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Abstract—Local energy markets, platforms in which pro-
sumers in the same Low Voltage network can trade energy
among themselves, offer a great opportunity to incentivize the
consumption of locally generated energy. Unfortunately, tradi-
tionally proposed implementations of local energy markets such
as simple double auctions and peer to peer exchanges do not
fully exploit the available flexibility in these systems.

We design a market mechanism that exploits the character-
istics of the players, providing them with expressive bids to
represent their flexibility, which we assume is due to energy
storage. The proposed market is not obviously manipulable and
can be cleared by solving a linear programming problem that
grows linearly in the number of participants.

Using realistic data, we benchmark the proposed mechanism
against sequential auctions and peer to peer exchanges often used
in the literature. Our numerical results show that the proposed
mechanism outperforms traditional implementations.

I. INTRODUCTION

To tackle climate change, arguably among the greatest
challenges of our time, we need to deploy renewable and
distributed energy resources. Yet renewable energy resources,
such as solar and wind, are intermittent by nature. As a
consequence, grid flexibility (demand response) is required to
fully exploit their potential.

An advantage of implementing demand response at the local
level is that its energy produced in the Low Voltage (LV)
network is often consumed without entering the main grid
(Medium/High Voltage), thus easing the congestion of the
latter.

Several demand-response mechanisms have been proposed
to increase the amount of energy that gets traded locally.
Among them, and mimicking what had been done at the
wholesale level, local energy markets (LEM) have been pro-
posed to implement the aforementioned local trades.

Most proposals suggest the sequential use of auctions or
peer-to-peer mechanisms for the exchange of energy, one for
each time-slot time-slot. Unfortunately, such implementations
do not capture the correlations in time of demand and flexi-
bility that govern most of the energy consumed at the local
level.

The VALADOE Chair of IMT Atlantique in partnership with Télécom
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When designing markets, it is useful to exploit the charac-
teristics of the environment in which they will be deployed.
We can observe some of these modifications in the wholesale
energy market, where special types of bids were designed to
provide generators with a descriptive language in which they
could express their preferences, tightly coupled to the start-up
costs in their energy production processes.

Accordingly, we design a local energy market for house-
holds assuming that their flexibility is driven by energy stor-
age. This paper is an extension of our original work in the
subject [1]. As we study local energy markets in the context
of the energy transition, we assume that all market participants
have the option to buy (or sell) their energy in the local market
as well as from their Traditional Energy Company (TEC). In
other words, we study LEM as a demand response program
only. This is in contrast with the wholesale energy market that,
for some participants1, might represent their only marketplace.

We begin by presenting a simple example to motivate the
need for a market mechanism specifically tailored to local
energy trades among households.

A. Motivating example
Consider a setting with two time-slots, one seller and two

buyers. The seller has one unit to sell in each time-slot (no
flexibility). Buyer I needs one unit in the first time-slot (no
flexibility). Buyer II needs one unit but is indifferent in which
time-slot she gets it. Buyer II is willing to pay slightly more
than buyer I. In a LEM implemented as a sequential auction,
both buyers will try to trade in the first time-slot. The reason
for this is that buyer II does not know the future (although
she might have some beliefs about it), and would rather not
risk loosing an opportunity to buy at a better price. In the
end, Buyer II will trade with the seller in the first time-slot
(because she offers a more competitive price), while Buyer I
will be forced to buy from the TEC. In the second time-slot,
the seller is forced to sell to the TEC as there are no buyers.

If the mechanism had allowed Buyer II to express her
flexibility, Buyer I would have traded in the first time-slot
and Buyer II in the second one, consuming all surplus locally
and at a higher welfare for all participants involved.

This calls for the design of a mechanism that integrates the
available flexibility of the participants.

1Those without over the counter contracts



II. CONTRIBUTIONS AND RELATED WORK

In [1], the authors describe a mechanism for trading energy
among households with batteries. In that mechanism, players
have to bid all the characteristics about their battery, their load
profiles, and their electricity tariffs. Furthermore, the resulting
winner determination problem is NP-hard.

A. Contributions

In this paper we explore a slightly less general framework
than the one introduced in [1], which exploits the structure
of the problem to obtain a simpler but useful mechanism.
We show that the proposed mechanism cannot be “obviously
manipulable” (a relaxation of strategy-proofness) and that
the winner determination problem is of linear complexity.
Furthermore, through numerical simulations, we show that the
proposed market outperforms traditional implementations of
LEMs.

B. Obvious manipulations

A strategy-proof mechanism is one in which telling the
truth (revealing the type of each player) is a weakly dominant
strategy [2]. This is a desirable property as players do not need
to employ complicated strategies. Among all mechanisms that
are not strategy-proof, some are easier (obvious) to manipulate
than others. A mechanism is obviously manipulable if there
exists a manipulation (a strategy) θ′ whose best case or worst
case is strictly better than telling the truth θ. A mechanism
that has no obvious manipulations is said to be Non Obviously
Manipulable (NOM). [3].

C. Additional related work

Most of the recent treatment of Local Energy Markets
focuses on sequential implementations where, every 15 to 30
minutes, players get to trade energy for the next time-slot [4]
[5], [6], [7]. These implementations rely on double auctions
and peer-to-peer schemes to implement such markets. Of them,
only some consider the tariffs offered by the TEC in addition
to trading in the market [8], [9], [10], even though such tariffs
are being offered in real implementations [11].

The idea of implementing LEMs as combinatorial auctions
is not new. For a survey on some of the methods that have been
proposed, the reader is referred to [12]. We briefly discuss two
of those herein.

In [13], the authors propose the use of parallel reverse com-
binatorial auctions to implement LEMs. They explicitly avoid
the use of exchanges (double-sided auctions), as proposed in
the present paper, because of the complexity that they entail. In
their design, players can submit bids for single time-slots and
correlation functions between time-slots that specify a change
in the desired price of the correlated items if they were to be
acquired together.

Carlsson and Andersson in [14] propose a double sided
combinatorial auction using a tree-structured market. Their
proposal allows for substitute buy and sell bids where players
are indifferent regarding when they buy (or sell) a certain
quantity. This is very similar to the approach of this paper, with

the difference that our mechanisms allow ramp constraints to
be incorporated in the bids. Moreover, the complexity of the
winner determination problem used in this paper is lower than
than the one presented in [14].

III. USER MODEL

We proceed to present the mathematical model adopted
by us to represent players that optimize and operate energy
storage in the presence of fixed prices.

Let N be the set of players and T the set of time-slots in
a single day with N = |N |, T = |T |.

Each player consumes energy by using appliances. Let dit
denote the energy consumption (excluding the battery) in kWh
of player i in time-slot t . In this paper we assume that
the appliance-driven energy consumption dit is fixed. In other
words, players do not have flexibility in the way that they use
their appliances (except their battery). Users might also have
renewable energy resources such as photo-voltaic panels. Let
git denote the total amount of energy produced by player i in
time-slot t. The total demand of player i at time-slot t will be
denoted by lit = dit − git. It is positive if the player consumes
more than what she produces and negative otherwise.

Each player can own a battery. The battery of player i has
a maximum capacity of SiM (possibly 0) and an initial state
of charge Si0. The battery has a maximum charging capacity
of δ

i
(δ
i ≥ 0) and a maximum discharging capacity of δi

(δi ≤ 0) per time-slot. Furthermore, player’s i battery might
not be perfectly efficient. In that case, the charging efficiency
will be denoted by ηic and the discharging efficiency by ηid.

As we assume that a player cannot change the way in which
she uses her appliances, the only action available to player i
is to operate her battery. The set of feasible actions of player
i is given by Equation (1):

X i =

{
xi : 0 ≤ Si0 +

j∑
k=1

xik ≤ SiM ,∀j ∈ T , xit ∈ [δi, δ
i
]

}
(1)

The “net load“ (denoted by zit, positive if buying, negative
if selling) will be used to describe the energy imported or
exported by player i from the grid and for time-slot t, is given
by Equation (2), where [•]+ = max{•, 0}.

zit =
1

ηic

[
xit
]+ − ηid [xit]+ + lit (2)

In our model, each player has a contract with a Traditional
Energy Company (TEC) that provides them with as much
energy as they need at a fixed price. If βit denotes the buying
price offered by the TEC to player i at time-slot t and γit the
price of selling, the cost of player i when operating the battery
according to xi ∈ X i is given by Equation (3).

Ci(xi) =

T∑
t=1

βit
[
zit
]+ − γit [−zit]+ (3)



Assumption 1. We assume that the selling prices satisfy:
γit1 > ηicη

i
dγ
i
t2 , ∀ t2 > t1.

Assumption 1 is satisfied by most residential tariffs and
feed-in-tariffs (FIT, the price at which prosumers can inject
their surplus energy into the grid), and it guarantees that
storing energy in the battery for selling it later is never optimal.

Assumption 2. Since players have inflexible usage of their
appliances, their utility vi is set to be 0 when consuming their
desired load profile , and it is set to −∞ if they do not. Fur-
thermore, users have quasi-linear utilities: ui(zi) = vi(zi)−p.
Because the load will always be satisfied, their utility can be
summarized by the negative amount of money that they need
to pay for electricity.

Naturally, if players wish to minimize the amount of money
spent on electricity, they will decide how to operate their
battery in a way that minimizes such a cost. This can be done
by solving the linear programming problem (4). A proof of
linearity can be found in [15].

∆i ∈ arg min
xi∈X i

Ci(xi) (4)

Most commercial solvers will output one of the solutions
of the optimization problem (4). We will assume that players
solve optimization problem (4) only once and that they obtain
one of its solutions, which we shall refer to as the plan, and
we will denote it by ∆

i
.

When LEMs are implemented in a sequential fashion, play-
ers need to decide how much to bid in every time-slot. They
can learn how much energy they would need by looking at
the plan. There might be more than one plan that provides the
same cost (flexibility), but players have no way to report this
flexibility to the market-maker (in the sequential setting). In
the next section, we use the plan ∆

i
to identify an indifference

set in which the player’s cost remains unchanged. Later, we
will design a market mechanism that uses those sets as bids
and exploits the flexibility available to players. This in contrast
to sequential implementations where players cannot benefit
from this knowledge.

IV. INDIFFERENCE REGIONS

Most of the time, the solution to the LP that controls the
battery is not unique. In that case, we can derive, from the
solution obtained (i.e., the plan), a set of solutions among
which the player is indifferent. These sets will define the
flexibility regions that the player can bid in the market. We
assume that players have already solved their optimization
problem using (4) with respect to the TEC prices and have
found their respective plans.

A. Indifference regions for buying

Consider the load profile (blue curve) in Figure 1, an
optimal battery trajectory (black curve) obtained by solving
the appropriate LP, i.e., the plan ∆ and the corresponding
net load in red. Negative consumption represents surplus of
generation while a positive value of the battery curve stands

for charging. The player owns a battery with charging and
discharging efficiencies ηc = ηc =

√
0.8.

The optimal strategy is to charge the battery during the
“cheap“ period and discharge it during the expensive one. The
load in the expensive period is 4 units, so there needs to be

4√
0.8

units in the battery before the change in price. The two
free units in time-slots 5 and 6 contribute to 2

√
0.8 units in the

battery. The remaining R = 4√
0.8
− 2
√

0.8 need to be bought.
This can be done by buying R√

0.8
= 3, because of the charging

efficiency.
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Fig. 1. Example load profile with buying indifference.

Consequently: 2

∆ = (0,
√

0.8,
√

0.8,
√

0.8,
√

0.8,
√

0.8,
−2√
0.8

,
−2√
0.8

).

We may observe that the charging during time-slots 2 to 4,
could have been done also in time-slot 1. Furthermore, one
time-slot could have charged more than others. With the above,
we can define the net load indifference region ZB for buying
as:

ZB =

{
(z1, z2, z3, z4, 0, 0, 0, 0) :

4∑
1

zi = 3, zi ∈ [0,
δ

ηc
]

}
.

In the traditional LEM literature, the player will offer to buy
1 unit in the market associated with time-slot 2 and 1 unit in
the market associated with time-slot 3 and 1 unit for time-slot
4. In the proposed market, the player can submit the following
bid b = (1, 4, 3, δηc , C1), or more generally

b = (ts, te, Q,
δ

ηc
, β) (5)

In the equation above, the first two coordinates indicate the
first and last time-slot (inclusive) of the interval for which
the player is bidding. The third coordinate represents how
much energy the player wishes to buy, the forth coordinate
how much energy she is willing to buy per time-slot (no more
than she can store, due to ramp constraints) and finally, β is
the maximum price she is willing to pay per unit.

2The plan needs to add up to -Si0, as leaving energy in the battery at the
end of the horizon is not optimal.



B. Indifference regions for selling

In this subsection we describe an analogous scenario as the
presented in the subsection above expect that, in this case, the
player wishes to sell energy.

As it is the case with most feed-in-tariffs, we assume a flat
rate structure. In this example, the battery’s efficiencies are
given by ηc = ηd =

√
0.8 but, unlike the previous case, where

we did not care about the value of the ramp constraints, we
have that δ = δ = 1.

The plan ∆, defined in Figure 2 is given by: ∆ =
(1,
√

0.8, 1,
√

0.8, 2(1−
√

0.8),−1,−1,−1,−1)
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Fig. 2. Example load profile with selling indifference.

The battery cannot discharge more than 4 units during time-
slots 6 to 9, which because of efficiency can only cover 4

√
0.8

units of load. As a result, the player needs to acquire extra load
during those time-slots, regardless of the battery. During the
first time-slots, the objective is to store the 4 units required.
To do so, the player will have to keep 4√

0.8
real units. During

time-slots 2 and 4, the battery charges at its maximum capacity
and the remaining surplus has to be sold. During time-slots
3 and 5, the battery charges all generated energy without
reaching its ramp constraint. Finally, during time-slot 6, the
battery is underused and there is still surplus. The battery could
have been charged more in time-slot 6 instead of one of the
other time-slots.

We proceed to describe a set that contains the alternatives
of the player that result in the same cost.

Denote by zit the amount offered by the player in the market.
Clearly, zit ≤ max{−lit, 0} as the player cannot sell energy
that she does not have. The energy kept is the energy not sold
and is represented by lit − zit. Because of ramp constraints,
the energy kept must be smaller than the maximum charging
power taking the efficiency into account: lit−zt ≤ δ

ηc
. Finally,

the energy kept has to be at least the amount of energy needed∑te
t=ts

lit − zt ≥ K, where K is the total amount of energy
that need to be kept. In this example, K = 4√

0.8
.

Putting it all together, the set of ZS of indifferent alterna-
tives while selling can be described as:

ZS =

{
z ∈ RT1 :

te∑
k=ts

lik − zk ≥ K, zk ∈ [

[
lik −

δ

ηc

]+
, lik]

}
.

with T1 = e− s+ 1. For this particular example, we have
the following: ZS = {

∑6
i=2 zi ≥

4√
0.8
, z3, z5, z6 ∈ [0, 1], z2 ∈

[2− 1√
0.8
, 2], z4 ∈ [3− 1√

0.8
, 3]}

A player that wishes to participate in the market and sell,
can submit a bid expressed as the indifference set ZS together
with the maximum price she is willing to pay for each unit.
The summarized selling bid can be described by Equation (6),
where γ is the minimum price per unit that the seller is willing
to accept.

b = (ts, te,K, ls, ls+1, . . . , le,
δ

ηc
, γ) (6)

V. PROPOSED MECHANISM

In this section we explain the market mechanism proposed
in this paper, which we shall call Combflex. There are 4 key
ingredients to the mechanism: the participants, described in
Section III, the bid format, the winner determination problem
(WDP) and the payment rules.

A. Bid format

The bid format consists of the union of indifference sets
for buying and selling. Under this definition, an arbitrary bid
B can be defined as: B = ((Z1, p1), . . . , (Zm, pm)), where
Zj is an indifference region for buying or selling and pj is
the associated reservation price per kWh with Zj . To submit
the indifference regions, players can submit the corresponding
summaries for buying and selling as described in Equations
(5) and (6).

A bid B will be considered valid as long as the set of
variables involved in each indifference region V (Zj) are
pairwise-disjoint. In other words, there is no overlap in time
between blocks in the same bid.

B. Winner determination problem

The winner determination problem proposed in this paper
is an optimization problem that maximizes the value of the
local trades.

For each player i, let Bi be the set of time-slots in which
player i is buying and Si the set of time-slots in which player
i is selling. We will omit variables in time-slots for which the
player is not buying nor selling. With the above notation, the
variable zib, b ∈ Bi represents the amount of energy that player
i is buying at time-slot b while zis represents the amount of
energy that player i is selling during time-slot s.

The notation zis ∈ Bi (or equivalently zib ∈ Bi) will denote
that the variable is within the appropriate indifference set and
satisfies the corresponding constraints. Observe that this can be
done wlog. as each variable belongs to only one indifference
set within Bi.

Finally, observe that, even though a player might need to
buy or sell a quantity at a given time-slot (as it is the case
in the example for selling, where z2 ∈ [2 − 1√

0.8
, 2]), that

quantity needs not be necessarily traded in the market (it can
be settled with the TEC). To represent the above behaviour
in the market, for each variable z there will be a variable w
such that 0 ≤ w ≤ z. By doing so, variables z will represent
the point of consumption within the indifference region, while
variables w will represent how much of that consumption (or
surplus) gets traded in the market. We will make use of the



convention that zit = 0 and consequently wit = 0 whenever
t /∈ Bi ∪ Si.

With the above conventions, the optimization problem that
defines the WDP is given by Equation (7):

min
z,w

∑
t∈T

∑
i∈N

witp
i
t1t∈Bi − witpit1t∈Si

(7)
subject to: (8)

zib ∈ Bi, ∀b ∈ Bi, ∀i ∈ N (9)

zis ∈ Bi, ∀s ∈ Si, ∀i ∈ N (10)∑
i∈N

wit1t∈Bi − wit1t∈Si = 0 ∀t ∈ T (11)

0 ≤ wit ≤ zit, ∀i ∈ N ,∀t ∈ T (12)

where 1• is the indicator function.
As mentioned above, the objective of optimization problem

(7), is to maximize the value of the local trades. The first
constraint guarantees that the variables involving buying in the
market are constrained as defined in the buying indifference
sets. Similarly, the second constraint guarantees that the selling
variables are properly defined within the bid. The third group
of constraints guarantees that the amount of energy bought
and sold in every time-slot is the same. Finally, the last
constraint guarantees that no player trades in the market above
the selected consumption level.

Proposition 1. The WDP has a polynomial complexity in T
as well as in N .

Proof. In optimization problem (7), the objective function and
the constraints are linear (the indifference sets are defined as
the intersection of half-spaces), so the problem can be written
as a linear program (LP). The resulting problem scales linearly
in the number of players and time-slots and it is known that
LP in is P.

C. Payment Rule

The payment rule defines how much each player gets for
each trade in the market. For each solution of WDP, we will
show that we can determine a price for buying and selling for
each time-slot up to a parameter λl, λh. We refer to these as
the clearing prices. Consequently each player will pay all the
traded quantities at the clearing prices. First, we shall show
that such prices exist.

Theorem 1. In an optimal solution of the optimization prob-
lem (7), it holds that in every time-slot t, the maximum price
asked by all players selling in that time-slot (w > 0) is smaller
or equal than the lowest price offered by all participants that
bought in that time-slot (w > 0). In other words, in every
time-slot t, there is a nonempty interval of prices [plowt , phight ]
such that every participant that is trading in that time-slot
(according to the optimal solution) is satisfied with it.

Proof. By way of contradiction. First, we show that the
solution can be improved by removing the trades for which the

theorem does not hold. Later, we show that the new solution
is still feasible.

Suppose that there is a time-slot t in which the theorem
does not hold and let w∗ be the optimal solution. There are
some w∗s for buying and some for selling (same quantity)
for which the price of buying is lower than selling. Observe
that the objective function can be improved by removing those
quantities. We consider a new solution w′ by removing those
quantities of w∗. Because we did not change the values of
z∗ and we only decreased w, it holds that w′ ≤ z∗, so the
solution is still feasible. This is a contradiction because we
assumed that the solution was optimal.

We can change the mechanism by changing which value in
the interval is used as the price. Furthermore, we could allow
for a different price for buying than for selling. By doing so,
the leftover money would go to the market maker, who might
have to cover operational costs for running the market.

D. Variant with a split

We have shown that we can define a price (or two) in every
time-slot. With that in mind, we might envision a procedure to
reduce the ability of participants to cheat (or game the market).
Borrowing ideas from MUDA [16], we can split all the bids
into two different markets, namely “left” and “right”. Each
market clears independently and we use the prices obtained in
the other half, i.e., the right market uses the prices of the left
one and vice versa.

We will call this variant of the Combflex mechanism
Combflex Split. By splitting the market, players cannot influ-
ence her trading price at all. The proposed procedure comes at
a cost, namely efficiency: when forcing players to trade at the
clearing prices of another market, some trades are bound to
be lost. Furthermore, we can envision a market that clears by
splitting into two markets with a probability p, and runs the
efficient version with probability 1−p. This could incentivize
participants to tell the truth without compromising efficiency
in the long run.

VI. PROPERTIES OF THE MECHANISM

In this section we prove some properties about the mecha-
nism introduced in the previous section.

Theorem 2. In Combflex, reporting a smaller quantity (for a
seller) or price (for a buyer) than desired can be profitable.

Proof. A seller offering a smaller quantity can shift the supply
curve to the left, increasing the price. She might benefit overall
from selling a smaller quantity at a higher price. The buyer
whose bid intersects the supply curve can influence the trading
price. By offering a lower buying price, he can reduce the
clearing price of the time-slot at a profit.

Theorem 3. In Combflex split a player cannot misreport her
preferences to change the market prices.

Proof. This follows directly from the fact that all prices are
determined exogenously.



Theorem 4. The variant of the mechanism that splits players
into two groups is not obviously manipulable.

Proof. A strategy in which a buyer offers a smaller price and
less quantity is dominated by telling the truth in the mechanism
that splits players. Therefore, a profitable manipulation must
offer at some time-slot more energy than desired or at a
higher reservation price. For those strategies, there is a profile
of the other players actions in which only the misreported
quantity/price trades, and the player is worse off. The same
holds for a seller.

VII. NUMERICAL EXPERIMENTS

So far, we have proposed a new market mechanism to
implement local energy markets. In the previous sections we
established some of its properties. To complement all of our
previous results, in this section we compare the performance
of the combinatorial auction presented in this paper with
traditional mechanisms used in the literature to implement
LEMs, using numerical simulations.

A. Experiment Setup

For the experiments reported in this section, we considered
an environment composed of 50 players. Each player was
equipped with a battery with a maximum capacity of 13 kWh,
charging and discharging efficiencies of 0.95 and a maximum
charging and discharging ramp rate of 5 kW.

For the load profiles, we used data sampled every 30 min-
utes, which yielded 48 time-slots in a day. Real consumption
data was obtained from the Ausgrid project [17]. The profiles
contain a small amount of renewable surplus, but not sufficient
to justify a local energy market. For this reason, we augmented
half of the profiles with additional renewable energy. To do so,
we sampled a uniform random variable Rit ∼ U [−0.3, 0] i.i.d.
for the time-slots when the sun should shine. The sampled
variables were added to the player’s profiles.

We considered two electricity tariffs: a flat rate and a Time-
of-Use with two steps. The price of the flat rate was 14, while
the ToU had prices: 12 (during the first half of the day) and
16 (during the second half). Both tariffs offered a constant
Feed-in-Tariff at 10. All prices are in cents per kilo watt hour.

Half of the users with extra generation were subscribed to
the flat rate and the other half to the ToU. The same was true
for the players without additional generation.

We evaluated 7 different mechanisms: 4 obtained as variants
of the mechanism presented in this paper, and 3 other market
algorithms often encountered in the literature.

The 4 variants of the proposed mechanism considered
were: Combflex 1-0, Combflex .5-.5, Combflex S 1-0 and
Combflex S .5-.5. We abbreviate Combflex split by Combflex
S Finally, in the 1−0 markets, buyers and sellers each pay the
clearing price, with all the profit in the gap going to the market
maker. In contrast, the .5−.5 algorithms use the mean between
the buying and selling clearing prices and all the profit stays
with the participants.

The external market algorithms used as benchmark are:
Auction M, Auction H, P2P. Auction M, stands for the

strategy-proof auction MUDA [16]. Auction H, stands for the
double auction proposed by Huang et al [18]. Finally, P2P
stands for a simple peer-2-peer trading algorithm. In it, players
are matched randomly and trade if the buying price offered is
higher than the asked price for selling. The mechanisms con-
tinues randomly matching all remaining players with tradeable
quantities until no more trades are available or all players have
been matched together. All these mechanisms have been used
in the literature.

The markets described above are used to trade energy for
single time-slots, unlike the auction presented in this paper
where all the time-slots are traded at the same time. Unlike
the mechanism introduced in this paper, the three benchmarks
were ran sequentially, with players trading only for the next
time-slot. To stimulate the interaction of players in the market,
we assume that players have a belief about market prices
being more competitive during hours when the sun shines
(as there is extra surplus). This was achieved by changing
the tariffs of players to include a markup of 10% during
the corresponding time-slots. This implies that the buying
price was 10% cheaper and the selling price was 10% higher.
The implementations of MUDA, Huang et al., and the P2P
algorithm were ran using the PyMarket library [19]. To solve
the numerous optimization problems, in the simulations we
used CPLEX and Pulp. Furthermore, simulations were ran in
parallel using GNU parallel [20]. We simulated 100 different
days. In each of them, all the mechanisms ran under the same
conditions.
B. Results

We proceed to explore the obtained numerical results. Two
metrics are of particular interest: the aggregated social cost
and the total non-traded energy. The social cost is simply the
sum of the cost of all players. The total non-traded energy
is the absolute value (energy injected in the grid is negative)
of the energy that could not be traded locally, and had to be
consumed or injected from the main grid. It is a metric that
describes the capability of a market to incentivize local trades.
For each simulated day, we obtained the desired metric when
running each of the market algorithms as well as when players
optimized their batteries individually, without a market. In
Figures 3 and 4 we plot the Social Cost and the Untraded
Energy, respectively. Instead of showing the value of the
metric, for each day we took the ratio of the corresponding
metric when running the market divided by the metric when no
market was in place. A lower value of both metrics is desirable
and consequently, a ratio lower than 1 indicates a reduction
with respect to the case without market. Regarding the social
cost, we observe that, when Combflex uses the middle price
(.5 − .5), it outperforms traditional auction mechanisms, but
the (1− 0) variant does not. Finally, all variants of Combflex
result in a higher amount of locally traded energy than their
traditional counterparts.

VIII. CONCLUSIONS

In this paper, we presented a market mechanism for buying
and selling energy among end-customers. The bidding format
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Fig. 3. Cumulative distribution of the ratio between the social cost obtained
when running a LEM and without it.
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Fig. 4. Cumulative distribution of the ratio between the untraded local energy
obtained when running a LEM and without it.

was designed to capture the natural flexibility available to
players that own energy storage and photo-voltaic panels.

Even though the market introduced in this paper is not
strategy-proof, we have established that it is not obviously ma-
nipulable. The mechanism was evaluated using numerical sim-
ulations with realistic data. In these experiments, the proposed
market outperformed traditional LEM implementations such as
double auctions and peer to peer exchanges. We envision three
possible directions for future work. First, to obtain analytical
guarantees on the efficiency of the mechanism. Secondly, to
incorporate new bids into the mechanism such as allowing
players to offer unused battery capacity and finally, to model
grid constraints into the mechanisms and evaluate the role of
those in the solution and the social welfare.
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