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Abstract

In the present paper, we discuss the regression of a point on the surface of a unit

sphere in d dimensions given a point on the surface of a unit sphere in p dimensions,

where p may not be equal to d. Point projection is added to the rotation and linear

transformation for regression link function. The identifiability of the model is proved.

Then, parameter estimation in this set up is discussed. Simulation studies and data

analyses are done to illustrate the model.

Some keywords and phrases: Exit distribution; Geodesic distance; Möbius transfor-

mation; Projective linear transformation; von Mises-Fisher distribution.

1 Introduction

Orientation of a point in d-dimensional space Rd is the unit vector in the direction of

that point. Due to the constraint on the norm of such vectors, these points can be taken on

the surface of a unit sphere. Such random variables are called spherical random variables.

Spherical random variables have wide application in geology (e.g. Chang, 1986), astronomy

(e.g. Hall et al., 1987), shape analysis (e.g. Bryner et al., 2012) and crystallography (e.g.

Chapman et al., 1995), among others.
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Spherical regression is the modelling of orientation, y ∈ Sd−1, of a random variable in d-

dimensions, given another spherical random variable x ∈ Sp−1, in p-dimensions. The study of

such a regression is mostly available in the statistical literature when both the covariate and

response have the same dimension. For the unit sphere in 2-dimensions, circular-circular

regression is discussed by Rivest (1997), Downs and Mardia (2002), Minh and Farnum

(2003) and Kato et al. (2008), among others. For the regression of a spherical random

variable on similar dimensional unit sphere, Mackenzie (1957), Downs and Mardia (2002),

Downs (2003), Stephens (1979) and Chang (1986) have provided rotational models based

on orthogonal transformation. Downs (2003) discussed spherical-spherical regression using

stereographic projection on 3-dimensional sphere. Rosenthal et al. (2014) used projective

linear transformation for capturing such a relationship in similar dimensions. These are all

parametric models. Di Marzio et al. (2014) has used nonparametric regression, where they

regressed each coordinate of the response on the coordinates of the covariates. Due to the

nature of their regression modelling, the regression can be carried out when the dimensions

of covariates and responses are different.

The application of regression modelling on unit sphere in similar dimensions is the vector-

cardiogram data discussed in Downs (2003) and Rosenthal et al. (2014). In two dimensions,

the wind direction prediction is discussed in Kato et al. (2008). In Kato et al. (2008), the

geometry explaining the Möbius Transformation based link function is shown differently for

|β1| < 1 and |β1| > 1. To extend the geometry to the setup of spherical-spherical regression,

the geometry in the two cases has to be unified first. By showing that a single geometry can

explain both the cases, we extended the model of Kato et al. (2008) to unit hypersphere in

any dimension when the dimension of the covariate and the response are the same. However,

it is also important to study the spherical-spherical regression model with possibly different

dimensions of covariates and responses as it can cover all the generalisation for spherical

regression in terms of dimensions. Thus, we studied the spherical-spherical regression when

the dimensions of the covariate and response are different. As the time of the day and date

of the year are circular variables, such a regression can cover the aspects when the prediction

of a spherical random variable (such as shapes of clouds) is done based on these covariates.

In this paper, we propose a parametric model which generalises the spherical-spherical

regression to all such cases where the dimensions of the covariate and response may differ. We
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have considered the geometry of Möbius Transformation based link function and extended

the geometry in higher dimension so that it can model the concentration of responses in a part

of the sphere. This generalises the Möbius Transformation based circular-circular regression

to hyperspheres. We have also shown how to combine the projective linear transformation

based spherical-spherical regression model with this geometry. This helps in modelling all

such cases where the elongation is axial as well as their is a concentration of responses on a

part of the spherical surface. Also, unlike the non-parametric setup of DiMarzio et al. (2014),

we have considered a parametric regression for such cases which makes the interpretation

of parameters easier. Therefore, we have introduced a parametric model which handles

rotation, axial elongation as well as concentration of responses on a part of the sphere with

different parameters for arbitrary dimensions of spherical variables. We have also provided

different summary statistics as well as plots for model diagnostics.

We discuss the model in Section 2. The identifiability of the model is also proved in the

same section. We need to study the cases for p = d and p 6= d separately. In Section 3, we

discuss the properties of the model. Estimation of underlying model parameters is discussed

in the same section. Some simulation studies for three cases, namely (x ∈ S2, y ∈ S2),

(x ∈ S1, y ∈ S2) and (x ∈ S2, y ∈ S1) are reported in Section 4. Section 5 is devoted to data

analyses. Section 6 concludes.

2 The model

2.1 The regression link function

2.1.1 When p = d

In the context of circular-circular regression, Kato et al. (2008) mentioned that if β1 is a

point inside the unit disc, then the conditional mean direction corresponding to covariate x,

excluding the final rotation, is the point on the circle which is on the line joining −x and

β1. See Kato et al. (2008) for details. Extending the same geometry for spherical covariate

and spherical response, taking values on the surface of a sphere of similar dimension, the

proposed model is explained.

Let y and x be the response and covariate on the circle, respectively. Then the regression
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function of the model of Kato et al. (2008) is

y = β0
x+ β1

1 + β̄1x
ε,

where x, y, β0, β1, ε ∈ C and |x| = |y| = |β0| = |ε| = 1. Also, it was assumed that ε follows a

wrapped Cauchy distribution with a real parameter.

In a similar way, we attempt to provide a spherical-spherical regression model on any

finite dimensional sphere where the dimensions of both the covariate and response variables

are the same. The conditional mean direction µ(I, β1, x) corresponding to the covariate x

for a fixed parameter β1, such that β1 ∈ Rk, is the point on the sphere Sk−1 other than −x

which is at the intersection of the line joining −x to β1. The response y given x follows

a distribution whose parameter is a rotation of µ(I, β1, x) which is found by multiplying

µ(I, β1, x) by a square matrix β0 ∈ SO(k) where SO(k) is the special orthogonal group of

matrices of dimension k × k. The mathematical expression for the proposed model is as

follows.

The line joining −x and β1 is a(−x) + (1−a)β1, where a ∈ R. Let µ(I, β1, x) is the point

where this line meets the unit sphere. Then the modulus of this point will be 1. So,

| − ax+ (1− a)β1|2 = 1

⇒ a2 + (1− a)2β1.β1 − 2a(1− a)β1.x = 1

⇒ a2(1 + r2 + 2r cos γ)− 2ar(r + cos γ)− (1− r2) = 0,

where r = (β1.β1)1/2 and γ is the angle between β1 and x. In other words, r is the Euclidean

norm || · || of β1, and γ is the angle between β1 and the covariate x.

Clearly, one of the solutions for a is 1. Also −x ∈ Sk−1 as x ∈ Sk−1. So the other solution

of a will be (r2− 1)/(1 + r2 + 2r cos γ). This can be obtained from the property of quadratic

equation that the product of the two roots is equal to the ratio of the coefficients of r2 and

r0 for a quadratic equation in r. Thus,

µ(I, β1, x) =
1− r2

1 + r2 + 2r cos γ
x+

2 + 2r cos γ

1 + r2 + 2r cos γ
β1

=
x(1− β1.β1) + 2β1(1 + β1.x)

(x+ β1).(x+ β1)
. (2.1)

The conditional mean direction of y will now be a rotation of this point µ(I, β1, x) by a fixed

matrix parameter β0, and hence the proposed regression model can be taken as

y|x ∼ Exitk(ρµ(β0, β1, x)), (2.2)
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where Exitk(·) is an Exit distribution in k-dimensions and ρ ∈ [0, 1] is a scalar quantity. The

derivation of the conditional mean direction (2.1) is similar to the transformation used in

McCullagh (1989, Section 10). However, the motivations for the use of the transformations

are different in this paper and McCullagh (1989) because McCullagh (1989) used this trans-

formation to propose a univariate family of distributions on (−1, 1). In addition, a different

parametrization is used in this paper. In the Exit distribution, ρ controls the concentration

of error. When ρ is close to 1, the concentration of error is very high while as ρ gets closer

to 0, the error is distributed more uniformly over the unit sphere. Note that Exit distribu-

tion with parameter η on k-dimensional sphere is the distribution of the point from which

a particle following Brownian Motion exits a unit ball if it starts from η where ||η|| ≤ 1 and

η ∈ Rk. The probability density function (pdf) of W following Exit distribution Exitk(η) is

of the form

fW (w) =
1

Ak−1

1− ||η||2

||w − η||k
, w ∈ Sk−1,

where Ak−1 is the surface area of Sk−1. See Durrett (1984) and Kato (2009) for details.

Here β0 ∈ SO(k). Note that, from (2.1), it follows that µ(β0, β1, x) = µ(I, β0β1, β0x). An

alternative to the Exit distribution can be the von Mises-Fisher distribution; see Fisher et

al. (1993).

The function in (2.1) can also be used together with orthogonal projection and projective

linear transformation by first transforming the points and then multiplying by a square

matrix of determinant 1 and then projecting the points back on the unit sphere. Note that

the model defined in this paper is equivalent to the orthogonal projection or rotational model

and projective linear transformation model mentioned in Rosenthal et al. (2014) when β1 is

at the origin. Thus, those models can be considered as a subset of this model. The restriction

on β0 ∈ SO(k) should be relaxed if the model is used in conjunction with projective linear

transformation model.

2.1.2 When p 6= d

Let x ∈ Sp−1 and y ∈ Sd−1. For p = d, Rosenthal et al. (2014) used the Projective Linear

Transformation as the link function in the regression of y on x. Specifically, they modelled

the conditional mean direction as y = Ax
||Ax|| , where A is a non-singular square matrix such

that determinant of A is 1. This regression link function first projected the points on the
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surface of a sphere to an ellipsoid based on the eigenvalues and eigenvectors of A, then the

points on the sphere were chosen as the unit vector in the direction of the points on the

ellipsoid. In the present paper, we have extended this concept when p 6= d by imposing some

restrictions on A, mentioned in Section 2.3.2. We have also added a projective point β in

p-dimensions similar to the case of p = d as in Section 2.1.1 to capture the concentration

of responses. This will be particularly helpful when the responses are concentrated on some

part of the sphere. Our regression link function is thus an extension of the idea proposed

in Rosenthal et al. (2014) when the dimensions of covariate (x) and response (y) differ, i.e.

when p 6= d. We further extend the idea by drawing a line from the antipodal point of x

through a fixed projection point in the p-dimensional space.

The regression link function is y = Ax∗
||Ax∗|| , where x∗ = x(1−β.β)+2β(1+β.x)

(x+β).(x+β)
, as in Section

2.1.1. Here A is a rectangular matrix with dimension d × p, β ∈ Rp. As x ∈ Sp−1, so

x∗ ∈ Sp−1.

2.2 Geometric properties of the model

2.2.1 When p = d

This model has the same geometry as of Kato et al. (2008) model when ||β1|| ≤ 1. When β1

is a unit vector one gets a standard location model where the mean direction of y does not

depend on x. However, if β1 = 0, then µ(I, β1, x) = x; therefore, only rotation takes place

during regression.

The geometry for ||β1|| > 1 is explained differently from the case of Kato et al. (2008).

Here again the predicted mean direction is on the line joining −x and β1. Here, also as ||β1||

goes to 1, the points get highly concentrated around β1/||β1||. Looking at the geometry, it

can be directly argued that the regression function is a continuous function of x and β1, β0.

Further, for β0 = I, the angle between the predicted direction y and x is cos−1(y.x).

Thus, for all the points for which the angle between β1 and x is the same, the angle of the

predicted direction y and β1 will also be the same. This can easily be seen from (2.1). For

three dimensional sphere, the angle between β1 and all the points on a circle with center on

the line joining 0 and β1 will be the same, and hence, the angle of the projection with β1

will also be the same. Hence, the conditional mean directions are also on a circle with the

center on the line joining 0 and β1.
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Figure 1: The projection of X to Y ′ via first reflection to −X and then projection via β1.

(Left:) When β1 is inside the sphere; (Right:) When β1 is outside the sphere.

The geometry of the proposed regression for 3-dimensional case is shown in Figure 1.

The left hand figure shows the case when β1 is inside the sphere and the right hand figure

illustrates the geometry when β1 is outside the sphere. In the figures, µ(I, β1, X) is denoted

as Y ′. In both these cases, β0 is taken to be an identity matrix I of dimension 3× 3.

The geometry of regression, when β0 is an axis-angle rotation, is shown in Figure 2.

The effect of rotation by β0 ∈ SO(3) can be shown first by choosing an axis and then

rotating all the points on the unit sphere in 3-dimension around this axis by a fixed angle.

In Figure 2, this is shown by denoting the axis by ξ and the angle by α. Now, any axis on

a 3-dimensional sphere can be determined by taking a point on the sphere and joining the

center of the sphere to this point. Thus, the axis of rotation can be identified through two

angles θ1, θ2 ∈ [0, π). In the figure, the predicted mean direction when the function in (2.1)

is applied to X is denoted by µ(β0, β1, X) = Y . So, y given x follows Exit distribution with

parameter ρµ(β0, β1, X).

The change in concentration of the predicted mean directions with varying β1 is shown

in Figure 3 for varying ||β1|| < 1.
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Figure 2: The projection of X to Y ′ via first reflection to −X and then projection via β1

when β1 is inside the sphere and then axis-angle rotation with unit vector ξ as axis and α

angle.

Figure 3: The predicted mean directions Y ′1 , Y
′

2 , Y
′

3 for X corresponding to βj = (0.3j, 0, 0)T

for j = 1, 2, 3.
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2.2.2 When p 6= d

There is a four step transformation in the model when p 6= d. The last three of them are due

to the Singular Value Decomposition of A and the first one is due to the projective point.

Let the Singular Value Decomposition of A is A = UΣV T , where U is an orthogonal matrix

of dimension d× d, V is an orthogonal matrix of dimension p× p and Σ is the rectangular

diagonal matrix of dimension d × p having the singular values of A at its diagonals. When

β is at the origin, regression link function induces the following geometrical transformations

to x. First x is rotated in a p-dimensional space by V T . Then, the matrix Σ elongates the

point in d dimensions. Then, the points are again rotated in the d-dimensional space. The

division by the norm takes the regressed point on the surface of the sphere.

The addition of the projective point β to this model adds another aspect to the link

function. The transformation via projection through β takes the antipodal point of x and

projects it through β by drawing a line. The point of intersection of this line with the

unit sphere, denoted by x∗, is the transformed point. Closer the ||β|| to 1, more is the

concentration of predicted points near β
||β|| . This is the geometry of circular-circular regression

described in Kato et al. (2008) when the projecting point is inside the unit disc. The last

three steps follow subsequently as earlier.

The geometry of the regression when p = 2 and d = 3 is shown in Figure 4 and the

geometry of the regression when p = 3 and d = 2 is shown in Figure 5. The geometry

of the regression using Rosenthal et al. (2014) model along with projection point when

p = d = 3 can be shown similarly. The four steps in each of the Figures 4 and 5 are drawn

counter-clockwise, starting from bottom left.

2.3 Identifiability of the Model

2.3.1 When p = d

Theorem 2.1. The model (2.2) is identifiable when p = d.

Proof: When β0 ∈ SO(k), the identifiability of the model can be proved in the following

way. Suppose there exists two different models for which the predicted mean directions of

y given x are the same for all x. Let the model parameters with respect to the first model
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Figure 4: The projection of X ∈ S1 to µ ∈ S2 counter-clockwise from bottom left. (Bottom

Left:) first projection via β when β is inside the circle, (Bottom Right:) Multiplication by

V T , (Top Right:) Multiplication by Σ and (Top Left:) Final point after multiplication by U

and projecting on the sphere in 3-dimensions.

Figure 5: The projection of X ∈ S2 to µ ∈ S1 counter-clockwise from bottom left. (Bottom

Left:) first projection via β when β is inside the sphere, (Bottom Right:) Multiplication by

V T ,(Top Right:) Multiplication by Σ and (Top Left:) Final point after multiplication by U

and projecting on the circle in 2-dimensions.
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are β0 and β1 and those corresponding to the second model are β′0 and β′1. First, suppose

β0 = β′0 = I. Let the predicted mean directions be the same for any x for both the models,

i.e. µ(I, β1, x) = µ(I, β′1, x). Then, −x, β1, β
′
1 are collinear. Now, if we take another point

x′ on the sphere such that −x′ 6= µ(I, β1, x), then −x′, β1, β
′
1 will not be collinear and hence

the predicted mean direction point with respect to the models will be different. Hence, the

model is identifiable when β0 = I.

When at least one of β0 and β′0 is not equal to I, then β0β
′−1
0 again belongs to SO(k).

Transforming the coordinate system by choosing the eigenvectors as the principal axes such

that β0β
′−1
0 is an identity matrix, the result follows directly from the case when β0 = β′0 = I.

Alternatively, suppose µ(β0(1), β1, x) = µ(β′0, β
′
1, x) for all x, where β0(1) ∈ SO(k).

Then, without loss of generality, this is equivalent to µ(I, β1, x) = µ(I, β0β
′
1, β0x) for all x

with β0 = β0(1)−1β′0. Now, µ(I, β1, β1

/
||β1||) = β1

/
||β1||. Hence, β0β

′
1 should lie on the

line joining β1

/
||β1|| and −β0β1

/
||β1||. Also, µ(I, β1,−β1

/
||β1||) = −β1

/
||β1||. Thus, β0β

′
1

should lie on the line joining −β1

/
||β1|| and β0β1

/
||β1||. But, these two lines are parallel.

Hence, β′1 = β1 and β0 = I.

When our model is used along with the Projective Linear Transformation Model, then y

given x follows Exit Distribution with parameter ρAµ(I,β1,x)
||Aµ(I,β1,x)|| . The identifiability of the model

can be proved in the following way. Let

Ay′(2)

||Ay′(2)||
=

By′(1)

||By′(1)||

for all x ∈ Sk−1. Here y′(2) is the transformed point using β(2)1 as the parameter in the link

function and y′(1) corresponds to β(1)1 as the parameter, and A,B ∈ PGL(k), the projective

general linear group as defined in Rosenthal et al. (2014). Then, for all x,

||By′(1)||
||Ay′(2)||

B−1Ay′(2) = y′(1). (2.3)

Taking norm on both sides of (2.3), we get

||By′(1)||
||Ay′(2)||

||B−1Ay′(2)|| = 1. (2.4)

Using (2.4) in (2.3), we get
B−1Ay′(2)

||B−1Ay′(2)||
= y′(1).
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Now, A,B ∈ PGL(k) implies B−1A ∈ PGL(k). Writing C = B−1A, it reduces to

Cy′(2)

||Cy′(2)||
= y′(1).

Let C = PDλP
′, where P is an orthogonal matrix of eigenvectors of C and Dλ is a diagonal

matrix of eigenvalues of C. Then, transforming the coordinates, without loss of generality,

we can take C = Dλ. Thus,
Dλy

′
(2)

||Dλy′(2)||
= y′(1).

When x =
β(2)1
||β(2)1||

,

Dλβ(2)1

||Dλβ(2)1||
=

β(2)1
||β(2)1||

(1− β(1)1.β(1)1) + 2β(1)1(1 +
β(2)1.β(1)1
||β(2)1||

)

(
β(2)1
||β(2)1||

+ β(1)1).(
β(2)1
||β(2)1||

+ β(1)1)
. (2.5)

When x =
−β(2)1
||β(2)1||

,

−Dλβ(2)1

||Dλβ(2)1||
=

−β(2)1
||β(2)1||

(1− β(1)1.β(1)1) + 2β(1)1(1− β(2)1.β(1)1
||β(2)1||

)

(
−β(2)1
||β(2)1||

+ β(1)1).(
−β(2)1
||β(2)1||

+ β(1)1)
. (2.6)

Taking negative of (2.6) and equating its right hand side to the right hand side of (2.5),

we get β(2)1 = mβ(1)1 for some scalar m.

If m > 0, when xb = β(2)1

/
||β(2)1||, we have

Dλxb
||Dλxb||

= xb. (2.7)

Equating each of the coordinates of both sides in (2.7) and using the condition that the

determinant of Dλ is 1, we get Dλ = I. Similarly, Dλ = I can be proved for m < 0. The

identifiability of the model follows by the identifiability in the case of β0 ∈ SO(k). �

2.3.2 When p 6= d

We show the identifiability of the model by imposing some conditions on the matrix A and

then, proving a theorem.

Theorem 2.2. Under the conditions C1, C2 and C3 on A mentioned below, the model

(2.2) is identifiable when p 6= d.

The conditions on A are the following:

C1. rank(A) = k = min(p, d).
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C2. The singular values of A are such that λ1 > λ2 > · · · > λk > 0.

C3.
∏k

i=1 λi = 1.

We shall denote such a set of d× p matrices by G. Now we have the following Theorem.

Proof: Using these conditions when β, the projective point, is at the origin, the identifi-

ability can be proved very easily. As the singular values of the matrix A are non-degenerate

and non-zero, the Singular Value Decomposition of A will be unique. By condition C3, we

impose a restriction that among all the matrices B with B = cA, c being a scalar, the one

representative is chosen for which the multiplication of singular values is 1. Hence, when

β = (0, 0, . . . , 0), the model is identifiable.

The identifiability of the model when β is not at the origin and ||β|| 6= 1 can be proved

in the following way. Let A,B ∈ G be the multiplicative matrices and β1, β2 ∈ Rp are the

projecting points respectively for two models such that

Ax(1)

||Ax(1)||
=

Bx(2)

||Bx(2)||
, (2.8)

where x(1), x(2) ∈ Sp−1 be the projected points corresponding to x with respect to β1 and β2.

Let x = β1
||β1|| . Then,

Aβ1

||Aβ1||
= B

β1
||β1||(1− β2.β2) + 2β2(1 + β1.β1

||β1|| ))

||B( β1
||β1||(1− β2.β2) + 2β2(1 + β1.β1

||β1|| ))||
. (2.9)

Also, for x = −β1
||β1|| ,

−Aβ1

||Aβ1||
= B

−β1
||β1||(1− β2.β2) + 2β2(1 + −β1.β1

||β1|| )

||B( −β1||β1||(1− β2.β2) + 2β2(1 + −β1.β1
||β1|| ))||

. (2.10)

Solving (2.9) and (2.10), we get β2 = mβ1, where m is scalar.

Without loss of generality, take β1 = (b, 0, 0, . . . , 0) and β2 = (mb, 0, . . . , 0), and suppose

that x = (x1, x2, . . . , xp). Then,

Ax(1) = A
x(1− b2) + 2β1(1 + bx1)

(x+ β1).(x+ β1)
, (2.11)

and

Bx(2) = B
x(1−m2b2) + 2mβ1(1 +mbx1)

(x+mβ1).(x+mβ1)
. (2.12)
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Let A =< (aij) > and B =< (bij) >. The equation (2.8) reduces to

[(1− b2)A− (1−m2b2)tB]x = ((2mt+ 2m2tbx1)B − (2bx1 + 2)A)β1 (2.13)

for all x ∈ Sp−1. Here t ∈ R. When x = (1, 0, . . . , 0), we get

b11

a11

=
b21

a21

= · · · = bd1

ad1

= c(say).

Taking x = (0,−1, 0, 0, . . . , 0) and x = (0, 1, 0, 0, . . . , 0) in (2.13) and summing the two

equations we get,

b22

b21

=
b32

b31

= · · · = bd2

bd1

.

In a similar fashion, if we go on taking x as (0, 0, . . . , 1, 0, ..0) and (0, 0, . . . ,−1, 0, ..0) and

summing, we get the rank of B=1 which violates C1 or m=1 which again implies A = qB for

some scalar q. By the condition C3 on G, we get q = 1, and thus the model is identifiable.

�

Note that from the theorems, the model is identifiable whenever the response y, given the

covariate x, follows any distribution f(y;µy.x, ρ) for which there exists an x : f(y;µy.x, ρ1) 6=

f(y;µ′y.x, ρ2) for any x if µy.x 6= µ′y.x and ρ1 6= ρ2.

3 Distributional properties

3.1 Estimation of parameters

3.1.1 When p = d

The estimation of parameters of the model can be done through the maximum likelihood

estimation procedure. Method of moments can also be used, where the trigonometric mo-

ments can be compared with the sample values and these equations can be used to find

the estimates of the parameters. In the simulation study and data analysis, we have used

a gradient-descent method called BFGS method under optim function in R, which is used

to find the maximum or minimum of a function, to get the maximum likelihood estima-

tors (MLEs) under Exit distribution setup. In order to ensure that the global maximum is

obtained, it is preferable to start from several different initial values.
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When p = d, x are known and deterministic, and y/x, follows von Mises-Fisher (VMF)

distribution with concentration parameter κ the MLE of the parameters under the rigid

rotation model and asymptotic properties of the estimators are given in Chang (1986, 1989)

and Rivest (1989). Thus, for a given value of x, when y ∼ VMF (Ax, κ), where A is a

rotation matrix, the MLE of A is U1U
>
2 , where U1ΦU>2 is the singular value decomposition

of n−1
∑n

i=1 yix
>
i .

If our model is used together with the rotational model, then given β1, the MLE of β0,

which is a rotational matrix, can be found in the following way. Given β1, let the Singular

Value Decomposition of n−1
∑n

i=1 yiµ(I, β1, xi)
> is V1φV

>
2 (β1). Then, the MLE of β0 is V1V

>
2

Thus, the function has to be maximized over the space of β1 and given the estimator, β̂1,

the MLE of β0 can be obtained.

3.1.2 When p 6= d

The maximum likelihood estimation of the parameters when p = d, and β is at the origin and

A ∈ PLG(d), and the error following von Mises-Fisher distribution, is discussed in Rosenthal

et al. (2014), where PLG(d) is the Projective General Linear Group in d-dimensions. Ex-

tending the same approach, the maximum likelihood estimation of model parameters when

p 6= d and β is at the origin and the error follows von Mises-Fisher distribution can be

obtained in the following way.

Step 1: Initialize the algorithm using A = Σn
i=1yix

>
i .

Step 2: Compute ∇Afn.

Step 3: Update A by using A→ A+ ε∇Afn, where ε is very small.

Step 4: Stop, if convergence reached. Else, go to Step 2.

Note that ∇Afn can also be computed in a similar manner as in Michael et al. (2014).

Using the same computations,

∇Afn =
1

n

n∑
i=1

(
yix
>
i

||Axi||
− Axix

>
i A
>yix

>
i

||Axi||3

)
.

Now, given Â, the MLE of κ, denoted by κ̂, can be obtained immediately by solving the

following equation:

Id/2(κ)

Id/2−1(κ)
= − 1

n

n∑
i=1

(
y>i Âxi

||Âx>i yi||

)
,
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where Iν(·) is the incomplete Bessel function of order ν.

When β is not at the origin, the MLE in simulation and data analysis can be found by

using optim function in R. Also, in case of Exit distribution for error, the MLE can again

be obtained by using optim function in R as has been done in simulation and data analyses

in Sections 4 and 5.

3.2 Test of independence

First consider p = d. If x follows Exitk(η), and y|x follows Exitk(ρµy.x) where µy.x =

µ(β0, β1, x), then the joint density f(x, y) can be denoted as

f(x, y) = f(x)f(y|x) =
1

A2
k−1

1− ||η||2

||x− η||k
1− ||ξ||2

||y − ξ||k
,

where ξ = ρµy.x. From the joint distribution, the test for independence of y and x can be

performed as Kato et al. (2008) has done for two circular random variables. If ||β1|| = 1,

then µy.x = β0β1, and hence f(y|x) ≡ Exitk(ρβ0β1), and thus y is independent of x. Hence,

the test of independence for y and x can be performed in the following way. Defining the

null hypothesis H0 : ||β1|| = 1 and the alternate hypothesis H1 : ||β1|| 6= 1, the test rejects

the null hypothesis of independence if ||β̂1|| is far from 1.

Formally, the test statistic

Λ = −2 ln

(
L0

L1

)
asymptotically follows the chi-squared distribution with (k2 − k + 2)

/
2 degrees of freedom,

where L0 is the maximum likelihood under the null hypothesis (i.e when β1 = (1, 0, . . . , 0)>)

and L1 is the maximum likelihood under H0 ∪ H1. Under the null hypothesis, the number

of unknown parameters are k (the angular coordinates of β1 and ρ), while under H0 ∪

H1, the number of unknown parameters are (k2 + k + 2)
/

2 (k corresponding to β1, (k2 −

k)
/

2 corresponding to β0 and 1 corresponding to ρ). Thus, the degrees of freedom of the

asymptotic test statistic is (k2 − k + 2)
/

2.

When p 6= d, the same test of independence can be carried out. Under the null hypothesis,

the number of parameters to be estimated are d − 1 corresponding to the mean point and

1 corresponding to ρ, while under H0 ∪ H1, the number of unknown parameters are p2−p
2

(corresponding to V ), d2−d
2

(corresponding to U), min(p, d) − 1 (corresponding to Σ), p
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(corresponding to β1) and 1 corresponding to ρ. Hence, the degrees of freedom is f =

p2+p
2

+ d2−d
2

+ min(p, d)− d.

3.3 Goodness of fit

3.3.1 Geodesic distance as a summary measure

The geodesic distances between the predicted points and the observed points can also be used

as a measure to gauge the goodness of fit of the model. Let corresponding to the observed

point yOi (denoted by Oi), the predicted point is yPi (denoted by Pi), where yPi, yOi ∈ Sk−1.

Suppose the Euclidean distance between these points be di, and the angle subtended by the

arc OiPi at the centre of the unit sphere be ζi. Then, the length of the arc OiPi, which is

the geodesic distance between the points, will be the angle between the points, in radian.

Using sine rule for the triangle OiOPi, we immediately get

di ≡


sin ζi

cos
ζi
2

= 2 sin ζi
2

if ζi 6= π

2, if ζi = π,

Then, the goodness of fit can be measured by

D =
1

n

n∑
i=1

ζi =
2

n

n∑
i=1

sin−1 di
2
. (3.1)

Thus, D ∈ [0, π] and smaller values of D imply better fit and if D = 0, it is a perfect fit.

3.3.2 Checking assumptions about link function and error distribution

If a random variable X ∈ Sd−1 follows exit distribution with parameter η = (η1, . . . ηd), then

for any harmonic function g(X), E{g(X)} = g(η) (see Durett (1984), pp. 36). This property

can be used to check the assumption of the link function in the model. The property implies

that E(Xj) = ηj where X = (X1, X2, . . . Xd).

Also, for a spherical random variable E(
∑d

j=1X
2
j ) = 1. If we consider g(X) = X2

i −X2
k ,

which is a harmonic function, then E(X2
i −X2

k) = η2
i −η2

k. Therefore if we add the equations:

E(
d∑
j=1

X2
j ) = 1

and E(X2
i −X2

k) = η2
i − η2

k for all k 6= i, we get E(X2
i ) =

1+dη2i−||η||2
d

. Therefore, we can find

the variance of Xi and denote it by σ2
i .
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Denoting the predicted and observed ith response by (yp,i1, . . . yp,id) and (yo,i1, . . . yo,id)

respectively, we may check the goodness of fit. For checking the goodness of fit marginally

in kth dimension, we plot ∆ik =
yp,ik−ρyo,ik

σik
for i = 1, . . . n. We use the estimates of the

parameters when the parameters are unknown. We also calculate ck =
∑n
i=1 ∆ik√
n

as summary

statistic to check if marginally, the points are not far from normal distribution. This can be

done for each of the d dimensions. If there is some pattern in error, then in the plots, we

may find many points far away from 0 and the summary statistics ck’s having large values.

After checking the assumption for the link function, we draw the histogram for 1− y>p yo.

If the error distribution follows exit distribution, then the frequencies in histogram should

be monotonically decreasing.

3.4 Comparison with existing models

The problem with the rigid rotation model is that every point is transformed similarly. The

resultant fit may be good for some data sets; but, for many data sets, e.g. for the data

used in shape and image analyses, the transformation of different covariates are different.

The Projective Linear Transformation model tries to capture this by first multiplying the

covariates with a square matrix whose determinant is 1 and then projecting the points back

on the sphere in the direction of the line joining the center of the unit sphere to this point.

On multiplication by the matrix, it can be easily observed that the points on the sphere

get elongated in a direction which depends on the eigenvalues and eigenvectors of the mul-

tiplicative matrix and then the back-projection on the sphere enables the model to capture

different transformations of different covariates. The rigid-rotation model is a special case of

the Projective Linear Transformation Model when all the eigenvalues of the multiplicative

square matrix β0 are 1. Thus, the points on the unit sphere are rotated uniformly and there

is no elongation in any particular direction. In the Projective Linear Transformation Model,

the absolute values of all the eigenvalues may be different and hence, the elongation happens

in the direction of the eigenvector corresponding to the largest eigenvalue, and hence more

points get concentrated along the axis of this eigenvector. But the drawback of this model

is that this concentration is the same in the direction of the eigenvector as well as in the

negative direction of this eigenvector. Hence, this model is unable to capture the regression

when there is a concentration of responses around a particular point on the sphere or only
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in one part of the unit sphere. As explained in Figure 3, our model can capture this type of

responses as well by differing the parameter β1. Our model can also be used together with

rigid rotation as well as Projective Linear Transformation as explained in Section 2.

Downs (2003) used Möbius transformation, but the idea of projecting points on a plane

from the surface of a sphere induces a discontinuity at the north pole. Due to continuity

of the geometry, our model does not exhibit this problem. Moreover, the model of Downs

(2003) has not been extended for dimensions greater than 3.

Note that when p 6= d, then there is no existing parametric model in the literature.

Hence, the comparison is only restricted to the non-parametric models of Di Marzio et al.

(2014).

4 Simulation studies

4.1 When p = d

Data from our proposed regression model for different given values of β1 ∈ R3, n (sample

size) and ρ for a fixed β0 ∈ SO(3) were simulated 1000 times. The MLEs of the parameters

were obtained for our proposed model and the rotational model for all the cases.

Exit distribution was used to model the error in response. The data from Exit distri-

bution were simulated using the method proposed by Müller (1956). Covariates were taken

uniformly over the unit sphere in 3-dimensions. The simulation algorithm is as follows:

Step 1: x1, x2, x3 are independently generated from N(0,1).

Step 2: The covariate taken uniformly on the unit sphere will be 1√
x21+x22+x23

(x1, x2, x3).

Step 3: u1, u2, u3 are independently generated from N(0,1).

Step 4: ρµy.x → ρµy.x + (1− ρ) 1√
u21+u22+u23

(u1, u2, u3).

Step 5: ρ→ ||ρµy.x + (1− ρ) 1√
u21+u22+u23

(u1, u2, u3)||.

Step 6: if ρ > 0.99, stop else go to Step 3.

Since our model is nothing but a rotational model when β1 is at the origin, the comparison

between both the models can be done through χ2-statistic for testing H0 : β1 = (0, 0, 0)>

against H1 : β1 6= (0, 0, 0)>. Under the null hypothesis, the statistic Λ = −2 ln
(
L0

L1

)
, where

L0 is the maximum likelihood under null hypothesis and L1 is the maximum likelihood under
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H0∪H1, asymptotically follows a χ2 distribution with k degrees of freedom when x, y ∈ Sk−1.

In the Tables 1 and 2, (b1, b2, b3) correspond to the coordinates of β1, and ρ is the parameter

of Exit distribution. Also (θ1, θ2) denote the axes of rotation, and α denotes the angle of

rotation. The rotation of x in terms of axis and angle can be written by the Rodrigues’

formula (cf. Rodrigues, 1840). Let e = (sin θ2 cos θ1, sin θ2 sin θ1, cos θ1). Then, for any point

x ∈ S2, the rotated point is given by xrot = (cosα)x+ (sinα)(e.x) + (1− cosα)(e.x)e. As θ1

and θ2 are axial parameters, 2θ1 and 2θ2 are circular parameters. Hence, in the simulation

tables, the circular means of the MLEs of 2θ1 and 2θ2 over 1000 simulations are reported.

The estimates corresponding to only rotation and no projection are denoted by NPE (No

Projection Estimates) while the estimates corresponding to our model are denoted by PE

(Projection Estimates). The standard deviations (sd’s) of the simulated estimates for the

linear random variables are obtained, and these are used to obtain the standard errors (se’s)

of the estimates which are given in parentheses along with the means of the estimates.

Circular variances of the simulated estimates are obtained for the circular random variables.

The circular variance (or dispersion) is defined as (1 − R), where R is the mean resultant

length of the estimated values of the circular parameter from all the simulations. In the

Tables, the standard errors of the linear parameters and circular variances of the circular

parameters are reported in the parentheses.

The comparison of our model with the rotational model is illustrated in Table 1 for three

sample sizes n = 25, 50, 100. In Table 2, the MLEs are reported for different values of β1

for n = 25. The mean values of the statistic Λ along with the p-values are also reported in

each of the Tables. For the cross-validation predictive performance, for each sample size n

of learning data set, a test data set of size 40% of n is considered. The mean values of D, a

measure of goodness of fit defined in (3.1) in Section 3.3, is also reported in the Tables.

From Table 1, we observe that as n increases, the standard deviation and circular vari-

ance decreases and the estimates get closer to the true values. In Table 2, β1 = (0, 0, 0)>

correspond to the no rotation model. It can be seen from the values of Λ and its p-values

under asymptotic distribution that as β1 goes far from origin, the value of Λ increases.

Our empirical study based on the QQ plots (not reported here for the sake of brevity)

shows that the statistic Λ can be approximated by a χ2
3 distribution for a sample size as

low as 25 while the approximation gets closer to the true distribution as the sample size
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Table 1: Estimates of parameters (with standard errors/circular variances in parentheses)

for ρ = 0.85, 2θ1 = 6, 2θ2 = 4, α = 4 and β1 = (0.3, 0, 0) for different n.

n = 25 n = 50 n = 100

Para- NPE PE NPE PE NPE PE

meters

2θ1 5.976 (0.027) 6.013 (0.008) 5.964 (0.011) 5.998 (0.003) 5.987 (0.006) 5.999 (0.001)

2θ2 4.191 (0.573) 4.016 (0.201) 4.019 (0.404) 4.000 (0.047) 3.915 (0.251) 3.989 (0.023)

α 3.888 (0.122) 3.941 (0.059) 3.964 (0.040) 3.998 (0.003) 3.988 (0.023) 4.001 (0.001)

ρ 0.685 (0.002) 0.862 (0.002) 0.672 (0.002) 0.861 (0.001) 0.653 (0.001) 0.859 (0.000)

b1 0.298 (0.001) 0.300 (0.001) 0.300 (0.000)

b2 0.002 (0.001) 0.001 (0.001) 0.001 (0.000)

b3 0.000 (0.001) 0.001 (0.001) 0.000 (0.000)

D 0.273 0.167 0.263 0.165 0.260 0.164

Λ 56.3257 (0) 111.064 (0) 223.235 (0)

(p-value)

Table 2: Estimates of parameters (with standard errors/circular variances in parentheses)

for ρ = 0.85, 2θ1 = 6, 2θ2 = 4, α = 4 and n = 25 for different β1.

β1 = (0, 0, 0) β1 = (0.3, 0, 0) β1 = (0.6, 0, 0)

Para- NPE PE NPE PE NPE PE

meters

2θ1 5.998 (0.004) 5.997 (0.008) 5.976 (0.027) 6.013 (0.008) 5.955 (0.154) 6.032 (0.031)

2θ2 4.028 (0.113) 4.026 (0.141) 4.191 (0.573) 4.016 (0.201) 5.359 (0.607) 4.082 (0.374)

α 3.979 (0.017) 3.981 (0.023) 3.888 (0.122) 3.941 (0.059) 3.505 (0.347) 3.857 (0.131)

ρ 0.858 (0.001) 0.869 (0.002) 0.685 (0.002) 0.862 (0.001) 0.461 (0.002) 0.862 (0.001)

b1 0.004 (0.002) 0.298 (0.001) 0.596 (0.002)

b2 0.000 (0.001) 0.002 (0.001) 0.005 (0.003)

b3 0.000 (0.002) 0.000 (0.001) 0.004 (0.003)

D 0.164 0.169 0.273 0.167 0.445 0.176

Λ 3.2163 (0.3595) 56.3257 (0) 93.47231 (0)

(p-value)
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increases.

4.2 When p 6= d

There is no parametric model proposed in the statistical literature for handling the case

of p 6= d. Thus, our comparison is only restricted to the non-parametric regression model

proposed by Di Marzio et al. (2014).

For the comparison, the data set is again divided into two parts. One is the training data

set and another is the test data set. The number of observations under the test data set is

restricted to 40% of the training data set (n) and the comparison is made at different values

of n, ρ, λ, ||β|| where λ denotes the bigger of the two eigenvalues of the matrix β0.

The comparison is shown for p = 2, d = 3 and also when p = 3, d = 2. Both the training

and test data are taken from our parametric models. On the basis of the training data, MLEs

of the parameters are obtained for our model and also for the local constant model and local

linear model of Di Marzio et al. (2014). For the models of Di Marzio et al. (2014), the

kernel function Km(h) is chosen to be proportional to exp(m cos θ), where θ is the angular

distance between the concerned observation and any other observation. Cross-validation is

used to choose the appropriate concentration parameter m for the kernel. The predicted

point corresponding to the test set is then obtained by using this m and the observations

which form the training data.

The comparison between our model, local constant model (NPE1) and the local linear

model (NPE2) is again done by D-values, defined in (3.1). For different values of the model

parameters, the corresponding values of D are shown in Tables 3-6. In Tables 3 and 4, using

1000 simulations and assuming Exit distribution for the error, the D-values along with the

estimates of the parameters (with se’s or circular variables) are given. The D values along

with the parameter estimates for p = 3, d = 2 for different set of parameters are shown in

Tables 5 and 6. The values in the Tables are based on the average values of D in 1000

such simulations. Lower the value of D, better is the fit of the model. In the Tables, the

D-value corresponding to our parametric model is denoted by DPE, the same corresponding

to the local constant model (Di Marzio et al., 2014) is denoted by DNPE1 and the D-value

corresponding to the local linear model (Di Marzio et al., 2014) is denoted by DNPE2. Here

β1 = (b1, b2) when p = 2 and β1 = (b1, b2, b3) when p = 3, A = UΛV and ρ is the parameter of
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Table 3: Estimates of parameters (with standard errors/circular variances in parentheses)

for ρ = 0.85, 2θ1 = π/2, 2θ2 = π/3, θ3 = π/5, φ = π/3, λ = 5, and β1 = (0.6, 0) for different

values of n.
n = 25 n = 50 n = 100

Parameters

2θ1 1.604 (0.126) 1.553 (0.081) 1.565 (0.039)

2θ2 1.090 (0.100) 1.090 (0.054) 1.073 (0.023)

θ3 0.692 (0.020) 0.654 (0.008) 0.641 (0.003)

φ 1.025 (0.017) 1.032 (0.007) 1.043 (0.002)

ρ 0.874 (0.001) 0.861 (0.001) 0.855 (0.000)

b1 0.574 (0.004) 0.591 (0.003) 0.596 (0.002)

b2 −0.035 (0.004) −0.007 (0.002) −0.006 (0.001)

λ 5.199 (0.025) 5.141 (0.020) 5.058 (0.012)

DPE 0.190 0.175 0.168

DNPE1 0.292 0.223 0.199

DNPE2 0.479 0.471 0.462

exit distribution, U is a rigid-rotation matrix and hence it can be explained by three angles

θ1, θ2 ∈ [0, π) and θ3 ∈ [0, 2π). The rotation matrix V can be explained by a parameter

φ ∈ [0, 2π). As θ1, θ2 show the axes, 2θ1, 2θ2 are considered to be circular parameters. Thus,

in the simulation tables the circular mean has been computed for 2θ1, 2θ2, θ3, φ and the

circular variances are reported for them.

5 Real Data Analyses

5.1 Vectorcardiogram data

Vectorcardiogram dataset is mentioned in Downs (2003) where two vectorcardiograms, one

using the Frank system and the other using the McFee system, were taken from 28 boys and

25 girls. The readings corresponding to Frank system were denoted by Fmax = (Fx, Fy, Ft)
>

and the same corresponding to McFee system were denoted byMmax = (Mx,My,Mt)
>, where

Fmax and Mmax are unit vectors in the direction of maximum QRS loop vector. As in Downs

(2003), we have chosen Fmax to be the dependent variable and Mmax to be the independent

variable (see Downs (2003) for details). The regression models were fitted both for boys

and girls separately along with the rigid rotation models, to illustrate the comparison of our
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Table 4: Estimates of parameters (with standard errors/circular variances in parentheses)

for n = 50, 2θ1 = π/2, 2θ2 = π/3, θ3 = π/5, φ = π/3, λ = 5, and ρ = 0.85 for different

values of β1.
β1 = (0.6, 0) β1 = (0.3, 0)

Parameters

2θ1 1.553 (0.081) 1.590 (0.081)

2θ2 1.090 (0.054) 1.076 (0.059)

θ3 0.654 (0.008) 0.668 (0.012)

φ 1.032 (0.007) 1.045 (0.003)

ρ 0.861 (0.001) 0.862 (0.001)

b1 0.591 (0.003) 0.291 (0.004)

b2 −0.007 (0.002) −0.010 (0.003)

λ 5.141 (0.020) 5.166 (0.022)

DPE 0.175 0.175

DNPE1 0.223 0.221

DNPE2 0.471 0.474

Table 5: Estimates of parameters (with standard errors/circular variances in parentheses)

for β1 = (0.6, 0, 0), 2θ1 = π/2, 2θ2 = π/3, θ3 = π/5, φ = π/3, λ = 5, and ρ = 0.85 for

different values of n.
n = 25 n = 50 n = 100

Parameters

2θ1 1.598 (0.089) 1.606 (0.113) 1.640 (0.089)

2θ2 1.053 (0.020) 1.068 (0.025) 1.022 (0.017)

θ3 0.632 (0.046) 0.628 (0.033) 0.631 (0.029)

φ 1.044 (0.002) 1.049 (0.001) 1.056 (0.001)

ρ 0.880 (0.001) 0.865 (0.001) 0.852 (0.001)

b1 0.589 (0.004) 0.594 (0.002) 0.624 (0.001)

b2 −0.037 (0.006) −0.033 (0.004) −0.011 (0.001)

b3 0.015 (0.006) 0.013 (0.004) 0.011 (0.001)

λ 5.035 (0.009) 5.070 (0.016) 5.099 (0.014)

DPE 0.184 0.165 0.173

DNPE1 0.381 0.369 0.247

DNPE2 0.334 0.322 0.301
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Table 6: Estimates of parameters (with standard errors/circular variances in parentheses)

for n = 50, 2θ1 = π/2, 2θ2 = π/3, θ3 = π/5, φ = π/3, λ = 5, and ρ = 0.85 for different

values of β1.
β1 = (0.6, 0, 0) β1 = (0.3, 0, 0)

Parameters

2θ1 1.606 (0.113) 1.574 (0.051)

2θ2 1.068 (0.025) 1.057 (0.031)

θ3 0.628 (0.033) 0.637 (0.009)

φ 1.049 (0.001) 1.050 (0.001)

ρ 0.865 (0.001) 0.870 (0.001)

b1 0.594 (0.002) 0.296 (0.002)

b2 −0.033 (0.004) −0.014 (0.003)

b3 0.013 (0.004) 0.011 (0.004)

λ 5.070 (0.016) 5.078 (0.013)

DPE 0.165 0.159

DNPE1 0.369 0.376

DNPE2 0.322 0.333

model to the rotational model.

The p-value of the test assuming Exit distribution based on the Λ statistic for the Boys’

data is 0.1160 and that for the Girls’ data is 0.1101. The p-values are not large, although

not significant at 5% level. But, we still fit our proposed model to this dataset due to the

historical importance of this dataset.

The estimate of regression coefficient β1 for the Boys’ data is closer to 1, hence the

projection and subsequent rotation makes the predicted values more concentrated about β1

while in the Girls’ data, β̂1 is far from 1, and hence the predicted values are less concentrated.

The projection points in Girls’ data are near 0. However, still Λ for Girls’ data is more than

that of Boys’ data. From our detailed simulations (not reported here), we observe that Λ

increases with ρ. Hence, this can be explained by the values of ρ̂ which is higher in the case

of Girls’ data.

In fact, the sum of geodesic distances for Boys’ data for the rotational model and for our

proposed model come to be DNPE = 0.3856 and DPE = 0.3576, respectively, while the same

for the Girls’ data for the rotational model and our proposed model are DNPE = 0.202 and

DPE = 0.1866, respectively. Thus, our proposed model provides better fit for the Boys’ data
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as well as the Girls’ data; we obtain about 7-8% reduction in D-values in both the cases.

The pictorial representation of the extent of goodness of fit by the Lambert azimuthal

equal-area projection (see Mulcahy, 2007) is also shown in Figure 6. Here the mean predicted

values and the observed values on the sphere are first projected inside a unit disc of radius 2.

Then, the mean predicted values are joined to the observed values. The smaller the lengths

of these line segments, the better is the fit.

To check the assumptions for link function and error distribution, we calculated marginal-

lly c = (c1, . . . c3) for both the datasets. For boy data, c = (0.525, 0.477, 1.313) and for girls’

data it is (0.842, 0.867, 0.515). We also checked the marginal plots of ∆ (shown in supplemen-

tary material) which show that the points are approximately distributed randomly around 0.

We also plot the histograms in Figure 7 for circular distances (1− y>p y0) of observed points

and predicted points. The histograms are monotonically decreasing. Thus, we may conclude

that the assumptions on link function and error distribution are not much violated.

5.2 Hottest Day Data

The observations corresponding to the hottest date of the year 2011 were taken for major

cities of the world. The covariate is the location of the city on the globe. Assuming that

the earth is a perfect sphere, on the basis of the longitude and latitude, the co-ordinates

of the points on the surface of the sphere is obtained, and these points are the covariates

x ∈ S2. Dates are converted in angles taking 1st January as the 0 angle in case of responses,

and hence the responses are on the circumference of a unit circle. Thus, y ∈ S1. Then, y is

regressed on x by the method discussed in this paper.

The donut-plot, introduced by Jha and Biswas (2017) is shown for our model as well as the

local constant and local linear models. In the donut plot, pi = 1+cos(θp−θo)(cos θp. sin θp),the

points in the direction of predicted values are plotted. Points near the circumference of the

outer circle show good fit while points near the centre of the circle inside the inner circle

show bad fit for the points. If a predicted point is in anti-clockwise direction of the predicted

point, then they are shown as circles otherwise they are shown as stars.

The nonparametric regression using the local constant model of Di Marzio et al. (2014)

resulted in the value of the optimum tuning parameter k to be 199.99, while the nonpara-

metric regression using the local linear model gave the tuning parameter k as 114.48. The
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Figure 6: Lambert equal-area projection for vectorcardiogram data. Top row: Boys’ data;

Bottom row: Girls’ data. Left column: proposed model; Right column: rigid-rotation model.
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Figure 7: Histogram for circular distances between predicted and observed points for vec-

torcardiogram data.

donut-plot for the nonparametric local constant model is presented in the left panel of the

lower half of Figure 10, while the same for the local linear model is drawn on the right panel

of the lower half of Figure 10.

The parametric model, introduced in the paper, the local constant and local linear non-

parametric models were compared with respect to the D measure based on all the obser-

vations. For the proposed parametric model, the D value comes out to be 0.721, while the

same for the local constant model and local linear model are 0.819 and 0.759, respectively.

We have slight gain by the proposed parametric model.

To check the assumptions for link function and error distribution, we find c = (−1.294, 4.054)

for the dataset. Also, the marginal plots of ∆ are shown in Figure 8. It seems from the plots

that there are some points which are far from 0. We also plot the histograms for circular

distances of observed points and predicted points. The histogram as seen in Figure 9 is not

monotonically decreasing smoothly. Therefore, from the marginal plots and the histogram, it

can be said that the assumptions about the distribution link function and error distribution

are not completely true and there are some other patterns in the data too.
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Figure 8: Marginal plots of ∆ for Hottest day data

Figure 9: Histogram of circular distance for Hottest day data
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Figure 10: (Upper:) donut plot for the proposed model; (Bottom Left:) donut plot for the

nonparametric local constant model; (Bottom Right:) donut plot for the nonparametric local

linear model.
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6 Concluding remarks

In this paper, we have used a model based on the geometry of circular-circular regression

with the use of Möbius transformation as mentioned in Kato et al. (2008). This approach

of spherical-spherical regression is new as far as we know. Also, we covered a fairly general

situation – p can be smaller, equal or larger than d.

Multiple spherical regression using this model can be carried out by projecting the xβ’s

with respect to each covariate and then taking the convex combination of these projected

values by assigning suitable weights for different covariates such that the sum of the weights

is 1, and then projecting the final point on the surface of the sphere. Then, the square

matrix can be multiplied to this final point to get the predicted mean value γ.

Other distributions for error like the von Mises-Fisher distribution or the Watson distri-

bution, etc., can also be used together with the proposed model.
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