
HAL Id: hal-02883663
https://hal.science/hal-02883663

Submitted on 29 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling of Synchronous Dataflow Graphs with
Partially Periodic Real-Time Constraints

Alexandre Honorat, Karol Desnos, Shuvra S Bhattacharyya, Jean-François
Nezan

To cite this version:
Alexandre Honorat, Karol Desnos, Shuvra S Bhattacharyya, Jean-François Nezan. Scheduling of
Synchronous Dataflow Graphs with Partially Periodic Real-Time Constraints. Real-Time Networks
and Systems, Jun 2020, Paris, France. �10.1145/3394810.3394820�. �hal-02883663�

https://hal.science/hal-02883663
https://hal.archives-ouvertes.fr

Scheduling of Synchronous Dataflow Graphs with Partially
Periodic Real-Time Constraints

Alexandre Honorat

Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164

F-35000 Rennes, France

ahonorat@insa-rennes.fr

Karol Desnos

Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164

F-35000 Rennes, France

kdesnos@insa-rennes.fr

Shuvra S. Bhattacharyya

Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164

F-35000 Rennes, France

University of Maryland

College Park, MD 20742, USA

sbhattac@insa-rennes.fr

Jean-François Nezan

Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164

F-35000 Rennes, France

jnezan@insa-rennes.fr

ABSTRACT
Modern Cyber-Physical Systems (CPSs) are composed of numerous

components, some of which require real-time management: for

example, management of sensors and actuators requires periodic

deadlines while processing parts do not. We refer to these systems

as partially periodic. In a partially periodic system, precedence

constraints may exist between periodic and aperiodic components.

It is notably the case in CPSs where sensors measuring physical

variables at a fixed sampling rate are typically feeding data to one

or more processing part.

A critical challenge for any real-time CPS software is its sched-

uling on an embedded computing platform. The increasing number

of cores in such platforms (as Kalray MPPA Bostan having 288

cores) makes offline non-preemptive scheduling techniques effi-

cient to respect real-time constraints, but requires new analysis

and synthesis algorithms. In this paper, we study the schedulability

of partially periodic systems modeled as Synchronous Data Flow

(SDF) graphs. Our contributions are a few necessary conditions

on any live SDF graph, and a linearithmic offline non-preemptive

scheduling algorithm on vertices of any directed acyclic task graph.

The presented algorithm has been evaluated on a set of randomly

generated SDF graphs and on one real use-case. Experiments show

that our proposed non-preemptive scheduling algorithm allocates

thousands of tasks in less than a second. In the last experiment,

the computed schedules achieve a throughput close to that one

obtained with global Earliest Deadline First (EDF) scheduling.

KEYWORDS
CPS, SDF, real-time, periodic, scheduling

ACM Reference Format:
Alexandre Honorat, Karol Desnos, Shuvra S. Bhattacharyya, and Jean-

François Nezan. 2020. Scheduling of Synchronous Dataflow Graphs with

Partially Periodic Real-Time Constraints. In 28th International Conference on

Publication rights licensed to ACM. ACM acknowledges that this contribution was

authored or co-authored by an employee, contractor or affiliate of a national govern-

ment. As such, the Government retains a nonexclusive, royalty-free right to publish or

reproduce this article, or to allow others to do so, for Government purposes only.

RTNS 2020, June 9–10, 2020, Paris, France
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7593-1/20/06. . . $15.00

https://doi.org/10.1145/3394810.3394820

Real-Time Networks and Systems (RTNS 2020), June 9–10, 2020, Paris, France.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3394810.3394820

1 INTRODUCTION
Cyber-Physical Systems (CPSs) are real-time systems: they are con-

strained by deadlines on tasks. The tasks are scheduled so that the

deadlines are met, inside threads of an operating system or directly

on bare-metal. In order to perform their analysis and execution,

such real-time systems are modeled with tasks having extra peri-

odicity constraints for the deadlines, and precedence constraints

for the data. For systems with only periodic tasks, synchronous

languages and related tools as Esterel [3] and SynDEx [20] are a

good choice to check the schedulability and to compute a schedule.

On the contrary, a few online schedulers [16, 31] focus on the exe-

cution of aperiodic, sporadic and periodic tasks together, but these

schedulers do not consider precedences. Yet modern CPSs have

periodic components interacting with aperiodic components, and

with precedence constraints here expressed in the Synchronous

Data Flow (SDF) model. This paper aims to analyze the schedula-

bility of such CPSs, called partially periodic, and to schedule them

systematically and efficiently. A few necessary conditions and an

offline non-preemptive scheduling algorithm are introduced for this

purpose. Both have been implemented in the PREESM tool [37].

Image signal processing systems and visual servoing are typi-

cal examples of partially periodic CPSs where certain components

are periodic. For example, a camera films at a periodic framerate

and the images arrive to the aperiodic processing components as

a stream. Other components may also be periodic, as the input

of servo-motors which must be regularly updated. Thus the pro-

cessing part often depends on periodic inputs and must provide

periodically one or more outputs, but does not have to be periodic

itself. The flexibility to deviate significantly from periodic operation

arises, for example, if data is buffered between components. One

possible use-case is the Simultaneous Localization And Mapping

(SLAM) application: it constantly retrieves information from a cam-

era or a LIDAR and then processes data to reconstruct a map of

the environment and to move according to this map [45]. Sensor

fusion [47] or other techniques [17] take benefit of camera and
LIDAR at the same time.

https://doi.org/10.1145/3394810.3394820
https://doi.org/10.1145/3394810.3394820
https://preesm.github.io/

RTNS 2020, June 9–10, 2020, Paris, France A. Honorat, K. Desnos, S. S. Bhattacharyya, J.-F. Nezan

This paper focuses on CPSs with periodic and aperiodic compo-

nents, which are modeled as SDF graphs [28]. SDF is commonly

used to model image processing applications, as for SLAM with

one camera [39]. SDF graphs abstract data transfer between compo-

nents, called actors, being the graph vertices. The SDF graph edges

correspond to buffers, in which transmitted data are stored. SDF

graphs of CPSs often have imposed periodic inputs and outputs.

However our approach is more flexible as any component of the

system can be periodic. This flexibility is helpful in the case where

multiple processing parts rely on different sensors.

Modeling systems is the first step of the design process. The

systems then have to be verified and scheduled. Unfortunately the

offline non-preemptive scheduling time complexity is exponential

in the number of tasks to get the optimal solution because it is in

general NP-complete [26]. This complexity limits the design of CPSs

since optimal schedulers do not scale. In contrast, our approach

gives results that are not optimal but that can be used to quickly

build and assess prototypes of large applications. In other words, our

approach is useful for the design space exploration of scheduling

solutions. Optimal schedulers and timing property checkers may

still have to be used. However, if they are used, it would only be

after the prototyping step, on a small set of prototypes.

We focus on offline non-preemptive scheduling because of two

main reasons. First, modern systems embed multicore processors

where preemption, useful to perform multi-tasking on a unicore

processor, is not required anymore, especially when executing a

single application. The absence of preemption prevents the over-

head caused by context switching [29] and simplifies the timing

analysis. Second, as SDF graphs model only systems where all tasks

and their precedences are known in advance, there is no necessity

to have a reactive online scheduler. In our case a static schedule on

each core is used for a global self-timed execution of the system.

In this paper, we consider applications modeled with an SDF

graph, where some actors have periodic release times with implicit

deadline. Our model is a restriction of the Polygraph model [14] to

SDF graphs, but extended with deadlines. We say that such graph

has partially periodic constraints. Given a number of identical cores

to execute the application and the Worst Case Execution Time

(WCET) of each actor, the addressed problems are:

(1) first, to quickly check the schedulability, without computing

a schedule;

(2) second, to compute an offline non-preemptive schedule sat-

isfying the periodicity and precedence constraints.

In the context of this paper, a schedule lists the start times of all

tasks and the cores on which they are allocated.

The notations used in this paper and details about SDF graphs

are introduced in Section 2. Then necessary conditions for the non-

preemptive scheduling of SDF graphs with some periodic actors are

expressed in Section 3. Section 4 discusses the algorithm checking if

SDF graphs respect the necessary conditions. A greedy algorithm to

schedule graphs with some periodic actors is presented in Section 5.

Finally, a discussion on this work, including an evaluation of the

scheduling algorithm, is located in Section 6. The related work is

located in Section 7 and is followed by a conclusion.

2 BACKGROUND
This work is related to real-time systems and dataflow graphs,

which are discussed in the next two subsections.

2.1 Real-time systems
Real-time systems are composed of multiple computational tasks to

execute before their deadlines. In this paper, each task 𝜏 has either

no real-time constraint or a periodic hard deadline. 𝑇𝜏 denotes the

period of a periodic task 𝜏 . Tasks without periodic deadlines are

called aperiodic. For periodically released tasks, their deadline 𝑑𝜏
(relative to their release time) is implicit, which means equal to

their period. The WCET of each task 𝜏 is denoted 𝐶𝜏 .

During the execution of a real-time system, the tasks must be

ordered and mapped to the cores in such a way that all tasks meet

their deadlines (if any), which is not always possible. In this paper,

a schedule refers to the order and to the static mapping of the tasks.

When there is no schedule respecting the deadlines, the system is

said to be not schedulable. In this work only offline data-driven

non-preemptive schedulers are considered; the system repeats in-

definitely a precomputed schedule. We consider that the system

has𝑚 identical cores.

2.2 Sychronous Dataflow graphs
SDF graphs [28] model systems where the computational parts,

called actors, correspond to the vertices, and where the means of

communication, called buffers, correspond to the edges. 𝐺 denotes

the SDF graph being analyzed. 𝐺 = (𝑉 , 𝐸) is a directed multi-graph

with 𝑉 the set of actors, and 𝐸 the set of buffers. A buffer 𝑒 ∈ 𝐸
links its source actor src(𝑒) ∈ 𝑉 to its destination dst(𝑒) ∈ 𝑉 . Only
weakly connected SDF graphs are considered in this paper

1
.

Actors exchange data through their incoming and outgoing

buffers. A token is the unit of data used in the graph, e.g. one byte.

A token production rate prod(𝑒) ∈ N∗ is defined on the source side

of a buffer 𝑒 , and a consumption rate cons(𝑒) ∈ N∗ is defined on the

destination side. The tokens produced by one execution of src(𝑒)

are available to be consumed only after the end of the execution

of src(𝑒). The number of tokens initially present on a buffer 𝑒 is

denoted 𝑑0(𝑒); these tokens are called delays.
As the rates may not be equal on both sides of a buffer, there can

be multiple executions of an actor 𝛼 ∈ 𝑉 in order to avoid underflow

or overflow on the buffer. The graph is consistent if it ensures that
buffers have bounded sizes. Then, it is possible to compute a unique

repetition vector ®𝑟 giving the minimal number of executions of each

actor needed to put the graph back to its initial state with the same

number of tokens in each buffer. This defines a graph iteration in

which the actor executions are called firings, or equivalently jobs
in the literature. Consistency implies Equation (1):

∀𝑒 ∈ 𝐸, ®𝑟 [dst(𝑒)] × cons(𝑒) = ®𝑟 [src(𝑒)] × prod(𝑒) (1)

Two examples of a schedule for an SDF graph are given in Figure 1,

where the repetition vector is [3, 5]
𝑇
(indexed by actor names in

the lexicographic order).

In this paper 𝛼 𝑗 is the 𝑗-th firing of 𝛼 in one graph iteration.

The WCET of an actor 𝛼 , denoted 𝐶𝛼 , is the same for each firing

1
A directed graph is weakly connected when its undirected induced graph is connected

(i.e. a path exists between each pair of distinct vertices).

Scheduling of Synchronous Dataflow Graphs with Partially Periodic Real-Time Constraints RTNS 2020, June 9–10, 2020, Paris, France

𝐴

5

𝐵

3

(a) SDF graph example, of repetition vector [3, 5]
𝑇 .

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Core 1 𝐴1 𝐴3 𝐵4 𝐴1 𝐴3 𝐵4

Core 2 𝐴2 𝐵1 𝐵2 𝐵3 𝐵5 𝐴2 𝐵1 𝐵2 𝐵3 𝐵5

schedule repetition

(b) Schedule example of 1a on two cores. Two graph iterations are rep-
resented, separated by a red vertical line.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Core 1 𝐵1 𝐴1 𝐵2 𝐴2 𝐵3 𝐵4 𝐴3 𝐵5

𝐵 𝐵 𝐵 𝐵 𝐴, 𝐵𝐴 𝐴

(c) Unicore schedule example of 1a, not respecting the following prece-
dences:𝐴1 → 𝐵1,𝐴2 → 𝐵2 and𝐴3 → 𝐵4. The orange arrows are periodic
implicit deadlines, if considering both actors 𝐴 and 𝐵 periodic.

Figure 1: SDF graph scheduling examples.

of 𝛼 . Actors have uppercase names for examples, and lowercase

names for formula variables. P denotes the set of periodic actors

in 𝐺 , and N denotes the set of aperiodic actors. The periods of

the actors in P are defined by the user; but the graph consistency

restricts their possible values. Indeed all periods are linearly related,

as expressed in Section 3.1. According to the Polygraph model [14],

P corresponds to actors having a frequency.
Delays on buffers are allowed, with some restrictions for cycles

in𝐺 . Indeed SDF graphs deadlock if there is no delays in cycles, and

𝐺 is live if no deadlock occurs. We assume in the analysis that 𝐺 is

live, thanks to delays set by the user on a specific edge of each cycle.

Then, such specific edges will not be considered during the analysis

and thus, only SDF graphs being Directed Acyclic Graph (DAG) are

considered in this work. The case of cycles that are self-loops on an

actor is also considered. Self-loops disable auto-concurrency and, as

cycles, require delays in order to be consistent. Auto-concurrency

implies that multiple firings of an aperiodic actor can be executed

at the same time on different cores. For a self-loop 𝑙 ∈ L ⊆ 𝐸, we
assume cons(𝑙) = prod(𝑙) = 𝑑0(𝑙).

3 PARTIALLY PERIODIC CONSTRAINTS
Non-preemptive scheduling is often not the best strategy when

considering only periodic actors since it may lead to use the cores

below their full capacity. For example, consider that two periodic

actors 𝐴 and 𝐵 are scheduled as in Figure 1c. Actors 𝐴 and 𝐵 are

periodic, but the only functional requirement on 𝐵 is that there are

3 executions of 𝐴 for 5 of 𝐵, according to the repetition vector of

the SDF graph in Figure 1a. In Figure 1c, the periods are𝑇𝐴 = 5 and

𝑇𝐵 = 3. When ignoring the precedences, the system is schedulable

on one core with the WCET respectively 𝐶𝐴 = 3 and 𝐶𝐵 = 1, and

the core even idles during 1 time unit. If the execution time of

𝐴 is now 𝐶𝐴 = 3.1 (instead of 3), the core is still not used to its

full capacity but the system is not schedulable anymore since 𝐵3

would miss its deadline in any case. However, if 𝐵 is not required

to be periodic, the system is schedulable on 1 core with 𝐶𝐴 = 3.1.

Thus in this case partially periodic constraints help to fully use the

capacities of the cores in the context of non-preemptive scheduling.

In this section, we focus on necessary conditions for schedulability

of SDF with partially periodic constraints. The generic processor

utilization necessary condition is recalled in Section 3.1 while a

more precise one is established in Section 3.2.

3.1 Plain schedulability condition
A widely used necessary condition for schedulability of periodic

tasks derives from the processor utilization factor [32] metric𝑈 =∑ 𝐶𝜏

𝑇𝜏
, without unit. 𝑈 ≤ 𝑚 is a necessary but not sufficient con-

dition, for all preemptive and non-preemptive schedulers of tasks

with and without precedence constraints: if 𝑈 > 𝑚 the system is

not schedulable [23].

This paper focuses on weakly connected SDF graphs, thus all

actors are connected and specifying the period of one actor 𝜋 is

equivalent to specifying a period for the whole graph. Indeed the

graph period𝑇𝐺 will be ®𝑟 [𝜋]×𝑇𝜋 time unit. In Figure 1c, the graph

period is 15, according to the periods 𝑇𝐴 = 5 and 𝑇𝐵 = 3, and to the

repetition vector [3, 5]
𝑇
. Formally, in one graph iteration, the start

time of the 𝑘-th firing of a periodic actor 𝜋 ∈ P with an implicit

deadline must occur in the following time interval:

J𝑘𝑇𝜋 ; (𝑘 + 1)𝑇𝜋 −𝐶𝜋 K,with𝑘 ∈ J0; ®𝑟 [𝜋]J (2)

Consequently, in average ®𝑟 [𝛼] firings of an aperiodic actor 𝛼 are

executed during each graph period 𝑇𝐺 , since the repetition vector

imposes ®𝑟 [𝛼] firings of 𝛼 for ®𝑟 [𝜋] firings of 𝜋 .

As each periodic actor 𝜋 defines a graph period 𝑇𝐺 = ®𝑟 [𝜋] ×𝑇𝜋
deriving from the unique repetition vector, this implies that all the

obtained graph periods must be equal: ∃𝑇𝐺 , ∀𝜋 ∈ P, 𝑇𝐺 = ®𝑟 [𝜋]×𝑇𝜋 .
Then, the processor utilization factor metric may be reformulated in

the context of partially periodic constraints, considering the average

amount of aperiodic firings per graph period 𝑇𝐺 . Equation (3) is a

necessary but not sufficient schedulability condition for partially

periodic SDF graphs.

𝑚 ≥ 𝑈 =

∑
𝛼 ∈N ®𝑟 [𝛼] ×𝐶𝛼

𝑇𝐺
+

∑
𝜋 ∈P

𝐶𝜋

𝑇𝜋
(3)

3.2 With no scheduler iteration overlapping
Results of this subsection assume the following assumption on the

scheduler. Under Assumption 1, indeed another necessary condition

can be derived from the path lengths in the SDF graph with partially

periodic constraints.

Assumption 1 (A1). For every actor 𝛼 , as many firings as specified
in the repetition vector ®𝑟 [𝛼]must have been completely executed before
the next scheduler iteration begins.

A scheduler iteration is the static scheduling of the application

that is indefinitely repeated until the application is stopped. This

assumption is made to ease the scheduling, the code generation,

and the memory allocation. Under Assumption 1, if there is a graph

period, all firings of one scheduler iteration must be done during a

time interval equal to this graph period. Assumption 1 is present in

the PREESM SDF graph scheduler [37] where scheduler iterations

cannot overlap in time and are separated by a synchronization bar-

rier between all cores. One graph period separates two successive

https://preesm.github.io/

RTNS 2020, June 9–10, 2020, Paris, France A. Honorat, K. Desnos, S. S. Bhattacharyya, J.-F. Nezan

𝐴

1

𝐵

1

(a) SDF graph having two periodic actors with a dependency and one
delay. The repetition vector is [1, 1]

𝑇 .
1 2 3 4 5 6 7 8 9 10 11 12

Core 1 𝐴𝑖𝑡𝑒𝑟1 𝐴𝑖𝑡𝑒𝑟2 𝐴𝑖𝑡𝑒𝑟3

Core 2 𝐵𝑖𝑡𝑒𝑟0 𝐵𝑖𝑡𝑒𝑟1 𝐵𝑖𝑡𝑒𝑟2

barrier barrier

(b) Schedule example of 2a on two cores. The barriers happen at the
same time as the graph period, they define a scheduler iteration. Note
that three scheduler iterations are represented while only two graph
iterations are completed (iterations 1 and 2).

Figure 2: Scheduler iteration example, under Assumption 1.

barriers, so it ensures that for each actor 𝛼 , there are ®𝑟 [𝛼] executions

of 𝛼 between two barriers. Note that Assumption 1 is similar to

K-periodic scheduling [8] with 𝐾 being the repetition vector ®𝑟 in our

case. While K-periodic scheduling imposes a periodic schedule of

𝐾[𝛼] firings independently for each actor 𝛼 , Assumption 1 enforces

these periodic schedules to be synchronized with barriers.

Assumption 1 still accepts schedules with delays; but then, all

firings of one graph iteration do not occur in the same scheduler
iteration: this is pipelining. Figure 2 gives an example of such a

pipelined schedule with delays: the firing of 𝐵 consuming the data

produced by the last firing of 𝐴 happens one scheduler iteration

after. Graph iterations are denoted 𝑖𝑡𝑒𝑟 in the Gantt diagram of Fig-

ure 2b. Equation (2) is also respected inside one scheduler iteration.
Scheduling a partially periodic SDF graph without taking care of

data dependencies may lead to buffer underflows and overflows as

illustrated in Figure 3 where the SDF graph is however consistent.

In this example the period of the actor Π is 4 time units (and𝐶Π = 1),

and the graph period is 12. The Gantt diagram in Figure 3b respects

the periodic constraint but not the data dependencies. An underflow

occurs since 𝐵 and ∆ are executed before having received the data

produced by the last firing of Π. Note that the delays are predefined

by the user, and are not computed nor checked by Algorithm 1,

presented at the end of this section. However, such data dependency

errors are checked easily on static schedules.

Figure 3 illustrates an intuitive necessary condition to check the

schedulability: all actors depending on the tokens produced by the

last execution of Π must be executed in the slack time of Π. This

necessary condition derives from Assumption 1. The slack time of

Π is defined by 𝑇Π −𝐶Π. A symmetrical necessary condition can

be computed for the first execution of any periodic actor, this time

with all its incoming data dependencies, which are all actors on

a directed path leading to the periodic actor. In order to formal-

ize these necessary conditions, some notations and functions are

introduced in the next paragraphs.

D↑𝜋 denotes the set of actors in 𝐺 that are transitively data de-

pendent on an actor 𝜋 : if 𝛼 ∈ D↑𝜋 , the last firing of 𝜋 enables at

least one firing of 𝛼 . It can be computed by a graph traversal from

𝐴

1

𝐵

1

3

2

∆

1

Π 1

(a) Dependencies on a periodic actor. nblf ↑
Π

(𝐵) = 1, nblf ↑
Π

(∆) = 2

1 2 3 4 5 6 7 8 9 10 11 12

Core 1 𝐴 𝐵 ∆1 ∆2

Core 2 Π1 Π2 Π3

1 2 3

1 2 3

graph period

(b) Schedule example of graph 3a, generating underflow.

Figure 3: Periodic actor Π generating an underflow.

𝜋 . The subgraph restriction of 𝐺 containing only the actors in D↑𝜋 ,
is denoted𝐺

↑
𝜋 . All presented equations can be applied on the trans-

pose of 𝐺 , considering the first firing of 𝜋 instead of the last. The

transpose𝐺𝑇
of a graph𝐺 is its mirror, where all edges are directed

in the opposite direction, also exchanging token production and

consumption rates. For brevity, equations on 𝐺𝑇
are not shown.

The main metric to compute is the numbers of actor firings,

enabled by a single firing of a periodic actor 𝜋 . These numbers of

firings allow us to compute lower bounds of the processor utiliza-

tion factor. The analysis is simplified by restricting it to the last

firing of 𝜋 and all induced firings of its successors in D↑𝜋 . Note
that the number of remaining dependent firings can be computed

for two adjacent actors connected by a single buffer 𝑒: 𝑘 firings of

src(𝑒) enable max{0,
⌈
𝑘×prod(𝑒)−𝑑0(𝑒)

cons(𝑒)

⌉
} firings of dst(𝑒). The term

𝑘 × prod(𝑒) corresponds to the new tokens incoming on the buffer

𝑒 . The ceiling operator is needed since the previous execution of

the producer src(𝑒) may have left unused tokens on 𝑒 . At the end

of the graph iteration, 𝑒 contains exactly 𝑑0(𝑒) delays.

The function computing the number of firings enabled by the last

firing of a periodic actor 𝜋 is denoted nblf ↑𝜋 , defined in Equation (4).

nblf ↑𝜋 is a recursive function, depending on the predecessor actors

in the graphs𝐺
↑
𝜋 . The set of incoming edges to an actor 𝛼 in 𝐺

↑
𝜋 is

denoted 𝐼𝐸
↑
𝜋 (𝛼); this set excludes self-loops 𝑙 ∈ L.

nblf ↑𝜋 (𝛼) = max

𝑒∈𝐼𝐸↑𝜋 (𝛼)

{
0,

⌈
nblf ↑𝜋 (src(𝑒)) × prod(𝑒) − 𝑑0(𝑒)

cons(𝑒)

⌉}
(4)

The recursion stops at the root actor 𝜋 , having no incoming edges

(there is only one root, by construction of 𝐺
↑
𝜋), where nblf

↑
𝜋 holds

the value 1 if 𝜋 is periodic and 0 otherwise. Hence if the root actor

is not periodic, nblf ↑𝜋 takes the value 0 on all vertices and it does

not help to find any necessary condition. For brevity, the proof of

Equation (4) is given for one direct predecessor only of dst(𝑒).

Proof. To prove Equation (4), let us consider the firings of the

actor dst(𝑒) before those that are induced by the last firing of 𝜋 . By

definition this number of firings is ®𝑟 [dst(𝑒)] − nblf ↑𝜋 (dst(𝑒)). Under

Assumption 1, there are exactly ®𝑟 [𝛼] firings of each actor 𝛼 during

Scheduling of Synchronous Dataflow Graphs with Partially Periodic Real-Time Constraints RTNS 2020, June 9–10, 2020, Paris, France

one scheduler iteration. So this number can also be computed con-

sidering all tokens produced on 𝑒 by src(𝑒) during one scheduler iter-

ation, before the last firing of 𝜋 : this is why ®𝑟 [src(𝑒)]−nblf ↑𝜋 (src(𝑒))

multiplies the production rate in the following equality.

®𝑟 [dst(𝑒)] − nblf ↑𝜋 (dst(𝑒)) =⌊
(®𝑟 [src(𝑒)] − nblf ↑𝜋 (src(𝑒))) × prod(𝑒) + 𝑑0(𝑒)

cons(𝑒)

⌋
Thus nblf ↑𝜋 (dst(𝑒)) is equal to:

®𝑟 [dst(𝑒)] −
⌊
®𝑟 [src(𝑒)] × prod(𝑒) − nblf ↑𝜋 (src(𝑒)) × prod(𝑒) + 𝑑0(𝑒)

cons(𝑒)

⌋
Knowing that ∀𝑥 ∈ R, −⌊𝑥⌋ = ⌈−𝑥⌉, it becomes:

nblf ↑𝜋 (dst(𝑒)) =

⌈
®𝑟 [dst(𝑒)] × cons(𝑒)

cons(𝑒)
+

−®𝑟 [src(𝑒)] × prod(𝑒) + nblf ↑𝜋 (src(𝑒)) × prod(𝑒) − 𝑑0(𝑒)

cons(𝑒)

⌉
From the consistency of 𝐺 , see Equation (1), ®𝑟 [dst(𝑒)] × cons(𝑒) −
®𝑟 [src(𝑒)] × prod(𝑒) = 0, so the last formula can be simplified to

Equation (4) (without the maximum, needed when they are multiple

direct predecessors).

□

The following formula is then a necessary condition for schedu-

lability under Assumption 1. Equation (5) corresponds to the pro-

cessor utilization factor of all firings depending on the last firing of

a periodic actor. This processor utilization factor is computed over

the slack time of the periodic actor, hence the division by 𝑇𝜋 −𝐶𝜋 .

∀𝜋 ∈ P,
∑
𝛼 ∈D↑𝜋

nblf ↑𝜋 (𝛼) ×𝐶𝛼
𝑇𝜋 −𝐶𝜋

≤ 𝑚 (5)

Note that the maximal length of any graph path starting at a

periodic actor 𝜋 also provides a simple necessary condition of the

schedulability: this length must be less than the slack time of 𝜋 .

Also, actors with self-loops have a strong impact on the maximal

length because they do not have auto-concurrency. This necessary

condition for actors with self-loops is formalized in Equation (6).

∀𝛼 ∈ D↑𝜋 ∩ L, nblf
↑
𝜋 (𝛼) ×𝐶𝛼 ≤ 𝑇𝜋 −𝐶𝜋 (6)

Equation (6) can be extended to all paths between a periodic root

𝜋 and leaves of the DAG 𝐺
↑
𝜋 . On each of these paths, each actor

will be executed at least once except if there are enough delays

before the actor; if no delays, the path length is the actor WCET

sum. Again, all these path lengths must be lower than the slack

time 𝑇𝜋 −𝐶𝜋 .
Algorithm 1 checks the schedulability of a periodic actor 𝜋 in

𝐺
↑
𝜋 thanks to the aforementioned necessary conditions: the one

derived from the processor utilization factor, and the one derived

from the critical path minimal execution time. The efficiency of

Algorithm 1 is discussed in the next section.

Algorithm 1: Modified Breadth-First Search (BFS) to com-

pute nblf ↑𝜋 and related necessary conditions

1 function nblfExt(𝜋)

2 forall 𝛼 ∈ 𝐺 do
3 timeTo(𝛼)← 0; nblf ↑𝜋 (𝛼)← 0;

4 nbVisits(𝛼)← 0;

5 𝐶tot ← 0; queue← ∅; addLast(queue, 𝜋);

6 D↑𝜋 ← ∅; nblf ↑𝜋 (𝜋)← 1; ⊲ 𝜋 is periodic.

7 while queue ̸= ∅ do
8 𝛼 ← pop(queue); D↑𝜋 ← D

↑
𝜋 ∪ {𝛼};

9 forall 𝑒 ∈ 𝑂𝐸↑𝜋 (𝛼) do
10 dest ← dst(𝑒);

11 nbVisits(dest)← nbVisits(dest) + 1;

12 timeTo(dest)← max{timeTo(dest), timeTo(𝛼)};
13 nblf ↑𝜋 (dest)←

max

{
nblf ↑𝜋 (dest),

⌈
nblf ↑𝜋 (𝛼)×prod(𝑒)−𝑑0(𝑒)

cons(𝑒)

⌉}
;

⊲ See Equation (4).

14 if nbVisits(dest) = #𝐼𝐸
↑
𝜋 (dest) and

nblf ↑𝜋 (dest) > 0 then
15 addLast(queue, dest); fctr ← nblf ↑𝜋 (dest));
16 if 𝑒 /∈ L then ⊲ See Equation (6).

17 fctr ← max

{
1,

⌊
fctr
𝑚

⌋}
;

18 timeTo(dest)← timeTo(dest) +𝐶dest × fctr ;
⊲ Update the path length to dest with an

underestimation of its execution time.

19 if timeTo(dest) > 𝑇𝜋 −𝐶𝜋 then
20 return System not schedulable.

21 forall 𝛼 ∈ D↑𝜋 − {𝜋} do
22 𝐶tot ← 𝐶tot + nblf ↑𝜋 (𝛼) ×𝐶𝛼 ; ⊲ See Equation (5).

23 if 𝐶tot
𝑇𝜋−𝐶𝜋

> 𝑚 then
24 return System not schedulable.

4 DISCUSSION ON ALGORITHM 1
Algorithm 1 has a linear complexity in the number of edges in 𝐺

↑
𝜋 .

Thus if all actors in𝐺 are periodic, it may not be efficient to execute

Algorithm 1 on each one: in specific cases the overall complexity

can be more than quadratic in the number of vertices in 𝐺 , as for

the star graphs with directed paths going to/from a central vertex.

In order to perform the algorithm on a subset of the periodic actors,

a heuristic is presented in Section 4.1. Algorithm 1 faces another

problem: as it relies only on necessary conditions, there are cases

where the algorithm fails to detect a non-schedulable system. This

point is discussed in Section 4.2.

4.1 Heuristic to run Algorithm 1 efficiently
In this subsection a heuristic is given to execute Algorithm 1 on

a small set of periodic actors: the one having small slack time

RTNS 2020, June 9–10, 2020, Paris, France A. Honorat, K. Desnos, S. S. Bhattacharyya, J.-F. Nezan

𝐴

1

1

Γ

1 1

𝐸

1

1

𝐵1 ∆ 1

Figure 4: Sample SDF graph

and a low topological rank in 𝐺 . Indeed a small period 𝑇𝜋 will

reduce the denominator in Equation (5), while a low topological

rank may increase the numerator because it means that more actors

are located after 𝜋 . Thus this heuristic selects the actors being more

discriminative regarding to the schedulability tests of Algorithm 1.

As we consider synchronous dataflow DAG, there is always

a topological sort existing. One topological sort is used to select

actors: it corresponds to an As Soon As Possible (ASAP) schedule of

𝐺𝑇
, not constrained by the number of cores. The ASAP topological

sort on 𝐺𝑇
is denoted 𝑜𝑇 and is used to select the periodic actors

on which Algorithm 1 is called. Notice that the actor WCETs are

not taken into account in this topological sort, only the structure

of the graph is used. Such topological sort can be computed with a

BFS, having a linear complexity in the number of edges in 𝐺 .

Considering the SDF graph in Figure 4, there are three topological

ranks: one per actor in the longest graph path which is𝐴→ Γ→ 𝐸.

Thus 𝑜𝑇 (𝐴) = 2, 𝑜𝑇 (Γ) = 1, 𝑜𝑇 (𝐸) = 0. The other actors have the

lowest topological ranks at which they can be executed, that is

𝑜𝑇 (𝐵) = 0, 𝑜𝑇 (∆) = 1. Indeed 𝐵 has no incoming edges in𝐺𝑇
so its

rank is 0. The ASAP sort on the transpose graph of Figure 4 can be

equivalently represented as follows: 𝑜𝑇 ≡ {𝐸, 𝐵} ≺ {Γ,∆} ≺ {𝐴}.
Formally, the heuristic selects the periodic actors having the

lowest
𝑇𝜋−𝐶𝜋

𝑜(𝜋)
. The number of selected actors with this heuristic

is arbitrarily chosen by the user. Note that vertices with ASAP

topological rank equal to 0 are not of interest since it means that

they have no successors; Algorithm 1 is not run on such vertices.

4.2 A false positive to Algorithm 1
Algorithm 1 performs two schedulability tests. One is using the

processor utilization factor 𝑈 , Equation (5) lines 21-24, and thus

does not consider the precedences between actors. Considering

multiple cores, it may lead to keep invalid schedules where 𝑈 < 𝑚,

but where a path from a periodic actor is longer than the slack

time of this actor. This situation is precisely checked by the other

schedulability test using path lengths, lines 18-20 in Algorithm 1
2
.

Between these two situations, the algorithm may miss that𝑈 is too

large on a small portion of the slack time: for example, if nblf ↑of
the last actor is greater than𝑚. Thus, Algorithm 1 fails to find that

the graph represented in Figure 5 is not schedulable with 2 cores.

Yet the critical path starting from Π in Figure 5a is equal to the slack

time of Π and𝑈 =
15

9
is less than the number of cores𝑚 = 2.

Algorithm 1 may compute other false positive answers: only𝐺
↑
𝜋

is considered and thus, periodic actors having a period smaller than

𝑇𝜋 in 𝐺 but not being in 𝐺
↑
𝜋 are not taken into account. To avoid

that, Algorithm 1 can be refactored with a subfunction performing

2
The equation on line 17 is actually a simplification when there is auto-concurrency.

Inside cycles (including self-loops), the auto-concurrency is limited by the repetition

vector of the cycle, which divides the original repetition vector.

Π

1

𝐴

1 3

𝐵

1

(a) SDF graph with one periodic actor.
1 2 3 4 5 6 7 8 9 10 11 12

Core 1 Π 𝐴 𝐵1 𝐵3

Π

Π

Core 2 𝐵2

graph period

(b) Shortest schedule of graph in Figure 5a.

Figure 5: A false positive to Algorithm 1: 𝐵3 cannot be sched-
uled before the graph period.

computations of lines 2-22. The subfunction is called on 𝜋 and on

all the periodic actors having a period smaller than 𝑇𝜋 , and not

being connected by any path in𝐺 . For brevity, the full algorithm is

not presented here.

However, even if false positives appear, the system designer will

logically continue its work by calling a scheduler. The scheduler

will give a final answer: schedulable or not. In the next section, an

offline scheduler is presented under Assumption 1. This scheduler is

a heuristic and thus does not attempt to find an optimal scheduling,

it rather focuses on giving quickly an answer to the designer.

5 SCHEDULING OF SDF GRAPHS WITH
PARTIALLY PERIODIC CONSTRAINTS

The problem studied in this section is the quick scheduling of 𝐺∗

with partially periodic constraints. 𝐺∗ is the Single-Rate Data Flow
(SRDF) graph corresponding to the SDF graph 𝐺 . In other words,

𝐺∗ is the unrolled version of 𝐺 , where data dependencies are ex-

pressed between firings instead of actors. Since all dependencies are

explicitly expressed in𝐺∗, it enables computing a static schedule.

Each SDF actor 𝛼 in𝐺 has ®𝑟 [𝛼] corresponding vertices in the SRDF

graph𝐺∗, and on each edge 𝑒 of𝐺∗ the rates of both sides are equal,

i.e. prod(𝑒) = cons(𝑒). In this section, tasks refer to vertices in 𝐺∗.
As in 𝐺 , delays break cycles so 𝐺∗ is a DAG.

Scheduling of DAG of tasks has beenwidely studied [26] however

the periodic case is specific since the start times of periodic actors

are bounded in an interval of the form of Equation (2).

For example, the FAST algorithm [27], based on a list scheduling

heuristic and a neighborhood search, is not appropriate for periodic

schedules. The main difference between the problem studied here

and the one solved by standard list scheduling algorithms is that,

because of partially periodic constraints, we have a bound on the

schedule length. This bound is the graph period.

The main difficulty to design a greedy list-scheduling scheduling

algorithm is to order the vertices before trying to schedule them.

The FAST algorithm cannot be used as is but some of its techniques

are reused in the presented Algorithm 2. As in FAST, Algorithm 2

relies on ASAP and As Late As Possible (ALAP) orderings.

The minimum start time ns of each task in 𝐺∗ as well as the
maximum start time xs are computed first. This is done in two

successive rounds: 1) for all periodic actors, with Equation (2), 2) for

all actors, with ASAP and ALAP. During round 2), ALAP schedule

Scheduling of Synchronous Dataflow Graphs with Partially Periodic Real-Time Constraints RTNS 2020, June 9–10, 2020, Paris, France

has a global deadline equal to the graph period. If any task 𝜏 has

ns(𝜏) > xs(𝜏), the algorithm stops: the system is not schedulable.

Algorithm 2 is executed once all ns and xs have been computed,

starting with the schedule procedure. The tasks are sorted accord-

ing to their average start time
xs + ns

2
. This sorting criterion is a

heuristic to balance the task executions over time. The list of tasks

to allocate, 𝑙 line 22, contains only vertices having all their depen-

dencies satisfied, initially the one having no incoming edges. If

several tasks in 𝑙 have the same average start time, ns is used to

break the tie, by increasing order. The algorithm performs a first fit

approach: it selects the next task in 𝑙 and schedules it on the least

loaded core. The allocateAndRemoveIfBefore procedure, lines

10 − 17, also updates 𝑙 with tasks having a direct dependency on

the currently allocated task. This procedure stops the scheduling in

two cases: 1) if a task is scheduled after its maximum start time xs,

lines 12 − 13, 2) if a the total idle time is more than the maximum

possible, line 7, according to the formula line 21.

Algorithm 2 is greedy since if a task 𝜏 implies an idle time,

the algorithm tries to schedule before 𝜏 the tasks 𝜏𝑏 having ns <

predFinishTime(𝜏), without delaying 𝜏 . This is the purpose of lines

26 − 30 in Algorithm 2. The test line 14 ensures that 𝜏𝑏 can be

executed without delaying 𝜏 , and if not it prevents to allocate it.

Although Algorithm 2 is greedy, it is not subject to the Dhall’s

effect [13]. Dahll’s effect occurs on multicore processors when two

tasks are ready at the same time and have the same deadline, but

the allocation order prevents to allocate both tasks because the

smallest task may be allocated first on the least loaded core, not

leaving enough space for the other task. In Algorithm 2, as tasks

are sorted by average start time from ASAP and ALAP scheduling,

the biggest task will have a shorter average start time and thus will

appear sooner in the list of tasks ready to be scheduled.

The complexity of Algorithm 2 is upper bounded by the number

of edges in𝐺∗ and by the linearithmic cost of the sorting operation

on the vertices: O(#𝐸∗ + #𝑉 ∗(𝑚 + log(#𝑉 ∗))). The number of cores𝑚

appears as a factor of #𝑉 ∗ since the list of cores 𝑐 must remain sorted

to select the least loaded core for every vertex in the ready queue 𝑙 .

The cost of transforming𝐺 in𝐺∗ is not included in this complexity,

it is upper bounded by #𝐸∗. It is a standard transformation, already

implemented in the PREESM tool for example.

6 EVALUATION
This section discusses how Algorithms 1 and 2 can be used for the

design process of CPSs, and presents an evaluation.

6.1 Partially periodic CPSs applications
Only a few CPSs use-cases are presented in the literature as par-
tially periodic SDF graphs. Indeed it is often assumed that every

component is periodic in order to ease the analysis and the code

generation. Due to the lack of available partially periodic imple-

mentations, and to the simplicity of the existing ones, the necessary

conditions for schedulability have not been practically evaluated.

However, two small examples are given hereafter. A pacemaker [38]

has been studied and modeled in the Architecture Analysis Design

Language (AADL)
3
and it is a partially periodic system. A critical

subpart of this pacemaker is described using the Cyclo-Static Data

3
http://www.aadl.info

0 4 7

necessary conditions
↩→NOT schedulable

scheduler
↩→schedulable?

𝑚

Figure 6: Scheduling bounds on the number of cores𝑚.

Flow (CSDF) model [6], an extension of SDF. In this subpart, two

sensors (Motion and EKG) periodically send data to a processing

component, each with its own period. A second example is in the

telecommunication domain: the LTE standard has been studied and

partially modeled with SDF graphs [36]. In the LTE standard, the

signals retrieved by the antenna are down-sampled and periodi-

cally sent to the decoder. To the best of our knowledge, no open

source benchmark exists that is explicitly partially periodic. Yet,

the StreamIt [44] benchmark contains dozens of signal processing

applications in the SDF model. Periods are not specified in StreamIt

but signal processing applications usually have one periodic input

actor and another periodic output.

Finally it is possible to generate random SDF graphswith SDF
3
[42]

and Turbine [7], but they do not generate partially periodic con-

straints. Thus, our experiments, detailed in Sections 6.3 and 6.4,

have been performed on ten random DAGs generated by Turbine,

and on one existing use-case of the SDF
3
data set. For the first exper-

iment, partially periodic constraints are added to these generated

graphs as a post-processing step that follows the graph generation.

6.2 Schedulability check and scheduling
The practical usage of the presented algorithms is summarized in

Figure 6. In terms of the number of cores𝑚, the necessary conditions

(Algorithm 1) give a schedulability lower bound (left part) while

the scheduler (Algorithm 2) gives an upper bound (right part). For

example, the lower bound is 4 cores while the upper bound is 7

cores in Figure 6.

The algorithms have to be run iteratively with different values

of𝑚 to tighten the bounds. A starting point can be derived using

the length of the critical path as done in the experiments on the

scheduler, presented in Section 6.3.

Regarding the scheduler, notice that it can actually be run for any

unconnected DAG and thus is more generic than for SDF graphs

with partially periodic constraints. The next subsections report two

experiments done on the algorithms presented in this paper.

6.3 Gap between necessary conditions and
scheduler

This experiment measures the gap between the proposed neces-

sary conditions, the proposed scheduler, and the optimal solution.

The gap is measured in number of cores required to synthesize a

schedule while respecting all periodic constraints.

6.3.1 Dataset. The dataset contains ten random SDF DAG gener-

ated with the Turbine tool [7]. Table 1 details the characteristics

of the generated graphs. The first five graphs are small, with only

ten actors, in order to make comparison with the optimal number

of cores computed by a Constraint Programming (CP) solver. The

generated graphs do not contain any delay.

https://preesm.github.io/
http://www.aadl.info
http://www.aadl.info

RTNS 2020, June 9–10, 2020, Paris, France A. Honorat, K. Desnos, S. S. Bhattacharyya, J.-F. Nezan

Algorithm 2: Scheduling of tasks

1 procedure addReadyTasks(𝑙, 𝜏, nbAllocations) ⊲ Add tasks in the schedule queue only if their predecessors are allocated.

2 remove(𝑙, 𝜏); nbAllocations← nbAllocations + 1;

3 forall 𝑒 ∈ 𝑂𝐸(𝜏) do ⊲ Visit all successors of newly allocated 𝜏.

4 dest ← dst(𝑒); nbVisits(dest)← nbVisits(dest) + 1; predFinishTime(dest)← max{predFinishTime(dest), finishTime(𝜏)};
5 if nbVisits(dest) = #𝐼𝐸(dest) then
6 push(𝑙, dest); ⊲ If all predecessors of dst(𝑒) have visited it, dst(𝑒) is added in the queue.

7 procedure casIdleTime(startTimeDif , currentIdleTime,maxIdleTime) ⊲ Check and set remaining idle time.

8 function isThereACoreIdlingBefore(𝑐, deadline) ⊲ Returns true if one or multiple cores idle before the deadline.

9 function possibleAllocationsBefore(𝑙, deadline) ⊲ Returns tasks in 𝑙 which can start before the given deadline, ensuring that the

selected tasks total execution time is not higher than the current idle time to the given deadline.

10 procedure allocateAndRemoveIfBefore(𝑙, 𝜏, 𝑐, deadline,maxIdleTime, currentIdleTime)
11 coresHead ← head(𝑐); startTime← max{predFinishTime(𝜏), finishTime(coresHead)};
12 if startTime > xs(𝜏) then
13 raise Scheduling failed.;

14 if startTime +𝐶𝜏 > deadline then
15 return;

16 casIdleTime(startTime − finishTime(coresHead), currentIdleTime,maxIdleTime) ; ⊲ Check and set idle time.

17 finishTime(𝜏)← startTime +𝐶𝜏 ; push(coresHead, 𝜏); addReadyTasks(𝑙, 𝜏); ⊲ Update 𝜏, 𝑐 and 𝑙.

18 procedure schedule(tasks, graphPeriod,𝑚)

19 forall 𝜏 ∈ tasks do
20 nbVisits(𝜏)← 0; predFinishTime(𝜏)← ns(𝜏) ; ⊲ Sets initial properties of each task.

21 maxIdleTime←𝑚 ∗ graphPeriod −∑𝜏 𝐶𝜏 ; currentIdleTime← 0; nbAllocations← 0;

22 𝑙 ← all tasks without incoming edges, always maintained by increasing average start time i.e.
xs + ns

2
;

23 𝑐 ← schedule of each core, always maintained by increasing finish time;

24 while 𝑙 ̸= ∅ do
25 𝜏 ← head(𝑙); prevNbAllocations← nbAllocations;
26 if isThereACoreIdlingBefore(𝑐, predFinishTime(𝜏)) then ⊲ predFinishTime is the finish time of direct predecessors.

27 forall 𝜏𝑏 ∈ possibleAllocationsBefore(𝑙, 𝑐, predFinishTime(𝜏)) do
28 allocateAndRemoveIfBefore(𝑙, 𝜏𝑏 , 𝑐, predFinishTime(𝜏),maxIdleTime, currentIdleTime, nbAllocations);

29 if prevNbAllocations < nbAllocations then
30 continue ; ⊲ We restart the loop since new tasks may be ready now.

31 allocateAndRemoveIfBefore(𝑙, 𝜏, 𝑐,∞,maxIdleTime, currentIdleTime, nbAllocations);

Name #actors avg. WCET #firings #deps. in 𝐺∗ ®𝑟 [𝜋] 𝑇𝐺 Time Alg.1 Time Alg.2 Time Choco

RandomDAG1 10 100 141 280 5 2445 7 ms 27 ms T/O (12 h)

RandomDAG2 10 100 184 373 7 4270 4 ms 13 ms 320327 ms

RandomDAG3 10 100 139 370 13 9412 4 ms 10 ms 993116 ms

RandomDAG4 10 100 143 329 3 1557 3 ms 11 ms T/O (12 h)

RandomDAG5 10 100 136 251 3 1377 4 ms 7 ms 9046 ms

RandomDAG6 100 200 3226 6093 7/4 13496 10 ms 134 ms –

RandomDAG7 100 200 2824 6239 5/10 15040 6 ms 68 ms –

RandomDAG8 100 200 2978 6341 7/7 11711 5 ms 61 ms –

RandomDAG9 100 200 2567 5600 6/6 8496 10 ms 89 ms –

RandomDAG10 100 200 3358 6535 10/10 16680 8 ms 15 ms –

Table 1: Details of the random directed acyclic SDF graphs generated by Turbine, and execution time of the algorithms.
RandomDAG1-5 contain one periodic actor 𝜋 . RandomDAG6-10 contain two periodic actors.

Scheduling of Synchronous Dataflow Graphs with Partially Periodic Real-Time Constraints RTNS 2020, June 9–10, 2020, Paris, France

One periodic actor 𝜋 is set in the middle of the longest path of

each SDF graph; largest number of firings breaks the tie. A second

periodic actor is set on RandomDAG6-10. Their periods 𝑇𝜋 are

set manually, being the smallest integer such that a solution exists.

Formally,𝑇𝜋 is the smallest integer which ensures:∀𝜏 ∈ 𝐺∗, ns(𝜏) <

xs(𝜏).

6.3.2 Standard Integer Linear Programming (ILP) formulation with
Choco. A scheduling model using ILP formulation has been de-

veloped in order to compare the performance with Algorithm 2.

Although the formulation is purely ILP, the generic Choco
4
CP

solver has been used since there is no objective function in the for-

mulation: the goal is only to test if there exists a valid schedule for

a given number of cores𝑚. Choco stops on the first valid schedule

encountered, and otherwise enumerates all possible schedules in

order to prove that there is no solution.

The model size is bounded by the size of a transient Boolean

matrix storing mapping overlap of each couple of tasks: Θ(𝑚 ×
#𝑉 × #𝑉). A transitive closure of the DAG 𝐺∗ is computed before

the model construction in order to reduce the size of this Boolean

matrix. The transitive closure prevents to add useless free variables

and redundant constraints to the matrix stating mapping overlap:

overlap between two tasks is checked only if there is no transitive

precedence between the two tasks. The number of constraints is

reduced by up to 16% thanks to the transitive closure. Last but

not least, symmetries of the homogeneous cores are broken by

enforcing some properties on the mapping matrix, see [43].

6.3.3 Implementation of algorithms in PREESM. Algorithms 1 and 2

and the Choco model have all been implemented in the PREESM

open-source
5
tool dedicated to the design of embedded systems

from applications modeled as SDF graphs. PREESM automatically

generates the SRDF graph 𝐺∗ from a given SDF graph; the gener-

ation time of 𝐺∗ is not included in the experiments. Experiments

have been run on an Intel i7-7820HQ processor.

6.3.4 Evaluation results. The evaluation has been performed as

following. For each scheduling algorithm, the result is the smallest

number of cores ensuring a valid schedule. For the necessary con-

ditions, the result is the smallest number of cores ensuring that no

valid schedule exists for all lower number of cores. All algorithms

are run iteratively with an increasing number of cores. Diagram in

Figure 7 presents the results for the five small random graphs. The

processor utilization factor Utot of the graph is given as reference

on the left column. The execution time of the algorithms are given

in the right part of Table 1 (in millisecond ms, and hour h). While

the proposed algorithms always run in less than a second, Choco

takes hours for the small graphs.

Choco is optimal but cannot solve problems with too many

firings or cores. It actually reaches timeout (T/O) of 12 hours for

RandomDAG1 and RandomDAG4 with 9 cores, and it also takes

multiple hours to prove that the same graphs have no solutions

for 8 cores. The timeout of Choco is specified by an error interval,

materialized by a small black line in Figure 7. The gap between the

optimal solution and the proposed scheduler is at most two cores,

for RandomDAG4, and may be zero as for RandomDAG5.

4
http://www.choco-solver.org/

5
https://preesm.github.io/

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

Random
DAG1

Random
DAG2

Random
DAG3

Random
DAG4

Random
DAG5

N
u
m

b
e
r

o
f

co
re

s

Utot
NecessaryCondition

ProposedScheduler
OptimalChoco

Figure 7: Evaluation of the schedulability gap on the small
random graphs RandomDAG1-5.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

Random
DAG6

Random
DAG7

Random
DAG8

Random
DAG9

Random
DAG10

N
u
m

b
e
r

o
f

co
re

s

Utot NecessaryCondition ProposedScheduler

Figure 8: Evaluation of the schedulability gap on the large
random graphs RandomDAG6-10.

The results of the five large graphs are pictured in Figure 8,

without comparison with Choco because of the size of the problem

(it would timeout in any case). On all ten graphs, the necessary

conditions appear to be weakly discriminating: in most of the case,

it states that the system is possibly schedulable as soon as𝑚 > 𝑈tot .

The necessary conditions are discriminating only for RandomDAG1

and RandomDAG6. Note that RandomDAG1 and RandomDAG6

are also the graphs requiring a longer run time of the proposed

scheduler. Yet two reasons may increase the complexity of the

scheduler: more tasks ready at the same time (which increases

the size of the sorted list 𝑙), or more idle time (which triggers the

execution of lines 26-30 in Algorithm 2). Further investigation are

needed to characterize this phenomenon.

6.4 Gap between the proposed scheduler and
preemptive Earliest Deadline First (EDF)

This experiment measures the graph period gap between the pro-

posed non-preemptive offline scheduler Algorithm 2 and a standard

preemptive real-time scheduler: EDF. The ADFG tool [22] is used

as a reference, using Global EDF scheduling [4] (with an algorithm

http://www.choco-solver.org/
https://preesm.github.io/
https://preesm.github.io/
https://preesm.github.io/
http://www.choco-solver.org/
https://preesm.github.io/

RTNS 2020, June 9–10, 2020, Paris, France A. Honorat, K. Desnos, S. S. Bhattacharyya, J.-F. Nezan

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

G
ra

p
h
 p

e
ri

o
d

GEDF-ADFG ProposedScheduler

Figure 9: Evaluation of the graph period computed by Algo-
rithm 2 compared to ADFG with global EDF policy. Number
of cores in abscissa.

adapted from the forced-forward demand bound function). ADFG

considers that all actors are periodic and computes their optimal

smallest period for a given number of cores. ADFG also computes

delays on the buffers; these delays are kept in the input of Algo-

rithm 2. Then Algorithm 2 is initially run with a graph period equal

to the sum of all WCET, and the actual latency
6
found by Algo-

rithm 2 is kept as a result. Indeed the latency found is the smallest

graph period achievable by the proposed scheduler and it may be

smaller than the input graph period since Algorithm 2 is greedy

and uses idle time as soon as possible.

The results are depicted in Figure 9, for the Beamformer applica-

tion from the StreamIt benchmark. Beamformer graph contains 57

actors and 70 edges, each actor is fired only once. For each number

of cores, Algorithm 2 finds a graph period close to the optimal,

and even optimal from 28 cores. The optimal graph period is equal

to the greatest WCET (5076) since numerous delays are added by

ADFG and break the data dependencies.

7 RELATEDWORK
To our knowledge, only the MAPS [9] tool accepts SDF graphs with

partially periodic constraints as specified in this paper. However,

MAPS does not exactly compute a schedule, but instead it checks

if execution traces can be executed on the targeted architecture.

As MAPS is not freely accessible, we did not compare to it. Dead-

lock [12] and consistency [14] analysis of SDF graphs with partially

periodic constraints have also been studied. Other tools and papers

are closely related to our scheduling problem and are listed in the

three next paragraphs, according to there category.

Schedulers of real-time tasks with precedence constraints. Real-
time systems have been widely studied for online periodic schedul-

ing, the most common schedulers being EDF and Fixed Priority (FP).

Yet an offline part is still needed in most of the online schedulers:

either to compute the deadlines as in the Chetto’s algorithm [10] to

respect precedence constraints under EDF, or to compute the task

6
In this paragraph, the latency is taken as the finish time of the last task in the schedule

during one scheduler iteration, instead of during one graph iteration as in Section 7.

priorities in the case of FP. Some online schedulers also take into

account periodic and aperiodic tasks [31]; they still may need an of-

fline pre-schedule [16], and may rely on EDF [24]. Regarding offline

non-preemptive scheduling, there exists an ILP formulation [46]

for sporadic and periodic tasks under EDF and FP. A CP solution

for periodic tasks only has also been formulated [40]. Both ILP and

CP formulations have a high complexity and thus are not scalable.

Schedulers of SDF graphs with periodic constraints. The Darts

tool [2] is able to schedule SDF graphs under a throughput con-

straint, equivalent to a graph period constraint, for EDF and FP

schedulers. ADFG [22] is similar to Darts, but it optimizes the

throughput under a total buffer size constraint. SDF graphs can be

modeled with synchronous languages such as Prelude [35], which

generates code for EDF and FP schedulers. Still using synchronous

language, activation clocks with precedences [11] can be composed

and checked. Yet, in all the aforementioned tools of this paragraph,

all SDF actors are periodic. Minimal actor periods can be be com-

puted independently from the scheduling policy [1], but only for

SRDF graphs. Note that a polynomial algorithm [41] exists for the

unicore processor case under EDF, with real-time tasks being spe-

cific SDF graphs. Other papers [5] specify throughput constraints

on the only input or output actor of an SDF graph 𝐺 , which is

equivalent to specify a graph period 𝑇𝐺 .

Schedulers of SDF graphs with latency constraints. A latency con-

straint on an SDF graph 𝐺 is equivalent to a throughput constraint

or graph period if and only if the scheduler assumes Assumption 1

and there is no delay in 𝐺 (except to break cycles). Indeed if de-

lays are present, as in Figure 2, the latency may be higher than the

graph period. Latency constraints for SDF graphs have been heavily

studied, especially symbolically. For example, the latency has been

analyzed either without scheduling assumption to derive upper

and lower bounds [25], or with self-time scheduling of SDF [19]

and SRDF [34] graphs. Practically, the Ptolemy [15] tool supporting

SDF graphs has been extended to perform timing verification, as

latency, through system simulation [21]. Finally, there exists an

offline scheduler accepting throughput and latency constraints on

SDF graphs [30]; it takes into account communications and com-

putes the static schedule with ILP and heuristics. Thus all these

tools tackle only a small subset of partially periodic constraints: the

specific case of one graph period without any delay on the graph.

8 CONCLUSION AND FUTUREWORK
A few necessary conditions and an offline non-preemptive schedul-

ing algorithm have been presented in order to analyze and synthe-

size the scheduling of partially periodic SDF graphs. These results

hold under a weak assumption on the execution of the systems: the

presence of barriers at each graph period. The proposed algorithms

have, at most, a linearithmic complexity and can thus be used on

large cyber-physical systems modeled as SDF graphs. Experiments

show that the proposed non-preemptive scheduler is fast, scalable,

and efficient. Next step is to extend the schedulability analysis to

model heterogeneous hardware, that is becoming the new standard

for embedded systems. Another direction for future work is to take

into account inter-core communication time while assessing the

real-time schedulability.

Scheduling of Synchronous Dataflow Graphs with Partially Periodic Real-Time Constraints RTNS 2020, June 9–10, 2020, Paris, France

ACKNOWLEDGMENTS
This project has received funding from the European Union’s Hori-

zon 2020 research and innovation programme under grant agree-

ment №732105 and from the Région Bretagne (France) under grant

ARED 2017 ADAMS. We would like to thank J. Castrillon for his

kind answers to our questions about the MAPS tool.

REFERENCES
[1] H. I. Ali, B. Akesson, and L. M. Pinho. 2015. Generalized Extraction of Real-

Time Parameters for Homogeneous Synchronous Dataflow Graphs. In 2015 23rd
Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing. 701–710. https://doi.org/10.1109/PDP.2015.57

[2] M. Bamakhrama and T. Stefanov. 2011. Hard-real-time scheduling of data-

dependent tasks in embedded streaming applications. In Embedded Software
(EMSOFT), 2011 Proceedings of the International Conference on. 195–204. https:

//doi.org/10.1145/2038642.2038672

[3] Gérard Berry and Georges Gonthier. 1992. The Esterel synchronous programming

language: design, semantics, implementation. Science of Computer Programming
19, 2 (1992), 87 – 152. https://doi.org/10.1016/0167-6423(92)90005-V

[4] Marko Bertogna and Sanjoy Baruah. 2011. Tests for Global EDF Schedulability

Analysis. J. Syst. Archit. 57, 5 (May 2011), 487–497. https://doi.org/10.1016/j.

sysarc.2010.09.004

[5] S. S. Bhattacharyya and W. S. Levine. 2006. Optimization of signal processing

software for control system implementation. In 2006 IEEE Conference on Com-
puter Aided Control System Design, 2006 IEEE International Conference on Control
Applications, 2006 IEEE International Symposium on Intelligent Control. 1562–1567.
https://doi.org/10.1109/CACSD-CCA-ISIC.2006.4776874

[6] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. 1996. Cycle-static

Dataflow. Trans. Sig. Proc. 44, 2 (Feb. 1996), 397–408. https://doi.org/10.1109/78.

485935

[7] Bruno Bodin, Youen Lesparre, Jean-Marc Delosme, and Alix Munier-Kordon.

2014. Fast and Efficient Dataflow Graph Generation. In Proceedings of the 17th
International Workshop on Software and Compilers for Embedded Systems (SCOPES
’14). ACM, New York, NY, USA, 40–49. https://doi.org/10.1145/2609248.2609258

[8] B. Bodin, A. Munier-Kordon, and B. D. de Dinechin. 2012. K-Periodic schedules

for evaluating the maximum throughput of a Synchronous Dataflow graph. In

2012 International Conference on Embedded Computer Systems (SAMOS). 152–159.
https://doi.org/10.1109/SAMOS.2012.6404169

[9] J. Castrillon, R. Leupers, and G. Ascheid. 2013. MAPS: Mapping Concurrent

Dataflow Applications to Heterogeneous MPSoCs. IEEE Transactions on Industrial
Informatics 9, 1 (Feb 2013), 527–545. https://doi.org/10.1109/TII.2011.2173941

[10] H. Chetto, M. Silly, and T. Bouchentouf. 1990. Dynamic Scheduling of Real-time

Tasks Under Precedence Constraints. Real-Time Syst. 2, 3 (Sept. 1990), 181–194.
https://doi.org/10.1007/BF00365326

[11] Albert Cohen, Marc Duranton, Christine Eisenbeis, Claire Pagetti, Florence

Plateau, and Marc Pouzet. 2006. N-synchronous Kahn Networks: A Relaxed

Model of Synchrony for Real-time Systems. SIGPLAN Not. 41, 1 (Jan. 2006),

180–193. https://doi.org/10.1145/1111320.1111054

[12] P. Derler, K. Ravindran, and R. Limaye. 2016. Specification of precise timing

in synchronous dataflow models. In 2016 ACM/IEEE International Conference
on Formal Methods and Models for System Design (MEMOCODE). 85–94. https:

//doi.org/10.1109/MEMCOD.2016.7797751

[13] Sudarshan K. Dhall and C. L. Liu. 1978. On a Real-Time Scheduling Problem.

Operations Research 26, 1 (1978), 127–140. http://www.jstor.org/stable/169896

[14] Paul Dubrulle, Christophe Gaston, Nikolai Kosmatov, Arnault Lapitre, and

Stéphane Louise. 2019. A Data Flow Model with Frequency Arithmetic. In

Fundamental Approaches to Software Engineering, Reiner Hähnle and Wil van der

Aalst (Eds.). Springer International Publishing, Cham, 369–385.

[15] J. Eker, J. W. Janneck, E. A. Lee, Jie Liu, Xiaojun Liu, J. Ludvig, S. Neuendorffer, S.

Sachs, and Yuhong Xiong. 2003. Taming heterogeneity - the Ptolemy approach.

Proc. IEEE 91, 1 (Jan 2003), 127–144. https://doi.org/10.1109/JPROC.2002.805829

[16] Gerhard Fohler. 1995. Joint scheduling of distributed complex periodic and hard

aperiodic tasks in statically scheduled systems. In Proceedings 16th IEEE Real-Time
Systems Symposium. 152–161. https://doi.org/10.1109/REAL.1995.495205

[17] T. Gee, J. James,W. VanDerMark, P. Delmas, andG. Gimel’farb. 2016. Lidar guided

stereo simultaneous localization and mapping (SLAM) for UAV outdoor 3-D scene

reconstruction. In 2016 International Conference on Image and Vision Computing
New Zealand (IVCNZ). 1–6. https://doi.org/10.1109/IVCNZ.2016.7804433

[18] A. H. Ghamarian, M. C. W. Geilen, S. Stuijk, T. Basten, B. D. Theelen, M. R.

Mousavi, A. J. M. Moonen, and M. J. G. Bekooij. 2006. Throughput Analysis of

Synchronous Data Flow Graphs. In Proceedings of the Sixth International Confer-
ence on Application of Concurrency to System Design (ACSD ’06). IEEE Computer

Society, Washington, DC, USA, 25–36. https://doi.org/10.1109/ACSD.2006.33

[19] A. H. Ghamarian, S. Stuijk, T. Basten, M. C. W. Geilen, and B. D. Theelen. 2007.

Latency Minimization for Synchronous Data Flow Graphs. In 10th Euromicro
Conference on Digital System Design Architectures, Methods and Tools (DSD 2007).
189–196. https://doi.org/10.1109/DSD.2007.4341468

[20] T. Grandpierre, C. Lavarenne, and Y. Sorel. 1999. Optimized rapid prototyping

for real-time embedded heterogeneous multiprocessors. In Hardware/Software
Codesign, 1999. (CODES ’99) Proceedings of the Seventh International Workshop on.
74–78. https://doi.org/10.1145/301177.301489

[21] L. Guo, Q. Zhu, P. Nuzzo, R. Passerone, A. Sangiovanni-Vincentelli, and E. A.

Lee. 2014. Metronomy: A function-architecture co-simulation framework for

timing verification of cyber-physical systems. In 2014 International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS). 1–10. https:

//doi.org/10.1145/2656075.2656093

[22] Alexandre Honorat, Hai Nam Tran, Loïc Besnard, Thierry Gautier, Jean-Pierre

Talpin, and Adnan Bouakaz. 2017. ADFG: a scheduling synthesis tool for dataflow

graphs in real-time systems. In International Conference on Real-Time Networks
and Systems . Grenoble, France, 1–10. https://doi.org/10.1145/3139258.3139267

[23] W. A. Horn. 1974. Some simple scheduling algorithms. Naval Research Logistics
Quarterly 21, 1 (1974), 177–185. https://doi.org/10.1002/nav.3800210113

[24] D. Isovic and G. Fohler. 2000. Efficient scheduling of sporadic, aperiodic, and

periodic tasks with complex constraints. In Proceedings 21st IEEE Real-Time
Systems Symposium. 207–216. https://doi.org/10.1109/REAL.2000.896010

[25] Jad Khatib, Alix Munier-Kordon, Enagnon Cedric Klikpo, and Trabelsi-Colibet

Kods. 2016. Computing latency of a real-time system modeled by Synchronous

Dataflow Graph. In Real-Time Networks and Systems RTNS. Brest, France, 87 – 96.

https://doi.org/10.1145/2997465.2997479

[26] Yu-Kwong Kwok and Ishfaq Ahmad. 1999. Static Scheduling Algorithms for

Allocating Directed Task Graphs to Multiprocessors. ACM Comput. Surv. 31, 4
(Dec. 1999), 406–471. https://doi.org/10.1145/344588.344618

[27] Yu-Kwong Kwok, I. Ahmad, and Jun Gu. 1996. FAST: a low-complexity algorithm

for efficient scheduling of DAGs on parallel processors. In Proceedings of the
1996 ICPP Workshop on Challenges for Parallel Processing, Vol. 2. 150–157 vol.2.
https://doi.org/10.1109/ICPP.1996.537394

[28] E. A. Lee and D. G. Messerschmitt. 1987. Synchronous data flow. Proc. IEEE 75, 9

(Sept 1987), 1235–1245. https://doi.org/10.1109/PROC.1987.13876

[29] Chuanpeng Li, Chen Ding, and Kai Shen. 2007. Quantifying the cost of context

switch. In Proceedings of the 2007 workshop on Experimental computer science.
ACM.

[30] Jing Lin, Andreas Gerstlauer, and Brian L. Evans. 2012. Communication-

aware Heterogeneous Multiprocessor Mapping for Real-time Streaming Sys-

tems. Journal of Signal Processing Systems 69, 3 (01 Dec 2012), 279–291. https:

//doi.org/10.1007/s11265-012-0674-6

[31] Giuseppe Lipari and Giorgio Buttazzo. 2000. Schedulability analysis of periodic

and aperiodic tasks with resource constraints. Journal of Systems Architecture 46,
4 (2000), 327 – 338. https://doi.org/10.1016/S1383-7621(99)00009-0

[32] C. L. Liu and James W. Layland. 1973. Scheduling Algorithms for Multipro-

gramming in a Hard-Real-Time Environment. J. ACM 20, 1 (Jan. 1973), 46–61.

https://doi.org/10.1145/321738.321743

[33] S. Louise. 2019. Graph Transformations and Derivation of Scheduling Constraints

Applied to the Mapping of Real-Time Distributed Applications. In 2019 IEEE 13th
International Symposium on Embedded Multicore/Many-core Systems-on-Chip
(MCSoC). 295–303.

[34] Orlando M. Moreira and Marco J. G. Bekooij. 2007. Self-Timed Scheduling

Analysis for Real-Time Applications. EURASIP Journal on Advances in Signal
Processing 2007, 1 (2007), 083710. https://doi.org/10.1155/2007/83710

[35] Claire Pagetti, Julien Forget, Frédéric Boniol, Mikel Cordovilla, and David Lesens.

2011. Multi-task implementation of multi-periodic synchronous programs. Dis-
crete Event Dynamic Systems 21, 3 (2011), 307–338. https://hal.inria.fr/inria-

00638936

[36] Maxime Pelcat. 2010. Rapid Prototyping and Dataflow-Based Code Generation for
the 3GPP LTE eNodeB Physical Layer mapped onto Multi-Core DSPs. Theses. INSA
de Rennes. https://tel.archives-ouvertes.fr/tel-00578043

[37] M. Pelcat, K. Desnos, J. Heulot, C. Guy, J.-F. Nezan, and S. Aridhi. 2014. Preesm:

A dataflow-based rapid prototyping framework for simplifying multicore DSP

programming. In Education and Research Conference (EDERC), 2014 6th European
Embedded Design in. 36–40. https://doi.org/10.1109/EDERC.2014.6924354

[38] Rodolfo Pellizzoni, Patrick Meredith, Min-Young Nam, Mu Sun, Marco Caccamo,

and Lui Sha. 2009. Handling Mixed-criticality in SoC-based Real-time Embedded

Systems. In Proceedings of the Seventh ACM International Conference on Embedded
Software (EMSOFT ’09). ACM, New York, NY, USA, 235–244. https://doi.org/10.

1145/1629335.1629367

[39] Jonathan Piat, Philippe Fillatreau, Daniel Tortei, Francois Brenot, and Michel

Devy. 2018. HW/SW co-design of a visual SLAM application. Journal of Real-Time
Image Processing (16 Nov 2018). https://doi.org/10.1007/s11554-018-0836-2

[40] Wolfgang Puffitsch, Eric Noulard, and Claire Pagetti. 2015. Off-line mapping of

multi-rate dependent task sets to many-core platforms. Real-Time Systems 51, 5
(01 Sep 2015), 526–565. https://doi.org/10.1007/s11241-015-9232-1

https://doi.org/10.1109/PDP.2015.57
https://doi.org/10.1145/2038642.2038672
https://doi.org/10.1145/2038642.2038672
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1016/j.sysarc.2010.09.004
https://doi.org/10.1016/j.sysarc.2010.09.004
https://doi.org/10.1109/CACSD-CCA-ISIC.2006.4776874
https://doi.org/10.1109/78.485935
https://doi.org/10.1109/78.485935
https://doi.org/10.1145/2609248.2609258
https://doi.org/10.1109/SAMOS.2012.6404169
https://doi.org/10.1109/TII.2011.2173941
https://doi.org/10.1007/BF00365326
https://doi.org/10.1145/1111320.1111054
https://doi.org/10.1109/MEMCOD.2016.7797751
https://doi.org/10.1109/MEMCOD.2016.7797751
http://www.jstor.org/stable/169896
https://doi.org/10.1109/JPROC.2002.805829
https://doi.org/10.1109/REAL.1995.495205
https://doi.org/10.1109/IVCNZ.2016.7804433
https://doi.org/10.1109/ACSD.2006.33
https://doi.org/10.1109/DSD.2007.4341468
https://doi.org/10.1145/301177.301489
https://doi.org/10.1145/2656075.2656093
https://doi.org/10.1145/2656075.2656093
https://doi.org/10.1145/3139258.3139267
https://doi.org/10.1002/nav.3800210113
https://doi.org/10.1109/REAL.2000.896010
https://doi.org/10.1145/2997465.2997479
https://doi.org/10.1145/344588.344618
https://doi.org/10.1109/ICPP.1996.537394
https://doi.org/10.1109/PROC.1987.13876
https://doi.org/10.1007/s11265-012-0674-6
https://doi.org/10.1007/s11265-012-0674-6
https://doi.org/10.1016/S1383-7621(99)00009-0
https://doi.org/10.1145/321738.321743
https://doi.org/10.1155/2007/83710
https://hal.inria.fr/inria-00638936
https://hal.inria.fr/inria-00638936
https://tel.archives-ouvertes.fr/tel-00578043
https://doi.org/10.1109/EDERC.2014.6924354
https://doi.org/10.1145/1629335.1629367
https://doi.org/10.1145/1629335.1629367
https://doi.org/10.1007/s11554-018-0836-2
https://doi.org/10.1007/s11241-015-9232-1

RTNS 2020, June 9–10, 2020, Paris, France A. Honorat, K. Desnos, S. S. Bhattacharyya, J.-F. Nezan

[41] Abhishek Singh, Pontus Ekberg, and Sanjoy Baruah. 2018. Uniprocessor schedul-

ing of real-time synchronous dataflow tasks. Real-Time Systems (21 May 2018).

https://doi.org/10.1007/s11241-018-9310-2

[42] S. Stuijk, M.C.W. Geilen, and T. Basten. 2006. SDF
3
: SDF For Free. In Applica-

tion of Concurrency to System Design, 6th International Conference, ACSD 2006,
Proceedings. IEEE Computer Society Press, Los Alamitos, CA, USA, 276–278.

https://doi.org/10.1109/ACSD.2006.23

[43] Pranav Tendulkar, Peter Poplavko, and Oded Maler. 2013. Symmetry Breaking

for Multi-criteria Mapping and Scheduling on Multicores. In Formal Modeling
and Analysis of Timed Systems, Víctor Braberman and Laurent Fribourg (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 228–242.

[44] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. 2002. StreamIt:

A Language for Streaming Applications. In Proceedings of the 11th International
Conference on Compiler Construction (CC ’02). Springer-Verlag, London, UK, UK,
179–196. http://dl.acm.org/citation.cfm?id=647478.727935

[45] Shuhuan Wen, Miao Sheng, Chunli Ma, Zhen Li, H. K. Lam, Yongsheng Zhao,

and Jingrong Ma. 2018. Camera Recognition and Laser Detection based on EKF-

SLAM in the Autonomous Navigation of Humanoid Robot. Journal of Intelligent
& Robotic Systems 92, 2 (01 Oct 2018), 265–277. https://doi.org/10.1007/s10846-

017-0712-5

[46] J. Xiao, S. Altmeyer, and A. Pimentel. 2017. Schedulability Analysis of Non-

preemptive Real-Time Scheduling for Multicore Processors with Shared Caches.

In 2017 IEEE Real-Time Systems Symposium (RTSS). 199–208. https://doi.org/10.

1109/RTSS.2017.00026

[47] Xinzheng Zhang, Ahmad B. Rad, and Yiu-Kwong Wong. 2012. Sensor Fusion

of Monocular Cameras and Laser Rangefinders for Line-Based Simultaneous

Localization and Mapping (SLAM) Tasks in Autonomous Mobile Robots. In

Sensors.

ADDENDUM
This addendum is not part of the original accepted paper: it has been

added by A. Honorat after publication and has not been reviewed.

This addendum gives additional examples extracted from the pre-

sentation slides made for the RTNS conference. Most importantly,

it corrects a wrong usage of Equation (6) in Algorithm 1.

Also, we would like to mention another work related [33] to the

Polygraph model which schedules partially periodic SDF graphs,

expressed as ILP taking into account communication time. The

work [33] solves a more complex scheduling problem than us (since

they take into account communication time), but is not as scalable

and fast as the scheduling Algorithm 2 that we propose in this paper

(since they rely on ILP formulation).

Counter-example and correction of Algorithm 1
Unfortunately, we discovered a small error after publication. Sec-

tion 3.2 states: “Equation (6) can be extended to all paths between a

periodic root 𝜋 and leaves of the DAG𝐺
↑
𝜋 .” The necessary condition

in Equation (6) is correct but its extension to all paths as expressed

in Algorithm 1 (lines 16−17) is wrong: firings dependent on the self-

loopmay be executed at the same time and theWCET cannot simply

be summed. Figure 10 gives an example where actor 𝐴 having a

self-loop is executed at the same time of its ongoing dependency

𝐵 (firings 𝐴2 and 𝐵1, 𝐴3 and 𝐵2). Corrected Algorithm 1 is almost

identical: it just needs to remove the test on line 16 (or to replace the

test by an always true statement). The assignment on line 17 should

be executed even if the test on line 16 fails. Experimental results

remain valid since no cycles were present in the tested graphs.

Indeed the necessary condition expressed in Equation (6) can be

extended to all paths between a periodic root 𝜋 and leaves of the

DAG𝐺
↑
𝜋 , but at the cost of an underestimation of the execution time.

On each of these paths, each actor will be executed at least once

except if there are enough delays before the actor; if no delays, the

path length is greater or equal to the WCET sum of actors located

Π

3

𝐴

11

𝐵

1

(a) Sample SDF graph. The repetition vector is [1, 3, 3]
𝑇

1 2 3 4 5 6 7 8 9 10

Core 1 𝐵1 𝐵2 𝐵3

Core 2 Π 𝐴1 𝐴2 𝐴3

Π

Π

(b) Schedule example of graph 10a, on two cores, with firings of
a self-loop.

Figure 10: Counter-example to generalization of Equa-
tion (6): actor 𝐴 is not always executed alone.

Π

3

𝐴

11

𝐵

1

(a) Sample SDF graph. The repetition vector is [1, 3, 3]
𝑇

1 2 3 4 5 6 7 8

Core 1 𝐴2 𝐵1 𝐵3

Core 2 Π 𝐴1 𝐴3 𝐵2

Π

Π

(b) Schedule example of graph 11a, on two cores, with the co-
existence of firings of different actors at the same time (𝐴3 and
𝐵1).

Figure 11: Floor function underestimation example, as used
in Equation (7).

on the path. Again, all these path lengths must be lower than the

slack time 𝑇𝜋 −𝐶𝜋 . It is possible to underestimate the number of

times that the WCET of an actor must be added to the path length,

given the number of cores𝑚. The generic underestimated necessary

condition is given in Equation (7). For example, if nblf ↑𝜋 (𝛼) = 6 and

𝑚 = 3, then 𝐶𝛼 is added 2 times. Note that the computation of

the whole path length is similar to a Max-Plus algebra, as used for

throughput analysis [18]: “Max” operation is on line 12, and “Plus”

operation is on line 18 of Algorithm 1.

∀𝛼 ∈ D↑𝜋 , 𝐶𝛼 ×max

{
1,

⌊
nblf ↑𝜋 (𝛼)

𝑚

⌋}
≤ 𝑇𝜋 −𝐶𝜋 (7)

Figure 11 is an intuitive example to demonstrate why the floor

function is used in Equation (7): firings of different actors may be

scheduled at the same time, and this overlap is not easily predictable.

The only certainty for the path length after Π is about the concurrent

execution of several firings of only one actor at a time. nblf ↑
Π

(𝐴) =

nblf ↑
Π

(𝐵) = 3 but there are only two cores in the system so only

⌊ 3

2
⌋ = 1 execution time of each actor is added to the path length in

this case.

https://doi.org/10.1007/s11241-018-9310-2
https://doi.org/10.1109/ACSD.2006.23
http://dl.acm.org/citation.cfm?id=647478.727935
https://doi.org/10.1007/s10846-017-0712-5
https://doi.org/10.1007/s10846-017-0712-5
https://doi.org/10.1109/RTSS.2017.00026
https://doi.org/10.1109/RTSS.2017.00026

Scheduling of Synchronous Dataflow Graphs with Partially Periodic Real-Time Constraints RTNS 2020, June 9–10, 2020, Paris, France

𝐴

5

𝐵

3

(a) SDF graph example, of repetition vector [3, 5]
𝑇 .

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Core 1 𝐴1 𝐴3 𝐴1 𝐴3 𝐵4

Core 2 𝐴2 𝐴2 𝐵1 𝐵2 𝐵3 𝐵5

Core 3 𝐵∗
1
𝐵∗

2
𝐵∗

3
𝐵∗

4
𝐵∗

5

iteration 1 iteration 2

(b) Alternating schedule example of 12a on three cores, not re-
specting Assumption 1. ✘

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Core 1 𝐴1 𝐴3 𝐵4 𝐴1 𝐴3 𝐵4

Core 2 𝐴2 𝐵1 𝐵2 𝐵3 𝐵5 𝐴2 𝐵1 𝐵2 𝐵3 𝐵5

Core 3

iteration 1 iteration 2

(c) Normal schedule example of 12a on three cores, respecting
Assumption 1. ✔

Figure 12: Example and counter-example of Assumption 1.

𝐴

5

𝐵

3

(a) SDF graph example, of repetition vector [3, 5]
𝑇 .

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Core 1 𝐴1 𝐵1 𝐴2 𝐵2 𝐵3 𝐴3 𝐵4 𝐵5

𝐴 𝐴 𝐴

(b) Unicore schedule example of 13a, respecting the actor period
𝑇𝐴 = 5 and all data dependencies.

Figure 13: Unicore partially periodic schedule example, see
Figure 1c for fully periodic comparison.

Example and counter-example of Assumption 1
Assumption 1 states that there are as many firings as in ®𝑟 per

scheduler iteration, see Figure 12 for a counter-example and an

example.

Example of schedulability improvement due to
partially periodic constraints
Figure 13b gives a schedulable example with partially periodic con-

straints (on actor A only), whereas fully periodic is not schedulable

with the same period (see Figure 1c for a fully periodic schedule).

	Abstract
	1 Introduction
	2 Background
	2.1 Real-time systems
	2.2 Sychronous Dataflow graphs

	3 Partially periodic constraints
	3.1 Plain schedulability condition
	3.2 With no scheduler iteration overlapping

	4 Discussion on Algorithm 1
	4.1 Heuristic to run Algorithm 1 efficiently
	4.2 A false positive to Algorithm 1

	5 Scheduling of SDF graphs with partially periodic constraints
	6 Evaluation
	6.1 Partially periodic ac:cps applications
	6.2 Schedulability check and scheduling
	6.3 Gap between necessary conditions and scheduler
	6.4 Gap between the proposed scheduler and preemptive ac:edf

	7 Related work
	8 Conclusion and future work
	Acknowledgments
	References

