
HAL Id: hal-02883452
https://hal.science/hal-02883452

Submitted on 29 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Average density detectability in traffic networks using
virtual road divisions

Martin Rodriguez-Vega, Carlos Canudas de Wit, Hassen Fourati

To cite this version:
Martin Rodriguez-Vega, Carlos Canudas de Wit, Hassen Fourati. Average density detectability in
traffic networks using virtual road divisions. IFAC WC 2020 - 21st IFAC World Congress, Jul 2020,
Berlin (virtual), Germany. �10.1016/j.ifacol.2020.12.1544�. �hal-02883452�

https://hal.science/hal-02883452
https://hal.archives-ouvertes.fr


Average density detectability in traffic
networks using virtual road divisions ?

Martin Rodriguez-Vega ∗ Carlos Canudas-de-Wit ∗

Hassen Fourati ∗

∗ Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, GIPSA-Lab,
38000 Grenoble, France. (email:{martin.rodriguez-vega,

carlos.canudas-de-wit, hassen.fourati}@gipsa-lab.fr)

Abstract: In this paper, we demonstrate the existence of a reduced-order open-loop observer
to estimate the average density in a region of a large scale traffic network. We show that
traffic networks are not generally average detectable, but that it is possible to find a virtual
representation of the network using inhomogeneous road divisions such that the observer
converges to the true values. We express the conditions for the required number of cells per
road and their lengths such that the system is average detectable in terms of the network’s
topology and physical parameters. Moreover, we propose a method to calculate these divisions
and give asymptotic bounds on the quality of the approximations.

Keywords: Average detectability, traffic state estimation, large-scale networks.

1. INTRODUCTION

Accurate traffic state estimation is important in modern
intelligent transportation systems to implement control
strategies. For large urban networks, it is a challenging
task as sensor deployment can easily surpass budgetary
constraints and road-based simulations become compu-
tationally expensive as the system size increases. One
solution to these problems is the use of aggregated models
that consider only the trajectory of the average density
inside a given region. These frameworks have been used to
establish the relationship between the average density of
a region with its internal flow, as in Geroliminis and Da-
ganzo (2008), and in the development of control strategies
with low computational burden, as in Geroliminis et al.
(2013). Methods to identify regions in a network for which
aggregated models are best applicable are discussed in
Lopez et al. (2017) and Ji and Geroliminis (2012).

This paper considers the scenario of predefined regions
such that sensors (e.g. magnetic loop detectors) are avail-
able at the boundaries. We consider linear dynamics, i.e.,
the network is either in congestion or free-flow. In this
simplified case, simple observers based on commonly used
techniques (see Daganzo (1995)) track the full state, i.e.,
the density evolution of every road, which is computation-
ally expensive and might be unnecessary. The estimation
of aggregated states using low dimensional observers has
been studied in Fernando et al. (2010); Sadamoto et al.
(2017); Niazi et al. (2019). The established conditions for
the existence of such observers result in the concept of
average detectability. These conditions rely heavily on the
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network topology, and are not satisfied by traffic networks
in practice.

In this paper, we study the applicability of average de-
tectability conditions to traffic networks. We devise a
method to carefully divide roads into virtual sections (or
cells) to obtain a network representation that satisfy the
average detectability conditions.

The paper is organized as follows: in Section 2 we introduce
the model for traffic state evolution and the conditions
required for the existence of an observer for the average
density. Section 3 shows simple motivating examples that
suggest how choosing specific road divisions yields average
detectable networks. Section 4 states the problem and
Section 5 presents the main results on how to select
road divisions for general networks. Finally, in Section 6
the proposed methods are applied to a Manhattan grid
network.

2. BACKGROUND

We represent a traffic network as a weighted directed graph
G = {N,E, R, `,v} such that the N = {1, 2, . . . , p} are the
nodes of the graph representing roads, and E ⊂ N×N are
the edges of the graph representing turns from one road to
another. The adjacency matrix R ∈ Rp×p has as elements
the turning ratios between roads, i.e., ri,j is the fraction
of vehicles that turn from road i to road j. The physical
parameters ` ∈ Rp and v ∈ Rp correspond to the road
lengths and maximum velocities, respectively.

Let ρ(t) ∈ Rp denote road densities at instant t. In this
paper, we model the dynamic evolution of density as a
linear system, which implies that only the cases where the
traffic network is fully in free-flow or fully in congestion are
considered. The mixed case implies non-linear dynamics,
and is part of future research. We obtain the following
linear system as described in Bianchin et al. (2019),



ρ̇(t) = Aρ(t) + L−1Bu(t) (1)

where A = L−1(R>− I)V with L = diag(`), V = diag(v),
B ∈ Rp×q is a selection matrix that indicates the boundary
inflows, and u(t) ∈ Rq contains the input demands.

Consider that sensors are located in a set of nodes S ⊂ N
corresponding to the boundaries (inflows and outflows) of
the network. Without loss of generality, we index roads
such that measured roads have the highest indexes, i.e.,
S = {p− s+ 1, . . . , p} with q < s < p. Thus, y(t) = Cρ(t)
where C = [0s×m Is], and m = p − s is the number of
unmeasured nodes.

Consider a partition of the state vector as ρ(t) =
[ρ>1 (t) ρ>2 (t)]> such that ρ1(t) ∈ Rm correspond to the
states of the unmeasured nodes, and ρ2(t) ∈ Rs to the
states of the measured nodes. Note that ρ2(t) = y(t). The
system matrices are partitioned accordingly,

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
. (2)

where A11 ∈ Rm×m, A12 ∈ Rm×s, A21 ∈ Rs×m, A22 ∈
Rs×s, and B1 ∈ Rm×q and B2 ∈ Rs×q. Analogously, let

R =

[
R11 R12

R21 R22

]
, L =

[
L1 0
0 L2

]
, V =

[
V1 0
0 V2

]
. (3)

We aim to estimate the average of the unmeasured states,
i.e., ρav(t) = 1

m1>ρ1(t) without requiring knowledge
about the full vector ρ1(t). Consider a lower-dimensional
projected system in which the unmeasured states are
aggregated. The average state follows

ρ̇av(t) =
1

m
1>A111ρav(t) +

1

m
1>A12ρ2(t)

+
1

m
1>A11σ(t) +

1

m
1>B1u(t)

(4)

where σ(t) is the average deviation vector given by σ(t) =
ρ1(t) − 1ρav(t). The problem of determining the conver-
gence of the open-loop observer of the form

˙̂ρav(t) =
1

m
[1>A111ρ̂av(t) + 1>A12y(t) + 1>B1u(t)] (5)

is studied by Functional Observability, as in Fernando
et al. (2010), and more specifically by Average Observ-
ability, as in Niazi et al. (2019). Using results from these
domains, we introduce the following theorem.

Theorem 1. [Niazi et al. (2019)] For systems of the form
(4), the following statements are equivalent:

• The system is average detectable.
• 1>A11 = −γ1> with γ > 0.
• The open loop observer (5) converges, i.e., ρ̂av(t) →
ρav(t) as t→∞.

In the following section we show that these conditions are
not generally satisfied for traffic networks. Nevertheless,
we will show by dividing each road into virtual cells it is
possible to construct graphs which are average detectable.

3. MOTIVATING EXAMPLES

3.1 Highway: path graph

Consider a one way road as shown in Fig. 1.a. Sensors are
located at the upstream and downstream boundaries of
the road, represented by green strips in the figure. Let `

be the length of road between the sensors, and v be the
maximum velocity. Assume that it is desired to divide this
stretch into 3 virtual sections (cells), such that the sum of
their lengths is `, and all of them have maximum velocity
v. Possible divisions are shown in Figs. 1.b and 1.c.

`

(a) One way road

`
3

`
3

`
3

4 1 2 3 5

(b) Homogeneous cells

δδ
2

δ
3

4 1 2 3 5

(c) Inhomogeneous cells

Fig. 1. One way road. Green strips represent sensors
located and the upstream and downstream ends. Two
different virtual divisions are shown.

First, consider the common approach of considering ho-
mogeneous cells (Fig. 1.b), such that cells 1-3 have each
length `/3. The corresponding state matrix is,

A =


−3`−1 0 0 3`−1 0

3`−1 −3`−1 0 0 0

0 3`−1 −3`−1 0 0

0 0 0 −`−14 0

0 0 `−15 0 −`−15

 v.
where `4 is the length of entry and `5 is the length of
the exit. It can be seen that 1>A11 = [0 0 − 3`−1]v.
Thus, the condition 1>A11 = −γ1> from Theorem 1 is not
satisfied, and thus, equal length divisions are not average
detectable.

Now, consider a division such that cell 3 has length δ, cell
2 has length δ/2 and cell 1 has length δ/3, where δ = 6

11`
(see Fig. 1.c). The corresponding state matrix is

A =


−3δ−1 0 0 3δ−1 0

2δ−1 −2δ−1 0 0 0

0 δ−1 −δ−1 0 0

0 0 0 −`−14 0

0 0 `−15 0 −`−15

 v
and thus 1>A11 = [−δ−1 − δ−1 − δ−1]v. Note that all
column sums are equal, and because of Theorem 1, this
division is average detectable.

3.2 Circle road: networks

Consider a ring road as shown in Fig. 2. Suppose that
sensors are located at the entry and the exit. Consider the
graph representation in Fig. 3. The green nodes represent
sensors in the network boundaries. For simplicity, we
no longer index the nodes with sensors as they are not
concerned with the average detectability conditions.

Denote by `1, `2, v1, v2 the lengths and max. velocities of
the top and bottom sections of the circle, respectively. In



Fig. 2. Circle road with one entry and one exit.
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Fig. 3. Graph representation of a circle road.

this example, we are interested in expressing the required
conditions for the lengths, so to simplify the writing of
the equations let v1 = v2 = 1. The state matrix of the
unmeasured partition is

A11 =

[
−`−11 `−11

r`−12 −`−12

]
.

According to Theorem 1, to be able to reconstruct the
average density this matrix must satisfy 1>A11 = −γ1>,
and therefore

−`−11 + r`−12 = −γ
`−11 − `

−1
2 = −γ ⇒ `1 =

2

r + 1
`2.

As r < 1, the roads cannot be of equal length. Thus,
we are interested in finding a way to modify the graph,
such that physical parameters are conserved (i.e. lengths,
velocities and turning ratios), but that the network is
average detectable.

Let the physical lengths of the roads 1 and 2 be `1 = `2 = `.
Consider a new graph where roads 1 and 2 are divided into
n1 and n2 cells, respectively, as shown in Fig. 4. Let cells
1 to n1 correspond to road 1, and cells n1 + 1 to n1 + n2
correspond to road 2. Furthermore, let δi be the length of
the i-th cell. The dimension and elements of this graph’s
state matrix, denoted by A(n1,n2), depend on the values of
n1, n2 and the vector of cell lengths δ. The block matrix
corresponding to the unmeasured states is

A
(n1,n2)
11 =



−δ−1
1 δ−1

1 0 · · · 0 0 0

0 −δ−1
2 δ−1

2 · · · 0 0 0
...

. . .
...

0 · · · −δ−1
n1

δ−1
n1

· · · 0

0 · · · 0 −δ−1
n1+1 · · · 0

...
. . .

...

rδ−1
n1+n2

0 · · · 0 0 · · · −δ−1
n1+n2


.

The average detectability condition requires −δ−11 +
rδ−1n1+n2

= −γ and −δ−1i + δ−1i−1 = −γ for i = 2, 3, . . . , n1 +
n2. Using these equations, we can calculate section lengths
as

1

2...

n1

n1 + 1

n1 + 2 ...

n1 + n2

1

1
1

1

1− r

r

1
1

1

1

Fig. 4. Graph of a circle road with virtual partitions. Road
1 is divided into n1 sections, and road 2 into n2.

δi =
1

[i+ r
1−r (n1 + n2)]γ

. (6)

The specific values of n1 and n2 must be such that the
physical parameters of the network are conserved, this is,

` =

n1∑
i=1

δi =

n2∑
i=1

δn1+i. (7)

By substituting (6) into (7), we obtain
n1∑
i=1

1

i+ r
1−r (n1 + n2)

=

n2∑
i=1

1

i+ 1
1−r (n1 + rn2)

.

The values of n1 and n2 that satisfy this equation yield a
network partition that is average detectable. Note that as
the summands on both side of the equation are different,
then it must be n1 6= n2.

4. PROBLEM STATEMENT

In the previous section, we discussed how some simple traf-
fic networks can be given an average detectable represen-
tation by dividing each road into several inhomogeneous
virtual cells.

For a given traffic network G = {N,E, R, `,v} and vector
n ∈ Nm, we introduce the following notation:

Definition: Road division. Consider an arbitrary road
i ∈ N, and ni the corresponding element of n. A di-
vision of road i is a directed path graph whose nodes
{i(1), i(2), . . . , i(ni)} are virtual cells of i. The downstream
cell is denoted i(1), whereas i(ni) denotes the upstream
cell. Additionally, the length and velocity of the k-th cell

of road i are denoted by δ
(k)
i and v

(k)
i , respectively.

Definition: Virtual graph. A graph G(n) = {N(n),E(n), R(n),
δ(n),v(n)} is called a virtual graph of G according to
n if its nodes N(n) correspond to the road divisions of
the nodes N, and the adjacency matrix R(n) satisfies

r
(n)

i(1),j(nj)
= ri,j and r

(n)

i(j),i(k) = 1 if k = j − 1. Additionally,

δ(n) = [δ
(1)
1 · · · δ

(n1)
1 δ

(1)
2 · · · δ

(n2)
2 · · · δ(1)m · · · δ(nm)

m ]> and

v(n) = [v
(1)
1 · · · v

(n1)
1 v

(1)
2 · · · v

(n2)
2 · · · v(1)m · · · v(nm)

m ]>.

Defintion: Admissible virtual graph. A virtual graph G(n)
of G is said to be admissible if for every road i ∈ N, the
velocity of any cell is equal to the velocity of the road,

v
(k)
i = vi, (8)

and the sum of cell lengths is equal to the length of the
road,



`i =

ni∑
k=1

δ
(k)
i . (9)

The postulated problem is as follows: for any given traffic
network G, find a vector n and constant γ > 0, such
that the virtual graph G(n) is admissible and average
detectable.

5. VIRTUAL DIVISION FOR GENERAL NETWORKS

In this section, we present the conditions required for a
virtual graph to be admissible and average detectable.

Theorem 2. Let G = {N,E, R, `,v} be a given traffic net-
work. An admissible graph G(n) = {N(n),E(n), R(n), δ(n),
v(n)} is average detectable if and only if there exist n ∈
Nm, γ > 0, and δ(n) such that

δ
(k)
i =

vi
(vid>i n + k)γ

(10)

under the constraints (8) and (9), for all i = 1, 2, . . . ,m;
k = 1, 2, . . . , ni; where d>i is the i-th row of D =
(I−R11)−1R11V

−1
1 .

Proof. Let A(n) be the state matrix for the unmeasured
nodes of G(n), such that

A(n) = diag(δ(n))−1(R(n) − I)diag(v(n)). (11)

From Theorem 1, the graph is average detectable if and

only if the column sums of A
(n)
11 are equal to −γ. Consider

an arbitrary cell i(k), with k 6= 1 such that its downstream

neighbor is cell i(k−1). The column sum ofA
(n)
11 correspond-

ing to this cell is

− vi

δ
(k)
i

+
vi

δ
(k−1)
i

= −γ.

where we imposed the condition v
(k)
i = vi. By induction,

we can calculate the length of each cell from δ
(1)
i ,

1

δ
(k)
i

=
1

δ
(1)
i

+
k − 1

vi
γ. (12)

Cell i(1) has as out-neighbors all cells j(nj) such that
(i, j) ∈ E. Thus, its corresponding column sum is,

− vi

δ
(1)
i

+

m∑
j=1

rijvi

δ
(nj)
j

= −γ. (13)

Define δ−1(1) = [1/δ
(1)
1 1/δ

(1)
2 · · · 1/δ

(1)
m ]. By substitut-

ing (12) into (13), we obtain a system of linear equations,

(I−R11)δ−1(1) = γ[R11V
−1
1 n + (I−R11)V −11 1] (14)

Thus,
1

δ
(1)
i

= γ

(
d>i n +

1

vi

)
(15)

are the solutions to (14) for the downstream cells of each
road i. Substitution of (15) into (12) gives (10). 2

5.1 Approximate solutions

Consider a virtual graph whose cell lengths are calculated
according to (10). Define

fi(n, γ) = `i −
vi
γ

ni∑
k=1

1

vid>i n + k
. (16)

such that it corresponds to the error in (9), i.e., the
error between the sum of cell lengths and the length of
road i. Thus, the problem of finding an average detectable
and admissible division of a given graph is equivalent
to finding a vector of integers n and a constant γ such
that fi(n, γ) = 0 for all i = 1, . . .m. However, this is
difficult in practice, as it is a combinatorial problem. As a
simplification, we can search for solutions that satisfy the
constraints approximatively, that is, to find n and γ such
that |fi(n, γ)| is small.

In the following theorems, we propose an alternative
system of equations used to calculate n and γ. To do
this, we allow the values of n to take real (instead of only
integer) values. Then, we approximate the sum in fi(n, γ)
using the natural logarithm. This results in a system of
equations that is simpler to solve, but that results in
approximation error. However, we show that this error is
bounded and can be reduced by selecting different values
of γ.

Theorem 3. Consider any given traffic network G. Let
x ∈ Rm and γ > 0 such that,

[(Kγ − I)−1Kγ − V (I−R11)−1V −11 ]x =
1

2
1, (17)

where Kγ = diag([eγ`1/v1 eγ`2/v2 · · · eγ`m/vm ]). Let b·e
denote the nearest integer function. Then, n = bxe and γ
satisfy

|fi(n, γ)| ∼ O
(
(vid

>
i n + 1)−1

)
(18)

for i = 1, 2, . . . ,m.

Proof. Let ψ be the digamma function. Its definition and
a list of properties can be found in Abramowitz and Stegun
(1972). This function satisfies the following identity,

n∑
k=1

1

z + k
= ψ(z + n+ 1)− ψ(z + 1).

Therefore, with z = vid
>
i n, (16) can be rewritten as

fi(n, γ) = `i −
vi
γ

[
ψ
(
vid
>
i n + ni + 1

)
−ψ

(
vid
>
i n + 1

)]
.

(19)

Define ε(z) = ψ(z) − ln(z − 1
2 ). It is known that for

z > 1
2 , ε(z) is positive and monotonically decreasing.

Furthermore, its asymptotic expansion is ε(z) = z−2

24 +
z−3

24 + . . . as z →∞. Thus, (19) becomes

fi(n, γ) = `i −
vi
γ

[
ln
(
vid
>
i n + ni + 1

2

)
− ln

(
vid
>
i n + 1

2

)
+ ∆i(n)

]
,

(20)

where ∆i(n) = ε
(
vid
>
i n + 1

)
− ε
(
vid
>
i n + ni + 1

)
, is the

total error due to this approximation.

Using the Taylor expansion of the logarithm, it can be
shown that for any non-negative vector a and c > 0,
ln
(
a>bxe+ c

)
− ln

(
a>x + c

)
is equal to

∞∑
k=1

(−1)k+1

k

[
a>(bxe − x)

a>x + c

]k
∼ O

(
1

a>bxe+ 1

)
.

Thus, we can rewrite (20) as

fi(n, γ) = `i −
vi
γ

[
ln
(
vid
>
i x + xi + 1

2

)
− ln

(
vid
>
i x + 1

2

)
+ ∆i(n) + ηi(x)

]
,

(21)



where ηi(x) is the rounding error.

Now, consider the equation

0 = `i −
vi
γ

[
ln
(
vid
>
i x + xi + 1

2

)
− ln

(
vid
>
i x + 1

2

)] (22)

Using logarithm identities, this becomes

γ
`i
vi

= ln

(
vid
>
i x + xi + 1

2

vid>i x + 1
2

)
,

which can be written as xi − (eγ`i/vi − 1)vid
>
i x =

1
2 (eγ`i/vi − 1). Thus, we obtain a system of m equations,

[I− (Kγ − I)V1D]x =
1

2
(Kγ − I)1. (23)

Substituting the expression for D into (23) and rearrang-
ing terms we obtain (17), and thus, (22) is satisfied for the
considered x and γ. Substituting (22) into (21), we get

|fi(n, γ)| = vi
γ
|∆i(n) + ηi(x)| (24)

Note that |∆(n)| < ε(vid
>
i n + 1), and so ∆(n) ∼

O[(vid
>
i n+1)−2]. Additionally, ηi(x) ∼ O[(vid

>
i n+1)−1].

Thus |fi(n, γ)| ∼ O
(
(vid

>
i n + 1)−1

)
, completing the

proof. 2

Theorem 4. There exists γmax such that for every 0 <
γ < γmax, the solution to (17) is positive. Moreover, as γ
approaches γmax the magnitude of x grows arbitrarily big.

Proof. Let M = (Kγ − I)−1Kγ − V1(I − R11)−1V −11 .
Assume that M is invertible. Using Woodbury’s identity,
we can write M−1 as

(I−K−1γ ) + (I−K−1γ )V1Kγ(I−R11Kγ)−1V −11 (I−K−1γ ).

Therefore, M is invertible only if I−R11Kγ is invertible.

Let λ(R11) denote the spectral radius of R11. It can be
shown that I−R11 is an invertible M-matrix, Rodriguez-
Vega et al. (2019), and thus, λ(R11) < 1. For sufficiently
small γ, Kγ can be made arbitrarily close to I, such that
λ(R11Kγ) < 1.

Let γmax be such that λ(R11Kγmax
) = 1. Thus, for every

γ < γmax, I− R11Kγ is an invertible M-matrix such that
(I − R11Kγ)−1 = I +

∑∞
k=1(R11Kγ)k. As γ → γmax,

the nonzero elements of (R11Kγ)k increase exponentially.
For γ = γmax, the sum diverges and the matrix is not
invertible. Finally, for 0 < γ < γmax, (I − R11Kγ)−1 and
(I − K−1γ ) are non-negative, which implies that M−1 is
non-negative. 2

6. SIMULATED EXAMPLE AND RESULTS

Consider the example traffic network shown in Fig. 5,
which corresponds to the line-graph for a Manhattan Grid
of 4 × 4 intersections. Assume that all roads have the
same length of ` = 500m, and the same free-flow velocity
of v = 30 km·h−1. As all speeds and lengths are equal,
Kγ = exp(γ `v )I, and γmax = −(v/`) ln [λ(R11)].

It was shown in the previous section that for a given
value of γ ∈ (0, γmax), there exists one vector n that is
an approximate solution to the problem. Figure 7-Left
shows n that solves (17) for different values of γ. For
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Fig. 5. Line-graph for a 4×4 Manhattan grid (nodes
correspond to roads). All turning ratios are set to
50%. Green nodes symbolize sensor locations.

γ < 0.88γmax, the elements of n are all 1. As γ approaches
the maximum value, n increases quickly.

However, using (17) to calculate n induces an error fi(n, γ)
in the admissibility constraint. Consider the total root
mean square error (RMSE) for all roads i = 1, . . . ,m, as
shown in Fig. 7-Middle. As γ increases, the upper limit of
this error decreases, approaching 0 as γ → γmax. This is
because the number of cells per road is also increasing
rapidly, so Theorem 3 is applicable. In this sense, the
lowest error is obtained by choosing γ very close to γmax.

Consider the observer ˙̂ρav(t) = −γρ̂av(t) + b>y(t) where

b> = 1
1>n

1>A
(n)
12 . It can be shown that the elements of

this vector are given by

bi =
1

1>n

m∑
j=1

ri,j
vi

δ
(nj)
j

.

Note that even if the dimension of A
(n)
12 grows with n, the

entries of b> are easily computed. As γ increases, n goes to
infinity, but the lengths δ(n) go to 0. Figure 7-Right shows
the values of b> as a function of γ. For the considered
network, the limit of b> as γ → γmax exists.

As a specific case, let γ = 0.95γmax, which corresponds
to a vector n with elements 2, 3 and 4, and a RMS error
below 3%. The corresponding virtual graph is shown in
Fig. 6. Using the virtual graph as an input, we performed a

Fig. 6. Virtual graph using γ = 0.95γmax.



Fig. 7. Left: Approximate solutions of (17) for n for all unmeasured nodes. Middle: Normalized root mean square

error,
√∑

i fi(n, γ)2/`. Right: Measurement gain for the open-loop observer.

simulation using random initial conditions, and sinusoidal
inputs with additive noise. The trajectory of the real
average density is shown in blue in Fig. 8.

Using the measurements y as an input, we used the
open-loop observer to estimate the average density. The
trajectory of the estimate is shown in red in Fig. 8. This
observer converges to the real solution as expected. Note
that to deploy the observer, the virtual graph of Fig. 6 is
not needed; only γ, n, and the lengths of the upstream

cells δ
(nj)
j are required, and can be calculated off-line.

Therefore, the on-line deployment of the observer requires
little computational power and is applicable for large-scale
networks.

The computational cost of the off-line calculations consist
of a matrix inversion for each γ, which require O(p3)
operations. In addition, γ needs to be iterated to obtain
the desired precision. To find the value of γmax we can use
the fact that n (and its rate of change) is non-decreasing
for γ < γmax, and has negative values for γ > γmax. Hence,
a modified version of Newton’s algorithm can be used to
find this value. More efficient methods will be studied in
future work.

Fig. 8. Real and estimated average density.

7. CONCLUDING REMARKS

In this work, we propose a strategy to modify a given
traffic network by dividing each road into cells, such
that the modified system is average detectable, i.e., there
exists a one-dimensional open loop observer that estimates
the system’s average density. The strategy consists on
calculating the number of divisions per road, and the
length of each cell. Exact conditions for these variables
were found, as well as a procedure to find approximate
solutions. These techniques have as degree of freedom the
observer gain γ, for which an upper bound was found.

With simulations we show that as γ approaches the
upper bound, the approximation error for satisfying the
conditions approaches zero, at the cost of incrementing the
number of divisions per road. Nevertheless, in the limit,
the observer remains well defined. Also, we show that the
modified graph is not required to the deployment of the
observer: only the number of cells and their lengths are
needed.
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