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Abstract

In many applications, hypothesis testing is based on an asymptotic distribution of

statistics. The aim of this paper is to clarify and extend multiple correction procedures

when the statistics are asymptotically Gaussian. We propose a unified framework to prove

their asymptotic behavior which is valid in the case of highly correlated tests. We focus

on correlation tests where several test statistics are proposed. All these multiple testing

procedures on correlations are shown to control FWER. An extensive simulation study on

correlation-based graph estimation highlights finite sample behavior, independence on the

sparsity of graphs and dependence on the values of correlations. Empirical evaluation of

power provides comparisons of the proposed methods. Finally validation of our procedures

is proposed on real dataset of rats brain connectivity measured by fMRI. We confirm our

theoretical findings by applying our procedures on a full null hypotheses with data from

dead rats. Data on alive rats show the performance of the proposed procedures to correctly

identify brain connectivity graphs with controlled errors.

Keywords. Multiple testing, structure learning, correlation tests, FWER control, cerebral

connectivity

Consider a family of probability distributions P. Let X
(n) = (X1, . . . ,Xn) be independent

realizations from an unknown probability distribution P . We assume that P belongs to the
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family P. Denote θ(P ) =
(
θ1(P ), . . . , θm(P )

)
the parameter vector of interest, with m ≥ 2.

Observing X(n), we aim at testing the following two-sided null hypotheses, for all i ∈ {1, . . . ,m}

H0,i : θi = 0 against H1,i : θi 6= 0. (P-1)

For all i ∈ {1, . . . ,m}, we consider test statistics Tn,i
(
X
(n)
)
chosen according to (P-1).

The objective of multiple testing procedure is to give a rejection set

R = {i, 1 ≤ i ≤ m : (H0,i) rejected},

such that the error is controlled. We will consider here the type I error called Family Wise

Error Rate (FWER), defined as

FWER(R, P ) = P (∃i ∈ R : θi = 0) .

To control the FWER for a given level α ∈ [0, 1], the objective is to find a procedure yielding

a rejection set R such that FWER(R, P ) ≤ α.

The classical method to control the FWER is the Bonferroni (1935)’s method where each

individual hypothesis is tested at a significance level of α/m with α the desired overall FWER

level and m the total number of hypotheses to test. Although this method is very intuitive, it

could be conservative if there is a large number of false hypotheses relative to the number of

hypotheses being tested. Alternative methods have been proposed to improve the power, e.g.

Holm (1979), Dudoit et al. (2003), ponderated Bonferroni in Finner and Gontscharuk (2009).

Goeman and Solari (2010) proposed a general framework to describe most of these methods

by using the sequential rejection principle.

This manuscript investigates the problem of FWER control when the test statistics Tn,i
(
X
(n)
)

are possibly dependent and have an asymptotic Gaussian distribution. This work is motivated

by an application in neuroscience (Achard et al., 2006). Let V denote the set of the indexes

of brain regions, V = {1, . . . , p}. Using brain imagery facilities, it is possible to record non

invasively the activity of each brain regions. The data are then processed to give estimations

of a correlation matrix between the activity of brain regions (ρi,j)(i,j)∈V×V . The objective is to

infer the dependence graph G = (V,E) where the set of edges E is a subset of V × V defined

by E = {(i, j) : ρi,j 6= 0}. To estimate these edges, one has to consider for all (i, j) ∈ V × V

the tests of the form

H0,ij : ρij = 0 against H1,ij : ρij 6= 0

where ρij denotes a correlation between a variable i and a variable j, corresponding to nodes

V . In this setting, test statistics Tn,ij
(
X
(n)
)
are asymptotically Gaussian and possibly highly
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correlated. We hence propose to apply a multiple testing procedure on correlations. The set of

edges is then estimated as {(i, j) ∈ V ×V | H0,ij is rejected}. For a given graph G, estimation

Ĝ is obtained applying m = p (p − 1)/2 tests (since the set E is symmetric by symmetry of

the correlations – the edges are undirected). Such an approach for graph inference has been

proposed in Drton and Perlman (2007). Other methods to estimate dependence graphs exist

based on regularisation estimators (Friedman et al., 2008, Meinshausen and Bühlmann, 2006).

However, these methods need sparse assumptions on the graphs to be valid. In addition, to

our knowledge, none of these latter methods ensures the control of FWER (Cai et al., 2011,

Krämer et al., 2009, Rothman et al., 2008). As an example, simulation studies state that

Graphical Lasso approach select too many edges, see e.g. Krämer et al. (2009). In applications

such as network inference in neuroscience, a fine control of false discovered edges is crucial and

this motivates the present work.

In this article, four existing asymptotic FWER controlling procedures are presented in

an unified framework: Bonferroni (1935), Dudoit et al. (2003), Romano and Wolf (2005),

Drton and Perlman (2007). For each of them, we confirm that they control asymptotically

the FWER for any underlying dependence structure, and when the sample size is sufficiently

large. Recent results are reviewed in a more general setting. Our main contribution is to

clarify and supplement existing results in the literature. Additionally we provide an extensive

comparison of methods, with different statistics. An empirical evaluation of the power of

the proposed method using different graph structures is described where it is shown that the

sample size is the only crucial parameter. These results are then applied on a real dataset

consisting of small animal brain recordings by fMRI, where recordings on dead rats provide a

null model from the experiments Becq et al. (2020b).

The article is organized in five parts. The first part defines the asymptotic tests setting and

describe the four multiple testing procedures. For each of these methods, single-step and step-

down approaches are described. The second part is dedicated to the application to multiple

correlation testing. Simulations are proposed in a third part, where we study among others

the behavior of the power with respect to the sparsity of the set of rejected hypothesis. In the

fourth part, our approach is applied to a real fMRI dataset on rats. Finally, we comment a

possible extension to False Discovery Rate control.

1 Procedures controlling asymptotically the FWER

For all i ∈ {1, . . . ,m}, we consider tests (P-1), based on test statistics Tn,i
(
X
(n)
)
. Fix

Tn,i
(
X
(n)
)
=

√
n θ̂n,i

(
X
(n)
)
. Throughout this manuscript, we assume that θ̂n,·

(
X
(n)
)
is a
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consistent estimator of θ(P ) and that it has an asymptotic Gaussian distribution. Namely, for

all P ∈ P √
n
(
θ̂n,·(X

(n))− θ(P )
)

d−→ Nm(0,Σ), when n→ +∞, (1)

where
d−→ denotes the convergence in distribution. We assume that Σ is invertible and

Σii = 1 when θi = 0. That is, every statistic is normalized under the null hypothesis of (P-1),

so that Var(Ti) = 1, for all i ∈ {j : H0j holds}. It is not restrictive since one needs to control

the variance of the statistics independently of the observations in order to apply a statistical

test.

Let
(
pn,i

(
X
(n)
))

1≤i≤m
be a family of p-values resulting from each m individual test. The

asymptotic Gaussian assumption (1) gives rise to the asymptotic p-value process:

∀i ∈ {1, . . . ,m}, pn,i
(
X
(n)
)
= 2

[
1− Φ

(∣∣Tn,i(X(n))
∣∣
)]
, (2)

where Φ is the standard Gaussian cumulative distributive function. Multiple testing procedures

will be based on this p-value process. It is worth pointing that no assumption on the

dependence structure of the p-values is needed.

In this section, we proceed with the study of testing simultaneously m hypotheses, H0,i against

H1,i for i ∈ {1, . . . ,m}. Results are reviewed in a more general setting where the Family Wise

Error Rate (FWER) is used as multiple testing criterion.

For all P ∈ P, let H0(P ) = {i ∈ {1, . . . ,m} : θi = 0} be the index set of true null hypotheses,

that is, the index set of all i such that H0,i is satisfied for P . Denote m0(P ) = |H0(P )|, its
cardinality. The FWER depends on the rejected set R and on the (unknown) distribution P

of the observations. The FWER corresponds to the probability of rejecting at least one true

null hypothesis, namely

∀P ∈ P, FWER(R, P ) = P(|R ∩ H0(P )| ≥ 1).

Since we consider an asymptotic p-value process, we can only get asymptotic results in terms

of control of the errors.

Definition 1.1. A multiple testing procedure R is said to asymptotically control the FWER

for a distribution family P at level α if for all P ∈ P,

lim sup
n→+∞

FWER(R, P ) ≤ α.

In this section we will describe multiple testing procedures which asymptotically control FWER

for the two-sided testing problem (P-1), based on the asymptotic p-value process (2).
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1.1 Single-step procedures

We propose four procedures to determine the rejection set.

Bonferroni

The Bonferroni procedure, Bonferroni (1935), is the most classical example of FWER control.

Method 1 (Bonferroni). The Bonferroni multiple testing procedure is defined by

Rbonf
α =

{
i ∈ {1, . . . ,m} : pn,i ≤

α

m

}
.

Proposition 1.1. For the two-sided testing problem (P-1) based on the asymptotic p-value

process (2), the method Rbonf
α provides an asymptotic control of the FWER at level α, that is,

for all P ∈ P,

lim
n→+∞

FWER
(
Rbonf

α ,P
)
≤ α.

This control does not require any assumption on the dependence structure of the p-values,

however under strong dependence the Bonferroni correction is known to be conservative, see

Bland and Altman (1995).

Šidák

As mentioned by Westfall and Young (1993), an asymptotic FWER controlling procedure can

be derived by Šidák’s inequality (Šidák, 1967).

Theorem 1.1 (Šidák’s inequality, Šidák (1967)). Let X be a random vector having an m-

multivariate normal distribution with zero mean values and invertible covariance matrix. Then

X satisfies the following inequality, for every positive constant b ∈ R
m
+ ,

P(|X1| ≤ b1, . . . , |Xm| ≤ bm) ≥
m∏

i=1

P(|Xi| ≤ bi). (3)

For the specific case of correlation testing, Drton and Perlman (2004) used this inequality to

construct a procedure that asymptotically controls the FWER for the problem (P-1).
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Method 2 (Šidák). Let csα = Φ−1
(
1
2 (1 − α)1/m + 1

2

)
> 0. The Šidák’s multiple testing

procedure is defined by

Rs
α =

{
i ∈ {1, . . . ,m} : |Tn,i| > csα

}
.

Proposition 1.2. For the two-sided testing problem (P-1) for which the asymptotic Gaussian

assumption (1) holds, the method Rs
α provides an asymptotic control of the FWER at level α,

namely, for all P such that Σ is invertible,

lim
n→+∞

FWER(Rs
α,P) ≤ α.

The procedure is valid for any dependencies, as soon as the inequality (3) holds. This is in

particular true in Gaussian setting (Šidák, 1967).

The Šidák’s procedure is less conservative than the Bonferroni procedure. This comparison

is illustrated in table 2.2 of Westfall and Young (1993), where the difference between the two

adjustments becomes larger with larger m.

Non parametric bootstrap

Romano and Wolf (2005) propose an asymptotic FWER controlling procedure which only

requires a monotonic assumption on the family of thresholds.

Method 3 (BootRW). For all C ⊂ {1, . . . ,m}, let tn,α(Σ, C) be the (1 − α)-quantile of

the probability distribution L (‖ Nm(0,Σ)|C ‖∞), where Nm(0,Σ)|C is the restriction of the

Gaussian distribution Nm(0,Σ) on C, namely N|C|
(
0, (Σ)i,i′∈C×C

)
. The Romano-Wolf’s

multiple testing procedure is defined by

RBootRW
α =

{
i ∈ {1, . . . ,m} : |Tn,i| > t̂n,α(Σ, Cm)

}
,

where Cm = {1, . . . ,m} and t̂n,α(Σ, Cm) is computed using bootstrap resamples of X
(n). A

bootstrap resample from X
(n) is denoted by X

(n)∗ and defined as an n independent and

identically distributed (i.i.d.) sample from the empirical distribution of X(n).

Note that this method closely relies on its ability to approximate the joint distribution of the

test statistics.

Proposition 1.3 (Romano and Wolf (2005)). Assume that for any metric d metrizing weak

convergence on R
m0(P ),

d

(
L
((

Tn,i

(
X
(n)∗
))

i∈H0(P )

∣∣∣ X(n)

)
,L
((

Tn,i

(
X
(n)
))

i∈H0(P )

))
P−→ 0,
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where
P−→ means a convergence in probability. L

((
Tn,i

(
X
(n)∗
))

i∈H0(P )

∣∣∣ X(n)
)

denotes the

conditional distribution of
(
Tn,i

(
X
(n)∗
))

i∈H0(P )
given X

(n).

Then, for the two-sided testing problem (P-1) for which the asymptotic Gaussian

assumption (1) holds, the method RBootRW
α provides an asymptotic control of the FWER at

level α, that is, for all P such that Σ is invertible,

lim sup
n→+∞

FWER(RBootRW
α ,P) ≤ α.

This result is also derived in Dudoit and Van Der Laan (2007) (where BootRW is procedure

4.21). The proof in our setting is rewritten in the Appendix.

Parametric bootstrap

Drton and Perlman (2007) detailled a parametric bootstrap method for testing (P-1) on partial

correlation coefficients. This method differs from Romano and Wolf (2005). Indeed, the

quantile is here evaluated on the asymptotic distribution rather than the empirical distribution.

An estimation of the matrix Σ is needed. Denote by Σ̂n such an estimator.

Method 4 (MaxT). Let tn,α(Σ̂n) be the (1−α)-quantile of the distribution L
(
‖Nm(0, Σ̂n)‖∞

)
.

The MaxT multiple testing procedure is defined by

RMaxT
α =

{
i ∈ {1, . . . ,m} : |Tn,i| > tn,α

(
Σ̂n

)}
,

where tn,α
(
Σ̂n

)
is computed using (simulated) samples of Nm(0, Σ̂n).

Proposition 1.4. Assume that (Σ̂n) is a consistent estimator of Σ, that is, when n goes to

infinity,

Σ̂n
P−→ Σ.

Then, for the two-sided testing problem (P-1) for which the asymptotic Gaussian

assumption (1) holds, the method RMaxT
α provides an asymptotic control of the FWER at

level α, namely, for all P such that Σ is invertible,

lim sup
n→+∞

FWER(RMaxT
α ,P) ≤ α.

Even if many results are known on the maximum of Gaussian variables (see e.g.

Nadarajah and Kotz (2008) and references therein), there is no explicit formula of quantile
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tn,α(Σ̂n) of absolute multivariate Gaussian distributions in general case. Therefore an

estimation is required. We propose here to estimate the quantile by parametric bootstrap in

Method 4. It is also possible to use, for example, Genz and Bretz (2009)’s algorithm (available

in function qmvnorm of mvtnorm on R). However, even if the estimation has a good quality, the

computational cost is very high.

Procedure MaxT is available with any consistent estimation of Σ. However, in practice, the

quality of estimation may influence the quality of the procedure for a given number n of

observations.

A natural candidate for Σ̂n is the empirical covariance of observations X
(n). Yet, Johnstone

(2001) established that when n increases while p
n converges to a constant, on zero limit, then

the empirical estimation provides a non consistent estimate because its eigenvalues do not

converge to those of the covariance matrix. Several methods have been proposed to reduce the

dimension of the estimation setting to overpass this problem, requiring assumptions of sparsity

or structured matrices. For examples, we can cite banding methods in Bickel and Levina

(2008b) and Wu and Pourahmadi (2009), thresholding rules in Bickel and Levina (2008a) for

instance, shrinkage estimation in Ledoit et al. (2012) and convex optimization techniques in

Banerjee et al. (2006). Those estimators can be plugged into MaxT procedure.

1.2 Step-down versions

Single-step methods can be conservative. A well-known improvement is step-down method. It

is a recursive algorithm which increases the power of the procedures, still preserving FWER

control. See e.g. Goeman and Solari (2010), Romano and Wolf (2005). The principle is to

iterate multiple testing on the non-rejected hypothesis, as described below.

Step-down Algorithm.

Let C0 = ∅ and C1 = {1, . . . ,m};
Initialize j = 1.

while Cj 6= Cj−1 do

Let Rj be the set of rejected indexes of a given multiple testing procedure applied on tests

indexes Cj.
Define Cj+1 = {i ∈ Cj, i /∈ Rj}.
Do j = j + 1.

end while

return C∞ = Cj .
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C∞ is the final set of non-rejected null-hypothesis indexes.

If a single-step method provides an asymptotic control of the FWER, then the following

proposition provides sufficient conditions under which its step-down version preserves this

control.

Proposition 1.5. Let
(
RC
)
C⊂H be a family of rejection sets given by multiple testing procedure.

Suppose that

• For all P ∈ P,
lim sup
n→+∞

FWER
(
RH0(P ), P

)
≤ α, (4)

• For all C ⊂ {1, . . . ,m}, C 7→ RC is decreasing in C, that is,

∀C, C′ ⊆ {1, . . . ,m}, C ⊆ C′ ⇒ RC ⊇ RC′ . (5)

Then, for all P ∈ P,

lim sup
n→+∞

FWER
(
RC∞ , P

)
≤ α.

We deduce that the four methods displayed above control asymptotically the FWER for

tests (P-1).

Corrollary 1.1. For the two-sided testing problem (P-1) for which the asymptotic Gaussian

assumption (1) holds, step-down algorithm applied to Methods 1 to 4 are asymptotic FWER

controlling procedures at level α.

Proof. It is sufficient to verify that the four methods satisfy (4) and (5).

2 Application to correlation tests

Let {Y1, . . . , Yn} be independent realizations from a random vector Y with values in R
p. Denote

Y = (Y (i))i=1,...,p. Suppose Y has a finite expectancy and a semi-definite positive covariance

matrix. Assume also that Y has finite fourth moments. Define Γ = (ρij)i,j=1,...,p the correlation

matrix of Y . That is, ρij = Cor(Y (i), Y (j)). Consider the two-sided testing problem:

H0,ij : ρij = 0 against H1,ij : ρij 6= 0, (i, j) ∈ H, (P-2)
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where H is the set of tested indexes, H = {1 ≤ i < j ≤ p}. The p-value processes associated

to tests (P-2) present a dependence structure which is possible to detail for different tests

statistics.

Usual statistics proposed in literature for tests (P-2) are based on the empirical

correlation. Define ρ̂ij =
1
n

∑n
ℓ=1(Y

(i)
ℓ − Y (i))(Y

(j)
ℓ − Y (j)), the empirical correlation between{

Y
(i)
1 , . . . , Y

(i)
n

}
and

{
Y

(j)
1 , . . . , Y

(j)
n

}
, for i, j = 1, . . . , p. The overline denotes the empirical

mean, that is, Y (i) = 1
n

∑n
ℓ=1 Y

(i)
ℓ . Denote Γ̂n = (ρ̂ij)1≤i,j≤p. We will focus our analysis on

four test statistics:

Empirical statistic.

T (1)(ρ̂ij) =
√
n ρ̂ij

Student statistic.

T (2)(ρ̂ij) =
√
n− 2

ρ̂ij√
1− ρ̂2ij

See e.g. Section 4.2.1 of Anderson (2003).

Fisher statistic.

T (3)(ρ̂ij) =

√
n− 3

2
log

(
1 + ρ̂ij
1− ρ̂ij

)
.

Fisher transform is commonly used to improve the convergence to the Gaussian

distribution for univariate statistics (i.e. for fixed (i, j)) (see Section 4.2.3 of Anderson

(2003)).

Second-order statistic.

For given (i, j) ∈ H such that Var(Y (i)) = Var(Y (j)) = 1, ρ̂ij is the empirical mean of

(Z
(ij)
ℓ )ℓ=1,...,n with Z

(ij)
ℓ = (Y

(i)
ℓ − Y (i))(Y

(j)
ℓ − Y (j)). Hence a test on ρ̂ij can be driven

using the usual test statistics on an expectation under asymptotic Gaussian assumption:

T
(4)
ij =

√
n
Z(ij)

√
θ̂ij

where θ̂ij =
1

n

n∑

ℓ=1

(
Z

(ij)
ℓ − 1

n

n∑

ℓ′=1

Z
(ij)
ℓ′

)2

.

The quantity θ̂ij is an estimation of

θij = Var
[
(Y (i) − E(Y (i)))(Y (j) − E(Y (j)))

]
.

When (i, j) ∈ H0, E(T
(4)
ij ) = 0. Cai and Liu (2016) studied these statistics for multiple

testing of correlations.
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Asymptotics of the empirical correlations are derived in Aitkin (1969) where the author

established the asymptotic normality for Gaussian distributed Y , and in Steiger and Hakstian

(1982) for non Gaussian distribution.

Proposition 2.1 (Aitkin (1969), Steiger and Hakstian (1982)). Let {Y1, . . . , Yn} be

independent realizations from a random vector Y = (Y (i))i=1,...,p. Suppose Y has finite fourth

moments.

The vector of empirical correlations ρ̂n,· = (ρ̂n,h)h∈H is asymptotically Gaussian,

√
n(ρ̂n,· − ρ·)

d−−−−−→
n→+∞

Nm(0,Ω(Γ)),

with Ω(Γ) = (ωij,kl)(ij,kl)∈H2 given by

ωij,kl = ρijkl +
1

4
ρijρkl

(
ρiikk + ρiill + ρjjkk + ρjjll

)

− 1

2
ρij

(
ρiikl + ρjjkl

)
− 1

2
ρkl

(
ρijkk + ρijll

)
,

where for all i, j, k, l,

ρijkl =
E
[
(Y (i) − E(Y (i)))(Y (j) − E(Y (j)))(Y (k) − E(Y (k)))(Y (l) − E(Y (l)))

]
√

Var(Y (i))Var(Y (j))Var(Y (k))Var(Y (l))
.

In particular, when Y is Gaussian, Ω(Γ) = (ωij,kl)(ij,kl)∈H2 satisfies

ωij,ij =
(
1− ρ2ij

)2
,

ωij,il = −1

2
ρijρil

(
1− ρ2ij − ρ2il − ρ2jl

)
+ ρjl

(
1− ρ2ij − ρ2il

)
, for j 6= l

ωij,kl =
1

2
ρijρkl

(
ρ2ik + ρ2il + ρ2jk + ρ2jl

)
+ ρikρjl + ρilρjk

− ρikρjkρkl − ρijρikρil − ρijρjkρjl − ρilρjlρkl, for i 6= k and j 6= l.

Asymptotic distributions of test statistics {(T (k)
ij )1≤i<j≤n, k = 1, . . . , 4} follow.

Corrollary 2.1. For all k = 1, . . . , 3, vector statistics (T (k)(ρ̂ij))1≤i<j≤p converge in

distribution to a Gaussian random variable with covariance matrix Ω(k)(Γ),

(T (k)(ρ̂ij)− T (k)(ρij))1≤i<j≤p
d−→ Nm(0,Ω(k)(Γ)), when n→ +∞,

where
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Ω(1)(Γ) = Ω(Γ) defined in Proposition 2.1,

Ω(2)(Γ) = (ω
(2)
ij,kl) with ω

(2)
ij,kl = ωij,kl/

(
(1− ρ2ij)(1− ρ2kl)

)3/2
,

Ω(3)(Γ) = (ω
(3)
ij,kl) with ω

(3)
ij,kl = ωij,kl/

(
(1− ρ2ij)(1− ρ2kl)

)
.

Proof. Expressions of Ω(2)(Γ) and Ω(3)(Γ) result from the Delta method (Wasserman,

2013).

We can now state an equivalent result for Second-order statistics.

Proposition 2.2. Let {Y1, . . . , Yn} be independent realizations from a random vector Y =

(Y (i))i=1,...,p. Suppose Y has finite fourth moments.

Vector statistics (T
(4)
ij )1≤i<j≤p converge in distribution to a Gaussian random variable with

covariance matrix Ω(4)(Γ),

(T
(4)
ij − E(T

(4)
ij ))1≤i<j≤p

d−→ Nm(0,Ω(4)(Γ)), when n→ +∞,

where Ω(4)(Γ) = (ω
(4)
ij,kl) with ω

(4)
ij,kl = ρijkl/

(
(ρijij − ρ2ij)(ρklkl − ρ2kl)

)1/2
.

When Y is Gaussian, Ω(4)(Γ) satisfies

ω
(4)
ij,kl =

ρijρkl + ρikρjl + ρilρkj(
(1 + ρ2ij)(1 + ρ2kl)

)1/2 .

In particular, for all (i, j) ∈ H, ω
(4)
ij,ij = 1.

Proof. First, the law of large number ensures that for all (i, j) ∈ H, θ̂ij converges almost

surely to θij. Applying Slutsky’s Theorem (Gut (2012), Theorem 11.4) gives the asymptotic

distribution of
√
nZ(i,j)

θ̂ij
. Applying the continuity theorem on the characteristic functions,

we deduce that the asymptotic distribution is Gaussian. The expression of Ω(4) then

results from the fact that θij = (ρijij − ρ2ij)
√

Var(Yi)Var(Yj) and that E(Z(ij)Z(kl)) =

ρijkl
√

Var(Yi)Var(Yj)Var(Yk)Var(Yl).

To conclude, by Corollary 2.1, procedures of Section 1 can be applied. Single-step and step-

down Methods 1–4 thus control asymptotically FWER. Methods 1–3 are non parametric,
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while Method 4 requires an explicit formula of the asymptotic covariance of tests statistics.

In particular, the matrix Σ in this method corresponds to Ω(k)(Γ) given in Corollary 2.1 and

Proposition 2.2. Method 4, MaxT, can then be applied by estimating quantiles using plug-in

estimate of Ω(k)(Γ). This consists simply in plugging in Γ̂n for Γ, where Γ̂n is an estimator of

Γ. In the general case, such estimators need finite eight moments.

When the correlations are evaluated on Gaussian-distributed samples, for all k = 1, . . . , 4,

matrices Ω(k)(Γ) are explicitly given with respect to the correlation matrix Γ. Matrices Ω(k)(Γ)

can thus be estimated by Ω(k)(Γ̂n), where Γ̂n is an estimator of Γ. In the following, we will

consider that Γ̂n is the empirical correlation matrix. As previously, it is worth noticing that

other estimators may have better performances. Obviously, it is possible to plug-in a matrix

obtained e.g. by shrinkage estimation, banding methods, thresholding rules. . .

We can now state an adaptation of Method 4.

Method 4’ (MaxT for correlation tests (P-2)). Assume Y is Gaussian. Consider k = 1, . . . , 4.

Let tn,α(Σ̂
(k)
n ) be the (1 − α)-quantile of the distribution L

(
‖Nm(0, Σ̂

(k)
n )‖∞

)
, with Σ̂

(k)
n =

Ω(k)(Γ̂n). The MaxT multiple testing procedure is defined by

RMaxT
α =

{
(i, j) ∈ H : |T (k)(ρ̂ij)| > t(k)n,α

(
Σ̂(k)

)}
,

where t
(k)
n,α

(
Σ̂
(k)
n

)
is computed using (simulated) samples of Nm(0, Σ̂

(k)
n ).

Lemma 2.1 below then ensures that Method 4’ controls asymptotically FWER.

Lemma 2.1. Assume Y is Gaussian. For k = 1, . . . , 4, Ω(k)(Γ̂n) tends in probability to Ω(k)(Γ)

when n goes to infinity.

Proof. Proposition 2.1 ensures that
√
n(Γ̂n − Γ)

d−−−−−→
n→+∞

Nm(0,Ω(Γ)). Since 1√
n

P−−−−−→
n→+∞

0,

Slutsky’s theorem (Gut (2012), Theorem 11.4) implies that Γ̂n − Γ
P−→ 0, that is, Γ̂n

P−→ Γ

when n goes to infinity. We conclude using the continuous mapping Theorem (Gut (2012),

Theorem 10.3).

Remark that all our results can be extended immediately to multiple testing of partial

correlation (see Roux (2018), Section 5.2.4). Indeed, similar convergence as in Proposition 2.1

exists for partial correlation (Aitkin, 1969). Statistics in Methods 1-4 can be rewritten using

partial correlation and asymptotic normality also holds.
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3 Simulations

Correlation matrices can be used to define adjacency matrices of dependence graphs, where

nodes correspond to variables and edges correspond to non zero of adjacency matrices (see

e.g. Drton and Perlman (2007)). In practice, empirical correlations are often full matrices,

while dependence graphs are expected to have a smaller set of edges, see e.g. Kolaczyk

(2009), Newman (2010). Thus multiple testing on correlations can be used for a better graph

estimation, where only significant correlations ρij give an edge between nodes i and j. A

prior in many graph estimations is the sparsity of the estimated graph, e.g. in Graphical

Lasso, Friedman et al. (2008). However, this crucial point may not be satisfied in real data

applications, for instance in neuroscience (Markov et al., 2013).

Simulations are conducted to evaluate the behavior of the proposed approaches described in

previous parts 1 and 2. Indeed, we showed that the FWER is controlled asymptotically and

that the choice of the statistics may influence the asymptotic control. We conduct a precise

and careful evaluation of the proposed methods by computing the number of falsely detected

edges (FWER) and correctly identified edges (power – also named sensitivity). Three main

parameters of the methods are varied: sparsity of the true graphs, size of the sample, and

signal to noise ratio. After presenting the graph model chosen in our simulations, the results

are displayed for FWER and latter for power.

Simulations were done on R with igraph and TestCor packages, Csardi and Nepusz (2006),

Gannaz (2019).

3.1 Choice of models

Our simulation procedure requires the simulation of Gaussian data with a given covariance

matrix defined in order to match a given graph structure. In addition, the covariance matrix

has to be positive definite. It is rather simple to get an adjacency matrix following a network

model such as small-world or scale-free (Newman, 2010). However, it is difficult to guarantee

its positive definiteness theoretically, see Guillot and Rajaratnam (2012). Starting from a

network model, we propose to generate a corresponding adjacency matrix, denoted A. One

way to guarantee the positive definiteness of the matrix is to control the eigenvalues. This is

the purpose of the following lemma 3.1.

From the adjacency matrix A we build a correlation matrix M with a constant non zero value
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ρ by

M = I+ ρA,

where I is the identity matrix, and ρ ∈ (−1, 1).

Lemma 3.1. Let M satisfy M = I + ρA with ρ a real. Then, M is positive definite if and

only if |ρ| < 1
|λmin| , where λmin is the smallest eigenvalue of A.

For regular graphs, it is shown that λmin < −1/r independently on the size of the graph, where

r is the valence of the graph (Cvetkovic et al., 2004). In particular, for a chain graph, |ρ| < 0.5

always gives a positive definite matrix M. It is getting more complicated for small-world or

scale-free models (Cvetkovic et al., 2004). A classical approach to ensure positive definiteness

is diagonal dominance (see e.g. Schäfer and Strimmer (2005) with precision matrices). Our

model is quite similar, but considers constant non-zero entries in the correlation matrix.

In the sequel, we focus on Stochastic Block Models (Rohe et al., 2011). We consider a model

where the number of nodes p is equal to 26, with two community of size p/2 = 13. The

adjacency matrix A is defined as

A =







(
ai,j

)
i=1,...,p/2
j=1,...,p/2

(
bi,j

)
i=p/2+1,...,p
j=1,...,p/2

(
ai,j

)
i=p/2+1,...,p
j=p/2+1,...,p

(
bi,j

)
i=p/2+1,...,p
j=1,...,p/2

where (ai,j)i,j are independent observations from a Bernoulli distribution with parameter pintra
and (bi,j)i,j are independent observations from a Bernoulli distribution with parameter pinter.

In simulations, the probability to have an edge between nodes inside each communities is set

to pintra = 0.6. Four values of the probability of connection between the two communities are

considered, pinter ∈ {0.01, 0.05, 0.15, 0.4}. The corresponding adjacency matrices are displayed

in Figure 1. Parameter pinter determines the degree of sparsity of the correlation matrix,

where sparsity corresponds to the number of edges present in the graph with respect to the

corresponding complete graph. High values of pinter means a low sparsity.

As explained above, we consider a constant value of non-zero correlations, ρ. The value must

be chosen such that the resulting matrix M is positive definite. In our application, it implies

that ρ ≤ 0.2, independently of pinter and pintra.

The choice of maximal value of ρ is linked to the density of the graph. Indeed, the denser

the graph is, the smaller ρ has to be chosen. We choose the same values of ρ here whatever
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the adjacency matrix is, to study more specifically the influence of the sparsity. As noticed

e.g. by Krämer et al. (2009), the recovery of the edges is in general more difficult when the

sparsity of the graph decreases. The authors also remarked that all methods perform well with

cluster networks. This observation motivates the analysis of the behavior of multiple testing

approaches with respect to the sparsity.

Figure 1: Adjacency matrices. The parameter sparse is the proportion of edges present in the

graph with respect to a complete graph. pintra = 0.6.

(a) pinter = 0.01, sparse=25.4%.
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(b) pinter = 0.05, sparse=30%.
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(c) pinter = 0.15, sparse=37%.
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(d) pinter = 0.4, sparse=47.6%.
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We simulate Y1, . . . Yn realizations of a Gaussian random variable N (0,M), for various values

of sample size n. Edges are estimated applying correlation tests (P-2). 325 tests are needed

in this framework. The four statistics described above as the four methods are applied, that

is, Methods 1–3 and Method 4’. The level for the FWER control is fixed to α = 5%. The

non parametric bootstrap and the parametric bootstrap requires to fix the number of samples

used in the estimation of quantiles. For non parametric bootstrap, the number of samples is

denoted as BootRWand equal to 100. For parametric bootstrap, denoted MaxT, the number

of samples is fixed to 1000. Resulting computational cost is high but less samples leads to an
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unsatisfying quality.

Our simulation procedure depends on the three main parameters: ρ, pinter, and n. ρ

corresponds to the value of entries in the correlation matrices. This is related to the signal

to noise ratio for the identification of edges in the graph. Indeed, when ρ is low, it is harder

to detect the correct edges. In the sequel, the simulations are displayed for two values of ρ:

0.1 and 0.2. Recall that because of the constraint on our model, it is not possible to choose

larger values of ρ. pinter is defined as the number of edges between the two components of

the stochastic block model. This is controlling the sparsity of the graph and equivalently the

number of null hypotheses. When pinter increases, the number of null hypotheses decreases.

For the Bonferroni procedure, this has a direct impact on the FWER. Finally, n is the number

of independent realizations available to estimate the correlations. n and ρ are linked by our

main assumption on the convergence of the estimator (1). In the two following parts, results

of simulations applied on all four methods and using different parameters in the model are

given for both FWER and power.

3.2 Results on FWER control

The difference between ρ = 0.2 and ρ = 0.1 is illustrated on Figure 2 and Figure 3. It is clear

that when ρ = 0.1, all the proposed approaches provide empirical FWER much lower than the

theoretical value fixed at 0.05 for any sample sizes and any sparsity.

The influence of the sample size n relative to the use of a specific statistics is displayed on

Figure 2 for (T
(1)
ij )1≤i<j≤p, Figure 4 for (T

(2)
ij )1≤i<j≤p, Figure 5 for (T

(3)
ij )1≤i<j≤p and Figure 6

for (T
(4)
ij )1≤i<j≤p. Depending on the chosen statistics, for small sample sizes the FWER may

not be controlled: this is due to the initial test procedure rather than the multiple correction.

Indeed, tests (P-1) are based on the normality of the statistics (T
(k)
ij )1≤i<j≤p, k = 1, . . . , 4.

As the Gaussian distribution is only satisfied asymptotically, the FWER control is valid only

for sufficiently large values of n. The convergence of the Gaussian statistics (T
(4)
ij )1≤i<j≤p

is the slowest, and there is no control of FWER for n ≤ 200. However, for the Student

statistics (T
(2)
ij )1≤i<j≤p the control of FWER is valid for n ≥ 200. With the Fisher statistics

(T
(2)
ij )1≤i<j≤p only the case n = 50 is not controlled, while the empirical statistics (T

(1)
ij )1≤i<j≤p

behaves well even for small sample sizes.

The advantage of using BootRW procedure lies in the fact that it does require a Gaussian

distribution. As the quantile is evaluated on bootstrap resamples of the statistics, it
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corresponds to the effective distribution and not to the theoretical one. As a consequence,

the FWER is controlled for all tests statistics, whatever the sample size but this comes with

an increase of the computation time.

The comparison of step-down procedure with single step is also illustrated on the Figures 3

to 6. In particular, Figures 4, 5 and 6 show that the control for step-down MaxT is not

always obtained. This results from numerical instability of the quantile estimation. Indeed,

as discussed in Section 3.1, the number of bootstrap samples is critical. The numerical

approximation is more critical for step-down procedures. It is shown in particular for sparse

models and large sample sizes.

The empirical FWER slightly increases with the sparsity of the matrix. This is due to the link

between the sparsity and the number of null hypotheses m0(P ). The FWER level of multiple

testing procedures usually increases with m0(P ). For example, for Bonferroni procedure, the

FWER is in fact controlled at level αm0(P )
m .

Figure 2: Empirical FWER on 10000 simulations, with respect to the sample size n, for

empirical statistics, T (1). The four sparsity frameworks are considered. ρ = 0.2.

(a) Bonferroni (b) Šidák (c) BootRW

(d) MaxT (e) Oracle MaxT
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Figure 3: Empirical FWER on 10000 simulations, with respect to the sample size n, for

empirical statistics, T (1). The four sparsity frameworks are considered. ρ = 0.1.

(a) Bonferroni (b) Šidák (c) BootRW

(d) MaxT (e) Oracle MaxT

Figure 4: Empirical FWER on 10000 simulations, with respect to the sample size n, for Student

statistics, T (2). The four sparsity frameworks are considered. ρ = 0.2.

(a) Bonferroni (b) Šidák (c) BootRW

(d) MaxT (e) Oracle MaxT
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Figure 5: Empirical FWER on 10000 simulations, with respect to the sample size n, for Fisher

statistics, T (3). The four sparsity frameworks are considered. ρ = 0.2.

(a) Bonferroni (b) Šidák (c) BootRW

(d) MaxT (e) Oracle MaxT

Figure 6: Empirical FWER on 10000 simulations, with respect to the sample size n, for

Gaussian statistics, T (4). The four sparsity frameworks are considered. ρ = 0.2.

(a) Bonferroni (b) Šidák (c) BootRW

(d) MaxT (e) Oracle MaxT
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3.3 Results on power

This Section provides a detailed evaluation of the power of the multiple testing procedures on

simulations. The quality is computed by the proportion of significant correlations detected,

also called True Discovery Proportion, defined as

|R ∩ {H \H0}|
|H \ H0|

,

where for every sets A and B, A \B = {x ∈ A : x /∈ B}.

First, a crucial point in many edges detection procedures is the graph sparsity (for instance

Bickel and Levina (2008a), Ledoit et al. (2012), Ravikumar et al. (2011), Fan et al. (2016)).

The sparsity is controlled here by the parameter pinter: recall that the lower pinter is, the

sparser the graph is. Figure 7 illustrates that with a multiple testing approach, the sparsity

does not influence the power of the procedure, since the proportion of edges rightly detected

is nearly constant with respect to the sparsity.

Of course clearly, Figure 7 shows that the power increases with the sample size n. Indeed, with

small n, the procedures are not able to detect significant correlations because the statistical

tests cannot discriminate the null and the alternative hypothesis. When the sample size is

small, the variance of the empirical correlations on which the test statistics are based is high,

see Figure 10.

Similarly, Figure 8 illustrates the failure of the procedures to detect significant correlations

when the value of ρ is small, here ρ = 0.1. Again, this comes from the power of statistical tests

rather than the multiple correction. Similar discussion can be found in Hero and Rajaratnam

(2011) (see e.g. Figure 2). Figures 9 and 10 give an insight of maximal power reachable in

our setting, respectively with ρ = 0.2 and ρ = 0.1. It also illustrates that indeed the sparsity

does not influence the support of the empirical correlations distributions, which explains the

stability of the power with respect to sparsity.

Comparison between the power of the procedure with respect to the test statistics is displayed

in Table 1. Only the case ρ = 0.2, pinter = 0.4 and three values of sample size n are considered

for the sake of simplicity. Similar results are obtained in other settings. For all procedures

except BootRW, the Student statistics T (3) is the most powerful statistic. Concerning BootRW,

the empirical test statistics T (1) give the best results. Second-order statistic T (4) shows the

lowest power for all multiple corrections.

Romano and Wolf (2005)’s non parametric bootstrap BootRW has the advantage of controlling
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FWER independently on the statistic and the sample size. However it is less powerful than

other step-down procedures. Results for step-down MaxT are high but this procedure may

not control the FWER. The power of single-step parametric bootstrap BootRW is lower than

Bonferroni and Šidák step-down procedures.

We observe that the empirical test statistics T (1) always control the FWER. Thus this choice

seems particularly adequate. In addition, the most powerful multiple correction is step-down

Šidák. If the sample size n is sufficiently large so that the FWER control is acquired (n ≥ 200

for the sparse model, see Figure 4), step-down Šidák correction with Student statistics based

tests gives the highest power. An advantage of using Bonferroni and Šidák procedures lies in

the fact that the computational time is very small.

Table 1: Empirical power on 10000 simulations, with respect to the multiple testing correction

for sample size n equal to 100, 300, 500. The adjacency matrix is given by pinter = 0.4, i.e.

with the lowest sparsity. ρ = 0.2. The left hand side value is the empirical power obtained

with single-step methods and the right hand side value is obtained with step-down method.

n = 100

Bonferroni Šidák BootRW MaxT oracle MaxT

Empirical T (1) 0.028 | 0.028 0.028 | 0.028 0.032 | 0.032 0.036 | 0.038 0.034 | 0.036
Student T (2) 0.047 | 0.047 0.047 | 0.047 0.024 | 0.024 0.042 | 0.045 0.044 | 0.047
Fisher T (3) 0.047 | 0.040 0.047 | 0.040 0.024 | 0.029 0.040 | 0.043 0.040 | 0.042

Gaussian T (4) 0.026 | 0.026 0.026 | 0.026 0.006 | 0.006 0.023 | 0.025 0.024 | 0.026
n = 300

Bonferroni Šidák BootRW MaxT oracle MaxT

Empirical T (1) 0.370 | 0.392 0.373 | 0.394 0.400 | 0.399 0.405 | 0.422 0.401 | 0.423
Student T (2) 0.400 | 0.400 0.403 | 0.403 0.357 | 0.357 0.387 | 0.424 0.389 | 0.421
Fisher T (3) 0.400 | 0.412 0.403 | 0.414 0.357 | 0.378 0.394 | 0.422 0.393 | 0.422
Gaussian T (4) 0.339 | 0.359 0.342 | 0.362 0.311 | 0.311 0.328 | 0.360 0.330 | 0.358

n = 500

Bonferroni Šidák BootRW MaxT oracle MaxT

Empirical T (1) 0.762 | 0.800 0.764 | 0.802 0.786 | 0.786 0.787 | 0.813 0.786 | 0.814
Student T (2) 0.776 | 0.776 0.778 | 0.778 0.752 | 0.752 0.766 | 0.818 0.767 | 0.816
Fisher T (3) 0.776 | 0.807 0.778 | 0.809 0.752 | 0.767 0.775 | 0.816 0.774 | 0.816
Gaussian T (4) 0.746 | 0.787 0.748 | 0.789 0.751 | 0.751 0.737 | 0.793 0.738 | 0.792

22



Figure 7: Empirical power on 10000 simulations, with respect to the sample size n, for empirical

statistics, T (1). The four sparsity frameworks are considered. ρ = 0.2.
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Figure 8: Empirical power on 10000 simulations, with respect to the sample size n, for empirical

statistics, T (1). The four sparsity frameworks are considered. ρ = 0.1.
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Figure 9: Histograms of the empirical correlations. Blue histograms correspond to true null

hypothesis and red histograms correspond to observations under the alternative hypothesis

ρ = 0.2. On the first row the sparsity parameter satisfies pinter = 0.01 and on the second row

pinter = 0.4.

Figure 10: Histograms of the empirical correlations. Blue histograms correspond to true null

hypothesis and red histograms correspond to observations under the alternative hypothesis

ρ = 0.1. On the first row the sparsity parameter satisfies pinter = 0.01 and on the second row

pinter = 0.4.
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4 Real data

We apply our methods on real data sets from neuroscience. We use functional Magnetic

Resonance images (fMRI) of both dead and alive rats. The datasets are freely available

10.5281/zenodo.2452871 (Becq et al., 2020a,b). The aim is to estimate the brain connectivity,

that is the significant correlations between brain regions where fMRI signals are recorded. For

this data set, we know that for dead rats we are under the full null hypothesis. Thus the

estimated graphs should be empty. We also expect non-empty graphs for alive rats.

4.1 Description of the dataset

Functional Magnetic Resonance Images (fMRI) were acquired for both dead and alive rats in

Pawela et al. (2008). Rats 1 to 4 were scanned dead and rats 5 to 11 were scanned alive under

anesthetic. The duration of the scanning is 30 minutes with a time repetition of 0.5 second so

that 3600 time points are available at the end of experience. After preprocessing as explained

in Pawela et al. (2008), 51 time series for each rat were extracted. Each time series capture

the functioning of a given region of the rat brain based on an anatomical atlas.

The time series resulting from fMRI experiments are nonstationary with long memory

properties, which is not convenient from a mathematical point of view. To avoid such

properties, the correlation coefficients are estimated in the wavelet transform domain and

then the statistical tests are based on wavelet correlation coefficients, as described in

Achard and Gannaz (2016), Moulines et al. (2007).

First we are decomposing each time series using a wavelet basis and then for each wavelet scale

we are studying all the possible pairs of correlations.

Let (φ(·), ψ(·)) be respectively a father and a mother wavelets. At a given resolution j ≥ 0,

for k ∈ Z, we define the dilated and translated functions φj,k(·) = 2−j/2φ(2−j · −k) and

ψj,k(·) = 2−j/2ψ(2−j · −k). Let X̃(t) =
∑

k∈ZX(k)φ(t − k). The wavelet coefficients of the

process X are defined by

Wj,k =

∫

R

X̃(t)ψj,k(t)dt j ≥ 0, k ∈ Z.

For given j ≥ 0 and k ∈ Z, Wj,k is a p-dimensional vector

Wjk =
(
Wj,k(1) Wj,k(2) . . . Wj,k(p)

)
,
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where Wj,k(ℓ) =
∫
R
X̃ℓ(t)ψj,k(t)dt.

Let z be the Fisher transform, for all x, −1 ≤ x ≤ 1,

z(x) :=
1

2
log

1 + x

1− x
= tanh−1(x).

We fix a scale j and the tests are based on the correlation of wavelets coefficients at scale j.

Define

ρℓm(j) =
γℓm(j)

(γℓℓ(j)γmm(j))1/2
, with γℓm(j) :=

∫
Hj(λ) fℓm(λ) dλ

ρ̂ℓm(j) =

∑nj

k=0(Wj,k(ℓ)Wj,k(m))

(
∑nj

k=0W
2
j,k(ℓ)

∑nj

k=0W
2
j,k(m))1/2

,

where Hj denotes the squared gain filter of wavelet transform at scale j. Note that quantities

ρℓm(j) depends on the memory properties of the time series, as described among others in

Achard and Gannaz (2019).

The convergence of wavelet correlations with Fisher transform is given by the following

property.

Proposition 4.1 (Achard et al. (2019)). Under the regularity hypotheses on the wavelet

transform, the estimator of empirical correlation verifies
√

(nj − 3)(z(ρ̂ℓm(j)) − z(ρℓm(j)))
L−→N (0, 1) ;

A discussion on the choice of the relevant scale for analysis can be found in Achard et al. (2019).

From there and the literature in neuroscience, it is convenient and adequate to focus on low

frequencies where the best signal-to-noise ratio is obtained. Here we will focus on wavelet scale

4 corresponding to the frequency interval [0.06 ; 0.12] Hz. The number of available wavelet

coefficients is then n = 122.

For a given rat k ∈ {1, . . . , 11}, let W(k)
ℓ be the vector of wavelet coefficients at scale 4 for the

time series of the ℓ-th cerebral region, ℓ = 1, . . . , 51 and k = 1, . . . , 11. The vector W
(k)
ℓ has

length 122. We introduce (z(ρ̂
(k)
ℓm))ℓ,m=1,...,p the matrix of Fisher statistics evaluated on the

wavelet coefficients processes W
(k)
ℓ and W

(k)
m . With previous notations, for a given rat k, for

all (ℓ,m), z(ρ̂
(k)
ℓm) corresponds to the Fisher statistics T

(3)
ℓm evaluated with Y (ℓ) = W

(k)
ℓ .

The aim is then to test if there are connections between each pairs of cerebral region at a given

scale j ≥ 0. The following tests should thus be applied, for each rat k, at the scale j = 4 in

this study:

H0,ℓm(j) : ρℓm(j) = 0 against H1,ℓm(j) : ρℓm(j) 6= 0, (P-3)
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all 1 ≤ ℓ < m ≤ p. for Since the whole brain of rats are aggregated into p = 51 cerebral

regions, we have to deal with m = 1275 tests for each of the 11 rats.

4.2 Numerical results

As explained above, we consider tests (P-3) for each rat, on wavelet coefficients at scale 4. A

rejection of hypothesis (H0,ℓm) means a significant correlation between the activities of cerebral

regions ℓ and m.

Examples of correlation matrices obtained are given in Figure 11. Even if dead rats correlation

matrices are much closer to identity matrices than correlation matrices on alive rats, some non

zero values are observed and a test of significance is needed.

Figure 11: Examples of two correlation matrices between wavelet coefficients obtained at scale

4 for an alive rat (left) and a dead rat (right).
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Boxplots of empirical correlations are displayed in Figure 12. They state a clear difference

between dead and alive rats correlation distributions. An important remark is also that in

real application the alternative non zero value is not constant and can be much higher than

the value taken in our simulation (which was at the maximum equal to 0.2). Indeed for

each alive rat, we observe instances of empirical correlation higher than 0.8. We thus expect

a signal-to-noise ratio higher in the application than in our simulation, and therefore good

27



power performances of multiple testing.

Figure 12: Boxplots of empirical correlations between wavelet coefficients obtained at scale 4

(i.e., the frequency interval [0.06 ; 0.12] Hz) on fMRI recordings of rats. The first four rats are

dead while rats 5 to 11 are alive.
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Since we consider Fisher statistics T (3), with sample size n = 122, the simulation study displays

that the FWER is controlled for all procedures (see Figure 5). Next the most powerful approach

is step-down MaxT parametric bootstrap in general, but for small samples Šidák procedure is

competitive. Moreover the numerical instability on the quantile estimation for MaxT as well

as the computation time give preference to step-down Šidák multiple correction (see Table 1).

We thus define the rejection set of (P-3) applying step-down Šidák’s multiple testing procedure

on Fisher statistics. As we have to deal with 1275 tests for each rat, a multiple testing procedure

is necessary. Without a multiple testing correction on p-values, the inferred graph is highly

biased, as illustrated by the clearly non-empty graph for a dead rat displayed in Figure 13. A

similar result was obtained on the detection of an activation on fMRI recordings for a dead

salmon in Bennett et al. (2011).

It is not possible in general to evaluate the accuracy of procedures on real dataset because of the

lack of ground truth. However, since there is actually no cerebral activity in a brain of a dead

rat, all null hypotheses to be tested are true nulls and the number of rejected hypotheses must

be equal to zero in this case. Indeed, we obtain that the number of significant correlations

is zero or near to zero for dead rats (see Table 2). We can still observe a few remaining
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Figure 13: Illustration of the necessity to make multiple correction for a given dead rat:

Left: estimate of the connectivity graph between brain regions without correction for multiple

testing, using the raw values of the empirical correlations; Right: estimation of the same graph

using multiple testing on correlations (Step-down Šidák procedure with Fisher statistics) ;

α = 5%.
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connections in the graphs from very close brain regions. This is due to the fact that the fMRI

scanner is introducing spurious correlations between neighboring parts of the brain. Some

examples of estimated graphs for dead rats and alive rats are displayed in Figure 14. Edges

for dead rats are not visible because they are between nodes at very short distance.

Dead rat 1 2 3 4

|E| 4 1 0 2

Alive rat 5 6 7 8 9 10 11

|E| 444 236 201 595 385 410 318

Table 2: Number of rejected null hypotheses |E| (that is also the number of estimate edges)

obtained by step-down Šidák procedure on Fisher statistics, evaluated at scale 4 with a

threshold α = 5%.

Note that there is a high variability of the results with respect to rats. The highest number of

detections is obtained for the rats 5 and 8 with more than 33% of edges. For the others, the

number of detections is between 15% and 33%.
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Figure 14: Examples of graphs obtained at scale 4 for some alive rats (first row) and some

dead rats (second row). Step-down Šidák correction was used with Fisher statistics.
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5 Asymptotic control of the FDR for correlation tests

Another usual criterion for multiple testing is False Discovery Rate (FDR). Denoting Q the

proportion of false discoveries, for all P ∈ P, we define the FDR as

FDR(R, P ) = E[Q], where Q =
|R ∩ H0(P )|

|R| ∨ 1
. (6)

“|R| ∨ 1” is the maximum between |R| and 1 when no hypothesis is rejected (|R| = 0).

A well-known procedure for

controlling FDR is Benjamini-Hochberg’s (BH), Benjamini and Hochberg (1995). Denoting

(p(i))1≤i≤m the family of the ordered p-values, we can write the index set of rejected null

hypotheses by the BH procedure as

RBH =
{
i ∈ {1, . . . ,m} : pi ≤ αk̂/m

}
,

where k̂ = max{k ∈ {0, . . . ,m} : p(k) ≤ αk/m} with the convention p(0) = 0.
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We can prove that the limit of the FDR of the BH procedure is equal to the FDR of the

limiting experience.

Theorem 5.1. Suppose

∀P ∈ P, √n
(
θ̂n,· − θ(P )

)
d−→ P∞.

Then for all P ∈ P,

lim
n→+∞

FDR(P) = FDR(P∞).

In particular, if P∞ is Positive Regression Dependent on each one from a Subset (PRDS) on

{1 ≤ i ≤ m : ci = 0}, then Benjamini and Hochberg (1995) states that the asymptotic control

of FDR by BH procedure is acquired. In the one-sided Gaussian testing framework, the PRDS

assumption is satisfied whenever Σij ≥ 0, for all (i, j), see Benjamini and Yekutieli (2001).

However, this result is not helpful for testing correlations in two-sided Gaussian setting. For

instance, Yekutieli (2008) gives some examples of non-PRDS two-sided Gaussian tests. We

refer to Roux (2018), Chapter 4, for an overview of results of the BH procedure in two-sided

Gaussian setting.

Resulting from a simulation study, we can state that indeed the matrix Ω(Γ) of Proposition

2.1 does not provide a positive structure dependence in general. There is no clear property

to test if p-values are PRDS. We decided to examine a stronger but more easily verifiable

assumption, that is, Multivariate Total Positivity of order 2 (MTP2), see Karlin and Rinott

(1980). The evaluation of the proportion of MTP2 distributions is based on Theorem 3.1 and

Theorem 3.1′ of Karlin and Rinott (1981), which give necessary and sufficient condition on the

matrix Γ (resp. Ω(Γ)) for |X| (resp. (|ρh|)h∈H) having an MTP2 distribution. We generate

100, 000 covariance d-matrices Γ using the R-package ClusterGeneration of Joe (2006), and we

evaluate the occurrence of MTP2 distributions on these 100, 000 matrices. Results are displayed

in Table 3. The proportion of the vector of the absolute value of correlation coefficients of X,

that is, (|ρh|)h∈H, having an MTP2 distribution is evaluated in two different cases: when |X|
does not have an MTP2 distribution (third column of Table 3) and when |X| has an MTP2

distribution (fourth column of Table 3).

As shown in Table 3, the MTP2 constraint seems to be a very restrictive constraint (see the

second column of Table 3). Moreover, even if the absolute value of the observed vector X

has an MTP22 distribution, the transformation Ω does not preserve the positive dependence

structure (see the last column of Table 3) for the correlation coefficients.

In Romano et al. (2008), the authors proposed both subsampling and bootstrap procedures

that control the false discovery rate (FDR) under dependence, especially for the two-sided
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Distribution of: |X| (|ρh|)h∈H
without MTP2 constraint on |X| with MTP2 constraint on |X|

d = 3 5100 10223 0

d = 4 82 38 0

d = 5 0 0 ·

Table 3: Occurrence of MTP2 distributions on 100,000 simulations. The dot means that the

quantity is not computable.

testing problem (P-1). Unfortunately, their methods require that all the p-values under the

alternative are equal to zero. Finally, Cai and Liu (2016) developed a truncated bootstrap

alternative to BH for correlation tests. The idea is to estimate the threshold index k̂ in (6) by

bootstrap evaluations of the FDR. They add a truncation based on the asymptotic Gaussian

property of tests statistics. Theoretical control is obtained, under sparsity assumptions.

Conclusion

This work was motivated by a real data application in neuroscience. Our aim is to identify

the connectivity graphs of brain areas by testing if the correlation between recordings of

pairs of brain regions is significant. Our statistical modeling includes asymptotically Gaussian

statistics and multiple corrections because many simultaneous tests are applied (here, 1275

in the application). Hence in this work we have studied multiple testing when statistics

are asymptotically Gaussian, and possibly correlated. Four multiple testing procedures

are presented: Bonferroni, Šidák, Romano-Wolf non parametric bootstrap (BootRW) and

a parametric bootstrap (MaxT). For each of these methods, we verify that the FWER is

asymptotically controlled. Besides, special attention is given to the case of correlation testing.

A simulation study then highlights problems that may be encountered in applications. First

for many statistics, a sufficient sample size is necessary to ensure the control of FWER. Next

the parametric bootstrap suffers from numerical instability. Interestingly, the sparsity of the

false hypothesis does not influence the quality of the procedures. Finally, we apply a multiple

testing correction on a real dataset, inferring the connectivity graphs of small animals from

resting state fMRI recordings. The recordings for dead animals enable us to verify that the

obtained results are coherent by finding a nearly empty graph. In contrast alive animals

connectivity graphs are not empty. This confirms the utility of our approach for real data

applications.
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Schäfer, J. and Strimmer, K. (2005). An empirical bayes approach to inferring large-scale gene

association networks. Bioinformatics, 21(6):754–764.
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A Proofs

A.1 Proof of Proposition 1.1

For all P ∈ P,

FWER
(
Rbonf

α , P
)
= P


 ⋃

i∈H0(P )

{pn,i ≤ α/m}


 .

Thus,

lim
n→+∞

FWER
(
Rbonf

α , P
)
≤

∑

i∈H0(P )

α

m
≤ αm0(P )

m
≤ α.

A.1.1 Proof of Proposition 1.2

In order to prove Proposition 1.2, we first need the following result.

Proposition A.1. For all x > 0, for all P ∈ P,

lim
n→+∞

{
P

(√
n
∣∣∣ θ̂n,i

(
X
(n)
)
− θi(P )

∣∣∣ ≤ x, for all i ∈ H0(P )
)}

≥ (2Φ(x)− 1)m0(P ).
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Proof. Let Zi = limn→+∞
√
n
∣∣∣ θ̂n,i

(
X
(n)
)
− θi(P )

∣∣∣. Then Z = (Zi)1≤i≤m0(P ) is m0(P )-

dimensional random vector with a multivariate Gaussian distribution Nm0(P )

(
0, (Σ)i,i′∈H0(P )

)
.

Let B =
{
z ∈ R

m0(P ) : ‖z‖∞ ≤ x
}
. Let ∂B denote the frontier of the set B. For all x > 0,

P(Z ∈ ∂B) = P(||Z||∞ = x)

= P

(
sup

1≤j≤m0(P )
|Zj | = x

)

≤ P

(
∃j ∈ {1, . . . ,m0(P )} : |Zj| = x

)

≤
m0(P )∑

j=1

P(|Zj | = x)

≤ 0,

By Portmanteau’s lemma (Billingsley, 2013), it follows that for all P ∈ P,

lim
n→+∞

P

(
sup

i∈H0(P )

√
n|θ̂n,· − θ(P )| ≤ x

)
= P(‖Z‖∞ ≤ x),

Applying (3), for all P ∈ P,

lim
n→+∞

P

(
sup

i∈H0(P )

√
n|θ̂n,· − θ(P )| ≤ x

)
≥
[
P(|Z1| ≤ x)

]m0(P )
,

which concludes the proof.

We now are in position to prove Proposition 1.2.

For all invertible Σ, for all P ∈ P,

FWER(Rs
α, P ) = P

(
∃ i ∈ H0(P ) : |Tn,i| > csα

)

= 1− P

(
∀ i ∈ H0(P ), |Tn,i| ≤ csα

)

= 1− P

(
‖(Tn,i)i∈H0(P )‖∞ ≤ csα

)

Using Proposition A.1,

lim
n→+∞

FWER(Rs
α, P ) ≤ 1− (2Φ(csα)− 1)m0(P ) ≤ α.

38



A.2 Proof of Proposition 1.3

Under P , the matrix Σ is assumed to be invertible. Therefore
(
Tn,i

(
X
(n)
))

i∈H0(P )

has a non-degenerate asymptotic distribution. The result then follows from Theorem 7

of Romano and Wolf (2005).

A.2.1 Proof of Proposition 1.4

Let P ∈ P. Denote by Nm(0,Σ)|H0(P ) the restriction of the Gaussian distribution Nm(0,Σ)

on H0(P ), namely Nm0(P )

(
0, (Σ)i,i′∈H0(P )

)
.

First, since the functions (Tn,i)i∈H0(P )
d−−−−−→

n→+∞
Nm(0,Σ)|H0(P ) and x 7→ ‖x‖∞ for x ∈ R

|H0(P )|

are continuous, then by the continuous mapping theorem, we have that

‖(Tn,i)i∈H0(P ))‖∞ d−−−−−→
n→+∞

‖ Nm(0,Σ)|H0(P ) ‖∞. (7)

Second, let us establish that

tn,α(Σ̂n)
P−→ tα(Σ). (8)

Let x ∈ R. For all n ∈ N, we introduce the cumulative distribution functions ϕx(Σ̂n) and

ϕx(Σ), defined by

ϕx(Σ̂n) = P(‖Σ̂1/2
n ξ‖∞ ≤ x | Σ̂n),

ϕx(Σ) = P(‖Σ1/2ξ‖∞ ≤ x),

where ξ ∼ Nm(0, Im).

The Cramér-Wold device (Gut (2012), Theorem 10.5) involves Σ̂
1/2
n ξ

d−−−−−→
n→+∞

Σ1/2ξ and thus,

by the continuous mapping theorem, ‖Σ̂1/2
n ξ‖∞ d−−−−−→

n→+∞
‖Σ1/2ξ‖∞. In addition, applying

Portmanteau’s lemma, we obtain that ϕx(Σ̂n) converges in probability to ϕx(Σ) when n goes

to infinity. Therefore, for all ǫ > 0,

ϕtα(Σ)−ǫ(Σ̂n)
P−→ ϕtα(Σ)−ǫ(Σ). (9)

39



Let ǫ > 0. One has

P

(
tn,α(Σ̂n) ≤ tα(Σ)− ǫ

)

= P

(
ϕtα(Σ)−ǫ(Σ̂n) ≥ 1− α

)

= P

(
ϕtα(Σ)−ǫ(Σ̂n)− ϕtα(Σ)−ǫ(Σ) ≥ 1− α− ϕtα(Σ)−ǫ(Σ)

)
.

Write ϕtα(Σ)−ǫ(Σ) = 1− α− β, with β > 0. The right-hand side is bounded by

P

(
ϕtn,α(Σ)−ǫ(Σ̂n)− ϕtn,α(Σ)−ǫ(Σ) ≥ β

)
≤ P

(∣∣ϕtn,α(Σ)−ǫ(Σ̂n)− ϕtn,α(Σ)−ǫ(Σ)
∣∣ ≥ β

)
.

Then, convergence (8) follows from (9).

We now finally establish the asymptotic FWER control for the procedure RMaxT . By

definition,

FWER(RMaxT
α , P ) = P

(
‖(Tn,i)i∈H0(P )‖∞ ≥ tn,α(Σ̂n)

)
.

For all δ > 0, this quantity is bounded by

P

(
‖(Tn,i)i∈H0(P )‖∞ > tα(Σ)− δ

)
+ P

(
tα(Σ̂n) ≤ tn,α(Σ)− δ

)
.

Then, using (7) and (8), we have

lim sup
n→+∞

FWER(RMaxT
α , P ) ≤ P

(
‖ Nm(0,Σ)|H0(P ) ‖∞ > tα(Σ)− δ

)
.

Letting δ tend to 0 we obtain the asymptotic control.

A.3 Proof of Proposition 1.5

Let P ∈ P. By (4), there exists an event E , such that E ∩ H0(P ) ⊆ E \ RH0(P ) and

P(E) −−−−−→
n→+∞

1− α. (10)

For all j ≥ 0, H0(P ) ⊆ Cj implies thatRH0(P ) ⊇ RCj by (5). Thus we have E\RH0(P ) ⊆ E\RCj .
Consequently, E ∩ H0(P ) ⊆ Cj+1. Since H0(P ) ⊆ C0 = {1, . . . ,m}, a recurrence gives

E ∩ H0(P ) ⊆ E ∩ Cj for all j ≥ 0. It results that E ∩ H0(P ) ⊆ E \ RC∞ . Finally, using

convergence (10),

P(H0(P ) ⊆ {1, . . . ,m} \ RC∞) −−−−−→
n→+∞

1− α.

Since the left-hand side is equal to 1− FWER
(
RC∞ , P

)
, Proposition 1.5 is proved.
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A.4 Proof of Theorem 5.1

Let f : R → [0, 1], x 7→ 1− Φ(x+ c) and Y (n) =
√
n
(
θ̂n,· − θ(P )

)
. For all k ∈ {1, . . . ,m}, for

all i ∈ H0(P ), define the set Bk,i as

Bk,i =
{
y ∈ R

m : k̂ ≤ k − 1 and f(yi) ≤ α(k − 1)/m
}

For all y ∈ R
m, we can sort the m-dimensional vector (f(y1), f(y2), . . . , f(ym)) as f(y)(1) ≤

f(y)(2≤···≤f(y)(m)). The set Bk,i can be rewritten as

Bk,i =
{
y ∈ R

m : f(y)(j) > αj/m for j = k, . . . ,m, and f(yi) ≤ α(k − 1)/m
}
.

Denote η the Lebesgue’s measure and ∂Bk,i the frontier of the set Bk,i. We want to prove

that for all k ∈ {1, . . . ,m}, for all i ∈ H0(P ), η(∂Bk,i) = 0. For all k ∈ {1, . . . ,m}, for all

i ∈ H0(P ), we have

η(∂Bk,i) = η

(
∂

[( m⋂

j=k

{
y : f(y)(j) > αj/m

})⋂{
y : f(yi) ≤ α(k − 1)/m

}])

≤ η

(( m⋃

j=k

∂
{
y : f(y)(j) > αj/m

})⋃
∂
{
y : f(yi) ≤ α(k − 1)/m

})

≤
m∑

j=k

η
(
{y : f(y)(j) = αj/m}

)
+ η
(
{y : f(yi) = α(k − 1)/m}

)

≤
m∑

l=1

m∑

j=k

η
(
{y : f(yl) = αj/m}

)
+ η
(
{y : f(yi) = α(k − 1)/m}

)
.

Since the right-hand side is null, equality η(∂Bk,i) = 0 holds. Consequently for all k ∈
{1, . . . ,m}, for all i ∈ H0(P ), P(Y ∈ ∂Bk,i) = 0. Using Portmanteau’s lemma, it follows that

lim
n→+∞

P

(
Y (n) ∈ Bk,i

)
= P(Y ∈ Bk,i).

If B′
k,i =

{
y ∈ R

m : k̂ ≤ k − 1 and f(yi) ≤ αk/m
}
, with a similar reasoning we can prove that

lim
n→+∞

P

(
Y (n) ∈ B′

k,i

)
= P(Y ∈ B′

k,i).
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Therefore, we obtain

FDR(P )

=
∑

i∈H0(P )

m∑

k=1

1

k

[
P

(
k̂ ≤ k, f

(
Y

(n)
i

)
≤ αk/m

)
− P

(
k̂ ≤ k − 1, f

(
Y

(n)
i

)
≤ αk/m

)]

=
∑

i∈H0(P )

m∑

k=1

1

k

[
P

(
Y (n) ∈ Bk+1,i

)
− P

(
Y (n) ∈ B′

k,i

)]
.

Taking the limit in the previous expression leads to

lim
n→+∞

FDR(P ) =
∑

i∈H0(P )

m∑

k=1

1

k

[
P

(
Y ∈ Bk+1,i

)
− P

(
Y ∈ B′

k,i

)]

= FDR(P∞).
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