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Traffic Control via Platoons of Intelligent Vehicles
for Saving Fuel Consumption in Freeway Systems

G. Piacentini1, P. Goatin2, A. Ferrara1

Abstract—In this paper a coupled PDE-ODE model describing
the interaction between the bulk traffic flow and a platoon of
connected vehicles is adopted to develop a control action aiming
at reducing the fuel consumption of the overall traffic flow.
The platoon is modeled as a capacity restriction acting on the
surrounding traffic. The trajectory of the initial and final points
of the platoon are optimized by means of a model predictive
control strategy, acting on the speeds of the front-end and back-
end of the platoon, thus resulting in controlling both the speed
and the length of the platoon. The approach is assessed in
simulations.

Index Terms—Traffic control, Autonomous vehicles, Optimal
control

I. INTRODUCTION

NOWADAYS the level of connectivity, automation and
autonomy that the automotive industry is achieving is

completely transforming the transportation sector impacting
also the social-economical aspects. Vehicle Automation and
Communication Systems (VACSs) improve driving conve-
nience due to support tools, which assist drivers in vehicle
control to reduce the stress of driving. They also provide
information to users as well as increase road safety, thus
leading to improvements in terms of accidents avoidance and
mitigation. In addition to this, VACSs pave the way for a
better utilization of resources, aiming at improving traffic and
environmental efficiency, considering that vehicular traffic is
one of the main sources of emissions and pollution [1]. A
more efficient road utilization can be envisaged exploiting
intelligent vehicles as actuators to reduce traffic congestion,
a phenomenon that daily occurs due to the increasing traffic
demand. The presence of congestion on highways tends to
modify the driving behaviour introducing the need of a higher
number of speedups, slowdowns, stops and starts, which in-
crease fuel consumption and emissions. This strongly degrades
ambient air quality and increases people health risks [2]. An
effective management of highways can lead to important ben-
efits as reduction of travel times for drivers, improved safety
and reduced emissions. Several traffic management strategies
have been developed in the last decades proving to be effective
in enhancing highway conditions. Traditional methods include
variable speed limits [3] and ramp metering [4], but they have
the drawback of requiring specific infrastructure. The recent
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advances in information and communications technologies,
connectivity and automation, introduce the possibility for new
traffic management techniques [5]. In this perspective, the idea
of controlling a small number of intelligent vehicles acting
as actuators to influence the surrounding human-driven traffic
flow has been recently investigated. Field experiments have
demonstrated that the control of a small number of automated
vehicles can help to dissipate stop-and-go waves deriving
from human driving behavior, thus harmonizing the traffic and
reducing emissions [6].
Several modeling approaches have been proposed to model the
interaction between the normal flow and automated vehicles.
While some research works move in the direction of micro-
scopic models [7], macroscopic models are often preferred for
control applications due to their lower computational complex-
ity. Some extensions to traditional macroscopic models have
been studied in order to model the presence of intelligent
vehicles moving in the neighbouring human-driven traffic
flow. Some approaches have considered automated vehicles as
they were moving bottlenecks that, although they are usually
seen as impediments to efficient traffic flow, can be actually
controlled to advantageously influence the surrounding traffic.
Among others, in [8], [9], models consisting of a scalar
conservation law for the traffic evolution and of an ODE
accounting for the trajectory of moving bottlenecks have been
proposed. In [10], the model presented in [8] is used to
describe the traffic flow and the speed of the moving bottleneck
is assumed as control variable to reduce the fuel consumption
of the overall traffic flow. In [11] moving bottlenecks are
controlled to solve congestion on the highway in a Cell
Transmission Model (CTM) framework [12]. In addition to
singularly control each Connected Automated Vehicle (CAV),
their formations, as platooning, can be studied to improve
traffic control efficiency. Opportunities for cooperative driving
can indeed introduce the possibility for energy efficiency of
groups of vehicles moving in a coordinated manner, and this
can have a good impact on the surrounding mixed flow [13].
Eco-driving and energy efficiency considerations also suggest
to adopt platooning on highways and this could be exploited
to increase the throughput, if properly controlled [14],[15].
In [16], [17], the authors proposed an extension of the CTM
accounting for the presence of multiple platoons of CAVs as
constraints on the free-flow speed of the cells occupied by the
platoon. Their speeds were controlled by means of a Model
Predictive Control (MPC) to reduce travel times of drivers.
The PDE-ODE model presented in [8] considering a punctual
moving bottleneck has been recently extended in [18] to
capture platoons of vehicles having a physical length that
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Figure 1: Scheme of platoon on the highway.

can change in time, depending on the number of vehicles
composing it and their spacing, so that the length can here be
taken as an additional control variable. The main contribution
of this paper is the design of a multi-variable model predictive
control to regulate the speeds of both end-points of the platoon
(therefore controlling its speed and length) with the aim of
reducing congestion and fuel consumption of the overall traffic
flow. Therefore, in the present work, the focus is on the control
of the bulk traffic flow, while the platoon is conceived as
an actuator for the control action and its internal dynamics
is not taken into account. Specifically, an high-level control
optimizes a performance index related with the traffic flow to
obtain the optimal length and speed for the platoon. A lower
level control will then receive input information regarding
the reference length and the speed for the platoon and will
implement a proper spacing policy spacing to guarantee its
formation. In section II the adopted model for the platoon
is outlined, section III describes the model predictive control
action that is applied to the system. In section IV simulation
results are reported and a comparison between the results
obtained in [10] is made.

II. THE MODEL

The present paper deals with a macroscopic first-order
model, which describes a platoon of vehicles moving on
highway, and its impact on the neighbouring traffic. We
consider an highway with a given number of lanes, where
the general evolution of the traffic flow is captured by means
of a hyperbolic Partial Differential Equation (PDE), according
to the standard Lighthill-Whitam-Richards (LWR) model [19],
[20]. Two Ordinary Differential Equations (ODEs) track the
trajectories of the front and back endpoints of the platoon.
The capacity of the highway is reduced in correspondence of
the platoon location. We indicate with ρ = ρ(x, t) the density
of vehicles and with F = F (t, x, ρ) the flow function, while
v = v(ρ) is the average speed of the flow. The downstream and
upstream endpoints of the platoon are denoted by zd = zd(t)
and zu = zu(t), as depicted in Fig. 1. We indicate with
id = id(t) and iu = iu(t) the cells in which zd = zd(t)
and zu = zu(t) lie respectively. The portion of highway
interested by the presence of the platoon, i.e. the interval
[zu(t), zd(t)], have reduced capacity due to the lanes occupied
by the platoon. The model is then described by the following
equations

∂tρ+ ∂xF (t, x, ρ) = 0, (t, x) ∈ R+ × R, (1a)
ρ(0, x) = ρ0(x), x ∈ R, (1b)
żu(t) = vu(t, ρ(t, zu(t)+)), t ∈ R+, (1c)

zu(0) = z0u, (1d)

żd(t) = vd(t, ρ(t, zd(t)+)), t ∈ R+, (1e)

zd(0) = z0d, (1f)

where the flow function F is given by

F (t, x, ρ) :=

{
f(ρ) if x 6∈ [zu(t), zd(t)],

fα(ρ) := αf(ρ/α) if x ∈ [zu(t), zd(t)].
(2)

Since the platoon acts as a flux constraint on the interval
[zu(t), zd(t)], α ∈ [0, 1] represents the capacity reduction rate,
i.e. the ratio of lanes not occupied by the platoon, and at the
platoon location the reduced flow fα is considered. Consid-
ering the linear speed-density relation v(ρ) = V

(
1− ρ

ρmax

)
we get

f(ρ) = V ρ

(
1− ρ

ρmax

)
, (3)

fα(ρ) = V ρ

(
1− ρ

αρmax

)
, (4)

where V is the maximum speed of the traffic flow and ρmax
the maximum value of the density. The trends of the normal
flow f and the reduced flow fα are depicted in Fig. 2.
Equations (1c) and (1e) describe the trajectories of the initial
and final points of the platoon. The speed of the downstream
point is given by

vd(t, ρ) := min {Vd(t), v(ρ)} (5)

where Vd(t) ∈ [0, V ] is the maximal speeds for zd(t). Eq. (5)
means that the platoon has to adapt its speed to the downstream
traffic velocity, i.e. the platoon does not have any impact on
the traffic if the control speed is higher than the downstream
traffic speed. Concerning the speed of the upstream point, we
set

vu(t, ρ) := max {Vu(t),−fα(ρ)/(ρmax − ρ)} , (6)

where Vu(t) ∈ [−V, V ] is the maximal speeds for zu. The
technical constraint (6) comes from an admissibility condition
on the feasibility of the corresponding Riemann problems,
see [18]. The speed of the upstream point vu is allowed to
assume a negative value if new vehicles can join the platoon,
thus moving the end point backwards. The length of the
platoon L(k) = zd(k) − zu(k) varies in time depending on
the speed of the front and back end-points of the platoon,
specifically

L(k + 1) = L(k) + (vd(k)− vu(k))∆t. (7)

ρ

f, fα

ρmaxαρmaxραcrρcr

Figure 2: Normal and reduced flow.



The platoon length can be modified by variations in the
spacing between vehicles and if the number of cars joining
the platoon changes.
To solve the space-discontinuous conservation law (1a), the
model is discretized in both time and space, thus sampling
with time interval ∆t and dividing the stretch of highway
in N cells i = 1, . . . , N of length ∆x. The discretization
steps are chosen according to the Courant-Friedrichs-Lewy
(CFL) condition 2V∆t ≤ ∆x. The upstream and downstream
interfaces of a generic cell i are indicated as xi−1/2, xi+1/2.
The minimum allowable platoon length and the length cell
∆x are chosen so that zd(t) and zu(t) are never located in
the same cell. At each time step k the state equation updating
the density in each cell i is given as

ρi(k + 1) = ρi(k) +
∆t

∆x
(Fi−1(k)− Fi(k)) (8)

where Fi−1 is the flow between cell i − 1 and cell i, that is
computed by means of the standard supply-demand paradigm
[12] for all the cells, except the ones in which the platoon
interfaces lie. Since a reduction of the flow in the platoon
cells appears, reduced demand and supply are consequently
defined in that areas. Specifically, the demand and supply of
a generic cell i are computed as

Di(k) =

{
f(ρi(k)) if ρi(k) < ρcr,

fmax if ρi(k) ≥ ρcr,

Si(k) =

{
fmax if ρi(k) < ρcr,

f(ρi(k)) if ρi(k) ≥ ρcr,

for i < iu or i > id, i.e. where there is not the platoon.
Above, ρcr = 0.5ρmax denotes the critical density, and
fmax = f(ρmax) is the maximal flux on the road.

Similarly, for iu < i < id, the demand and supply are
computed considering the reduced flux:

Dα
i (k) =

{
fα(ρi(k)) if ρi(k) < ραcr,

fmaxα if ρi(k) ≥ ραcr,

Sαi (k)

{
fmaxα if ρi(k) < ραcr,

fα(ρi(k)) if ρi(k) ≥ ραcr,

where ραcr = 0.5αρmax and fmaxα = fα(ραcr).
Except for the cells id and iu accommodating the end-points

of the platoon, the flow between two generic cells is given by
the minimum between the demand of the upstream cell and
the supply of the downstream cell:

Fi(k) = min {Di−1(k), Si(k)} for i ≤ iu − 2, i ≥ id + 1,
Fi(k) = min

{
Dα
i−1(k), Sαi (k)

}
for i ≥ iu + 1, i ≤ id − 2.

In correspondence of the initial and final points of the
platoon, a discontinuity in the flow arises and a solution to
the scalar conservation law with moving discontinuities needs
to be studied. A numerical scheme able to precisely capture
the density discontinuities has been proposed in [18], where
a conservative reconstruction strategy is adopted. For both
the upstream and downstream endpoints of the platoon, we
consider the discontinuities moving with speeds vu(k) and

vd(k). More precisely, the positions of the end-points of the
platoon are updated as

zd(k + 1) = zd(k) + min{Vd(k), v(ρid+1(k)}∆t, (9)
zu(k + 1) = zu(k) + Vu(k)∆t. (10)

We study the solution to the problem at the two interfaces
separately. Let us focus on the cell id(k) in which the
downstream front-end point zd(k) is located at time step k.
We expect a density discontinuity to appear in the cell and
at each time step we consider the Riemann-type initial datum
ρl = ρid−1(k) and ρr = ρid+1(k). The Riemann problem is
then solved as detailed in [18] and we obtain the two solution
density values ρ̂α and ρ̌, that correspond to the values of
density that appear in cell id upstream and downstream the
position zd(k). The density ρid(k) can be then replaced by a
convex combination of the two values by defining did such
that

ρ̂α did + ρ̌ (1− did) = ρid(k), i.e. did =
ρid(k)− ρ̌
ρ̂α − ρ̌

.

The reconstructed discontinuity is located at the position
x̄id = xid−1/2 +did∆x and the numerical flux at the interface
xid+1/2 is then reconstructed as

∆tFid(k) = min {∆tid ,∆t} f(ρ̌)

+ max {∆t−∆tid , 0} fα(ρ̂α), (11)

where
∆tid =

1− did
min{Vd(k), v(ρid+1(k))}

∆x

represents the time that the discontinuity needs to reach the
downstream interface xid+1/2, as depicted in Fig. 3. On the
other end, we set

Fid−1
(k) = min

{
Dα(ρid−1

(k)), Sα(ρ̂α(k))
}

(12)

The same identical approach is applied to the back-end of the
platoon.

III. CONTROL APPROACH

The aim of the present work is to design a controller
that minimizes the fuel consumption of the overall traffic
flow controlling the maximum speed of the downstream and
upstream end-points of the platoon, Vd and Vu respectively.
This results in controlling both the speed and the length of
the platoon, due to Eq. (7). The fuel consumption is computed
by means of the model presented in [10], [21]. Variations in
vehicle fuel consumption are related to the average speed,
with higher consumption at very low and very high speeds.

tk

tk+1

zd(k)

ρ̂α ρ̌
∆tjd

id−1 id id+1

Figure 3: Representation of the flux reconstruction at the downstream
endpoint of the platoon.



Following [21], a curve averaged on the characteristics of
different cars is computed and approximated by a sixth order
polynomial K(v):

K(v) = 5.7 · 10−12 · v6 − 3.6 · 10−9 · v5 + 7.6 · 10−7 · v4−
− 6.1 · 10−5 · v3 + 1.9 · 10−3 · v2 + 1.6 · 10−2 · v + 0.99.

(13)

Above, K(v) is expressed in [Liters/hr] and v, the traffic
speed, in [km/hr]. The function K(v) is re-parametrized in
terms of density following the linear speed-density relationship
to obtain the fuel consumption rate of vehicles as a function
of the density at the vehicle position, denoted as

FC(ρ) = K(v(ρ)).

The overall fuel consumption rate TFC(ρ) is so computed by

TFC(ρ) = ρFC(ρ).

The control problem is solved by means of a MPC approach.
Vd and Vu are assumed as control variables and we denote as
u = [Vd, Vu] the vector of the control inputs. We indicate as
Kp the number of time steps of the prediction horizon. At
a fixed time step k, given the current initial state ρ(k), we
compute an optimal control sequence u(h) = [Vd(h)Vu(h)],
h = k, . . . , k + Kp, that minimizes the given objective func-
tion. The control u is constrained to be piece-wise constant on
subintervals of size ∆tKp/`, for some ` ∈ N in order to reduce
the computational complexity deriving from the optimization.
At t = k∆t, only the first input u(k) = [Vd(k)Vu(k)] of the
optimal control sequence is applied to the real system on the
time interval [t, t+∆tKp/`]. At the following iteration, based
on the new current information, the optimization is repeated
shifting the horizon. Since we are dealing with a non-linear
system, the problem can only be solved numerically, by means
of iterative optimization algorithms requiring, at each iteration,
to compute approximate solutions of system (1). At the k-th
iteration, the optimal input speeds are solution of the following
constrained multi-variable optimization problem

min
u

k+Kp∑
h=k

N∑
i=1

TFC(ρi(h))∆x∆t, (14)

subject to the model dynamics (1), (5), (6) and to the following
constraints

Lmin ≤ L(h) ≤ Lmax, (15a)

V mind ≤ Vd(h) ≤ V max, (15b)
|Vd(h)− Vu(h)| ≤ c. (15c)

for h = k, ..., k +Kp.
The first constraint (15a) limits the minimum and the maxi-
mum length that the platoon can assume. The value of Lmin
depends on safety distance considerations, while Lmax is
related to fuel efficiency evaluations of vehicles in the platoon,
since an excessive distancing between them would reduce the
advantage for vehicles to stay in the platoon. Constraint (15b)
prevents the platoon to assume too low speeds on the highway.
The constraint expressed by Eq. (15c) limits the rate at which
the platoon can change its length, c is a suitable threshold
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Figure 4: Density trend

chosen in order to avoid accordion effects in the variation of
length of the platoon. The parameter c has to be identified
based on several conditions, as the type of the highway
(number of lanes, slope, etc.) and categories of vehicles in
the platoon, as cars, trucks etc.

IV. SIMULATION RESULTS

The approach is studied by means of simulations consider-
ing an highway stretch without ramps. The road segment is
subdivided in 200 cells of length 250 [m], where the traffic
flow is described by means of the quadratic fundamental
diagram (3) with maximum speed V = 140 [km/h], maxi-
mum density ρmax = 400 [veh/km] and capacity fmax =
14000 [veh/h]. The sampling time, chosen according to the
CFL condition, is ∆t = 5.76 [sec], the total simulation
time is one hour. A platoon of initial length of 3 [km] is
considered, located at position zd(t0) = 4 [km] with initial
speeds vd(t0) = vu(t0) = 80 [km/h]. The value of the
capacity reduction rate α is 0.6. The incoming flow is equal
to the capacity fmax for the first half of the simulation and it
becomes null in the second half. As in [10], the outflow from
the last cell is reduced to half of the capacity, simulating the
presence of a fixed bottleneck inducing congestion at the end
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Figure 5: Speed of the front-end and back-end of the platoon and
length varying in time.

of the highway. For the MPC, a prediction horizon of 40 time
steps is chosen, but, in order to reduce the computational bur-
den deriving from the solution of the non-linear optimization
problem, each value of the speed is kept constant for 5 time
steps. For the constraints of Eq. (15), the platoon minimal
and maximum allowable lengths are Lmin = 2 [km] and
Lmax = 4 [km], V mind = 40 [km/h], and c = 30 [km/h]. The
non-linear optimization is solved by means of the fmincon
function of the MATLAB optimization toolbox. In Fig. 4, the
spatio-temporal evolutions of the density are reported for both
the controlled and the uncontrolled scenario, while the red
lines indicate the trajectory of the platoon. In the case without
control (Fig. 4(a)), cars travel at their maximum allowable
speed until they reach the congestion due to the bottleneck.
Here the speed of vehicles drops down, since they reach a con-
gested region with high density values. This behaviour causes
an high fuel consumption, since vehicles travel always either
at very high or very low speed, which are the worst situations
in terms of fuel consumption. In Fig. 4(b) the proposed control
is applied. The controller tends to slow down the platoon and
to modify its length in order to prevent vehicles to travel too
fast towards the congestion, where they should abruptly brake.
In this way, the traffic near the platoon is harmonized and
vehicles have a moderate speed that is beneficial for reducing
the fuel consumption. The computed optimal speeds applied
to the platoon and its length are reported in Fig. 5. In the
last part of the simulation, the platoon enters the area with
high congestion and its speed is not controlled anymore but it
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adapts to the speed of the downstream traffic. The value of the
TFC obtained with this control strategy is reported in Table I.
A reduction of the Total Fuel Consumption (14) of the 2.6% is
obtained by applying the proposed approach, leading the fuel
consumption of the overall traffic flow from 27629 liters to
26903 liters, with a saving of 726 liters of fuel. Although
this reduction may seem small, it represents a significant
reduction of emissions that is beneficial for the environment. It
is important to consider that the improvement is here obtained
by controlling only one platoon. Considering a scenario in
which CAVs will be present, this control could be applied
without adding any additional infrastructure and therefore at
low cost. In this perspective, several platoons of vehicles may
be formed and controlled to increase the effectiveness of the
control. Moreover, in this work we do not focus on individual
vehicles traveling in the platoon. As they are concerned, it
could be possible to observe a reduction in the consumed
fuel [22], since a more harmonized driving behaviour emerges
and the aerodynamics of vehicles in the platoon is improved
at reduced interdistances. Also, this aspect would be more
accentuated if the controlled vehicles were autonomous trucks
[23], [24]. A comparison with the control action designed in
our previous work [10] can be done. The main difference
with [10] is that it considers a model describing the impact of
a single vehicle acting as a moving bottleneck, i.e. a punctual
capacity constraint without physical dimension. In that case,
only the speed of the moving bottleneck was controlled. In the
present work, we have an additional degree of freedom given
by the length of the platoon and we expect a more effective
control action. The results obtained in the same simulation
scenario are here compared. The trend of the density in the
moving bottleneck control situation is reported in Fig. 6, while
the fuel consumption performances are compared in Table I,
showing that the platoon control is more effective in reducing
the fuel consumption with respect to a single vehicle.

V. CONCLUSION

In this work we apply a new macroscopic model able to
precisely capture the presence of platoons of CAVs in freeway
systems. We design a control strategy to reduce the fuel



Table I: Comparison between cost functionals.

TFC reduction %

No control 2.7629 e+04 0 %
MB control 2.6988 e+04 2.29 %
Platoon control 2.6903 e+04 2.63 %

consumption of the overall traffic flow. The speeds of the two
endpoints of the platoon are assumed as control variables by
using a model predictive control approach, thus regulating both
the speed and length of the platoon to minimize the fuel con-
sumption, and consequently reducing emissions and pollution.
The approach has been studied in simulations, assessing the
validity of the approach. Future works include coordinated
control of multiple platoons to increase the effectiveness of
the control action.

REFERENCES

[1] C. Diakaki, M. Papageorgiou, I. Papamichail, and I.
Nikolos, “Overview and analysis of Vehicle Automation
and Communication Systems from a motorway traf-
fic management perspective”, Transportation Research
Part A: Policy and Practice, vol. 75, pp. 147–165, May
2015.

[2] K. Zhang and S. Batterman, “Air pollution and health
risks due to vehicle traffic”, Science of the Total Envi-
ronment, vol. 450-451, pp. 307–316, Apr. 2013.

[3] A. Hegyi, B. De Schutter, and J. Hellendoorn, “Optimal
coordination of variable speed limits to suppress shock
waves”, IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 6, no. 1, pp. 102–112, Mar. 2005.

[4] M. Papageorgiou and A. Kotsialos, “Freeway ramp me-
tering: an overview”, IEEE Transactions on Intelligent
Transportation Systems, vol. 3, no. 4, pp. 271–281, Dec.
2002.

[5] A. Talebpour and H. S. Mahmassani, “Influence of
connected and autonomous vehicles on traffic flow
stability and throughput”, Transportation Research Part
C: Emerging Technologies, vol. 71, pp. 143–163, Oct.
2016.

[6] R. E. Stern, S. Cui, M. L. Delle Monache, et al., “Dissi-
pation of stop-and-go waves via control of autonomous
vehicles: Field experiments”, Transportation Research
Part C: Emerging Technologies, vol. 89, pp. 205–221,
Apr. 2018.

[7] I. Papamichail, N. Bekiaris-Liberis, A. I. Delis, et
al., “Motorway traffic flow modelling, estimation and
control with vehicle automation and communication
systems”, Annual Reviews in Control, vol. 48, pp. 325–
346, Jan. 2019.

[8] C. Chalons, M. L. Delle Monache, and P. Goatin, “A
conservative scheme for non-classical solutions to a
strongly coupled PDE-ODE problem”, Interfaces and
Free Boundaries, vol. 19, no. 4, pp. 553–570, Jan. 2018.

[9] C. Lattanzio, A. Maurizi, and B. Piccoli, “Moving
Bottlenecks in Car Traffic Flow: A PDE-ODE Coupled
Model”, SIAM Journal on Applied Mathematics, Soci-
ety for Industrial and Applied Mathematics, vol. 43,
pp. 50–67, 2011.

[10] G. Piacentini, P. Goatin, and A. Ferrara, “Traffic con-
trol via moving bottleneck of coordinated vehicles”,
Proceedings of 15th IFAC Symposium on Control in
Transportation Systems, vol. 51, no. 9, Jan. 2018.

[11] M. Cicic and K. H. Johansson, “Traffic regulation via
individually controlled automated vehicles: a cell trans-
mission model approach”, in 21st International Con-
ference on Intelligent Transportation Systems (ITSC),
IEEE, Nov. 2018, pp. 766–771.

[12] C. F. Daganzo, “The cell transmission model: A dy-
namic representation of highway traffic consistent with
the hydrodynamic theory”, Transportation Research
Part B: Methodological, vol. 28, no. 4, pp. 269–287,
Aug. 1994.

[13] A. Vahidi and A. Sciarretta, Energy saving potentials of
connected and automated vehicles, Oct. 2018.

[14] M. Zambelli and A. Ferrara, “Robustified distributed
model predictive control for coherence and energy
efficiency-aware platooning”, in 2019 American Control
Conference (ACC), Jul. 2019, pp. 527–532.

[15] K. Y. Liang, J. Mårtensson, and K. H. Johansson,
“Heavy-Duty Vehicle Platoon Formation for Fuel Ef-
ficiency”, IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 17, no. 4, pp. 1051–1061, Apr. 2016.

[16] G. Piacentini, C. Pasquale, S. Sacone, S. Siri, and A.
Ferrara, “Multiple Moving Bottlenecks for Traffic Con-
trol in Freeway Systems”, Proceedings of the European
Control Conference (ECC), Naples, Italy, June, 2019.

[17] G. Piacentini, A. Ferrara, I. Papamichail, and M. Pa-
pageorgiou, “Highway Traffic Control with Moving
Bottlenecks of Connected and Automated Vehicles for
Travel Time Reduction”, in Proceedings of 58th Con-
ference on Decision and Control (CDC 2019), 2019.

[18] G. Piacentini, P. Goatin, and A. Ferrara, “A Macro-
scopic Model for Platooning in Highway Traffic”,
SIAM Journal on Applied Mathematics, vol. 80, no. 1,
pp. 639–656, Jan. 2020.

[19] M. J. Lighthill and G. B. Whitham, “On Kinematic
Waves. II. A Theory of Traffic Flow on Long Crowded
Roads”, Proceedings of the Royal Society of London.
Series A., vol. 229, pp. 317–346, 1955.

[20] P. I. Richards, “Shockwaves on the highway”, Opera-
tions Research, vol. 4, pp. 42–51, 1956.

[21] R. A. Ramadan and B. Seibold, “Traffic Flow Control
and Fuel Consumption Reduction via Moving Bottle-
necks”, 2017.

[22] J. Zhao, R. Zhao, G. Wang, and X. Zhang, “Analysis of
fuel economy of autonomous vehicle platoon”, in ICTE
2013 - Proceedings of the 4th International Conference
on Transportation Engineering, 2013, pp. 980–986.

[23] A. K. Bhoopalam, N. Agatz, and R. Zuidwijk, “Planning
of truck platoons: A literature review and directions
for future research”, Transportation Research Part B:
Methodological, vol. 107, pp. 212–228, Jan. 2018.

[24] S. Tsugawa, S. Jeschke, and S. E. Shladover, “A Re-
view of Truck Platooning Projects for Energy Savings”,
IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1,
pp. 68–77, Jun. 2016.


