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ABSTRACT

Context. Direct imaging of exoplanets located a few AU from their hosting star requires angular resolution at the diffraction limit of
large telescopes and a contrast level in the image of 105 to 1010. Simultaneous use of adaptive optics and coronagraphy is mandatory
to fulfil these requirements.
Aims. Coronagraphs are usually very sensitive to pointing errors upstream of their focal plane mask. Approaches to measuring these
errors in conventional adaptive optics systems consist in setting a wavefront sensor in an additional channel. Differential aberrations
between the coronagraphic channel and the additional one induce a loss in performance. To tackle this limitation, we propose a new
technique for measuring the tip-tilt errors directly from the coronagraphic image.
Methods. Our method uses the relations between the intensity distribution in the coronagraphic image and upstream tip-tilt errors.
We also propose a method of estimating the tip-tilt errors downstream of the focal plane mask. We validate at visible wavelength
our upstream and downstream tip-tilt estimation and compensation techniques with numerical simulation images and on laboratory
images.
Results. Numerical simulations predict that our techniques correct for the tip-tilt errors to a 1.3 × 10−2λ/D level when considering
a λ/40 wavefront error upstream of the coronagraph. In laboratory, where the coronagraph is mostly limited by wavefront errors, we
correct for the tip-tilt errors with an accuracy better than 6.5 × 10−2λ/D.
Conclusions. We demonstrate in numerical simulations and in laboratory that our technique can efficiently estimate the tip-tilt errors
directly from the coronagraphic image with no additional channel. It is robust and can be used with small wavefront errors. It should
be applicable to planet imager systems currently in preparation, such as SPHERE and MIRI/JWST.

Key words. instrumentation: adaptive optics – instrumentation: high angular resolution – methods: laboratory –
techniques: image processing

1. Introduction

During the past decade, our knowledge of formation and evolu-
tion of planetary systems has been significantly increased. About
seven hundred exoplanets have been discovered by different
techniques. The diversity of what we observe today is broader
than what was expected 20 years ago. Even though a few exo-
planets can be characterized by transit spectroscopy, the major-
ity cannot be and are still unknown in terms of temperature and
composition. A promising technique to spectroscopically study
exoplanets located at a few AU from their hosting stars is direct
imaging. It is, however, a challenging goal for two reasons. On
one hand, the planet-star angular separation is close to the tele-
scope resolution. On the other hand, the high star-planet flux ra-
tio (from 105 to 1010) requires high contrast imaging techniques
like coronagraphy. Several coronagraphic instruments are cur-
rently developed for ground-based telescopes (SPHERE, GPI,
Beuzit et al. 2008; Macintosh et al. 2008) and space applica-
tions (MIRI/JWST, Boccaletti et al. 2005).

To maximize the number of exoplanet images, one needs
high-performance coronagraphs with small inner working an-
gles (IWA, angular separation at which the planet’s useful
throughput first reaches half of the peak throughput, Guyon
et al. 2006). Coronagraphs with small IWA are very sensitive to

low-order aberrations and small pointing errors upstream of their
focal plane mask. These aberrations diffract a part of the stel-
lar light through the coronagraph aperture and strongly decrease
the coronagraph performance (Lloyd & Sivaramakrishnan 2005;
Sivaramakrishnan et al. 2005; Shaklan & Green 2005). To detect
very faint companions close to their stars, it is then necessary
to accurately measure and correct for the low-order aberrations
such as tip-tilt, focus, and astigmatism. Classical adaptive optics
solution implies spatially splitting the coronagraphic beam to
create a wavefront sensing channel and a scientific channel. This
split induces differential aberrations between the two channels
and may prevent accurate wavefront estimations. Techniques op-
timized for coronagraphic images have been proposed (Guyon
et al. 2009; Sivaramakrishnan et al. 2008) that rely on a wave-
front sensing channel using dedicated optical setup that needs to
be calibrated.

In this paper, we focus on the tip-tilt errors that are the most
limiting aberrations for a coronagraph. We propose to measure
these errors directly in the coronographic image with no addi-
tional channel. Our technique estimates both tip-tilt errors up-
stream and downstream of the coronagraphic focal plane mask.
The upstream errors push the beam out of the focal plane mask
and directly degrade the coronagraphic efficiency. The down-
stream errors only induce shifts of the whole image on the
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Fig. 1. Principle of the considered coronagraphic instrument.

detector but we need to estimate them to control the upstream
errors. We evaluate the performance of our technique on both
numerical simulations and laboratory tests for the four quadrant
phase mask coronagraph (FQPM, Rouan et al. 2000).

In Sect. 2, we present the FQPM image distortions induced
by tip-tilt errors. We then derive formalism to estimate the tip-
tilt upstream of an FQPM directly from the coronagraphic im-
ages. In Sect. 3, we use numerical simulations to determine the
performance of the upstream tip-tilt error estimation and correc-
tion, ignoring the downstream error impact. In Sect. 4, we ex-
plain how to estimate for tip-tilt errors downstream of the coron-
agraph from the coronagraphic images and we give the technique
performance, ignoring upstream errors. We finally present labo-
ratory performance of the combined upstream and downstream
tip-tilt techniques in Sect. 5. We discuss in Sect. 6 some practical
issues that affect the performance of our techniques.

2. Estimation of tip-tilt errors upstream
of the coronagraph

The variables used in this paper are recalled in Appendix A.

2.1. Numerical model of the instrument

We consider an instrument having a full disk pupil and equipped
with a coronagraph that rejects the stellar light as a means to
do exoplanet direct imaging. The instrument principle is shown
in Fig. 1. In the entrance pupil P, the aberrations upstream of
the coronagraphic mask are characterized by the wavefront er-
ror (WFE) φ linked to the optical train quality. In addition, we
consider the tip and tilt modes linked to pointing errors, denoted
Tx and Ty expressed in λ/D normalized angles, where λ is the
wavelength and D the telescope diameter. The coronagraphic
mask M is installed in the first focal plane where the telescope
point spread function (PSF) is formed. The light diffracted by
the coronagraph is filtred by the Lyot stop L placed in the relayed
pupil image plane. Because of upstream wavefront aberrations, a
part of the stellar light goes through the coronagraph and creates
the speckle pattern in the second focal plane of the instrument,
where the detector is placed.

We use Fourier optics and Fraunhofer diffraction in our
model. The monochromatic electric field ψ′ upstream of the
coronagraph in the entrance pupil P is

ψ′(ξ, ν) = P(ξ, ν)e(iπ(2φ(ξ,ν)/λ+(ξTx+νTy))), (1)

where (ξ, ν) are the spatial coordinates in the entrance pupil
plane normalized by D/2 and M is the FQPM (Rouan et al.
2000) that induces a π phase shift on two focal plane quadrants
in a diagonal and 0 on the two other quadrants. The Lyot stop is

Fig. 2. Left: central area S of the coronagraphic image Ic for a tip-tilt
errors upstream of the coronagraph: Tx = 0.2λ/D, Ty = 0 and no WFE
φ = 0. Right: coordinate axes.

put in the relayed pupil plane and the resulting electric field ψ
can be written as

ψ = F −1 (F (ψ′)M
)

L, (2)

where F is the Fourier transform operator and F −1 its inverse.
Finally, the intensity of the coronagraphic image Ic recorded by
the detector is

Ic = |F (ψ)|2

=
∣∣∣∣F [
F −1

(
F

(
Pe(iπ(2φ(ξ,ν)/λ+(ξTx+νTy)))

)
M

)
L
]∣∣∣∣2 . (3)

From Eq. (3), we can compute how the tip-tilt errors Tx and
Ty affect the intensity distribution Ic. The larger Tx and Ty
are, the more the telescope PSF is badly centred on M and
the brighter the intensity is after the coronagraph. Even for
tip-tilt errors of the order of a few tenths of the telescope
diffraction limit λ/D, the star light leaks dramatically increase
and may dominate the speckles related to a WFE φ (Lloyd &
Sivaramakrishnan 2005). If there is no WFE or tip-tilt errors
upstream of the coronagraph (φ = 0 and Tx = Ty = 0), then
Ic = 0 (Rouan et al. 2002; Abe et al. 2003; Lloyd et al. 2003).
If there are tip-tilt errors, they induce two main bright speckles
close to the centre of the FQPM coronagraphic image. Figure 2
shows the central area of the resulting coronagraphic image Ic.
It is not obvious that we can retrieve the tip-tilt errors from such
an image since speckles split along y-axis, whereas tip-tilt errors
is along x-axis. The two bright speckles are mostly symmetrical,
but we will see that a slight asymmetry can be detected.

Because tip-tilt errors increase the light intensity and modify
its distribution in the central area of Ic, we propose to compute
intensity differences as done with a four quadrant detector for
tracking system (Tyler & Fried 1982). We select on Ic a squared
central area S with a size of a few λ/D. We divide S in four
equal quadrants Qi (Fig. 2) on which we compute a normalized
integrated intensity Ii

Ii =

∫
Qi

Icds∫
S

Incds
· (4)

The normalizing factor is a precalibrated, integrated intensity on
the area S for a non-coronagraphic image Inc, computed with
Eq. (3) where M is constant and equal to 1, Tx = 0 and Ty = 0,
but keeping the Lyot stop L and the WFE φ.

We then define the intensity differences ΔIx and ΔIy in the
central area S , which will allow us to estimate the tip-tilt errors:

ΔIx = (I2 + I4) − (I1 + I3), (5)

ΔIy = (I1 + I2) − (I3 + I4). (6)
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Table 1. Numerical simulation conditions with f the spatial frequency.

λ 800 nm
Initial WFE (φ) 0 or 20 nm rms
φ Power spectral density f −2, random draw
Pupil Unobscurated disk
Pupil sampling 128 × 128 pixels
Lyot stop size 100%
Coronagraph Perfect FQPM
Pixel size λ/4D
Image size 128λ/D × 128λ/D
Quadrant size (Qi) 2 λ/D × 2λ/D

The challenge is to estimate Tx and Ty from the scientific image
(using ΔIx and ΔIy) with no additional wavefront sensor chan-
nel. If no coronagraph is used, the link between Tx and ΔIx (or
Ty and ΔIy) is straightforward (Tyler & Fried 1982). We show
in the next section that ΔIx and ΔIy both depend on Tx and Ty.
To quantify the impact of tip-tilt errors on the star rejection effi-
ciency of the coronagraph, we first define the performance met-
ric as the coronagraphic peak attenuation A

A =
max(Inc)
max(Ic)

, (7)

where the maxima of the two images are computed in the cen-
tral area S . In the case of small pure tip-tilt errors (Tx and Ty,
<0.5 λ/D), we found from numerical simulation that, for the
FQPM coronagraph, A can be written as

A � 1
0.56(T 2

x + T 2
y )
· (8)

2.2. Numerical simulation of the tip-tilt error effects

In this section, we explain how to estimate the tip-tilt errors, Tx
and Ty, from the intensity differences ΔIx and ΔIy. The numeri-
cal simulation conditions are summarized in Table 1.

To simulate the FQPM coronagraph, we generate a four
quadrant mask M of 512× 512 pixels (size of the images), cen-
tred between the four central pixels. The phase is π on two quad-
rants and 0 on the two others. We then form an image centred on
the mask. To avoid pupil boundary sampling errors, we have to
use a specific entrance pupil P. This pupil is computed to give
the perfect rejection through FQPM propagation for no aberra-
tions with a Lyot stop of 100%.

2.2.1. Simulation with no wavefront error (φ= 0)

We first show the evolution of the attenuation A and of the in-
tensity differences ΔIx and ΔIy versus tip-tilt errors for a few
particular cases summarized in Table 2. We introduce a number
of tip-tilt errors values, Tx = [0, 0.05, 0.1, 0.4] (λ/D) and Ty = 0
upstream of the coronagraph and we consider no WFE: φ = 0.
The coefficient β is a multiplicative coefficient determined by
numerical simulations (see Appendix B). It depends on the pixel
sampling. As expected, the performance of the coronagraph de-
grades, while the tip-tilt grows because the star image is not cen-
tred on the focal plane mask M. The larger the tip-tilt errors, the
lower the attenuation and the larger the intensity difference ΔIx.
In the case of no tip-tilt errors, the intensity differences ΔIx and
ΔIy are nought and the attenuation A is infinite. With φ = 0 and
Ty = 0, the intensity difference ΔIy is nought whatever the Tx

Table 2. Numerical simulated values for attenuation A, intensity differ-
ences ΔIx and ΔIy for Tx = [0, 0.05, 0.1, 0.4]λ/D, and Ty = 0. φ = 0.

φ = 0, Ty = 0
Additional x-tilt Attenuation ΔIx

β

ΔIy
β

T 3
x

Tx (λ/D) A
0.0 Infinite 0 0 0
0.05 722 1.5e-4 0 1.2e-4
0.10 181 1.2e-3 0 1.0e-3
0.40 14 6.4e-2 0 6.4e-2

Table 3. Numercial simulated values for attenuation A, intensity dif-
ferences ΔIx and ΔIy, and Eqs. (9), and (10). Tx = [0, 0.05, 0.1, 0.4],
Ty = 0.05λ/D . φ = 0.

φ = 0, Ty = 0.05 λ/D
Tx A ΔIx

β

ΔIy
β

T 3
x + 4TxT 2

y T 3
y + 4TyT 2

x

0.0 722 0 1.5e-4 0 1.2e-4
0.05 327 7.6e-4 7.6e-4 6.2e-4 6.2e-4
0.10 121 2.4e-3 2.6e-3 2.0e-3 2.1e-3
0.40 12 6.8e-2 3.3e-2 6.8e-2 3.2e-2

value. We found that ΔIx and Tx are closely linked by the rela-
tion ΔIx

β
∼ T 3

x (Table 2). We can also note that the variation of
the attenuation A is inversely proportional to the square of Tx as
given by Eq. (8).

When introducing an additional error Ty = 0.05 (λ/D) on the
y axis, we observed a coupling of the two axes in the computed
intensity differences (Table 3). In particular, ΔIy

β is not constant

but increases with Tx. Even if Ty is relatively small, ΔIy
β

reaches

values close to the values obtained for ΔIx
β . Also, small Tx, the

values of ΔIx
β are affected when compared to the ones presented

in Table 2.
Both ΔIx and ΔIy depend Tx and Ty. We performed numer-

ical simulations assuming different conditions and φ = 0. We
thus determined the relations between ΔIx, ΔIy, Tx and Ty for
small tip-tilt errors, <0.5 (λ/D), for the two first order terms (see
Appendix B)

ΔIx

β
= T 3

x + αTxT 2
y , (9)

ΔIy
β
= T 3

y + αTyT
2
x . (10)

In the specific case of an FQPM coronagraph, α = 4. We report
in Table 3, the values of T 3

x + 4TxT 2
y and T 3

y + 4TyT 2
x . These val-

ues are very close to the intensity differences ΔIx/β and ΔIy/β,
respectively.

2.2.2. Simulation with wavefront error (φ � 0)

We now consider a more realistic case with one particular 20 nm
rms WFE. In the computed random WFE, there is a small tip-tilt
contribution. To study the impact of known tip-tilt errors Tx and
Ty, we subtract its own tip-tilt terms to φ. The WFE without tip-
tilt for this particular draw is 18.6 nm rms. Then we add an x-tilt
Tx = [0, 0.05, 0.1, 0.4] (λ/D) to compute the field ψ′ in Eq. (1).
The results are presented in Fig. 3 and in Table 4.

We show in Fig. 3 the evolution of the speckles in the corona-
graphic image: the images from the left to the right are for a x-tilt
Tx = [0, 0.05, 0.1, 0.4] (λ/D), respectively, and a y-tilt Ty = 0.
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Fig. 3. Coronagraphic images for φ rms = 18.6 nm, Ty = 0 and different
values for Tx, upstream of an FQPM coronagraph. Left: reference Icr for
Tx = 0. Other images Ic for increasing values of Tx from left to right:
0.05, 0.1 and 0.4 λ/D. All images normalized to their maximum. Same
simulations as in Table 4.

Table 4. Attenuation A and intensity differences ΔIx, ΔIy, Δx, and Δy
for Tx = [0, 0.05, 0.1, 0.4]λ/D, and Ty = 0. φ rms (tip-tilt subtracted) =
18.6 nm.

φ rms = 18.6 nm, Ty = 0
Tx A ΔIx

β

ΔIy
β

Δx Δy

0 573 –6.0e-5 1.0e-5 0 0
0.05 500 4.0e-5 –3.3e-4 1.1e-4 –3.5e-4
0.1 165 1.0e-3 –8.7e-4 1.1e-3 –8.8e-4
0.4 13 6.3e-2 –6.2e-3 6.3e-2 –6.2e-3

For the low values of Tx, we observe the deformation of the cen-
tral speckles, while for the largest tilt, the star leak induced by
tilt error dominates and leads to two bright speckles close to the
centre.

In Table 4, the obtained attenuation A values are lower than
the ones for φ = 0 due to the speckle pattern produced in the
image. The sensitivity of ΔIx to Tx is relatively similar to the
previous case (φ = 0). We can however, highlight two differ-
ences. The measured intensity difference ΔIy is never nought
and for Tx = 0 and Ty = 0, ΔIx and ΔIy are not nought. The
WFE φ induces a slight asymmetrical speckle pattern in the fo-
cal plane (Perrin et al. 2003), hence in the signals of the selected
quadrants. There is thus a new coupling between the x and y axes
linked to the WFE-induced speckle pattern. If the coupling is
significant, it remains lower for this example than the one ob-
tained with Ty � 0 as in Table 3. From the values given in the
different tables and the images in Fig. 3, we deduce that the im-
pact of a WFE (around 20 nm) will dominate the computation of
ΔIx and ΔIy for the small tip-tilt errors while it is no longer the
case for larger tip-tilt errors (>0.1λ/D) because of the induced
very bright twin speckles.

2.3. Tip-tilt estimators

In practical cases, φ is not nought, and we have to deal with WFE
induced speckle pattern in the coronagraphic image. Our desire
is to measure the tip-tilt errors is to maintain the alignment as
close as possible to the one corresponding to a reference image.
We call “reference image” (Fig. 3, left) the coronagraphic im-
age corresponding to the smallest tip-tilt error. Its intensity is
denoted Icr. To be able to measure any small tip-tilt errors in
the current coronagraphic image Ic using the analytical relations
given by Eqs. (9) and (10), we subtract the one corresponding
to Icr to the intensity differences. We first computeΔIx,r and ΔIy,r
from Eq. (6) for Icr. Then, we define two new differences Δx and
Δy, which are linked to Tx and Ty in Ic by

Δx =
ΔIx − ΔIx,r

β
� T 3

x + 4TxT
2
y , (11)

Δy =
ΔIy − ΔIy,r

β
� T 3

y + 4TyT
2
x . (12)

Table 5. Spatial root mean square of φ averaged on 100 draws with
tip-tilt for Icr computation and without tip-tilt for Ic computation.

φ (nm rms)
Icr with tip-tilt 0 5 10 20 40
Ics w/o tip-tilt 0 4.7 9.5 19 38

In Table 4, we present the values of Δx and Δy for the considered
case, where Icr is the computed image with Tx = 0 and Ty = 0
(left image in Fig. 3). We observe that Δx (with φ rms = 18.6 nm)
is close to ΔIx

β when φ = 0 nm rms (Table 2). However, Δy is not
nought because of asymmetrical speckle pattern in the y direc-
tion due to the high-orders of φ. Using an iterative process, we
demonstrate in the next section that we can estimate Tx and Ty
from Eqs. (11) and (12) even with the effects of WFE. To iden-
tify the convergence, we propose to compute the attenuation A
(Eq. (7)) for each new image obtained after tip-tilt correction.
The goal is therefore to maximize A.

To estimate the tip-tilt errors from the measurements, we first
have to inverse Eqs. (11) and (12). From these equations, we can
write

R3 − 4R2Δx

Δy
+ 4R − Δx

Δy
= 0, (13)

with

R =
Tx

Ty
· (14)

This equation has a unique, real solution R except in the case
when the value of Δx

Δy
is close to 1. In this case, we make the

approximation R = 1 (see Appendix B). We derive the general
expressions of the estimators Tx, est and Ty, est

Tx, est =

(
R2 Δx

R2 + 4

)1/3

, (15)

Ty, est =

(
Δy

1 + 4R2

)1/3

· (16)

These estimators depend on the value of R. The ratio Ty
Tx

can
also be considered. The different cases are developed in the
Appendix B. With this method, we are able to estimate the tip-
tilt upstream of the coronagraph directly from the coronagraphic
image measuring the intensity differences Δx and Δy.

3. Performance from numerical simulations

In this section, we present the results of tip-tilt estimation and
correction by numerical simulations. Parameters of the simula-
tions are given in Table 1 in Sect. 2.2. In the simulations, we
drew a set of random WFE φ. These WFE are defined by their
rms values given in Table 5 for the two cases tip-tilt modes in-
cluded and subtracted. For each initial WFE including tip-tilt
modes, we computed the reference image Icr having no addi-
tional tip-tilt (Tx = 0 and Ty = 0).

To simulate the estimation process, we removed the tip-tilt
modes contribution of the initial random WFE and introduced
a random additional tip-tilt in Tx and Ty, uniformly drawn be-
tween −0.4 and 0.4 λ/D, in order to compute the coronagraphic
image Ic by Eq. (3). This couple (Tx, Ty) is different for each
random WFE.
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For each WFE draw, we determined the estimations Tx, est
and Ty, est of the tip-tilt errors Tx and Ty. Estimators Tx, est
and Ty, est (Eqs. (15) and (16)) were derived from the intensity
differences Δx and Δy and the ratio R = Tx

Ty
with some approx-

imations due to the impact of the WFE φ. Once estimated, we
compensated for the tip-tilt errors upstream of the coronagraph
driving a tip-tilt mirror. In the numerical simulations, we sub-
tract Tx, est and Ty, est from Tx and Ty respectively in Eq. (1).
As the estimation is not perfect, we used an iterative process.
We recorded the new coronagraphic image Ic, estimated the new
residual tip-tilt errors, corrected for them, and repeated the pro-
cess using a gain equal to 1. The correction loop converges to
low values of Δx and Δy within 15 iterations. The first iteration
corresponds to the first correction of the tip-tilt errors, hence
to the first value of the residual tip-tilt errors Tx − Tx, est and
Ty − Ty, est. We first checked that, with no WFE (φ = 0), the
tip-tilt correction converges within eight iterations to a residual
error of the order of 10−8λ/D.

To study the convergence of the tip-tilt errors estimation un-
der realistic conditions, we present the attenuation A, the abso-
lute tip-tilt errors ((Tx−Tx, est)2+(Ty−Ty, est)2)1/2 and the absolute
intensity difference ((Δx)2+(Δy)2)1/2 with respect to the iteration
number for φ rms = 19 nm in Fig. 4. In this figure, we present
performance for three tip-tilt errors couples (Tx, Ty). For each
couple, the WFE draw is different. The three cases we consid-
ered behave the same way. There is an oscillation around the best
estimation of the tip-tilt errors after a few iterations (Fig. 4, mid-
dle), and this tip-tilt error is never as small as in the φ = 0 case.
Higher orders in the WFE therefore introduce errors that are not
estimated by our approach. We expected this behaviour because
Tx, est and Ty, est are derived by assuming that the effect of φ is
negligeable compared to Tx and Ty. After a few iterations, that
assumption is not true anymore and the estimators do not give a
sufficiently accurate estimation of the residual tip-tilt errors. For
practical applications, we verified that using a loop gain lower
than one allows us to reduce the oscillations. To find the itera-
tion corresponding to the smallest tip-tilt errors, we considered
the maximum of the attenuation A (Eq. (7)) as a criterium. The
attenuation is presented in Fig. 4, top, computed for the same
three couples (Tx, Ty). When the attenuation A is maximum, the
absolute tip-tilt errors ((Tx − Tx, est)2 + (Ty − Ty, est)2)1/2 are mini-
mum (Fig. 4). We also present the absolute intensity differences
((Δx)2+(Δy)2)1/2 in the bottom of Fig. 4. The intensity difference
decreases significantly down to a level of the order of 10−4. But
we were not able to find the minimum of the tip-tilt errors with
this parameter, because of the impact of the WFE limiting the
validity of our crude model for the estimation.

To determine the accuracy of our upstream tip-tilt errors esti-
mation, we considered a set of hundred random WFE in Table 5.
For each random WFE, we estimated the tip-tilt errors and find
the iteration corresponding to the best estimation based on our
attenuation criterium.

We present the residual y-tilt (Ty − Ty, est) in Fig. 5 with re-
spect to the residual x-tip (Tx − Tx, est) in λ/D for the best it-
eration, when the attenuation A is at its maximum. We observe
that the accuracy achievable with our method is directly linked
to the WFE in the pupil. The higher the WFE, the higher the tip-
tilt residual errors too. In Fig. 6, we also show the maximum of
the attenuation obtained in the tip-tilt compensation process. For
each random WFE (19 nm rms), we plot the attenuation in the
coronagraphic image Ic for the best correction of the tip-tilt er-
rors with respect to the attenuation in the initial reference image
Icr. Using our method to estimate and compensate for the tip-tilt,

Fig. 4. Simulation results for the different indicators of the convergence:
the attenuation A (top), the value ((Tx − Tx, est)2 + (Tx − Tx, est)2)1/2 (mid-
dle), the value ((Δx)2 + (Δy)2)1/2 (bottom) versus the iteration number.
Tx1 = −0.29λ/D, Ty1 = 0.4λ/D (black full line), Tx2 = 0.32λ/D,
Ty2 = 0.37λ/D (red dashed line), Tx3 = 0.03λ/D, Ty3 = −0.05λ/D
(green dotted-dashed line), φ rms = 19 nm.

we were able to reach an attenuation higher than the one of the
reference image after a few iterations. As a result, the residual
tip-tilt errors are smaller after a few iterations than initially.

We report the rms residual values in λ/D for φ =
[0, 4.7, 9.5, 19, 38] nm rms in Table 6. We can estimate the tip-
tilt errors with an accuracy of the order of 1.3 × 10−2λ/D in
the case of a 19 nm rms WFE (λ/40) and 2.5 × 10−2λ/D for
38 nm rms (λ/20). The residual tip-tilt errors are roughly propor-
tional to the rms WFE, as expected from the analytical deriva-
tion of extreme adaptive optics PSF (Perrin et al. 2003). With
our method, we are able to estimate and compensate for tip-tilt
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Fig. 5. Optimized residual tip-tilt errors. 100 random WFE of 19 nm
rms (black crosses), 9.5 nm rms (green diamonds), 4.7 nm rms (orange
triangles), and 0 nm rms (blue square). For each random WFE, we add
a tip-tilt Tx and Ty between −0.4 and 0.4 λ/D.

Fig. 6. Optimized attenuation A = max(Inc)
max(Ic) obtained from a corona-

graphic image Ic after tip-tilt compensation vs. attenuation A = max(Inc)
max(Icr)

obtained from the reference image Icr. 100 random WFE of 19 nm rms.

errors upstream of a coronagraphic mask by directly comput-
ing the intensity differences on the final coronagraphic image.
We demonstrate from numerical simulations that we can stabi-
lize a beam on an FQPM coronagraph with a very good pointing
accuracy.

4. Estimation of the tip-tilt errors downstream
of the coronagraph

The measurement of the tip-tilt described in Sect. 2 assumes
that there are no tip-tilt errors introduced downstream of the
coronagraph, i.e. that the coronagraph axis is always centred on
the same position on the detector. If this axis position drifts, the

Table 6. Rms residual tip-tilt errors values in λ/D after attenuation
maximization.

φ (nm rms) 0 4.7 9.5 19 38
Tip-tilt 8.0e-9 3.2e-3 7.3e-3 1.3e-2 2.5e-2
(λ/D rms)

detector records a shifted image. If this misregistration occurs
between the recording of the reference image Icr and any other
image Ic of the correction loop, the intensity variations Δx and
Δy are biased (Δx � 0 and Δy � 0 for Tx = Ty = 0). As the
estimators Tx, est and Ty, est of the tip-tilt are linked to Δx and Δy
(Eqs. (15) and (16)), our estimation of the tip-tilt errors upstream
of the focal plane mask is incorrect. We then need to estimate
these tip-tilt errors downstream of the focal plane mask to ac-
curately estimate the tip-tilt errors upstream of the focal plane
mask.

Solutions have already been proposed for precisely mea-
suring the astrometry of the sources in coronagraphic images
(Sivaramakrishnan et al. 2006; Marois et al. 2006) and imple-
mented (Zimmerman et al. 2010). They rely on a periodic struc-
ture added in the pupil plane upstream of the coronagraph to
create fiducial images of the star with known positions. These
solutions require a change in phase or amplitude upstream of the
coronagraph that is not always simple to implement. We pro-
pose a solution that does not change the beam upstream of the
coronagraph.

We denote Ics as the intensity of the shifted coronagraphic
image. We choose to measure the shift of Ics with respect to the
reference image Icr (defined in Sect. 2.3). We consider that there
is no tip-tilt error upstream of the coronagraph (Tx = Ty = 0)
and a stable WFE. The image Ics is then the same than Icr but
shifted in the final focal plane of γx and γy (in λ/D) in the x
and y directions, respectively. Both γx and γy describe the shift
of the detector compared to the coronagraph axis. To estimate γx
and γy, we propose to compute the image correlation C between
Ics and Icr and estimate in C the position of the correlation peak.

As shown in Fig. 3, the maximum intensity of the coron-
agraphic image can be quickly predominated by tip-tilt errors
upstream of the coronagraph. This would bias the estimation of
the detector position. As shown in the same figure, low values
of upstream tip-tilt mainly affects the image within a few λ/D
around the coronagraph axis. The intensity distribution at dis-
tances of tens of λ/D is a speckle pattern produced by high spa-
tial frequency defects of the optical elements upstream of the
coronagraph, and they are less sensitive to tip-tilt. We can take
advantage of these speckles to measure the global image shift.

To compute the image correlation, we consider the speckles
located further away than 10 λ/D of the coronagraph axis (Fig. 7,
top). In the simulation presented in this section, we could have
kept all the speckles further away than 10 λ/D because no detec-
tion noise was added to the speckles. In the realistic case, since
the mean intensity of the speckles decreases with axis distance,
the signal-to-noise ratio (SNR) for the speckles drops radially
because of the detector readout noise and the speckle photon
noise. Thus, to optimize the SNR in the image correlation, we
need to define an outer limit of the area used for the correlation
for each detection environment (readout noise, incoming flux).
We choose arbitrarily to simulate an outer limit of 40 λ/D diam-
eter to consider the effect of this truncating on the estimation of
γx and γy. Indeed, the autocorrelation of this ring-shape mask Γ
changes the shape of the image correlation. However, its struc-
ture is a smooth halo of width of a few tens of λ/D, while the
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Fig. 7. Top: bright ring with speckles considered to estimate the detector
shift. Bottom: x cut of the correlation. Shift of 1.2 λ/D in the x direction
and 0.6 λ/D in the y direction. Dashed black curve: correlation of ring
shape mask M. Dashed straith red line: treshold level.

correlation of the speckles creates a thin peak of 2λ/D width
(Fig. 7, bottom). To avoid the bias introduced by the autocor-
relation, we select the main peak of the image correlation by
applying a threshold. We use a 70% threshold in our numeri-
cal simulations. We then compute the centre of gravity of the
thresholded image C to get an estimation of the 2D shift of the
detector.

We assess the accuracy of the estimation considering the
same assumptions as in Sect. 2.2. The inner and outer rings of Γ
are defined in Fig. 7 (top). First, we defined the reference image
Icr created with a random WFE of 20 nm rms. Then we numer-
ically shift this image with γx = 1.2 λ/D and γy = 0.6 λ/D to
create Ics. We compute the correlation C and measure the po-
sition of the correlation peak by calculating the centre of grav-
ity on thresholded C. The first estimate of the movement (γx, est
and γy, est) is not perfect so we need to iterate to improve this
measurement. To do so, we numerically shift the previous image
by (−γx, est, −γy, est) and compute the new correlation C for this
new image and iterate the procedure a few times.

We repeat this simulation for 20 different random WFE of
20 nm rms. We report the error between the estimated position
and the real position as a function of the iteration in Fig. 8. The
first iteration corresponds to the first correction of the image
shift, hence to the first value of the residual shift errors γx−γx, est
and γy−γy, est. The different curves stand for various WFE draws.
After the first correction (iteration 1), the error of the estimation
is below 0.06λ/D, which corresponds to an error of ∼0.25 pix-
els. After the third iteration, we are able to shift the image Ics
with an accuracy of 0.01 λ/D (0.04 pixels).

In a realistic case, tip-tilt errors upstream and downstream of
the coronagraph can occur at the same time. To keep the source

Fig. 8. Residual shift of the image Ics measured in λ/D as a function of
the iteration number. Black full curves (green dashed curves) stands for
shift in x (y) directions. φ rms = 20 nm, 20 random draws of the WFE.
γx = 1.2 λ/D, γy = 0.6 λ/D.

well centred on the coronagraph, the method described in Sect. 2
can only be applied if the tip-tilt error downstream of the coro-
nagraph is corrected for. We propose then to apply the tip-tilt
correction in three successive steps. The first step estimates the
downstream tip-tilt errors as described in this section. The sec-
ond step numerically shifts the coronagraphic image and realigns
the detector and the coronagraph axis as in the reference image
Icr. The new image is virtually free of downstream tip-tilt. The
third step uses this aligned imaged to estimate the upstream tip-
tilt errors and correct for them. In the next section, we present
results of this downstream-upstream tip-tilt correction in labora-
tory conditions.

5. Laboratory performance

We propose to apply the methods described in Sects. 2 and 4
under laboratory conditions. We used the coronagraphic bench,
which is described in more detail in Mas et al. (2010). Main
components of the bench that we use for this experiment are a
diode laser in visible wavelength (λ = 635 nm), a tip-tilt mirror
using piezoelectric actuators, an FQPM coronagraph, a Lyot stop
diaphragm, a CCD detector, and a computer that interfaces the
detector and the tip-tilt mirror through labview.

5.1. Experimental protocol

The goal of the test is to estimate the tip-tilt errors and correct for
them. To introduce large tip-tilt errors (Tx and Ty up to 1.5 λ/D),
we willingly varied the laboratory temperature to induce dilata-
tions in the mechanical holders of optical elements.

At the beginning of the experiment, we aligned the source
on the coronagraph in order to reach what we considered the
best attenuation of the coronagraph (i.e. maximizing A). We
recorded the reference image Icr corresponding to this align-
ment. This reference image corresponds to an initial position
of the source and the detector relative to the focal mask. We
then raised the temperature of the whole laboratory by a few
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Fig. 9. Block diagram of the experimental protocol. Recording of the
data requires opening the control loop.

degrees Celsius. Induced thermal dilatations introduced a slow
tip-tilt drift, i.e. a movement of the source position compared to
the coronagraph axis (upstream tip-tilt) on a minute time scale.
At the same time, the detector’s centre slowly drifts away from
the coronagraph axis (downstream tip-tilt). As soon as the refer-
ence image was recorded, we compensated for the downstream
shifts and closed the upstream tip-tilt loop.

First, we used the algorithm described in Sect. 4 to estimate
the detector shift γx, est and γy, est compared to the reference im-
age Icr. The numerical shift of the image Ics was done by multi-
plying by phase ramps in the Fourier domain. From this “recen-
tred” image, we estimated the upstream tip-tilt errors (Eqs. (15)
and (16)) and compensated for it applying voltages on the tip-
tilt mirror located upstream of the focal mask. We denote Tx,m
and Ty,m thess commands. Reitering this process in closed loop,
while the temperature is increasing, we were able to stabilize the
beam on the coronagraph controlling the tip-tilt mirror. We can
open the loop to save the coronagraphic image, the recorded de-
tector drift (converted in λ/D), the voltages applied on the tip-tilt
mirror (converted in λ/D) and the temperature in the laboratory.
We recorded the image of the source Inc far from the centre of
the coronagraph. The block diagram in Fig. 9 summarizes this
control loop.

The parameters of the experiment are given in Table 7. The
inner and outer diameters of the ring, threshold of the correla-
tion peak, quadrant size and gain were all defined using test and
trial to optimize the stability of the closed loop. The image used
to calculate both upstream and downstream tip-tilt errors is the
average of 100 images. To reduce the impact of the noise in the
experiment, the estimated values of upstream and downstream
tip-tilt are multiplied by a 0.1 gain before they are applied to
the tip-tilt mirror and the numerical shift software procedure, re-
spectively. The loop frequency is 2 Hz, and we open the loop
every minute to record a set of data (images, detector shifts, tip-
tilt correction values, and temperatures).

5.2. Experimental results

In this section, we present the results of our two experiments.
The first (second) test lasted 30 min and increased the laboratory
temperature from 21.2 ◦C (22.4 ◦C) to 22.9 ◦C (24.7 ◦C). The ex-
perimental tip-tilt command Tx,m and Ty,m applied to the tip-tilt
mirror are presented as a function of the temperature variation
in Fig. 10. These values are an estimation of the drift between
the source and the coronagraph axis during the experiment. The

Fig. 10. Tip-tilt in λ/D applied to the tip-tilt mirror to compensate for
the drift upstream of the coronagraph. Values of Tx,m in λ/D (Ty,m) are
drawn with triangles (crosses). Experiment 1 (2) data is drawn in blue
(black) symbols.

Table 7. Parameters of the experiment.

Wavelength 635 nm
Pupil shape unobscured disk
Lyot stop size 94%
Pixel size λ/6.5D
Image size 37λ/D × 37λ/D
Quadrant size 2.6 λ/D
Inner diameter of the ring Γ 5.5 λ/D
Outer diameter of the ring Γ 9.3 λ/D
Threshold to select the 60%
correlation peak
Number of images averaged 100
in one iteration
Closed loop rate 2 Hz
Gain of the closed loop 0.1
Mean total photoelectrons in Icr 7 × 106 e-
Detector readout noise 18 e-

best criterium for measuring the performance of the loop is
the attenuation A measured on the recorded images (Eq. (7)).
It is plotted versus the temperature in the laboratory (Fig. 11).
The attenuation is rather stable compared to the one that could
be expected from Tx,m and Ty,m. Indeed, as shown in Sect. 2.2, an
additional tip-tilt errors of 0.4 λ/D has a catastrophic impact on
an FQPM coronagraph performance (A would drop off to 14).

Even though Tx,m and Ty,m vary rapidly and are higher than
0.5 λ/D at the end of experiment, the attenuation never drops be-
low 250. We note a dispersion of the attenuation as the tempera-
ture increases. This may come from the fact that with increasing
temperature, the other aberrations also vary due to beam shift
and laboratory turbulence inducing wavefront fluctuations. The
median value of the attenuation for both experiments is around
400. This median attenuation can be converted to an upper limit
for the median tip-tilt (Eq. (8)) and gives about 6.5 × 10−2λ/D.
The values are reported in Table 8. Compared to the large varia-
tion in Tx,m and Ty,m, this clearly indicates that our model is ro-
bust enough to be applied in real laboratory conditions. Besides,
our control loop behaves well.

The mechanical deformation introduced by thermal effects
also creates a slow drift downstream of the coronagraph that
creates a shift between the detector and the coronagraph axes
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Fig. 11. Stability of the attenuation with respect to the temperature.
Experiment 1 (2) data is drawn in blue triangle (black star) symbols.

Fig. 12. Position of the detector in λ/D. In y direction: triangles. In x di-
rection: crosses. Same conditions as Fig. 10.

Table 8. Median value of the attenuation A and of the deduced residual
tip-tilt errors for two experiments.

Median value Attenuation (A) (T 2
x, est + T 2

y, est)
1/2

Exp 1 400.9 6.7 × 10−2

Exp 2 439.2 6.4 × 10−2

(Fig. 12). During the experiments, the detector drifted compared
to the coronagraph axis by more than 0.6 λ/D (4 pixels) in the
y direction for an increase of 2 ◦C. If not compensated for in
the closed-loop, this large excursion would have completely bi-
ased the estimation of the tip-tilt errors, thereby decreasing the
attenuation level.

To compare these experimental results with the expected
performance simulated in Sect. 3, we need to estimate the
WFE level for our experiments. The wavefront metrology of
the bench made with a commercial Shack-Hartmann sensor and
recorded a few weeks before the experiments were giving WFE
between 30 (λ/20) and 40 nm (λ/16). We also checked by sim-
ulations that the highest attenuation reached (550) is compatible

with these values. We have shown by numerical simulations that
for a WFE φ rms = 40 nm (λ/20 for the simulation) and an initial
tip-tilt errors between −0.4 and 0.4 λ/D, we were able to reduce
the tip-tilt errors down to 2.5 × 10−2λ/D. On the bench, the con-
trol loop decreases a drift variation of the order of 1.5 λ/D to
a median error less than 6.5 × 10−2λ/D. Remember that this
value is an upper limit. Indeed, the other high-order aberrations
affect the recorded images and may partly or completely set the
level of the attenuation. In this case, Eq. (8) used to estimate
the tip-tilt errors cannot be directly applied. The developed sim-
ulation was essentially focused on studying the best algorithm
on images not affected by noise or WFE fluctuations. Adding
photon noise, readout noise, flat-field noise, and aberration vari-
ations must also change the numerical results. In our simulation,
we also studied the measurement of the tip-tilt separately up-
stream of the coronagraph and of the shift between the coron-
agraph and the detector. Doing them at the same time certainly
slightly decreases the performance of the control loop. More nu-
merical studies are needed to confirm this point.

6. Discussion

Both numerical and laboratory studies use monochromatic light.
Since the estimation of upstream tip-tilt errors uses only the
central area of Ic, it can certainly be extended to a finite spec-
tral bandwidth. From simulation, we find that Eqs. (9) and (10)
are valid for any wavelengths but they change the coefficient β.
For a very broad spectral range, limitations may arise from the
large dispersion of the diffraction pattern compared to the lim-
ited size of the central area S. In this case, achromatic FQPM
also need to be used (Mawet et al. 2006; Galicher et al. 2011),
but chromatic limitations of the coronagraph must also be taken
into account. For the same reason, the impact of coronagraph de-
fects on our tip-tilt estimation needs to be more precisely stud-
ied. However, the light that leaks through the coronagraph from
these defects adds up to the image as a diffracted spatial struc-
ture. It can be partly removed when subtracting Icr but will cer-
tainly limit the precision of the estimation in the same way as the
high-order WFE errors does. This could explain the lower per-
formance obtained with our experimental bench than with the
numerical simulations. We expect the same behaviour, consid-
ering central obscuration of the pupil (VLT) or complex pupil
geometry (JWST), and this should be verified by numerical sim-
ulations. Preliminary simulations also show that our solution can
also be applied to other type of phase mask coronagraphs (Dual
Zone, vortex coronagraph, Soummer et al. 2003; Mawet et al.
2005). The detailed behaviour of the tip-tilt estimation with these
coronagraphs remains to be studied.

The downstream tip-tilt estimation will be only affected
by the spectral bandwidth. For a wide spectral range the
speckle correlation peak will be enlarged with a lower contrast.
Qualitative laboratory tests with both upstream and downstream
tip-tilt corrections using a spectral resolution of 16 were also
carried out and showed similar behaviour than monochromatic
case.

7. Conclusion

In this paper, we have proposed a new method of estimating the
tip-tilt errors upstream and downstream of the focal plane mask
of a coronagraph by only using the scientific coronagraphic im-
ages. The estimation of the upstream errors is based on the com-
putation of intensity differences in x and y directions, splitting
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in four quadrants the central part of the coronagraphic image.
We used a numerical model to determine the dependence of the
intensity differences empirically on the upstream pupil tip and
tilt modes for an FQPM coronagraph. In the case of a WFE
with no higher terms than tip-tilt, we found the laws that drives
the coupling between the intensity differences in x and y direc-
tions. We thus derived the estimators of tip-tit errors. Higher or-
der terms induce slightly asymmetric speckle pattern in focal
plane, and the tip and tilt estimation is affected by such an error.
Nevertheless, we demonstrated by numerical simulations that
using this law, even with the presence of high-order WFE, we
are able to estimate and to compensate for in a few iterations tip
and tilt upstream of the coronagraph with a 1.3 × 10−2 λ/D accu-
racy for 20 nm rms WFE (λ/40) and 2.5 × 10−2 λ/D for 40 nm
rms (λ/20). Such a performance is required for the planet im-
ager systems under development as SPHERE, and MIRI/JWST.
Our method should be directly applicable to them. The attenua-
tion brought by the coronagraph can be improved most often by
the tip-tilt compensation when compared to the initial reference
image corresponding to the best alignment.

We also show that the tip-tilt errors downstream of the focal
plane mask can bias the upstream tip-tilt error estimation, be-
cause they induce a shift of the detector array with respect to the
coronagraph axis. We then proposed to estimate the downstream
errors measuring the correlation of the speckles in a ring around
the centre of the coronagraphic images. We demonstrated from
our numerical simulations that we can estimate the detector po-
sition with 10−2 λ/D accuracy.

We applied the two methods on our laboratory bench to con-
trol the tip-tilt errors upstream and downstream of the focal plane
mask at the same time, using the coronagraphic image with no
additional channel. We succeeded in stabilizing the beam on the
focal plan mask with accuracy much better than 6.5 × 10−2λ/D.
The performance is mostly limited by high-orders of the WFE.

This tip-tilt control technique is now operational on our high-
contrast optical imaging bench (Mas et al. 2010), and it will be
running in parallel with the speckle suppression technique called
self-coherent camera (Galicher et al. 2008).

Appendix A

All variables used in this paper are defined in Table A.1.

Appendix B

We develop the formalism and explain the method to derive es-
timators Tx, est and Ty, est. We start by recalling the expression of
ΔIx and ΔIy:

ΔIx

β
= T 3

x + αTxT 2
y , (B.17)

ΔIy
β
= T 3

y + αTyT
2
x , (B.18)

where Tx and Ty are the tip-tilt errors. α and β are coefficients
determined by numerical simulations by analysing the behaviour
of ΔIx and ΔIy in the function of Tx and Ty. The rigorous justi-
fication of this relation is postponed to a forthcoming paper. To
determine α, we consider the case with φ = 0 and Tx � Ty:
Tx1 = 0.4λ/D and Ty1 = 10−6λ/D, for instance. We can derive α
from the corresponding measured values of ΔIx1 and ΔIy1 by

α =
Tx1

Ty1

ΔIy1

ΔIx1

· (B.19)

Table A.1. List of the variables used in this paper.

Variables
A Coronagraphic attenuation peak
C Image correlation between Ics and Icr

D Telescope diametre
Ic Intensity of the coronagraphic image
Icr Intensity of the coronagraphic reference

image corresponding to the best
attenuation

Ics Intensity of the shifted coronagraphic image
Ii Normalized integrated intensity in each

quadrant Qi

Inc Intensity of the non coronagraphic image
L Lyot stop
M Focal mask
Qi Quadrants in the central area S of

the coronagraphic image
R Ratio Tx

Ty
S Central area of the coronagraphic

image
Tx (Ty) x-tilt (y-tilt) upstream

of the coronagraph
Tx,m and Ty.m Command applied on the tip-tilt mirror
α, β Multiplicative coefficients

defined by numerical simulation
Γ Ring-shape mask
γx (γy) Shift of the detector in x (y) direction
γx, est (γy, est) Estimated shift of the

detector in x (y) direction
ΔIx (ΔIy) Intensity difference

in x (y) direction in the central area S
ΔIx,r (ΔIy,r) Intensity

difference in x (y) direction in the central
area of the coronagraphic reference image

(φ � 0)
Δx (Δy) Eqs. (11) and (12)
λ wavelength
φ Wavefront error (WFE)
ψ′ Monochromatic electric field

upstream of the coronagraph
ψ Monochromatic electric field

downstream of the coronagraph
ξ, ν Spatial coordinates in the

entrance pupil

For an FQPM, we find α = 4. To determine β, we set φ = 0
and Ty = 0, we scan different values for Tx2 from −λ/D to λ/D
(here, 40 values). Since there is no WFE, hence no additional
y-tilt,

ΔIx2
β
= T 3

x2
and

ΔIy2
β
= 0 (Eqs. (B.17) and (B.18)). For each

Tx2 , we measure ΔIx2 . As a result, we get β as the slope of ΔIx2

versus Tx2 . For Tx > 0.4λ/D, the PSF is badly coronagraphied.
In a realistic case, we avoid such a relatively large tip. We then
find β = 0.59 corresponding to Tx < 0.4λ/D.

To estimate the tip tilt errors from the measurements, we first
have to inverse Eqs. (11) and (12). If Ty is not nought, we derive
this expression with respect to R = Tx/Ty

Δx =
(
R3 + 4R

)
T 3
y , (B.20)

Δy =
(
1 + 4R2

)
T 3
y . (B.21)

It can also be written as

R3 − 4R2Δx

Δy
+ 4R − Δx

Δy
= 0, (B.22)
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where R is determined as the solution of this equation. We then
derive the general expressions of Tx, est and Ty, est:

Tx, est =

(
R2 Δx

(R2 + 4)

)1/3

(B.23)

Ty, est =

(
Δy

(1 + 4R2)

)1/3

· (B.24)

The estimators depend on the value of R.
We represent the plot of Eq. (B.22) by the dotted line in

Fig. B.1 for φ = 0. This equation most often has a unique pure
real solution R for a given ratio Δx/Δy, which is

R = − U
3.21/3

+

21/3

(
12 − 16

(
Δx
Δy

)2
)

3U
+

4
(
Δx
Δy

)
3

, (B.25)

with

U =

(
− 128

(
Δx

Δy

)3

+ 3
√

3

×
√

256

(
Δx

Δy

)4

− 517

(
Δx

Δy

)2

+ 256

+117

(
Δx

Δy

) )1/3

(B.26)

U =

(
− 128

(
Δx

Δy

)3

+ 3
√

3

√
256

(
Δx

Δy

)4

− 517

(
Δx

Δy

)2

+ 256

+117

(
Δx

Δy

) )1/3

. (B.27)

From Fig. B.1, we also see that, for Δx
Δy

around 1 or −1, the ratio R
can have two or three solution values.

We manage the different cases as

– For 0.8 < |Δx
Δy
| < 1.1, R can take two or three real values, all

close to 1. In this case, we approximate the ratio R by taking
R = 1. Then we deduce that the tip and tilt estimations are

Tx, est =

(
Δx

5

)1/3

, (B.28)

Ty, est =

(
Δy

5

)1/3

· (B.29)

– For |Δx
Δy
| > 1.1 and |Δx

Δy
| < 0.8, we have a unique pure real

solution

Tx, est =

(
R2Δx

(R2 + 4)

)1/3

, (B.30)

Ty, est =

(
Δy

(1 + 4R2)

)1/3

· (B.31)

Fig. B.1. Dotted line Δx/Δy versus R = Tx/Ty as in Eq. (B.22).
Continuous curves: approximated behaviour. φ = 0 nm rms.

– For Δy = 0, the same expressions are valid replacing Δx
by Δy (and inversely), R by 1/R and Tx, est by Ty, est (and in-
versely).

– In the case where Δx and Δy are both nought, Tx, est and Ty, est
are also nought.
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