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The use of real prototyping systems allows implementing real-world deployments which permit evaluating new protocols, algorithms and network solutions. This study investigates the problem of 3D indoor redeployment of connected objects in IoT collection networks. The objective is to choose the right positions in which connected objects are added to an initial configuration, while optimizing a set of objectives. To solve this problem, a novel bird's dialect-based particle swarm optimization algorithm (named acMaPSO) is introduced. The new concept of bird's dialect is based on a set of birds which are separated into different dialect groups by their regional habitation and are classified into groups according to their common manner of singing. The obtained numerical results and the real experiments on our testbed prove the effectiveness of the two proposed variants compared with the standard PSO algorithm and a recent state of art of many-objective evolutionary algorithms: the NSGA-III.

I. INTRODUCTION

Node deployment defines how to position a set of nodes and the topology of the network used to deploy these nodes. In this paper, we are interested in the three-dimensional deployment that reflects the topology of the RoI (region of interest) better than the two-dimensional deployment. Specifically, our aim is to resolve the issue of redeployment where the initial indoor 3D deployment is improved by adding new nodes to optimize various objectives such as network lifetime, coverage, energy consumption and localization.

The DL-IoT (Device Layer -Internet of Things) is the evolution of WSN (Wireless Sensor Networks) to IoT networks. DL-IoT are collection networks relying on nodes called connected objects used for the collection of information. In this study, we aim to deploy a 3D indoor DL-IoT network. It is a scenario in which autonomous entities (devices, robots, or people with sensors) with unique identifiers can interact together using network protocols such as Bluetooth or 802.15.4. WSN and IoT are complementary: the WSN is responsible for the hardware communication and the transmission of the physical values detected by the sensors. While the IoT provides the decision making after manipulating the collected data. Our approach is applicable in both contexts (IoT and WSN).

Recently, there is a growing trend to evaluate the performance of new network platforms and solutions via real prototyping testbeds. The advantage of real experiments compared to simulations is manifested in the simplicity of prototyping communication devices and in the realism of the equipment and the obtained results. To this is added the advantage of the human experience feedback. As examples of these real prototyping platforms having thousands of nodes, FIT/IoT-LAB [START_REF] Fleury | FIT IoT-LAB: The Largest IoT Open Experimental Testbed[END_REF] (formerly called SensLab) and SmartSantander platform [START_REF] Sanchez | SmartSantander: IoT experimentation over a smart city testbed[END_REF] for smart cities. Other platforms like INDRIYA [START_REF] Doddavenkatappa | Indriya: A Low-Cost, 3D Wireless Sensor Network Testbed[END_REF] and TWIST [START_REF] Vlado | TWIST: a scalable and reconfigurable testbed for wireless indoor experiments with sensor networks," 2nd international workshop on Multi-hop ad hoc networks: from theory to reality[END_REF] allow deploying, on several levels, about 200 nodes. The mentioned testbeds share a physical layer relying on protocols standardized by the IEEE 802.15.4-2006 with a frequency of 868 MHz or 2.4 GHz. Contrary to classical works based on theoretical hypotheses, simulations and formal calculations, we aim to finely characterize the real world with physical nodes of our prototyping platform. This platform is presented in the Experiments section.

To identify the best positions of the connected objects, while optimizing a set of opposed objectives and constraints, a modified PSO (Particle Swing Optimization) algorithm based on a new concept of bird's dialects is used.

The major contributions of this study are as follows: -The proposal of the acMaPSO which is a modified MaOPSO (many-objective PSO) algorithm that proposes a new concept of bird's dialects on the PSO. Indeed, it is a specific concept that reflects the particle experience to evaluate the experience of each particle in the swarm.

-We propose a real experimental validation of the indoor 3D deployment using a real testbed. The proposed algorithm (acMaPSO) is compared with MaOPSO and NSGA-III. Another comparison is also made between the results of the simulations and the real experiments. The interpretation of the obtained results is also provided.

Next, the following sections will be detailed: Section II discusses and interprets a set of related works. Section III presents the concept of bird dialects on the particle swarm algorithm. Section IV illustrates the numerical results. Section V details a set of experiments on testbeds and compares them with simulations. Section VI shows a conclusion and different possible perspectives.

II. RELATED WORKS ON THE 2D-3D DEPLOYMENT PROBLEM

This section presents recent works proposing optimization algorithms for efficient node deployment. Banimelhem et al. [START_REF] Banimelhem | Genetic Algorithm Based Node Deployment in Hybrid Wireless Sensor Networks[END_REF] introduced a genetic algorithm (GA) to find the deterministic 2D deployment in WSN with consideration of coverage holes while minimizing the number of used mobile nodes. However, this study lacks a mathematical modeling that explains the details of the problem. Unaldi et al. [START_REF] Unaldi | Method for optimal sensor deployment on 3D terrains utilizing a steady state genetic algorithm with a guided walk mutation operator based on the wavelet transform[END_REF] propose a GA based on a guided wavelet transform and a random mutation for the probabilistic deployment of WSN nodes in the context of 3D terrains. This study aims to minimize the number of sensors and maximize the quality of coverage. On the other hand, the proposed algorithm is evaluated only with stationary sensors, without empirical scenarios on a real-world problem. Danping et al. [START_REF] Danping | A 3D multi-objective optimization planning algorithm for wireless sensor networks[END_REF] propose a low-cost heuristic combined with an evolving multi-objective algorithm for solving the 3D deployment problem taking into account the propagation of the radio signal in indoor. The goal is to simultaneously improve the network life, the hardware cost, the coverage, and the link quality. Although, the authors have not demonstrated the scalability of the proposed approach with a high number of nodes. Ko et al. [START_REF] Ko | Process of 3D wireless decentralized sensor deployment using parsing crossover scheme[END_REF] resolve the deployment in irregular 3D terrains using an analysis crossover GA to simultaneously maximize the global coverage and probabilistic point coverage. Yet, no evidence is given regarding the effectiveness of the proposed crossover strategy compared to the original genetic approach. In [START_REF] Alia | Maximizing Wireless Sensor Network Coverage With Minimum Cost Using Harmony Search Algorithm[END_REF], an algorithm based on a harmony search is proposed for the optimization of the coverage and the number of deployed sensors. The limits of this work lie in the proposed network model which is simplistic. Besides, in the consideration of only two objectives and in the validation of the approach based only on Matlab tests without real simulation or experimentation scenarios. The authors in [START_REF] Mnasri | A Hybrid Ant-Genetic Algorithm to Solve a Real Deployment Problem: A Case Study with Experimental Validation[END_REF] suggest a hybrid algorithm called AcNSGA-III that hybridizes the Ant Colony Optimization with the NSGA-III to solve the problem of 3D indoor deployment. They proved the effectiveness of the proposed algorithm compared to the standard ACO and NSGA-III algorithms. However, the applicability of this algorithm in dense networks is not proven and the used energy model is simplistic.

III. THE PROPOSED ACMAPSO ALGORITHM: INCLUDING THE

CONCEPT OF BIRD'S DIALECT ON THE MAOPSO The suggested modifications on the standard multiobjective PSO aim to avoid the difficulties encountered by this algorithm when solving real-world problems that are generally complex and have several local optima. These modifications rely on introducing changes in the topology of the swarm. Indeed, to avoid the premature character of convergence of the standard PSO [START_REF] Kennedy | Particle swarm optimization[END_REF], in addition to the two positions used in this algorithm (the best overall position (gbest) and the best personal position of the particle (pbest)), we proposed the best position of the local area around the particle, called: best cluster (cbest).

Recent research in biology [START_REF] Oesel | High levels of gene flow among song dialect populations of the Puget Sound white-crowned sparrow[END_REF] affirmed that songbirds have regional dialects such as humans. In fact, birds inherit from their parents the ability to sing and create a complete song. These biological studies have shown that if birds are bred in silence, they do not acquire this ability to sing and can only shout. Even more, birds from different regions develop distinct dialects. Following this biological finding, we propose an algorithm (called acMaPSO) which consists in a PSO relying on a topology of different categories of songbird dialects. Indeed, each dialect group has different convergence acceleration parameters, which contributes to the prevention of local optima. Moreover, the introduced concept of dialects helps to assess the particle search capabilities in their local areas where particles belong to different communities (groups or swarms). Fig. 1 shows a set of particles separated into groups according to their dialects during the process of searching for solutions. In order to keep the diversity of the population, particles in each dialect category can select their neighbors only from the least experienced particles of their own group or from other groups. 

IV. NUMERICAL RESULTS

This section presents the used parameters of the algorithms and the obtained numerical results. The HV (Hypervolume) [START_REF] While | A faster algorithm for calculating hypervolume[END_REF] is used as a metric to evaluate the quality of the results. Despite its high computing cost, the HV is ideal for real-world problems having generally a true unknown Pareto front. To have an idea about the influence of nomad node positions on network performance, acMaPSO is compared to the NSGA-III [START_REF] Deb | An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints[END_REF] which is another recent multi-objective optimization algorithm. The PlatEMO platform [START_REF] Tian | PlatEMO: A MATLAB Platform for Evolutionary Multi-Objective Optimization[END_REF] is used for the implementation of NSGA-III, MaOPSO and acMaPSO. The details of the parameters of these algorithms are shown in Table I. To obtain a statistically reliable comparison of results, the optimization algorithms must be run several times for each test because of the random behaviors of these algorithms. In our tests, an average of 25 executions are achieved for each value. Table II illustrates the average HV for different number of generations and objectives. Higher HV have better performance. The results in Table II affirm that, for different numbers of objectives, acMaPSO is often the most efficient algorithm. MaOPSO is more efficient than NSGA-III, but it has a higher relative degradation compared to other algorithms when increasing the number of objectives.

V. SIMULATION AND EXPERIMENTAL RESULTS

In what follows, a comparison is made between two scenarios: one is for simulations and the other is for experimental tests. The behavior and performance of the proposed acMaPSO are compared to those of NSGA-III and MaOPSO. Nowadays, there is a tendency to propose and test algorithms and protocols with real environments since simulators and theoretical analysis do not perfectly reproduce the physical and technical characteristics of the real environment. Hence, with our prototyping testbed, we aim to reduce discrepancies between practice and theory in IoT and WSN deployment. The use of a personal testbeds (such as ours: Ophelia) gives several advantages such as the ease of use, the reproducibility of results, the human feedback, the realism of conditions and the heterogeneity of nodes. This makes such testbeds ideal for IoT components.

A. Description of the testbed 1) TeensyWiNo deployed nodes: In our tests, we used TeensyWiNo based-on WiNoRF22 nodes. Since they are integrated into the Arduino system, these nodes allow researchers to easily incorporate software and hardware modules such as interaction devices, actuators, sensors, processing algorithms or prototyping solutions supporting users feedback. The technical characteristics of the deployed TeensyWiNo nodes are detailed in Table III. 2) OpenWino [START_REF] Van Den Bossche | OpenWiNo: An Open Hardware and Software Framework for Fast-Prototyping in the IoT[END_REF] (Open Wireless Node): is a free development environment for DL-IoT collection networks and WSN protocol engineering. It helps achieve rapid prototyping of MAC, NWK or other layer protocols. It also allows to evaluate the performances of these protocols. The simplicity of OpenWiNo is one of its advantages: indeed, the change of the physical layer of a WiNo node for example, is done by simply changing the transceiver (and its associated driver). An open hardware environment requires this ease of use. Among the transceivers that have been successfully tested on OpenWiNo: Proprietary 433MHz FSK/GFSK (HopeRF RFM22b), IEEE 802.15.4-2011 UWB (DecaWave DW1000), Classical IEEE 802.15.4 2.4GHz DSSS (Freescale), LoRa mode 868MHz (HopeRF RFM95).

3) Ophelia: it is our testbed based on a web interface, Openwino, Arduino and Teensywino installed nodes. The web interface allows to remote access the Ophelia testbed, the programming of experimental sketches (in python) and their execution on the nodes. Fig. 3 illustrates the indoor deployment of nodes in one of the six used sites.

. . Fig. 3 The 3D deployment in one of the six sites

The simulations are performed using OMNeT ++, a platform for developing and simulating network protocols. Fig. 4 illustrates the interface of our OMNeT++ simulation scenario showing the distribution of the nodes. 
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C. Comparing the experimental results to the simulations 1) Simulation scenario: The simulation scenario is as follows: A trigger node (the mobile node) sends an initial message to a random destination d. when this node d is found by the AODV routing protocol, it becomes the source node and selects a new destination node. This process is repeated until the maximum simulation time is reached. To be able to compare experiments to simulations, we use the same scenario and architecture (type and number of nodes) in both cases. The initial distribution of the fixed nodes is chosen according to the distribution law of OMNeT++. This law evenly distributes the nodes from the center of the RoI. The connectivity matrix is based on empirical experiments by establishing the initial connectivity links between the nodes based on experiments. To ensure dynamism and new connectivity relationships between nodes during simulations, we introduce disruptions to the RSSI connectivity links. Indeed, a perturbation (+/-30 for each value) is performed on the RSSI matrix.

2) Experimental scenario: In the Ophelia testbed, 30 fixed nodes are used which are initially deployed and having known positions. These positions are determined according to the application needs of the users. We aim to add six nodes called nomad nodes. The positions of these last nodes are determined using the tested optimization algorithms. Only one mobile node is used. The execution of the experimental scenario will be as follows: initially, the nodes are flashed. Then, the initial configuration parameters (transmission power, etc.) are sent to the nodes. Afterads, we choose a node to send a first broadcast to all other nodes. The measures of the RSSI and FER are taken in two directions: the sending node records its FER and RSSI rates with each receiving node which also returns these same measurements. After a predetermined wait time, this sending node terminates the process. Subsequently, the sender is changed and other nodes become receivers. We repeat the same process for all nodes (36 experiments), to obtain two connectivity matrices of the FER and RSSI values between all the nodes. From these two matrices, we can deduce the neighbors of each node. We consider a node i to be the neighbor of another node j if the average of the RSSI emitted between these two nodes (from i to j and and from j to i) exceeds a threshold set at 100; and the average FER is also below a threshold set at 0.1. Given the need for a statistical test to compare two algorithms and taking into account the stochastic nature of evolutionary algorithms, the average values taken in this experimental scenario are the result of 25 execution time for each value.

3) Compaison of the RSSI rates : To evaluate the localization and the cost of deployment, the RSSI metric is used because the localization is based on the Distance-VectorHop protocol, to which the RSSI information is added. Indeed, the localization is proportional to the RSSI rate. Fig. 5 shows the average rates of the RSSI of the nodes in connection with the mobile node, for different number of objectives. These objectives are to be satisfied by the tested algorithms. This average RSSI is a value (convertible in dBm) between 0 and 256. 

4)

Comparison of the FER rates : FER is used as a metric to assess coverage and link quality between nodes. Indeed, the FER is inversely proportional to the coverage. Fig. 6 shows the average values of the FER of the nodes in connection with the mobile node, for a variable number of objectives. The average number of neighbors of nodes in connection with the mobile node is used as the metric to evaluate the network utilization rate and the network connectivity. We use the same notion of neighborhood that was previously explained in the experimental section. Fig. 7 shows the average number of neighbors of the nodes in connection with the mobile node, for a variable number of objectives. -FER values are lower during night than day. This is due to human activities within the building during the day (opening and closing doors for example). These activities cause the signal disruption.
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-Contrary to what is assumed, FER and RSSI values are not always inversely proportional. Indeed, a connection of two nodes may have, at the same time, a high FER and an excellent RSSI.

-The NSGA-III is evaluated by their authors only on instances of theoretical test problems. Our experiment is proof of the advantage of applying the NSGA-III in real-world contexts.

-Several studies such as [START_REF] Figueiredo | Physical Topology Design of Optical Networks Aided by Many-Objective Optimization Algorithms[END_REF], prove that MaOPSO is better than NSGA-III. In keeping with this, our numerical results (based on the HV metric) state that MaOPSO is not surpassed by the NSGA-III. Moreover, the carried out experimental results show that the proposed acMaPSO algorithm is generally better than the NSGA-III on the FER and RSSI rates (therefore, acMaPSO is more effective than NSGA-III in optimizing the localization, the quality of links and the coverage). While the NSGA-III is generally more efficient than the acMaPSO in satisfying the number of neighbors of nodes (consequently, it is more efficient in satisfying the network utilization). The experimental results are not in contradiction with the numerical results but this is explained by the fact that the 3D indoor deployment is a real problem which is different from the theoretical test problems used to evaluate the algorithms.

VI. CONCLUSION

In this paper, we proposed a real world deployment experiment based on prototyping on real nodes of an OpenWiNo-based testbed (Ophelia) to solve the problem of 3D indoor deployment of a DL-IoT. The proposed resolution approach is based on a new variant of the PSO algorithm: the acMaPSO which includes a new concept of dialect to avoid local optima. The proposed algorithm achieves (and surpasses for certain evaluation metrics such as the number of neighbors), the performance of the standard PSO and NSGA-III algorithms. Nevertheless, different improvements can be proposed for this study. Among others, supporting some other technologies and protocols of transmission by implementing them on OpenWiNo which has the shortcoming of lack of libraries implementing the standard protocols. Moreover, although Ophelia testbed is more realistic than a platform with a large number of uniform nodes such as IoTLab [START_REF] Fleury | FIT IoT-LAB: The Largest IoT Open Experimental Testbed[END_REF], SmartSantander [START_REF] Sanchez | SmartSantander: IoT experimentation over a smart city testbed[END_REF] or INDRIYA [START_REF] Doddavenkatappa | Indriya: A Low-Cost, 3D Wireless Sensor Network Testbed[END_REF], these latter platforms allow scaling up and testing our approach with a greater number of nodes (up to 1024 nodes). Since the IoTLab allows to test the same metrics of our experiments (RSSI, link quality...), tests on this latter platform are envisaged in future works to prove the scalability of our approach and compare its results with Ophelia ones.
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 1 Fig. 1 The Neighborhood of a particle Pa The acMaPSO algorithm is shown in algorithm1.

TECHNICAL

  200-900 MHz; 1-125kbps; GFSK/FSK/OOK; +20dBm Radio-Head CPU/RAM/Flash ARM-Cortex-M4 [32bit]-72MHz; 64kB-RAM, 256kB; Flash (PJRC-Teensy-3.1) The components and an example of the deployed TeensyWiNo nodes are shown in Fig. 2.
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 2 Fig. 2 The deployed Teensy WiNo nodes
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 4 Fig. 4 The distribution of nodes in the simulation scenario

.

  

Fig. 5
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 6 Fig.6FER average rates of nodes connected to the mobile node 5) Comparison of the number of neighbors : The average number of neighbors of nodes in connection with the mobile node is used as the metric to evaluate the network utilization rate and the network connectivity. We use the same notion of
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 7 Fig. 7 Average of neighbors of the nodes connected to the mobile node 6) Comparison of the network lifetime and the energy consumption: Fig. 8 illustrates the changes in the energy consumption (as a function of time). Indeed, we measure the average of the indicator of energy of the nodes after the addition of the nomad nodes.
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 8 Fig. 8 Comparaison of the average levels of energy consumptionThe averages of network lifetimes (calculated for different algorithms and objectives) are shown in TableV. The lifetime metric used is measured by the time (in seconds) after which the first node goes out of service.

TABLE I .

 I 

		Parameter		Value
		Number of objectives	Variable, see
				Table II
	Number of independent runs	25, on different
				initial populations
		Number of constraints	7
		Population size		300
	Maximum number of generations	Variable, see
				Table II
		Recombination Operator	SBX
			probability	0.8
	NSGA-III		distribution	45
	parameters		index
		Mutation	Operator	Bit-flip
			probability	1/400
			Operator	SBX
		Inertial weight	0.95 to 0.4
		Cognitive components (C1)	2.8 to 2.2
		Social components(C2)	1.2 to 1.8
		Number of particles per swarm	10-50
	PSO	Initial minimum number of clusters	4
	parameters	Initial swarm particle velocity	distributed in
				[-4, 4] randomly

PARAMETERS SETTING OF THE USED ALGORITHMS

TABLE II .

 II BEST, AVERAGE AND WORST HYPERVOLUME VALUES

						0.976985	0.974892	0.977331
					4	1800	0.976833	0.974743	0.977098
						0.975612	0.973897	0.976892
						0.972892	0.972983	0.972985
					5	2600	0.972116	0.972563	0.972728
						0.971084	0.972126	0.972436
	Obj	Max nbr of	MaOPSO NSGA-III	acMaPSO
	Nbr	generations			
			0.903458	0.902231	0.903631
	3	1300	0.902896	0.901658	0.903036
			0.898023	0.898235	0.902563

TABLE III .

 III 

  Table IV details the parameters used in our simulations and experiments.

TABLE IV .

 IV PARAMETERS USED ON SIMULATIONS AND EXPERIMENTS

	Repartition of nodes	6 sites on 200 * 200 m²
	Number of nodes	36 (1 mobile, 6 nomad, 29 fixed)
	Average of runs	25 experiments
	Simulation period	10800 seconds
	Transmission power	100 mW
	Bit rate	256 kbps
	Indoor sensing range	8m
	Modulation model	125 kbit/s GFSK
	Message-length	16
	Message-number	1000
	Message-wait	5
	Frequency	434.79 MHz
	Operating temperature	25°c
	Tx power	7 (the max of RFM22)
	FER (Frame Error Rate)	0.01 (initially)
	RSSI	100 (initially)
	Reception gain	50 mA

TABLE V .

 V COMPARING THE AVERAGE LIFETIME

	Nbr of objectives	2	5
	Algorithm		
	MaOPSO	Simulations	3546 3478
		Experiments	3502 3469
	NSGA-III	Simulations	3485 3528
		Experiments	3487 3546
	acMaPSO	Simulations	3543 3540
		Experiments	3549 3553
	D. Discussion and interpretations	
	After the evaluation of the experiments, several interpretations
	can be deduced, among others:	
	-Unlike RSSI, FER rates are lower in simulations than in
	experiments.		
	-Unlike other algorithms, the NSGA-III in the experiments
	has lower RSSI values than simulations.