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Abstract 

The objective of the study is to quantify the benefits of an earlier brake activation by the drivers potentially 

achieved by a Forward Collision Warning (FCW) system in simulated car-to-cyclist accident scenarios. A 

parametric analysis is performed by varying the detection sensor Field Of View (FOV), the FCW trigger time 

and the driver’s reaction lag time to the FCW. Almost two thousand and three hundred car-to-cyclist accidents 

are clustered in the following five main scenarios: crossing nearside (33%), crossing farside (22%), longitudinal 

(5%), turning left (12%) and turning right (22%). The remaining is clustered in Others group (6%). For all 

accident cases, original accident kinematics are processed through Matlab scripts from which FCW FOV, 

FCW trigger time and driver’s reaction can be modified. The Matlab scripts return the new accident kinematics 

which can result in the accident being avoided or mitigated. This study shows that a 70° FOV, a FCW trigger 

time of 2.6s before the impact and a 0.6s driver’s reaction to the FCW has a positive result in 82% of the 

accident cases with 78% being avoided and 4% mitigated. Concerning the parameters, the FOV has a greater 

influence on the avoidance rates compared to FCW trigger time and driver’s reaction. Our study also reveals that 

FCW system has a higher benefit in the crossing farside scenario and a lower benefit in the turning right 

scenario. This paper highlights generic characteristics of FCW systems to optimize safety benefit for the 

different accident scenarios. 
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1. Introduction 

Advance Driver Assistance System (ADAS) development started more than a decade ago (Mosquet et al. 2016) 

with the introduction of Electronic Stability Control. ADAS technologies nowadays rated by consumer 

organizations such as European New Car Assessment Program (Euro NCAP) have taken an increasingly 

importance due to their safety benefit. Autonomous Emergency Braking (AEB) and Forward Collision Warning 

(FCW) were first designed to tackle car-to-car crashes and they had entered Euro NCAP assessment for the first 

time in 2016 for pedestrians and in 2018 for cyclists (Euro NCAP 2019a, Euro NCAP 2019b). 

The FCW triggers an alarm to the driver in order to alert him/her of an imminent collision, prompt him/her to 

brake and support the braking force if required. In the case the driver does not react to the alarm, the brakes are 

automatically applied to avoid or mitigate the collision. FCW can affect more or less effectively the detection, 

the identification and the decision making of the driver depending on the warning type, the trigger time, the 

awareness of the driver of the FCW or the driver distraction. Lylykangas et al. (2016) found faster driver 

reaction time in emergency scenarios with tactile and visual-tactile signals compared to an only visual one. 

Regarding trigger time, driver’s trust and acceptance can be affected if an alarm is triggered too early as it might 

appear as a false warning and on contrary, if an alarm is too late as it may decrease the trust in the system by the 

driver (Zador et al. 2000). Abe and Richardson (2006) studied the effect on driver trust in FCW system and 

driver expectation from FCW system. They found that faster reactions could be obtained after a critical situation 

was detected if the alarm was triggered earlier. Bueno et al. (2014) showed the positive effect FCW could have 

in the case of low distracted drivers. On contrary, on highly distracted drivers, the effects disappear underlying 

the necessity of attentional resources to process the warning signal. 

FCW effect was also studied with a repeatedly exposure to emergency braking (Aust et al. 2013). It appeared 

that the more exposed were drivers to FCW, the faster they reacted to the signal. Koustanaï et al. (2012) 

determined FCW effects on drivers. They showed that drivers’ interaction with FCW system were more effective 

when drivers were familiarised with the system compared to unfamiliarised drivers. In terms of reaction towards 

FCW, different avoidance strategy may emerge. Wu et al. (2017) found that strategies may differ in function of 

age and geographical criteria. This way, the design of human machine interface appears to be very important. 

Campbell et al. (2007) made a review of human factor knowledge to consider in the conception of audio, visual 

or haptics warnings. They gave guidance and recommendations for the design of ADAS in general and FCW in 

particular. Thus one of requirements in FCW design might be the Human Machine Interface (HMI) to ensure a 

detected VRU by the car sensors is also detected by the driver. Previous papers mostly focused on driver reaction 

in rear-end car crashes for the conception of FCW. Findings would need to be checked in car-to-VRU scenarios 

where VRU detection is more challenging compared to detection of a car which path is easier to predict and 

visibility generally higher. Accident reconstructions were used by Lenard et al. (2018) to determine the 



requirement of ADAS sensors. From the analysis of pedestrian and cyclist accidents they found that the range 

needed to detect most of the pedestrians and cyclists is similar and in between 42 to 50m whereas the Field of 

View (FOV) varied significantly between cyclists and pedestrians: of ±80° for cyclists (total 160°) and only ±20° 

(total 40°) for pedestrians. 

Many researches have focused on car-to-car accidents in the evaluation of FCW safety benefit. More evidences 

are needed to quantify the FCW effect in the case of car-to-cyclist accidents. The purpose of this paper is to 

quantify the benefit range of FCW systems. Using pre-crash simulations of real-world crashes, the effect of a 

FCW is checked considering different FCW characteristics (variation of FOV, trigger time) and different driver 

reactions for various accidents clustered into different scenarios. Safety benefits are quantified in terms of 

number of accidents that could be avoided or mitigated thanks to the FCW. 

 

2. Materials and methods 

 

2.1 Database description 

Car-to-cyclist accident cases used in this paper come from the in-depth accident database of IFSTTAR/LMA and 

from the GIDAS Pre-Crash-Matrix database. 

The EDA crash database of IFSTTAR/LMA gathers accidents in the surrounding of Salon de Provence since 

1985 (Ferrandez et al. 1995). Each accident is investigated in real time by a multidisciplinary team composed of 

a technician and of a psychologist going directly on the accident scene at the same time than the rescue team. 

Evidences about the involved vehicles, the collision (vehicle final positions, vehicle deformations and impact 

location), and the environment (infrastructure, road marks, weather and visibility conditions) are gathered among 

many others. Drivers statements, witnesses and injury records based on medical reports are also recorded. With 

the merging of all those data, hypothesis of the accident mechanisms are made in order to reconstruct the car and 

cyclist trajectories, travelling speeds and evasive manoeuvers. 

 

The GIDAS Pre-Crash-Matrix (version PCM 160818_GIDAS_PCM_4.0_2016_1) includes information on pre-

crash sequence in a standardized format (GIDAS 2016). The pre-crash kinematics are obtained by simulation 

until 5 seconds before the crash. Additional information on environment and accident participants are also 

available. The PCM database can be linked with the GIDAS in-depth accident database which gathers up to 3000 

variables on the accident and participant characteristics and on its consequences (vehicle damages, accident 

severity and road user detailed injury) (VUFO GmbH 2016). 

 

2.2 Accident selection and clustering 

In this study, only accidents involving two participants, one car and one cyclist, were considered. Among the 

2261 accident cases from our sample, 30 cyclist accident cases come from EDA and 2231 from GIDAS-PCM. 

Accidents are clustered into different scenarios based on the trajectories of the car and the cyclist. From literature 

many ways to cluster accidents are reported depending on the research focus. Accidents can be clustered with 

respect to cyclists’ provenance like in Kuehn et al. (2015) or car trajectory as in CATS (Uittenbogaard et al. 

2016) and AsPeCSS project (Rodarius et al. 2014). The latter was chosen in this study and 5 scenarios were 

defined. These scenarios are commonly referred to in the literature: 

- Crossing Nearside scenario (CN): the vehicle drives straight and a cyclist crosses from the closest side of the 

road (On a 1 way road, a cyclist crossing from the left or the right is also considered as a CN). 

- Crossing Farside scenario (CF): the vehicle drives straight and a cyclist crosses at least one lane of road before 

being hit by the vehicle. 

- Longitudinal scenario (L): the vehicle and the cyclist both travel in the same direction on the road, and the car 

hits the cyclist in the rear during the travel or laterally during an overtaking manoeuver. 

- Turning Left (TL) or Turning Right scenario (TR): the vehicle is turning left or right respectively at an 

intersection and hits a cyclist whatever the trajectory of the cyclist. Situations where the vehicle is outside of an 

intersection are excluded from this cluster. 

Cases where a vehicle follows a curve to the right (or to the left) and a cyclist crosses the road are clustered 

either in CN or CF scenario. Cases where a vehicle is in a curve and encounters a cyclist travelling in the same 

direction are clustered in the L scenario. 

- Other scenarios: all accidents that cannot be clustered in any of above scenarios. 



 

2.3 Accident reconstruction 

From the French accident cases, a kinematic reconstruction is performed based on Lechner and Ferrandez (1990) 

methodology in order to obtain the accident pre-crash phase. Car and cyclist trajectories are extracted and drawn 

on a reduced scale map using their initial and final positions. Objects in the surrounding environment that can 

interfere in the detection process are also added to the scene when the information were available. With those 

data, a temporal reconstruction is performed based on information such as participants’ displacement speed and 

manoeuvers before the crash. Some assumptions are made during the temporal reconstruction: 

- Car and cyclist speeds are constant if brakes are not activated. If brakes are triggered, a constant deceleration 

speed is considered until the impact point, 

- A constant deceleration is considered from initial brake trigger, 

- The deceleration value is adapted to accident particular conditions (road and weather conditions, brake 

conditions) defined by the accident investigation team, 

- The cyclist displacement is estimated from its path towards the impact location with the car. Car deformation 

zones and participants’ speed declaration can help quantifying more precisely cyclist’s speed. 

 

GIDAS accident pre-crash phase kinematics are readily available in GIDAS-PCM database. PCM description is 

explained by Schubert et al. (2012). 

 

2.4 Simulation tool 

This section presents the algorithm which simulates the accident kinematics including the effect of the FCW. 

The developed simulation tool is based on Hamdane et al. (2016) simulation tool which was adjusted to account 

for cyclist detection and introduction of driver’s reaction to simulate the possible effect of a FCW. The software 

is developed in Matlab2012b (Matlab 2012) and requires Matlab Database toolbox. First, data from the original 

accident reconstructions are extracted such as the kinematic of the car and the cyclist as well as the objects of the 

accident surroundings. Cyclist’s relative positions to car sensors and relative speed are computed backwards 

from the reported impact location with a time step of 0.01s between each position. Range and FOV of the FCW 

are overlaid on the car trajectory to determine whether the cyclist is inside the FCW detection cone. A 50m 

detection range is considered in all simulations as a range that can be easily reached with current sensor 

technology (Mukhtar et al. 2015). 

Additionally, occlusion of the cyclist along the time by objects in the scene is considered. FCW is triggered at a 

chosen theoretical time under the conditions that the cyclist is in the FCW field of detection and not obstructed 

by objects in the scene. In the event that the cyclist is hidden, the FCW will be delayed to the time when the 

cyclist becomes visible again (see Figure 1). This way, the algorithm determines the moment when FCW 

message is delivered to the driver. From there, it is possible to determine brake activation considering some 

delay depending on the driver’s reaction to the FCW. Driver’s reaction is defined as the lag time after the FCW 

is triggered to activate the brakes. From the brake activation, a brake deceleration profile with a constant 

deceleration value of 0.8G is applied (see Figure 1). It corresponds to an ideal braking model without transient 

state and ideal road surface conditions (Brach and Brach 2005, Byatt and Watts 1981 and Lechner and Ferrandez 

1990). As an example, a FCW sets at 2.6s before the time to collision and a driver’s reaction of 1.2 second will 

lead to a brake application at 2.6s-1.2s=1.4s Time To Collision (TTC). If the cyclist is occluded until 1.9s before 

the impact, then the FCW will trigger when the cyclist becomes visible at 1.9s and the brake will be applied at 

1.9s-1.2s=0.7s TTC. 



 
Figure 1: FCW trigger model in the simulation. In this example the FCW theoretical trigger is 2.6s. In case a) the 

FCW triggers at its theoretical time of 2.6s with brake activation 1.2s later. In the case of occlusion b), the FCW 

triggers when the cyclist is visible for the first time after the theoretical trigger time which is 1.9s and then, 

brakes are activated 1.2s later. 

 

A comparison is then made in order to determine if the brake activation in the new simulation is earlier than in 

the original accident. If brake activation happens later compared to the original accident, then it is considered 

that there is no effect and the original accident kinematic is kept. Otherwise, the original accident kinematic is 

replaced by the newly computed kinematics from the brake application time: 

- Car new instantaneous speeds are computed from the brake activation,  

- Car new positions are computed following the original trajectory but with consideration of the new 

instantaneous speeds,  

- Car and cyclist trajectories are extended linearly after having reached the original impact location based 

on the last known segment before the impact until the car stops. The time step of the last segment is 

0.01s. Finally, from the new kinematics and the participants geometrical dimensions, it is determined if 

the collision is avoided, mitigated or if there is no effect (depends if the bounding boxes of the car and 

the cyclist intersect or not). The car dimensions are those of the car involved in the real accident and 

recorded in the accident databases. The cyclist dimensions are the ones of a rectangular box of 1900mm 

length, 500mm width. The values are standardized according to Euro NCAP test protocol (Euro NCAP 

2019a),  

- In the case of a collision mitigation, the speed reduction is computed.  

The Figure 2 summarizes the simulation algorithm. 



 
Figure 2: Accident simulation algorithm with FCW effect. 

 

Figure 3 illustrates an accident reconstruction from the EDA database with the described algorithm (images a 

and a’) considering for the same accident a FCW with two different FOVs (images b, c and d) for a FOV=30° 

and images (b’, c’ and d’) for a FOV=50°. The considered accident case is categorised into the turning left 

scenario. In this accident, the driver did not brake prior the collision. The original accident kinematics and 

bounding boxes are in black and red for the car and the cyclist respectively (Fig. 3-a and Fig. 3-a’). The red 

circles highlight the different cyclist’s position. 

For the first simulation with a FOV 30° (total detection cone of 60°), image b represents the car with the 

detection at TTC 2s. It can be seen that the cyclist is outside the detection cone and thus FCW is not triggered. 

The kinematic of the accident continues (image c and d) and the cyclist remains outside car’s detection cone 

which leads to the impact as in the original accident with no trigger of the FCW. This simulation shows as a 

result that the FCW has no effect with a FCW FOV of 30°. 

Image b’ represents the car’s detection cone at TTC 2s. It can be seen that the cyclist is inside the 50° FOV (total 

detection cone of 100°). Thus FCW warning message is given to the driver at TTC 2s. As in the simulation, 

driver needs 0.6s to start braking, the braking is triggered at TTC 1.4s prior the impact (image c’). In image d’ 

which is TTC 0s, it can be seen that the vehicle has stopped earlier. Here the bounding boxes of the car and the 

cyclist do not intersect. Thus this simulation leads to an accident avoidance. 

 

Original accident 

kinematics 

New accident kinematics with FCW  

(FOV 30°, FCW Trigger 2s, driver’s reaction 0.6s) 

TTC 0s TTC 2s TTC 1.4s TTC 0s 



    

Original accident 

kinematics 

New accident kinematics with FCW  

(FOV 50°, FCW Trigger 2s, driver’s reaction 0.6s) 

TTC 0s TTC 2s TTC 1.4s TTC 0s 

    

 

Figure 3: Reconstruction simulation example integrating the effect of FCW. Images a and a’ represent the 

original accident kinematic. Images b, c and d represent a simulation where the FCW has no effect as it is not 

triggered due to a little FOV (30°). Images b’, c’ and d’ illustrate collision avoidance with a FCW 50° triggered 

at TTC 2s resulting in a braking activation at TTC 1.4s. 

 

2.5 Parametric analysis description 

As presented before, FCW performances can vary depending on detection sensor FOV, FCW trigger time and 

driver’s reaction to the warning. FCW performances can additionally be affected by obstacles obstructing the 

FOV. In this study, obstruction is kept as in the real accident and no variation is performed on the obstruction 

and timing. Therefore the parametric analysis varies only on sensor FOV, FCW trigger time and driver’s reaction 

to the FCW: 

- The FOV value corresponds to half of the detection cone, i.e. a FOV of 50° corresponds to a detection cone of 

100°. The parametric analysis considers three FOV values (30°, 50° and 70°) which correspond to 60°, 100° and 

140° detection cone respectively. The choice of these values is motivated by the fact that for an optimistic 

pedestrian detection, Hamdane et al. (2015) found that a 35° FOV appears to be optimum. As cyclist speed is 

higher than pedestrian’s one, the maximum FOV has been doubled compared to the optimal value found by 

Hamdane et al. (2015) study and an intermediate value (50°) is chosen in addition. 

- FCW trigger time represents the time-to-collision (TTC) when the warning is emitted if a cyclist is detected in 

the FOV and range of the sensor. FCW trigger times considered in this study are 1.7s, 2s, 2.3s and 2.6s TTC 

according to the Euro NCAP protocol (Euro NCAP 2019a). FCW trigger time can be later than these theoretical 

values if the cyclist is obstructed by an object in the accident scene at the time of the theoretical trigger. In this 

case, the FCW is triggered later when the cyclist becomes visible. 

- Driver’s reaction time corresponds to the latency between the FCW trigger and the brake application. It 

corresponds to the time necessary to a driver receiving a FCW to process the information and activate the brakes. 

Bucsuházy et al. (2016) analysed driver reaction time under expected, unexpected stimulus and under critical 

braking situation. They found that decision time combined to muscle response time median value was lower than 



0.5 second when participants were instructed how to react to a visual stimulus. Johansson and Rumar (1971) 

analysed drivers’ reaction time in unexpected traffic situation and found that the median braking response time 

was 0.9 second. Abe and Richardson (2005) found that the mean braking reaction time was between 0.88 to 

1.11s in a car-following situation depending on the trigger time of an alarm and the lead vehicle deceleration (the 

more critical the situation was, the smaller the reaction time was). Work load effect when phoning while driving 

was studied by Haque and Washington (2013) who showed that detecting an event in peripheral vision when 

engaged in a hand free or a handheld phone conversation was longer compared to no phone conversation 

condition. Calvi et al. 2015 showed that due to phone conversation, driving performance were reduced in car-

following conditions with car speed reduction as compensation. Makishita and Matsunaga (2008) also studied 

the influence of mental workload for different age groups on driver reaction. They showed that mental 

calculations which can be represented as a mental distraction close to an intense phone discussion, increased 

reaction time for all age groups and particularly for elderly drivers. Reaction time could be increased up to 0.5s 

for elderly drivers whereas for middle and young drivers, the value went up to 0.2s. Considering these studies, 

latencies of 0.6, 0.9 and 1.2s for driver’s reaction are considered.  

 

3. Results 

 

3.1 Accident classification 

Accident distribution within the five main scenarios is shown in Figure 4. Crossing scenario accounts for 55% of 

our sample. Among the crossing scenario, 33% cases are CN and 22% are CF. Turning scenario represents 34% 

of the overall sample, 12% of turning cases are TL and 22% are TR. L scenario represents only 5% of our 

accident sample. Other scenario cases account for 6% of the overall sample. 

 
 

Figure 4 : Case distribution over the 5 main scenarios 

 

3.2 Simulation results 

Effect on kinematics of the 2261 car-to-cyclist accidents included in EDA and PCM databases was calculated 

using the simulation tool and considering parameter variations as described previously (3 FOV values, 4 FCW 

trigger time and 3 driver reaction values). In total, 81396 simulations were performed. Figure 5 shows the overall 

results as the proportion of mitigated cases versus the proportion of avoided cases. The proportion of cases 

where there is no effect can be obtained by subtracting the sum of the avoided and mitigated cases to 100%.  

 



 
Figure 5: Results of the parametric analysis for all cyclist accidents (N = 2261) 

 

As expected, earlier reaction (i.e. earlier FCW and quicker driver reaction) and high FOV maximize avoidance. 

Later reaction (i.e. later FCW and slower driver reaction) and high FOV maximize mitigation. A 70° FOV 

combined with a FCW 2.6s TTC and driver’s reaction of 0.6s can affect positively 82% of our sample by 

avoiding 78% of the cases and mitigating 4% of them. Still a longer reaction time of 1.2s for a 70° FOV with a 

2.6s FCW trigger allows avoiding about 69% of cases and mitigating 5% of them. To reach at least 50% 

avoidance, it appears that a FOV 50° is required if drivers react in 0.9s whatever the alarm timing.  

It can be noticed that a non-neglected accident proportion are not affected by FCW (about 20%). It can be caused 

by the cyclist being still outside of the sensors maximum FOV (70°) or sensor range (value fixed at 50m) in the 

case of high driving speed by the car. FCW has also no effect in our simulations if the brake timing as recorded 

in the pre-crash databases happened earlier than the one computed by the simulation algorithm. 

Figure 6 shows the results of the same parametric analysis split by accident scenario.  

For CN scenario, avoidance rate goes from 11 to 81% while mitigation rate goes from 5 to 25%. With the best 

parameter set considered in this paper, at least 88% accidents could be positively affected by the FCW system 

with 81% avoidance and 7% mitigation. With regard to driver’s reaction, more than 50% avoidance rate could be 

achieved if this parameter is considered to be 0.9s, whatever the trigger time of the FCW if the FOV is at least 

50°. 

For CF scenario, avoidance rate goes from 10 to 93% while mitigation rate goes from 1 to 34%. With the best 

parameter set considered here, 94% accidents can be avoided or mitigated. 50% avoidance rates could be 

reached with a FOV of 50° and if the driver reacts in 0.9s whatever the trigger timing of the device. 

For L scenario, avoidance rate goes from 12 to 81% while mitigation goes from 2 to 53%. With the best 

parameter set considered here, at least 84% cases can be avoided or mitigated. In this scenario, the FOV 

influence is not as critical as it can be in other scenarios. As the cyclist may already be in front of the car, then 

the needed FOV to detect the cyclist can strongly be reduced. A focus on the trigger time and on the driver’s 

reaction is more needed on this particular scenario. It can be highlight that if a driver reacts in 1.2s, the 

avoidance rate drops drastically between FCW 2.3s and FCW 2s even if the avoidance rate remains close to 

50%. 

For TL scenario, avoidance rate goes from 28 to 87% while mitigation goes from 2 to 30%. With the best 

parameter set considered here, a positive effect can be estimated for 90% of the cases. It can be noticed that a 

50% avoidance rate is reached for the values studied in this paper except if drivers react in 1.2s. 

For TR scenario, avoidance rate goes from 14 to 76% while mitigation goes from 2 to 21%. With the best 

parameter set, positive effect could be observed for 79% cases. A gap can be observed in figure 5e between 30° 

FOV detection and 50 and 70°. To affect at least 50% of cases, a FOV of 50° is required with a FCW trigger at 

2s. 



In summary, the best parameter set in this study and identified for each scenario can affect about 88% of CN 

cases (81% avoided and 7% mitigated), 94% of CF cases (93% avoided and 1% mitigated), 84% of L cases (81% 

avoided and 3% mitigated), 90% of TL cases (87% avoided and 3% mitigated) and 79% of TR cases (76% 

avoided and 3% mitigated). These results show that FCW would have the highest benefit in the CF scenario 

whereas TR scenario would be the most challenging to optimise FCW parameters. It can be noticed that with a 

FOV of 50° and with a driver’s reaction of 0.9s, avoidance rates reach more than 50% whatever the scenario 

with a mitigation rate up to 21% depending the scenario. Table 1 sums up the parameter values that allow 

reaching the maximum sum of the mitigation and avoidance rates in all scenarios and at least 50% for the sum of 

the mitigation and avoidance rates in all scenarios. 

 

 
a)                                                                      b) 

 
   c) 



 
d)                                                                              e) 

Figure 6: Results of the parametric analysis per scenario (a. Crossing Nearside, b. Crossing Farside, c. 

Longitudinal, d. Turning Left, e. Turning Right). 

 

  CN CF L TL TR 

FOV 70°, FCW 2.6s, DR 0.6s 

 

Avoidance rate 81% 93% 81% 87% 76% 

Mitigated rate 

 

7% 1% 3% 3% 3% 

FOV 50°, all FCW, DR 0.9s Avoidance rate 51% 57% 50% 68% 56% 

Mitigated rate 15% 17% 21% 6% 5% 

Table 1: Parameter combinations that allow reaching a maximum avoidance and mitigation rate and at least 50% 

avoidance and mitigation rate in all scenarios. 

 

4. Discussion 

This research estimates the potential safety benefit of a FCW system based on the simulation of 2261 real-world 

car-to-cyclist accident cases. The accuracy of the estimated benefit is of course influenced by the FCW model 

but also is highly dependent on the accident reconstruction quality. In-depth accident investigations allow 

reconstructing the accident pre-crash phase kinematic, however it is difficult to gather data on the dynamic 

surroundings, such as moving vehicles that may have occluded the cyclist prior to impact. 

Regarding the addition of the FCW, several assumptions are made through the algorithm: 

- The driver is assumed to brake along the reconstructed car trajectory and does not attempt evasive 

manoeuver. Consequently, when applying the brake in the simulation, the car original trajectory is kept 

and extrapolated in time after the time zero is reached in the real accident. This assumption seems 

acceptable considering current knowledge on driver reaction in evasive manoeuvres and due to the lack 

of data about the dynamic environment (Hayashi et al. 2012). 

- The brake activation depends on the FCW trigger time and also on the original accident. If brake 

activation in the original accident is earlier than the FCW trigger time, then no effect is considered in 

simulation and the original kinematic is kept. It could be argued that a FCW could help to increase the 

force applied by the driver on the brake from the beginning of the braking. Further research could 

analyse if the FCW could improve driver’s initial braking especially for late triggering. In the case 

where the driver brakes moderately before the impact, the FCW benefits is unknown. 

- The brake model is simplified as an ideal braking model has been considered. A more realistic model 

will reduce the safety benefit observed in this study. 

- The detection sensors triggering the FCW are considered as ideal as they can detect the cyclist whatever 

the conditions (e.g. weather like rain, fog or by sudden illumination changes). 



- The detection sensor is assumed to be located in car geometrical centre whereas cameras are generally 

placed on the windshield at the central mirror. This should be acknowledged as increasing slightly the 

detection cone. 

- The system algorithm is also assumed being able to predict accurately the path of the cyclist to trigger 

appropriately the FCW. 

Despite all these assumptions and limitations, the analysis gives some general trends for each accident scenario. 

The FOV has a higher effect than brake application timing resulting from the combination of the FCW trigger 

time and driver reaction latency. This effect can be explained by the fact that if the cyclist is not detected (not 

inside the FOV or not inside detection range due to car and/or cyclist speed), then the FCW does not trigger and 

then there is also no driver’s reaction. This way, cyclist detection is important in order to be able to trigger an 

alarm. This trend can be found in CN, CF, TL and TR scenarios. For L scenario, FOV parameter has less 

influence due to the scenario configuration. Due to the trajectories of both the cyclist and the car, the cyclist is 

already inside the detection field of view and thus detected.  

It seems that the highest benefit of the FCW is obtained for Crossing Farside and Turning Left scenarios while 

the least benefit is obtained for the Turning Right scenarios. 

To authors’ knowledge, this is the first study in which the potential effect of FCW is examined per scenario. 

However, some recent studies have analysed AEB benefit. The main difference between current paper and others 

is on the introduction of variations for the driver reaction. Lenard et al. (2018) analysed the characteristics for an 

AEB and found that 90% cyclists were within a ±80° FOV (e.g. a total 160° angle) and within 50m far from the 

car. Thus, collisions with cyclist can be highly reduced with wider FOV. Even if our FOV parameter does not 

reach the 80° value, it can be noticed that a 70° FOV (e.g. total FOV of 140°) and a 50m range FCW also greatly 

affect positively the avoidance and the mitigation rates. Zhao et al. (2019) analysed the AEB effectiveness based 

on accident reconstructions from video recorder mounted on taxi vehicles. They showed that FOV parameter has 

a significant influence on collision avoidance. The higher is the FOV, the more accident can be avoided. They 

also found that with an ideal AEB system, i.e. no system braking delay and 360° detection cone, some collisions 

were unavoidable due to cyclists’ sudden appearance in front of the car. This result is similar to the results found 

in this study. Collisions can be avoided at best but in some cases, the visibility criterion is so important that even 

mitigation is not possible when the cyclist becomes only visible when very close to the car. Ohlin et al. (2017) 

analysed the effect of combined measures in reducing real life bicycle injuries on Swedish accidents. They found 

that AEB effectiveness can reach 70% for pedestrians and cyclists. Rosén (2013) also worked on cyclist AEB on 

607 GIDAS-PCM cyclist cases. He also found positive effect for 55% of fatal cases and 33% of severe cases. 

Yue et al. (2018) also assessed the benefits of ADAS. The conclusion of their review study estimated that 

collision avoidance systems are limited to 70% effectiveness rate. Even if our results for FCW are optimistic, 

Ohlin et al. (2017), Rosén (2013) and Yue et al. (2018) results illustrate the high potential ADAS can have on 

road safety for bicycle. 

Wu et al. (2017) examined avoidance strategies for drivers equipped with a FCW for rear-end collision. They 

found difference depending on the driving experience. Older drivers with more experience tend to steer if there 

are no car in the others lane contrary to younger drivers who are more likely to brake to reduce accident severity. 

Also according to Bueno et al. (2014), FCW device is effective on low distracted drivers. However, depending 

on the distraction level, it can affect the visual behaviour and then braking performance (Harbluk et al. 2007). It 

may also play a role in the case of an unexpected event that is not perceived by the driver. One of the challenge 

for the FCW design might be the Human Machine Interface (HMI) to ensure a detected VRU by the car sensors 

is also detected by the driver. This way, FCW can help drivers to manage faster a hazardous situation if he did 

not anticipate the risk. However, one critical challenge for FCW design is highlighted by Dozza et al. (2017). 

Driver response depends on factors like visibility or time-to-arrival which is the time to arrive to a pedestrian or 

cyclist. Thus determining the most appropriate warning time to get the most appropriate reaction to a hazard is 

an important point. This is why, during the design of such system, the choice of the driver model has to be 

considered carefully. As shown by Bärgman et al. (2017), the choice of the driver models is of importance when 

considering the evaluation of a non-automatic ADAS like FCW. The driver reaction depends also on the FCW. 

Indeed, it appears that the type of signal (audio, video, haptic) can play an important role to reach an optimal 

reaction of the driver. Lylykangas et al. (2016) analyzed drivers’ reaction time in emergency scenarios with 

FCW. They found that tactile and visual-tactile signals help drivers react faster compared to an only visual 

signal. Aust et al. (2013) also analyzed a combination of audio and visual signal in order to study FCW effect for 



repeatedly exposure on emergency braking. They found that the more drivers were exposed to FCW, the faster 

they can react to the signal. This is also confirmed by Koustanaï et al. (2012) where the FCW was more effective 

with familiarized drivers compared to unfamiliarized. Variations of driver reaction considering above parameters 

are considered in this paper by including a large range of driver reaction time (from 0.6 to 1.2s) but are not 

varied depending on driver’s characteristics in our samples. Additionally, acceptance of the FCW by the driver 

and quicker reaction to it may depend on the balance between the number of true positive and false negative 

FCW trigger. 

Predicting driver’s intention might be of interest in order to maximise true positive system activation, thus 

reduce driver’s annoyance (Diederichs et al. 2015) and alarm the driver earlier if it is identified that the driver 

has no awareness of the risk. 

 

5. Conclusion 

The theoretical benefits of a cyclist FCW is evaluated based on 2261 car-to-cyclist accidents. Using accident pre-

crash phase reconstructions, the effect of the FCW is modelled in order to determine if the accident can be 

avoided or mitigated. Results show that an earlier reaction (i.e. earlier FCW and quicker driver reaction) and 

high FOV maximize avoidance. Later reaction (i.e. later FCW and slower driver reaction) and high FOV 

maximize mitigation. Except for L scenario, FOV has the largest effect on avoidance rate. 

Results in this study are optimistic and show the benefit margin considering various combinations of FOV, FCW 

trigger times and driver reaction to the warning. Our paper also highlights the most important parameter among 

FOV, FCW trigger time and driver reaction for each of the five main car-to-cyclist accident scenarios. It also 

reveals that CF and TL are the scenarios in which FCW can have the highest benefit whereas the CN and TR are 

the most challenging scenarios. 

The simulation tool was applied previously to car-to-pedestrian accidents and in the current paper to car-to-

cyclist accidents. It could be extended to car-to-powered two-wheelers accidents in future. 
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  CN CF L TL TR 

FOV 70°, FCW 2.6s, DR 0.6s 

 

Avoidance rate 81% 93% 81% 87% 76% 

Mitigated rate 

 

7% 1% 3% 3% 3% 

FOV 50°, all FCW, DR 0.9s Avoidance rate 51% 57% 50% 68% 56% 

Mitigated rate 15% 17% 21% 6% 5% 

Table 1: Parameter combinations that allow reaching a maximum avoidance and mitigation rate and at least 50% 

avoidance and mitigation rate in all scenarios.  
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New accident kinematics with FCW (FOV 30°, FCW Trigger 2s, driver’s reaction 
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New accident kinematics with FCW (FOV 50°, FCW Trigger 2s, driver’s reaction 

0.6s) 
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Figure 1: FCW trigger model in the simulation. In this example the FCW theoretical trigger is 2.6s. In case a) the 

FCW triggers at its theoretical time of 2.6s with brake activation 1.2s later. In the case of occlusion b), the FCW 

triggers when the cyclist is visible for the first time after the theoretical trigger time which is 1.9s and then, 

brakes are activated 1.2s later. 

 

Figure 2: Accident simulation algorithm with FCW effect 

 

Figure 3: Reconstruction simulation example integrating the effect of FCW. The first line represents a simulation 

where the FCW has no effect as it is not triggered (image a, b, c and d). The second line illustrates collision 

avoidance with a FCW triggered at TTC 2s resulting in a braking activation at TTC 1.4s (image a’, b’, c’, d’). 

 

Figure 4 : Case distribution over the 5 main scenarios 

 

Figure 5: Results of the parametric analysis for all cyclist accidents (N = 2261) 

 

Figure 6: Results of the parametric analysis per scenario (a. Crossing Nearside, b. Crossing Farside, c. 

Longitudinal, d. Turning Left, e. Turning Right). 
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