2 ∂ y u φ B 1 2 ∆ h q w φ L 2 ≤ |q-q |≤4 2 -q 2 d q (u φ ) l q -2 2 l(1-s) d l (w φ ) e Rt w φ B s+ 1 2 ∂ y u φ B 1 2 ∆ h q e Rt w φ L 2 ≤ |q-q |≤4 2 -q 2 d q (u φ )2 q (1-s) e Rt w φ B s+ 1 2 ∂ y u φ B 1 2 ∆ h q e Rt w φ L 2 ≤ |q-q |≤4 2 -q 2 d q (u φ )2 q (1-s) 2 q(s+ 1 2 ) 2 -q(s+ 1 2 ) e Rt w φ B s+ 1 2 ∂ y u φ B 1 2 ∆ h q e Rt w φ L 2 ≤ d 2 q 2 -2qs e Rt w φ 2 B s+ 1 2 ∂ y u φ B 1 2
. where

d 2 q = d q (w φ )   |q-q |≤4 d q 2 (q-q )(s-1 2 )
  is a summable sequence of positive constants. Summing with respect to q ∈ Z, integrating over [0, t] and using Fubini's theorem, we get

q∈Z 2 2qs A 2,q = t 0 q∈Z 2 2qs e 2Rt I q dt e Rt w φ 2 L2 t, θ (B s+ 1 2 ) , (A.86)
where we recall that θ

(t) = ∂ y u φ B 1 2 .
To end this proof, it remains to estimate A 3,q . Using the support properties given in [ [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF], Proposition 2.10], the definition of R h (u, ∂ x w) and Bernstein lemma 1.2, we can write

J q = ∆ h q (R h (u, ∂ x w)) φ , ∆ h q w φ L 2 ≤ 2 q 2 q ≥k-3 ∆ h q u φ L 2 h (L ∞ v ) ∆ h q ∂ x w φ L 2 ∆ h q w φ L 2 ≤ 2 q 2 q ≥k-3 2 q (1-1 2 ) ∂ y u φ B 1 2 ∆ h q w φ L 2 ∆ h q w φ L 2 ≤ 2 q 2 q ≥k-3 2 q 2 ∂ y u φ B 1 2 ∆ h q w φ L 2 ∆ h q w φ L 2 . Since 0 < s ≤ 1, we have e 2Rt J q ≤ 2 q 2 q ≥k-3 2 q 2 ∂ y u φ B 1 2 ∆ h q e Rt w φ L 2 ∆ h q e Rt w φ L 2 ≤ 2 q 2 q ≥k-3 2 q 2 d q (w φ )2 -q (s+ 1 2 ) e Rt w φ B s+ 1 2 ∂ y u φ B 1 2 d q (w φ )2 -q(s+ 1 2 ) e Rt w φ B s+ 1 2 ≤ d q (w φ )2 -2qs e Rt w φ 2 B s+ 1 2 ∂ y u φ B 1 2 q ≥k-3 d q (w φ )2 (q-q )s ≤ d 2 q 2 -2qs e Rt w φ 2 B s+ 1 2 ∂ y u φ B 1 2
, where

d 2 q = d q (w φ ) q ≥k-3 d q (w φ )2 (q-q )s
is a summable sequence of positive constants. Summing with respect to q ∈ Z, integrating over [0, t] and using Fubini's theorem, we finally obtain q∈Z

2 2qs A 3,q = t 0 q∈Z 2 2qs e 2Rt J q dt e Rt w φ 2 L2 t, θ (B s+ 1 2 ) 
. (A.87) Lemma 1.9 is then proved by summing Estimates (A.85), (A.86) and (A.87).

A.2. Proof of Lemma 1.10. At first, we will prove Estimate (1.14) of Lemma 1.10. Bony's decomposition for the horizontal variable implies t 0 e Rt ∆ h q (v∂ y u) φ , e Rt ∆ h q u φ L 2 dt ≤ B 1,q + B 2,q + B 3,q , (A.88) with

B 1,q = t 0 e Rt ∆ h q (T h v ∂ y u) φ , e Rt ∆ h q u φ L 2 dt B 2,q = t 0 e Rt ∆ h q (T h ∂yu v) φ , e Rt ∆ h q u φ L 2 dt B 3,q = t 0 e Rt ∆ h q (R h (v, ∂ y u)) φ , e Rt ∆ h q u φ L 2 dt .
As for the term A 1,q in the proof of Lemma 1.9, we have the following estimate

K 1,q = e Rt ∆ h q (T h v ∂ y u) φ , e Rt ∆ h q u φ L 2 |q -q|≤4
e Rt S h q -1 v φ L ∞ ∆ h q ∂ y u φ L 2 ∆ h q e Rt u φ L 2 |q -q|≤4

d q (u φ )2 -q 2 e Rt S h q -1 v φ L ∞ ∂ y u φ B 1 2 ∆ h q e Rt u φ L 2 .
Identity (2.16) and Bernstein lemma imply d q (u φ ) 2 -q 2 2 q (1-s) e Rt u φ B s+ 1 2 ∂ y u φ B 1 2 ∆ h q e Rt u φ L 2 d q (u φ )

∆ h q v φ (t) L ∞ ≤ 1 0 ∆ h q ∂ x u φ (t
|q -q|≤4 d q (u φ ) 2 -q 2 2 q (1-s) 2 -q(s+ 1 2 ) e Rt u φ B s+ 1 2 ∂ y u φ B d q (u φ )2 (q-q )(s-1

2 )

  is a summable sequence of positive constants. Then, summing with respect to q ∈ Z, integrating over [0, t] and using Fubini's theorem lead to . (A.90) For the second term on the right-hand side of (A.88), we first have K 2,q = e Rt ∆ h q (T h ∂yu v) φ , e Rt ∆ h q u φ L 2 |q -q|≤4

e 2Rt S h q -1 ∂ y u φ L ∞ h (L 2 v ) ∆ h q v φ L 2 h (L ∞ v ) ∆ h q u φ L 2
Using (A.89) we can write K 2,q |q -q|≤4

2 q ∂ y u φ B 1 2 e Rt ∆ h q u φ L 2 ∆ h q e Rt u φ L 2 d q (u φ )

|q -q|≤4 d q (u φ ) 2 q 2 -q(s+ 1 2 ) 2 -q (s+ 1 2 ) ∂ y u φ B d q (u φ ) 2 (q-q )(s-1 2 )

  is a summable sequence of positive constants. Summing with respect to q ∈ Z, integrating over [0, t] and using Fubini's theorem, we will get q∈Z 2 2qs B 2,q = t 0 q∈Z 2 2qs K 2,q dt e Rt u φ

L2

t, θ (B s+ 1 2 ) . (A.91) Now, for the third term on the right-hand side of (A.88), we have K 3,q = e Rt ∆ h q (R h (v, ∂ y u)) φ , e Rt ∆ h q u φ L 2 2

q 2 e 2Rt q ≥q-3

∆ h q v φ L ∞ v (L 2 h ) ∆ h q ∂ y u φ L 2 ∆ h q u φ L 2
Similar calculations as in (A.89) imply

∆ h q v φ (t) L ∞ v (L 2 h ) ≤ 1 0
∆ h q ∂ x u φ (t, ., y ) L 2 h dy 2 q 2 1 0 ∆ h q u φ (t, ., y ) L 2 h dy 2 q 2 ∆ h q u φ (t) L 2 , which yields next K 3,q 2 q 2 q ≥q-3

2 q 2 ∆ h q e Rt u φ L 2 ∂ y u φ B 1 2 ∆ h q e Rt u φ L 2 d 2 q 2 -2qs ∂ y u φ B 1 2 u φ 2 B s+ 1 2
, where d 2 q = d q (u φ )

q ≥q-3 d q (u φ ) 2 (q-q )s is a summable sequence of positive constants. It remains to take the sum with respect to q ∈ Z, integrate it over [0, t] and use Fubini's theorem to get The proof of Estimate (1.14) is completed.

We will now prove Estimate (1.15). Using Bony's decomposition for the horizontal variable, we have t 0 e Rt ∆ h q (v∂ y T ) φ , e Rt ∆ h q T φ L 2 dt ≤ C 1,q + C 2,q + C 3,q , (A.93) where C 1,q = t 0 e Rt ∆ h q (T h v ∂ y T ) φ , e Rt ∆ h q T φ L 2 dt C 2,q = t 0 e Rt ∆ h q (T h ∂yT v) φ , e Rt ∆ h q T φ L 2 dt C 3,q = t 0 e Rt ∆ h q (R h (v, ∂ y T )) φ , e Rt ∆ h q T φ L 2 dt .

From (A.89), we have

∆ h q v φ L ∞ 2 3q 2
∆ h q u φ L 2 d q (u φ )2 q u φ B 1 2 , (A.94) where d q (u φ ) is a square-summable sequence of positive constants. Then, we deduce that

S h q -1 v φ L ∞ l≤q -2 ∆ h l v φ L ∞ ≤ 2 q u φ B 1 2 ,
and we get e Rt ∆ h q (T h v ∂ y T ) φ , e Rt ∆ h q T φ L 2 |q -q|≤4

e 2Rt S h q -1 v φ L ∞ ∆ h q ∂ y T φ L 2 ∆ h q T φ L 2
|q -q|≤4 e 2Rt 2 q -q u φ (t) d q (T φ )2 (q-q )(s-1)   , is a summable sequence of positive constants. Taking the sum with respect to q ∈ Z, integrating it over [0, t] and using Fubini's theorem, we arrive to q∈Z 2 2qs C 1,q u φ B

B 1 2 ∆ h q ∂ y T φ L 2 ∆ h q ∂ x T φ L 2 d 2 q 2 -2qs u φ (t)
1 2

e Rt ∇T φ L2 t (B s ) .

(A.95)

The second term on the right-hand side of (A.88) can be controlled in a similar way as we did for B 1,q . We have e Rt ∆ h q (T h ∂yT v) φ , e Rt ∆ h q T φ L 2 |q -q|≤4

e 2Rt ∆ h q v φ L 2 h (L ∞ v ) S h q -1 ∂ y T φ L ∞ h (L 2 v ) ∆ h q T φ L 2 |q -q|≤4 2 q 2 u φ B 1 2 2 q 2
∆ h q e Rt ∂ y T φ L 2 ∆ h q e Rt T φ L 2 |q -q|≤4 d q (T φ )2 (q-q )(s-1)   is a summable sequence of positive constants. Taking the sum with respect to q ∈ Z, integrating it over [0, t] and using Fubini's theorem, we obtain q∈Z 2 2qs C 2,q u φ B

2 q -q u φ B 1 2 ∆ h q e Rt ∂ y T φ L 2 ∆ h q e Rt ∂ x T φ L 2 d 2 q 2 -2qs u φ B
1 2

e Rt ∇T φ L2 t (B s ) .

(A.96)

For the last term on the right-hand side of (A.88), we first write

∆ h q R h (v, ∂ y T ) = ∆ h q q ≥q ∆ h q v∆ h q ∂ y T = ∆ h q ∂ y R h (v, T ) -∆ h q R(∂ y v, T ) = ∆ h q ∂ y R h (v, T ) + ∆ h q R(∂ x u, T ). Thus, t 0 e Rt ∆ h q (R h (v, ∂ y T )) φ , e Rt ∆ h q T φ L 2
dt ≤ E 1,q + E 2,q , where E 1,q = t 0 e Rt ∆ h q ∂ y (R h (v, T )) φ , e Rt ∆ h q T φ L 2 dt E 2,q = t 0 e Rt ∆ h q (R h (∂ x u, T )) φ , e Rt ∆ h q T φ L 2 dt .
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 1415 Let p ∈ [1, +∞] and T ∈]0, +∞]. Then, the space Lp T (B s (S)) is the closure of C([0, T ]; S(S)) under the norm u Lp T (B s (S)) with the usual change if p = +∞. Let p ∈ [1, +∞] and let f ∈ L 1 loc (R + ) be a nonnegative function. Then, the space Lp t,f (t) (B s (S)) is the closure of C([0, T ]; S(S)) under the norm

5 2 3 2

 53 , e a|Dx| T 0 ∈ B , e a|Dx| ∂ y u 0 ∈ B

3 2 + e a|Dx| T 0 B 3 2

 33 ), and 1 ≤ s ≤ 5 2 , one has

3 2 + 5 2

 25 e a|Dx| ∂ y u 0 B + e a|Dx| ∂ y T 0 B 3 2

  then proved by summing Estimates (3.45), (3.47) and (3.48).

( 4 .

 4 50)Now for suitable function f , we define

1 2 e 2 d 2 q 2 -2qs ∂ y u φ B 1 2 e Rt u φ 2 B s+ 1 2 , where d 2 q

 22221212 Rt u φ B s+ 1 = d q (u φ )

1 2 eu φ 2

 22 Rt 

B 1 2 e Rt ∇T φ 2 B s , where d 2 q

 122 = d q (T φ )

1 2 e

 2 Rt ∂ y T φ B s e Rt ∂ x T φ B s where d 2 q = d q (T φ )2 -2qs

  , ., y ) L ∞ h dy 2 Rt u φ (t) L 2 ∂ y u φ B Rt u φ B s+ 1 2 ∂ y u φ B

	from which and the fact that s ≤ 1, we infer			
	K 1,q	d q (u φ ) 2 -q 2	2	3l 2 ∆ h l e 1 2 ∆ h q e Rt u φ L 2
	|q -q|≤4	l≤q -2					
		d q (u φ ) 2 -q 2	d l 2	3l 2 2 -l(s+ 1 2 ) e 1 2 ∆ h q e Rt u φ L 2
	|q -q|≤4	l≤q -2					
	|q -q|≤4						
	(A.89)						
					3q 2	0	1	∆ h q u φ (t, ., y ) L 2 h dy	2	3q 2	∆ h q u φ (t) L 2 ,

Summing all the above result finally gives

)

2

2

)

)

)

2 ) )).

Proof of Theorem 1.8. First, we remark that, in this paragraph, we will not drop the index ε anymore. Thanks to the results obtained in Section 3 and 4, we have 

) . Multiplying the above inequality by 2 q , and summing the obtained inequalities with respect to q ∈ Z, we come to

(4.82)

)

)

.

Then by taking µ = CM , we can complete the proof Theorem 1.8.

Appendix A. Proof of estimates for bi-linear terms

A.1. Proof of Lemma 1.9. As in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF], using Bony's homogeneous decomposition into paraproducts and remainders as in Definition 1.1, we can write

Since s > 0, using (A.94) and Bernstein lemma (1.2), we have

is a summable sequence of positive constants. We deduce that q∈Z

e Rt ∇T φ L2 t (B s ) .

(A.97)

For E 2,q , using Poincaré inequality with respect to y ∈ [0, 1], we write

1 2 e Rt ∂ x T φ B s e Rt ∂ y T φ B s , where d 2 q = d q (T φ ) q ≥q-3 d q (T φ )2 (q-q )s is a summable sequence of positive constants. Thus,

e Rt ∇T φ L2 t (B s ) .

(A.98)

The proof of Lemma 1.10 is then completed by summing Estimates (A.95), (A.96), (A.97) and (A.98).