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Abstract

We address the problem of learning on large sets of features, motivated by the need of performing
pooling operations in long biological sequences of varying sizes, with long-range dependencies, and pos-
sibly few labeled data. To address this challenging task, we introduce a parametrized embedding that
aggregates the features from a given set according to the optimal transport plan between the set and a
trainable reference. Our approach scales to large datasets and allows end-to-end training of the reference,
while also providing a simple unsupervised learning mechanism with small computational cost. Our ag-
gregation technique admits two useful interpretations: it may be seen as a mechanism related to attention
layers in neural networks, yet that requires less data, or it may be seen as a scalable surrogate of a classi-
cal optimal transport-based kernel. We experimentally demonstrate the effectiveness of our approach on
biological sequences, achieving state-of-the-art results for protein fold recognition and detection of chro-
matin profiles tasks, and, as a proof of concept, we show promising results for processing natural language
sequences. We provide an open-source implementation of our embedding that can be used alone or as a
module in larger learning models. Our code is freely available at https://github.com/claying/OTK.

1 Introduction

Many scientific fields such as bioinformatics or natural language processing (NLP) require processing sets of
features with positional information (biological sequences, or sentences represented by a set of local features).
These objects are delicate to manipulate due to varying lengths and potentially long-range dependencies
between their elements. For many tasks, the difficulty is even greater since the sequences can be arbitrarily
long, or only provided with few labels, or both.

The concept of attention [2] was proposed to cope with such data in the context of neural machine
translation. This mechanism allows a learning model to automatically search for parts of a source sentence
that are relevant for predicting the next word. A striking development of attention was the transformer [35],
a neural network architecture relying mostly on attention mechanisms. Transformers led to major progress
in many NLP tasks [37] and to some extent in other fields relying on structured data such as computer
vision [27], or bioinformatics [28]. However, a major drawback of these models is their prohibitive number
of parameters. For instance, state-of-the-art models in NLP, such as T5 [25], can have up to 11 billion
parameters. In many tasks, it is thus very expensive or impossible to annotate enough data to train such
models. More recently, deep learning architectures specifically designed for sets have been proposed [18, 31].

∗Equal contribution.
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Our experiments show that these approaches perform well for natural language processing tasks, but they
achieve mixed performance for long biological sequences of varying size.

To address the previous issues, we introduce an embedding that marries ideas from optimal transport
(OT) theory [23] and kernel methods [30], which we call OTKE (Optimal Transport Kernel Embedding).
More precisely, we embed feature vectors of a given set to a reproducing kernel Hilbert space (RKHS) and
then perform a weighted pooling operation, with weights given by the transport plan between the set and
a trainable reference. Finally, we obtain a finite-dimensional embedding by using kernel approximation
techniques [40]. The motivation for using kernels is to provide a non-linear transformation of the input
features before pooling, whereas optimal transport allows to align the features on a trainable reference with
fast algorithms [8]. Such combination provides us with a theoretically grounded embedding that can be
learned either without any label, or with supervision. Our embedding can indeed become adaptive to the
problem at hand, by optimizing the reference with respect to a given task. It can operate on large sets with
varying size, model long-range dependencies when positional information is present, and scales gracefully to
large datasets. We demonstrate its effectiveness on biological sequence classification tasks, including protein
fold recognition and detection of chromatin profiles where we achieve state-of-the-art results. We also show
promising results in natural language processing tasks, where our method outperforms strong baselines.

Contributions. In summary, our contribution is three-fold. We propose a new trainable embedding for
sets of features, where the parameters can be learned in either unsupervised and supervised fashion. We
demonstrate the scalability and effectiveness of our approach on biological and natural language sequences.
We provide an open-source implementation of our embedding that can be used alone or as a module in larger
learning models.

2 Related Work

Kernel methods for sets and OT-based kernels. The kernel associated with our embedding belongs
to the family of match kernels [19, 33], which compare all pairs of features between two sets via a similarity
function. Another line of research builds kernels by matching features through the Wasserstein distance.
A few of them are shown to be positive definite [12] and/or fast to compute [24, 17]. Except for few
hyper-parameters, these kernels yet cannot be trained end-to-end, as opposed to our embedding that relies
on a trainable reference. Efficient and trainable kernel embeddings for biological sequences have also been
proposed by [4, 5]. Our work can be seen as an extension of these earlier approaches by using optimal
transport rather than mean pooling for aggregating local features, which performs significantly better for
long sequences in practice.

Deep learning for sets. Deep Sets [42] feed each element of an input set into a feed-forward neural
network. The outputs are aggregated following a simple pooling operation before further processing. [18]
propose a Transformer inspired encoder-decoder architecture for sets which also uses latent variables. [31]
compute some comparison costs between an input set and reference sets. These costs are then used as
features in a subsequent neural network. The reference sets are learned end-to-end. Unlike our approach,
such models do not allow unsupervised learning. We will use the last two approaches as baselines in our
experiments.

Interpretations of attention. Using the transport plan as an ad-hoc attention score was proposed by [6]
in the context of network embedding to align data modalities. Our paper goes beyond and uses the transport
plan as a principle for pooling a set in a model, with trainable parameters. [34] provide a view of Transformer’s
attention via kernel methods, yet in a very different fashion where attention is cast as kernel smoothing and
not as a kernel embedding.
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3 Proposed Embedding

3.1 Preliminaries

We handle sets of features in Rd and consider sets x living in

X =
{
x | x = {x1, . . . ,xn} such that x1, . . . ,xn ∈ Rd for some n ≥ 1

}
.

Elements of X are typically vector representations of local data structures, such as k-mers for sequences,
patches for natural images, or words for sentences. The size of x denoted by n may vary, which is not an
issue since the methods we introduce may take a sequence of any size as input, while providing a fixed-size
embedding. We now revisit important results on optimal transport and kernel methods, which will be useful
to describe our embedding and its computation algorithms.

Optimal transport. Our pooling mechanism will be based on the transport plan between x and x′ seen as
weighted point clouds or discrete measures, which is a by-product of the optimal transport problem. OT has
indeed been widely used in alignment problems [13]. Throughout the paper, we will refer to the Kantorovich
relaxation of OT with entropic regularization, detailed for example in [23]. Let a in ∆n (probability simplex)
and b in ∆n′

be the weights of the discrete measures
∑
i aiδxi and

∑
j bjδx′

j
with respective locations x

and x′, where δx is the Dirac at position x. Let C in Rn×n′
be a matrix representing the pairwise costs for

aligning the elements of x and x′. The entropic regularized Kantorovich relaxation of OT from x to x′ is

min
P∈U(a,b)

∑
ij

CijPij − εH(P), (1)

where H(P) = −
∑
ij Pij log(Pij − 1) is the entropic regularization with parameter ε, which controls the

sparsity of P, and U is the space of admissible couplings between a and b:

U(a,b) = {P ∈ Rn×n
′

+ : P1n = a and P>1n′ = b}.

The problem is typically solved by using a matrix scaling procedure known as Sinkhorn’s algorithm, see,
e.g, [23]. In practice, a and b are uniform measures since we consider the mass to be evenly distributed
between the points. P is called the transport plan, which carries the information on how to distribute the
mass of x in x′ with minimal cost. Our method uses optimal transport to align features of a given set to a
learned reference.

Kernel methods. Kernel methods [30] map data living in a space X to a reproducing kernel Hilbert
space H, associated to a positive definite kernel K through a mapping function ϕ : X → H, such that
K(x,x′) = 〈ϕ(x), ϕ(x′)〉H. Even though ϕ(x) may be infinite-dimensional, classical kernel approximation
techniques [40] provide finite-dimensional embeddings ψ(x) in Rk such that K(x,x′) ≈ 〈ψ(x), ψ(x′)〉. Our
embedding for sets relies in part on kernel method principles and on such a finite-dimensional approximation.

3.2 Optimal Transport Embedding and Associated Kernel

We now present our embedding, starting with an infinite-dimensional variant living in a RKHS.

Infinite-dimensional embedding in RKHS. Given a set x and a reference z in X and a reference z
in X with p elements, we consider an embedding Φz(x) which performs the following operations: (i) initial
embedding of the elements of x and z to a RKHS H; (ii) alignment of the elements of x to the elements of
z via optimal transport; (iii) weighted linear pooling of the elements x into p bins, producing an embedding
Φz(x) in Hp, which is illustrated in Figure 1.

Before introducing more formal details, we note that our embedding relies on two main ideas:
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• Global similarity-based pooling using references. Learning on large sets with long-range interactions may
benefit from pooling to reduce the number of feature vectors. Our pooling rule follows an inductive bias
akin to that of self-attention: elements that are relevant to each other for the task at hand should be
pooled together. To this end, each element in the reference set corresponds to a pooling cell, where the
elements of the input set are aggregated through a weighted sum. The weights simply reflect the similarity
between the vectors of the input set and the current vector in the reference. Importantly, using a reference
set enables to reduce the size of the “attention matrix” from quadratic to linear in the length of the input
sequence.

• Computing similarity weights via optimal transport. A computationally efficient similarity score between
two elements is their dot-product [35]. In this paper, we rather consider that elements of the input
set should be pooled together if they align well with the same part of the reference. Alignment scores
can efficiently be obtained by computing the transport plan between the input and the reference sets:
Sinkhorn’s algorithm indeed enjoys fast solvers [8].
We are now in shape to give a formal definition.

Definition 3.1 (The optimal transport kernel embedding). Let x = (x1, . . . ,xn) in X be an input set
of feature vectors and z = (z1, . . . , zp) in X be a reference set with p elements. Let κ be a positive definite
kernel, e.g., Gaussian kernel, with RKHS H and ϕ : Rd → H, its associated kernel embedding. Let κ be the
n× p matrix which carries the comparisons κ(xi, zj), before alignment.

Then, the transport plan between x and z, denoted by the n× p matrix P(x, z), is defined as the unique
solution of (1) when choosing the cost C = −κ, and our embedding is defined as

Φz(x) :=
√
p×

(
n∑
i=1

P(x, z)i1ϕ(xi), . . . ,

n∑
i=1

P(x, z)ipϕ(xi)

)
=
√
p×P(x, z)>ϕ(x),

where ϕ(x) := [ϕ(x1), . . . , ϕ(xn)]>.

Interestingly, it is easy to show that our embedding Φz(x) is associated to the positive definite kernel

Kz(x,x′) :=

n∑
i,i′=1

Pz(x,x′)ii′κ(xi,x
′
i′) = 〈Φz(x),Φz(x′)〉, (2)

with Pz(x,x′) := p × P(x, z)P(x′, z)>. This is a weighted match kernel, with weights given by optimal
transport in H. The notion of pooling in the RKHS H of κ arises naturally if p ≤ n. The elements of x
are non-linearly embedded and then aggregated in “buckets”, one for each element in the reference z, given
the values of P(x, z). This process is illustrated in Figure 1. We now expose the benefits of this kernel
formulation, and its relation to classical non-positive definite kernel.

Kernel interpretation. Thanks to the gluing lemma [23], Pz(x,x′) is a valid transport plan and, empiri-
cally, a rough approximation of P(x,x′). Kz can therefore be seen as a surrogate of a well-known kernel [29],
defined as

KOT(x,x′) :=

n∑
i,i′=1

P(x,x′)ii′κ(xi,x
′
i′). (3)

When the entropic regularization ε is equal to 0, KOT is equivalent to the 2-Wasserstein distance W2(x,x′)
with ground metric dκ induced by kernel κ. KOT is generally not positive definite (see [23], Chapter 8.3)
and computationally costly (the number of transport plans to compute is quadratic in the number of sets to
process whereas it is linear for Kz). Now, we show the relationship between this kernel and our kernel Kz,
which is proved in Appendix B.1.

Lemma 3.1 (Relation between P(x,x′) and Pz(x,x′) when ε = 0). For any x, x′ and z in X with lengths
n, n′ and p, by denoting W z

2 (x,x′) := 〈Pz(x,x′), d2κ(x,x′)〉1/2 we have

|W2(x,x′)−W z
2 (x,x′)| ≤ 2 min(W2(x, z),W2(x′, z)). (4)

4



x1

x2xn

z1

zp

P11

P2p
Pn1
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Φz(x)1 . . . Φz(x)p
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Figure 1: The input point cloud x is transported onto the reference z = (z1, . . . , zp) (left), yielding the
optimal transport plan Pκ(x, z) used to aggregate the embedded features and form Φz(x) (right).

This lemma shows that the distance W z
2 resulting from Kz is related to the Wasserstein distance W2;

yet, this relation should not be interpreted as an approximation error as our goal is not to approximate W2,
but rather to derive a trainable embedding Φz(z) with good computational properties. Lemma 3.1 roots our
features and to some extent self-attention in a rich optimal transport literature.

3.3 From infinite-dimensional kernel embedding to finite dimension

In some cases, ϕ(x) is already finite-dimensional, which allows to compute the embedding Φz(x) explicitly.
This is particularly useful when dealing with large-scale data, as it enables us to use our method for supervised
learning tasks without computing the Gram matrix, which grows quadratically in size with the number of
samples. When ϕ is infinite or high-dimensional, it is nevertheless possible to use an approximation based
on the Nyström method [40], which provides an embedding ψ : Rd → Rk such that

〈ψ(xi), ψ(x′j)〉Rk ≈ κ(xi,x
′
j).

Concretely, the Nyström method consists in projecting points from the RKHS H onto a linear subspace F ,
which is parametrized by k anchor points F = Span(ϕ(w1), . . . , ϕ(wk)). The corresponding embedding
admits an explicit form ψ(xi) = κ(w,w)−1/2κ(w,xi), where κ(w,w) is the k×k Gram matrix of κ computed
on the set w = {w1, . . . ,wk} of anchor points and κ(w,xi) is in Rk. Then, there are several ways to learn
the anchor points: (a) they can be chosen as random points from data; (b) they can be defined as centroids
obtained by K-means, see [43]; (c) they can be learned by back-propagation for a supervised task, see [20].

Using such an approximation within our framework can be simply achieved by (i) replacing κ by a linear
kernel and (ii) replacing each element xi by its embedding ψ(xi) in Rk and considering a reference set with
elements in Rk. By abuse of notation, we still use z for the new parametrization. The embedding, which we
use in practice in all our experiments, becomes simply

Φz(x) =
√
p×P(ψ(x), z)>ψ(x) ∈ Rk×p, (5)

where p is the number of elements in z. Next, we discuss how to learn the reference set z.

3.4 Unsupervised and Supervised Learning of Parameter z

Unsupervised learning. In the fashion of the Nyström approximation, the p elements of z can be defined
as the centroids obtained by K-means applied to all features from training sets in X . A corollary of Lemma 3.1
suggests another algorithm: a bound on the deviation term between W2 and W z

2 for m samples (x1, . . . ,xm)
is indeed

E2 :=
1

m2

m∑
i,j=1

|W2(xi,xj)−W z
2 (xi,xj)|2 ≤ 4

m

m∑
i=1

W 2
2 (xi, z). (6)
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The right-hand term corresponds to the objective of the Wasserstein barycenter problem [9], which yields
the mean of a set of empirical measures (here the x’s) under the OT metric. The Wasserstein barycenter is
therefore an attractive candidate for choosing z. K-means can be seen as a particular case of Wasserstein
barycenter when m = 1 [9, 14] and is faster to compute. In practice, both methods yield similar results, see
Appendix C, and we thus chose K-means to learn z in unsupervised settings throughout the experiments.
The anchor points w and the references z may be then computed using similar algorithms; however, their
mathematical interpretation differs as exposed above. The task of representing features (learning w in Rd
for a specific κ) is decoupled from the task of aggregating (learning the reference z in Rk).

Supervised learning. As mentioned in Section 3.1, P(ψ(x), z) is computed using Sinkhorn’s algorithm,
recalled in Appendix A, which can be easily adapted to batches of samples x, with possibly varying lengths,
leading to GPU-friendly forward computations of the embedding Φz. More important, all Sinkhorn’s op-
erations are differentiable, which enables z to be optimized with stochastic gradient descent through back-
propagation, e.g., for minimizing a classification or regression loss function when labels are available. In
practice, a small number of Sinkhorn iterations (e.g., 10) is sufficient to compute P(ψ(x), z). Since the
anchors w in the embedding layer below can also be learned end-to-end [20], our embedding can thus be
used as a module injected into any model, e.g, a deep network, as demonstrated in our experiments.

3.5 Extensions

Integrating positional information into the embedding. The discussed embedding and kernel do
not take the position of the features into account, which may be problematic when dealing with structured
data such as images or sentences. To this end, we borrow the idea of convolutional kernel networks, or
CKN [20, 21], and penalize the similarities exponentially with the positional distance between a pair of
elements in the input and reference sequences. More precisely, we multiply P(ψ(x), z) element-wise by a
distance matrix S defined as:

Sij = e
− 1
σ2pos

(i/n−j/p)2
,

and replace it in the embedding. With similarity weights based both on content and position, the kernel
associated to our embedding can be viewed as a generalization of the CKNs (whose similarity weights are
based on position only), with feature alignment based on optimal transport. When dealing with multi-
dimensional objects such as images, we just replace the index scalar i with an index vector of the same
spatial dimension as the object, representing the positions of each dimension.

Using multiple references. A naive reconstruction using different references z1, . . . , zq in X may yield
a better approximation of the transport plan. In this case, the embedding of x becomes

Φz1,...,zq (x) = 1/√q (Φz1(x), . . . ,Φzq (x)) , (7)

with q the number of references (the factor 1/√q comes from the mean). The references do not necessarily
have the same number of elements zi. Using Eq. (4), we can obtain a deviation bound similar to (6) for
a data set of m samples (x1, . . . ,xm) and q references (see Appendix B.2 for details). To choose multiple
references, we tried a K-means algorithm with 2-Wasserstein distance for assigning clusters, and we updated
the centroids as in the single-reference case. Using multiple references appears to be useful when optimizing
z with supervision (see Appendix C).

4 Relation between our Embedding and Self-Attention

Our embedding and a single layer of transformer encoder, recalled in Appendix A, share the same type of
inductive bias, i.e, aggregating features relying on similarity weights. We now clarify their relationship. Our
embedding is arguably simpler (see respectively size of attention and number of parameters in Table 1), and
may compete in some settings with the transformer self-attention as illustrated in Section 5.
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Table 1: Relationship between Φz and transformer self-
attention. k: a function describing how the transformer
integrates positional information; n: sequence length; q:
number of references or attention heads; d: dimension of
the embeddings; p: number of supports in z. Typically,
p � d. In recent transformer architectures, positional en-
coding requires learning additional parameters (∼ qd2).

Self-Attention Φz

Attention score W = W>Q P
Size of score O(n2) O(np)

Alignment w.r.t: x itself z
Learned + Shared W and Q z
Nonlinear mapping Feed-forward ϕ or ψ

Position encoding k(ti, t
′
j) e

− 1
σ2pos

( i
n
− j
n′ )

2

Nb. parameters ∼ qd2 qpd
Supervision Needed Not needed

Shared reference versus self-attention.
There is a correspondence between the val-
ues, attention matrix in the transformer and ϕ,
P in Definition 3.1, yet also noticeable differ-
ences. On the one hand, Φz aligns a given se-
quence x with respect to a reference z, learned
with or without supervision, and shared across
the data set. Our weights are computed using
optimal transport. On the other hand, a trans-
former encoder performs self-alignment: for a
given xi, features are aggregated depending on
a similarity score between xi and the elements
of x only. The similarity score is a matrix
product between queries Q and keys K matri-
ces, learned with supervision and shared across
the data set. In this regard, our work com-
plements a recent line of research questioning
the dot-product, learned self-attention [26, 39].
Self-attention-like weights can also be obtained
with our embedding by computing P(x, zi)P(x, zi)

> for each reference i.

Position smoothing and relative positional encoding. Transformers can add an absolute positional
encoding to the input features [35]. Yet, relative positional encoding [10] is a current standard for integrating
positional information: the position offset between the query element and a given key can be injected in the
attention score [34], which is equivalent to our approach. The link between CKNs and our kernel, provided
by this positional encoding, stands in line with recent works casting attention and convolution into a unified
framework [1]. In particular, [7] show that attention learns convolution in the setting of image classification:
the kernel pattern is learned at the same time as the filters.

Multiple references and attention heads. In the transformer architecture, the succession of blocks
composed of an attention layer followed by a fully-connected layer is called a head, with each head potentially
focusing on different parts of the input. Successful architectures have a few heads in parallel. The outputs
of the heads are then aggregated to output a final embedding. A layer of our embedding with non-linear
kernel κ can be seen as such a block, with the references playing the role of the heads. As some recent works
question the role of attention heads [36, 22], exploring the content of our learned references z may provide
another perspective on this question.

5 Experiments

We now show the effectiveness of our embedding OTKE in tasks where samples can be expressed as large
sets with potentially few labels, such as in bioinformatics. We evaluate our embedding alone in unsupervised
or supervised settings, or within a model in the supervised setting. We also consider NLP tasks involving
shorter sequences and relatively more labels.

5.1 Datasets, Experimental Setup and Baselines

In unsupervised settings, we train a linear classifier with the cross entropy loss between true labels and
predictions on top of the features provided by our unsupervised embedding, or an unsupervised baseline. In
supervised settings, the same model is initialized with our unsupervised method and then trained end-to-end
by minimizing the same loss. We use an alternating optimization strategy to update the parameters for both
SCOP and SST datasets, as used in [4, 5]. We train for 100 epochs with Adam on both data sets: the initial
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learning rate is 0.01, and get halved as long as there is no decrease in the validation loss for 5 epochs. The
hyper-parameters we tuned include number of supports and references p, q, entropic regularization in OT ε,
the bandwidth of Gaussian kernels and the regularization parameter of the linear classifier. The best values
of ε and the bandwidth were found stable across tasks, while the regularization parameter needed to be more
carefully cross-validated. Additional results and implementation details can be found in Appendix C.

Protein fold classification on SCOP 1.75. We follow the protocol described by [15] for this important
task in bioinformatics. The dataset contains 19, 245 sequences from 1, 195 different classes of fold (hence
less than 20 labels in average per class). The sequence lengths vary from tens to thousands. Each element
of a sequence is a 45-dimensional vector. The objective is to classify the sequences to fold classes, which
corresponds to a multiclass classification problem. The features fed to the linear classifier are the output of
our embedding with ϕ the Gaussian kernel mapping on k-mers (subsequences of length k) with k fixed to
be 10, which is known to perform well in this task [4]. The number of anchor points for Nyström method
is fixed to 1024 and 512 respectively for unsupervised and supervised setting. In the unsupervised setting,
we compare our method to state-of-the-art unsupervised method for this task: CKN [4], which performs
a global mean pooling in contrast to the global adaptive pooling performed by our embedding. In the
supervised setting, we compare the same model to the following supervised models: CKN, Recurrent Kernel
Networks (RKN) [5], a CNN with 10 convolutional layers named DeepSF [15], Rep the Set [31] and Set
Transformer [18], using the public implementations by their authors. Rep the Set and Set Transformer are
used on the top of a convolutional layer of the same filter size as CKN to extract k-mer features. Their
model hyper-parameters, weight decay and learning rate are tuned in the same way as for our models (see
Appendix for details). The default architecture of Set Transformer did not perform well due to overfitting.
We thus used a shallower architecture with one ISAB, one PMA and one linear layer, similar to the one-layer
architectures of CKN and our model. The results are shown in Table 2.

Table 2: Classification accuracy (top 1/5/10) on test set for SCOP 1.75 for different unsupervised and
supervised baselines, averaged from 10 different runs. (p supports × q references).

Method Unsupervised Supervised

DeepSF [15] Not available. 73.0/90.3/94.5
CKN [4] 81.8±0.8/92.8±0.2/95.0±0.2 84.1±0.1/94.3±0.2/96.4±0.1
RKN [5] Not available. 85.3±0.3/95.0±0.2/96.5±0.1
Set Transformer [18] Not available. 79.2±4.6/91.5±1.4/94.3±0.6
Approximate Rep the Set [31] Not available. 84.5±0.6/94.0±0.4/95.7±0.4

Ours (dot-product instead of OT) 78.2±1.9/93.1±0.7/96.0±0.4 87.5±0.3/95.5±0.2/96.9±0.1
Ours (Unsup.: 1 × 100 / Sup.: 5 × 10) 85.8±0.2/95.3±0.1/96.8±0.1 88.7±0.3/95.9±0.2/97.3±0.1

Detection of chromatin profiles. Predicting the chromatin features such as transcription factor (TF)
binding from raw genomic sequences has been studied extensively in recent years. CNNs with max pooling
operations have been shown effective for this task. Here, we consider DeepSEA dataset [44] consisting in
simultaneously predicting 919 chromatin profiles, which can be formulated as a multi-label classification
task. DeepSEA contains 4, 935, 024 DNA sequences of length 1000 and each of them is associated with
919 different labels (chromatin profiles). Each sequence is represented as a 1000× 4 binary matrix through
one-hot encoding and the objective is to predict which profiles a given sequence possesses. As this problem
is very imbalanced for each profile, learning an unsupervised model could require an extremely large number
of parameters. We thus only consider our supervised embedding as an adaptive pooling layer and inject
it into a deep neural network, between one convolutional layer and one fully connected layer, as detailed
in Appendix C.4. In our embedding, ϕ is chosen to be identity and the positional encoding described in
Section 3 is used. We compare our model to a state-of-the-art CNN with 3 convolutional layers and two
fully-connected layers [44]. The results are shown in Table 3.
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Table 3: Results for prediction of chromatin profiles on the DeepSEA dataset. The metrics are area under
ROC (auROC) and area under PR curve (auPRC), averaged over 919 chromatin profiles. Due to the huge
size of the dataset, we only provide results based on a single run.

Method auROC auPRC

DeepSEA [44] 0.933 0.342
Ours with position encoding (Sinusoidal [35]/Ours) 0.917/0.936 0.311/0.360

Sentiment analysis on Stanford Sentiment Treebank. SST-2 [32] belongs to the NLP GLUE bench-
mark [37] and consists in predicting whether a movie review is positive. The dataset contains 70, 042 reviews.
The test predictions need to be submitted on the GLUE leaderboard, so that we remove a portion of the
training set for validation purpose and report accuracies on the actual validation set used as a test set.
Our model is one layer of our embedding with ϕ a Gaussian kernel mapping with 64 Nyström filters in
the supervised setting, and a linear mapping in the unsupervised setting. The features used in our model
and all baselines are word vectors with dimension 768 provided by the HuggingFace implementation [41] of
the transformer BERT [11]. State-of-the-art accuracies are usually obtained after supervised fine-tuning of
pre-trained transformers. Training a linear model on pre-trained features after simple pooling (e.g, mean)
also yields good results. [CLS], which denotes the BERT embedding used for classification, is also a common
baseline. The results are shown in Table 4.

Table 4: Classification accuracies for SST-2 reported on standard validation set, averaged from 10 different
runs (p supports × q references).

Method Unsupervised Supervised

[CLS] embedding [11] 84.6±0.3 90.3±0.1
Mean Pooling of BERT features [11] 85.3±0.4 90.8±0.1
Approximate Rep the Set [31] Not available. 86.8±0.9
Rep the Set [31] Not available. 87.1±0.5
Set Transformer [18] Not available. 87.9±0.8

Ours (dot-product instead of OT) 85.7±0.9 86.9±1.1
Ours (Unsupervised: 1 × 300. Supervised: 30 × 4) 86.8±0.3 88.1±0.8

5.2 Results and discussion

In protein fold classification, our embedding outperforms all baselines in either unsupervised or supervised
settings. Surprisingly, our unsupervised model also achieves better results than most supervised baselines.
In contrast, Set Transformer does not perform well, possibly because its implementation was not designed
for sets with varying sizes, and tasks with few annotations. The optimal number of references and supports
appear to be data dependent. Generally, each reference has a cardinality lower than the length of the input
sets. Using multiple references improves performance in supervised settings only, see Appendix C.3. In
detection of chromatin profiles, our model (our embedding within a deep network) has fewer layers than
state-of-the-art CNNs while outperforming them, which advocates for the use of attention-based models for
such applications. Our results also suggest that positional information is important (Appendix C.4;C.2),
and our Gaussian position encoding outperforms the sinusoidal one introduced in [35]. Note that in contrast
to a typical transformer, which would have stored a 1000× 1000 attention matrix, our attention score with
a reference of size 64 is only 1000 × 64, which illustrates the discussion in Section 4. In NLP, an a priori
less favorable setting, our supervised embedding gets close to a strong state-of-the-art, i.e. a fully-trained
transformer. We observed our method to be much faster than RepSet, as fast as Set Transformer, yet
slower than ApproxRepSet (C.3). Using the OT plan as similarity score yields better accuracies than the
dot-product between the input sets and the references (see Table 2; 4).
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Appendix

Appendix A provides some background on notions used throughout the paper; Appendix B contains the
proofs skipped in the paper; Appendix C provides additional experimental results as well as details on our
protocol for reproducibility.

A Additional Background

This section provides some background on attention and transformers, Sinkhorn’s algorithm and the rela-
tionship between optimal transport based kernels and positive definite histogram kernels.

A.1 Sinkhorn’s Algorithm: Fast Computation of Pκ(x, z)

Without loss of generality, we consider here κ the linear kernel. We recall that Pκ(x, z) is the solution of
an optimal transport problem, which can be efficiently solved by Sinkhorn’s algorithm [23] involving matrix
multiplications only. Specifically, Sinkhorn’s algorithm is an iterative matrix scaling method that takes the
opposite of the pairwise similarity matrix K with entry Kij := 〈xi, zj〉 as input C and outputs the optimal
transport plan Pκ(x, z) = Sinkhorn(K, ε). Each iteration step ` performs the following updates

u(`+1) =
1/n

Ev(`)
and v(`+1) =

1/p

E>u(`)
, (8)

where E = eK/ε. Then the matrix diag(u(`))Ediag(v(`)) converges to Pκ(x, z) when ` tends to ∞. However
when ε becomes too small, some of the elements of a matrix product Ev or E>u become null and result in
a division by 0. To overcome this numerical stability issue, computing the multipliers u and v is preferred
(see e.g. [23, Remark 4.23]). This algorithm can be easily adapted to a batch of data points x, and with
possibly varying lengths via a mask vector masking on the padding positions of each data point x, leading
to GPU-friendly computation. More importantly, all the operations above at each step are differentiable,
which enables z to be optimized through back-propagation. Consequently, this module can be injected into
any deep networks.

A.2 Attention and transformers

We clarify the concept of attention — a mechanism yielding a context-dependent embedding for each element
of x — as a special case of non-local operations [38, 3], so that it is easier to understand its relationship to
the OTK. Let us assume we are given a set x ∈ X of length n. A non-local operation on an element xi of
xi is a function Φ : X 7→ X such that

Φ(x)i =

n∑
j=1

w(xi,xj)v(xj) = W(x)>i V(x),

where W(x)i denotes the i-th column of W(x), a weighting function, and V(x) = [v(x1), . . . , v(xn)]>,
an embedding. In contrast to operations on local neighborhood such as convolutions, non-local operations
theoretically account for long range dependencies between elements in the set. In attention and the context
of neural networks, w is a learned function reflecting the relevance of each other elements xj with respect to
the element xi being embedded and given the task at hand. In the context of the paper, we compare to a
type of attention coined as dot-product self-attention, which can typically be found in the encoder part of the
transformer architecture [35]. Transformers are neural network models relying mostly on a succession of an
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attention layer followed by a fully-connected layer. Transformers can be used in sequence-to-sequence tasks
— in this setting, they have an encoder with self-attention and a decoder part with a variant of self-attention
—, or in sequence to label tasks, with only the encoder part. The paper deals with the latter. The name
self-attention means that the attention is computed using a dot-product of linear transformations of xi and
xj , and x attends to itself only. In its matrix formulation, dot-product self-attention is a non-local operation
whose matching vector is

W(x)i = Softmax

(
WQxix

>W>K√
dk

)
,

where WQ ∈ Rn×dk and WK ∈ Rn×dk are learned by the network. In order to know which xj are relevant
to xi, the network computes scores between a query for xi (WQxi) and keys of all the elements of x (WKx).
The softmax turns the scores into a weight vector in the simplex. Moreover, a linear mapping V(x) = WV x,
the values, is also learned. WQ and WK are often shared [16]. A drawback of such attention is that for a
sequence of length n, the model has to store an attention matrix W with size O(n2). More details can be
found in [35].

B Proofs

B.1 Proof of Lemma 3.1

Proof. First, since
∑n′

j=1 pP(x′, z)jk = 1 for any k, we have

W2(x, z)2 =

n∑
i=1

p∑
k=1

P(x, z)ikd
2
κ(xi, zk)

=

n∑
i=1

p∑
k=1

n′∑
j=1

pP(x′, z)jkP(x, z)ikd
2
κ(xi, zk)

= ‖u‖22,

with u a vector in Rnn′p whose entries are
√
pP(x′, z)jkP(x, z)ikdκ(xi, zk) for i = 1, . . . , n, j = 1, . . . , n′

and k = 1, . . . , p. We can also rewrite W z
2 (x,x′) as an `2-norm of a vector v in Rnn′p whose entries are√

pP(x′, z)jkP(x, z)ikdκ(xi,x
′
j). Then by Minkowski inequality for the `2-norm, we have

|W2(x, z)−W z
2 (x,x′)| = |‖u‖2 − ‖v‖2|

≤ ‖u− v‖2

=

 n∑
i=1

p∑
k=1

n′∑
j=1

pP(x′, z)jkP(x, z)ik(dκ(xi, zk)− dκ(xi,x
′
j))

2

1/2

≤

 n∑
i=1

p∑
k=1

n′∑
j=1

pP(x′, z)jkP(x, z)ikd
2
κ(x′j , zk)

1/2

=

 p∑
k=1

n′∑
j=1

P(x′, z)jkd
2
κ(x′j , zk)

1/2

= W2(x′, z),
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where the second inequality is the triangle inequality for the distance dκ. Finally, we have

|W2(x,x′)−W z
2 (x,x′)|

≤|W2(x,x′)−W2(x, z)|+ |W2(x, z)−W z
2 (x,x′)|

≤W2(x′, z) +W2(x′, z)

=2W2(x′, z),

where the second inequality is the triangle inequality for the 2-Wasserstein distance. By symmetry, we also
have |W2(x,x′)−W z

2 (x,x′)| ≤ 2W2(x, z), which concludes the proof.

B.2 Relationship between W2 and W z
2 for multiple references

Using the relation prooved in Appendix B.1, we can obtain a bound on the error term between W2 and W z
2

for a data set of m samples (x1, . . . ,xm) and q references (z1, . . . , zq)

E2 :=
1

m2

m∑
i,j=1

|W2(xi,xj)−W z1,...,zq

2 (xi,xj)|2 ≤ 4

mq

m∑
i=1

q∑
j=1

W 2
2 (xi, zj). (9)

When q = 1, the right-hand term in the inequality is the objective to minimize in the Wasserstein barycenter
problem [9], which further explains why we considered it: Once W z

2 is close to the Wasserstein distance W2,
Kz will also be close to KOT. We extend here the bound in equation 6 in the case of one reference to the
multiple-reference case. The approximate 2-Wasserstein distance W z

2 (x,x′) thus becomes

W z1,...,zq

2 (x,x′) :=

〈
1

q

q∑
j=1

Pzj (x,x
′), d2κ(x,x′)

〉1/2

=

1

q

q∑
j=1

W zj

2 (x,x′)2

1/2

.

Then by Minkowski inequality for the `2-norm we have

|W2(x,x′)−W z1,...,zq

2 (x,x′)| =

∣∣∣∣∣∣∣
1

q

q∑
j=1

W2(x,x′)2

1/2

−

1

q

q∑
j=1

W zj

2 (x,x′)2

1/2
∣∣∣∣∣∣∣

≤

1

q

q∑
j=1

(W2(x,x′)−W zj

2 (x,x′))2

1/2

,

and by equation 6 we have

|W2(x,x′)−W z1,...,zq

2 (x,x′)| ≤

4

q

q∑
j=1

min(W2(x, zj),W2(x′, zj))2

1/2

.

Finally the approximation error in terms of Frobenius is bounded by

E2 :=
1

m2

m∑
i,j=1

|W2(xi,xj)−W z1,...,zq

2 (xi,xj)|2 ≤ 4

mq

m∑
i=1

q∑
j=1

W 2
2 (xi, zj).

In particular, when q = 1 that is the case of single reference, we have

E2 ≤ 4

m

m∑
i=1

W 2
2 (xi, z),

where the right term equals to the objective of the Wasserstein barycenter problem, which justifies the choice
of z when learning without supervision.
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Table 5: Classification accuracies for 5000 samples of CIFAR-10 using CKN features [20] and forming Gram
matrix. A random baseline would yield 10%.

Dataset (3 × 3), 256

Kernel Accuracy Runtime

Mean Pooling 58.5 ∼ 30 sec
Flatten 67.6 ∼ 30 sec
Sliced-Wasserstein [17] 63.8 ∼ 2 min
Sliced-Wasserstein [17] + sin. pos enc. [11] 66.0 ∼ 2 min
KOT 64.5 ∼ 20 min
KOT + our pos enc. 67.1 ∼ 20 min

Kz 67.9 ∼ 30 sec
Kz + our pos enc. 70.2 ∼ 30 sec

C Additional Experiments and Setup Details

This section contains additional experiments on CIFAR-10, whose purpose is to illustrate the kernel asso-
ciated with our embedding with respect to other classical or optimal transport based kernels, and test our
embedding on another data modality; additional results for the experiments of the main section; details on
our setup, in particular hyper-parameter tuning for our methods and the baselines.

C.1 Experiments on Kernel Matrices (only for small data sets).

Here, we compare the optimal transport kernel KOT (3) and its surrogate Kz (2) (with z learned without
supervision) to common and other OT kernels. Although our embedding Φz is scalable, the exact kernel
require the computation of Gram matrices. For this toy experiment, we therefore use 5000 samples only
of CIFAR-10 (images with 32 × 32 pixels), encoded without supervision using a two-layer convolutional
kernel network [20]. The resulting features are 3 × 3 patches living in Rd with d = 256 or 8192. KOT and
Kz aggregate existing features depending on the ground cost defined by −κ (Gaussian kernel) given the
computed weight matrix P. In that sense, we can say that these kernels work as an adaptive pooling. We
therefore compare it to kernel matrices corresponding to mean pooling and no pooling at all (linear kernel).
We also compare to a recent positive definite and fast optimal transport based kernel, the Sliced Wasserstein
Kernel [17] with 10, 100 and 1000 projection directions. We add a positional encoding to it so as to have
a fair comparison with our kernels. A linear classifier is trained from this matrices. Although we cannot
prove that KOT is positive definite, the classifier trained on the kernel matrix converges when ε is not too
small. The results can be seen on Table 5. Without positional information, our kernels do better than
Mean pooling. When the positions are encoded, the Linear kernel is also outperformed. Note that including
positions in Mean pooling and Linear kernel means interpolating between these two kernels: in the Linear
kernel, only patches with same index are compared while in the Mean pooling, all patches are compared.
All interpolations did worse than the Linear kernel. The runtimes illustrate the scalability of Kz.

C.2 CIFAR-10

Here, we test our embedding on the same data modality: we use CIFAR-10 features, i.e., 60, 000 images
with 32 × 32 pixels and 10 classes encoded using a two-layer CKN [20], one of the baseline architectures
for unsupervised learning of CIFAR-10, and evaluate on the standard test set. The very best configuration
of the CKN yields a small number (3× 3) of high-dimensional (16, 384) patches and an accuracy of 85.8%.
We will illustrate our embedding on a configuration which performs slightly less but provides more patches
(16× 16), a setting for which it was designed.

The input of our embedding are unsupervised features extracted from a 2-layer CKN with kernel sizes
equal to 3 and 3, and Gaussian pooling size equal to 2 and 1. We consider the following configurations of
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Table 6: Hyperparameter search range for CIFAR-10

Hyperparameter Search range

Entropic regularization ε [1.0; 0.1; 0.01; 0.001]
Position encoding bandwidth σpos [0.5; 0.6; 0.7; 0.8; 0.9; 1.0]

Table 7: Classification results using unsupervised representations for CIFAR-10 for two feature configurations
(extracted from a 2-layer unsipervised CKN with different number of filters). We consider here our embedding
with one reference and different number of supports, learned with K-means, with or without position encoding
(PE).

Method Nb. supports 16 × 16 × 256 16 × 16 × 1024

Flatten 73.1 76.1
Mean pooling 64.9 73.4
Gaussian pooling [20] 77.5 82.0

Ours
9

75.6 79.3
Ours (with PE) 78.0 82.2
Ours

64
77.9 80.1

Ours (with PE) 81.4 83.2
Ours

144
78.4 80.7

Ours (with PE) 81.8 83.4

the number of filters at each layer, to simulate two different input dimensions for our embedding:

• 64 filters at first and 256 at second layer, which yields a 16× 16× 256 representation for each image.

• 256 filters at first and 1024 at second layer, which yields a 16×16×1024 representation for each image.

Since the features are the output of a Gaussian embedding, κ in our embedding will be the linear kernel. The
embedding is learned with one reference and various supports using K-means method described in Section 3,
and compared to several classical pooling baselines, including the original CKN’s Gaussian pooling with
pooling size equal to 6. The hyper-parameters are the entropic regularization ε and bandwidth for position
encoding σpos. Their search grids are shown in Table 6 and the results in Table 7. Without supervision,
the adaptive pooling of the CKN features by our embedding notably improves their performance. We notice
that the position encoding is very important to this task, which substantially improves the performance of
its counterpart without it.

C.3 Protein fold recognition

Dataset description. Our protein fold recognition experiments consider the Structural Classification Of
Proteins (SCOP) version 1.75 and 2.06. We follow the data preprocessing protocols in [15], which yields a
training and validation set composed of 14699 and 2013 sequences from SCOP 1.75, and a test set of 2533
sequences from SCOP 2.06. The resulting protein sequences belong to 1195 different folds, thus the problem
is formulated as a multi-classification task. The input sequence is represented as a 45-dimensional vector at
each amino acid. The vector consists of a 20-dimensional one-hot encoding of the sequence, a 20-dimensional
position-specific scoring matrix (PSSM) representing the profile of amino acids, a 3-class secondary structure
represented by a one-hot vector and a 2-class solvent accessibility. The lengths of the sequences are varying
from tens to thousands.

Models setting and hyperparameters. We consider here the one-layer models followed by a global
mean pooling for the baseline methods CKN [4] and RKN [5]. We build our model on top of the one-layer
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Table 8: Hyperparameter search grid for SCOP 1.75

Hyperparameter Search range

ε for Sinkhorn [1.0; 0.5; 0.1; 0.05; 0.01]

λ for classifier (unsupervised setting) 1/2range(5,20)

λ for classifier (supervised setting) [1e-6;1e-5;1e-4;1e-3]

Table 9: Hyperparameter search grid for SCOP 1.75 baselines.

Model and Hyperparameter Search range

ApproxRepSet: Hidden Sets × Cardinality [20; 30; 50; 100] × [10; 20; 50]
ApproxRepSet: Learning Rate [0.0001; 0.0005; 0.001]
ApproxRepSet: Weight Decay [1e-5;1e-4;1e-3;1e-2]
Set Transformer: Heads × Dim Hidden [1; 4; 8] × [64; 128; 256]
Set Transformer: Learning Rate [0.0001; 0.0005; 0.001]
Set Transformer: Weight Decay [1e-5;1e-4;1e-3;1e-2]

CKN model, where κ can be seen as a Gaussian kernel on the k-mers in sequences. The only difference
between our model and CKN is thus the pooling operation, which is given by our embedding introduced in
Section 3. The bandwidth parameter of the Gaussian kernel κ on k-mers is fixed to 0.6 for unsupervised
models and 0.5 for supervised models, the same as used in CKN which were selected by the accuracy on the
validation set. The filter size k is fixed to 10 and different numbers of anchor points in Nyström for κ are
considered in the experiments. The other hyperparameters for our embedding are the entropic regularization
parameter ε, the number of supports in a reference p, the number of references q, the number of iterations
for Sinkhorn’s algorithm and the regularization parameter λ in the linear classifier. The search grid for ε
and λ is shown in Table 8 and they are selected by the accuracy on validation set. ε plays an important role
in the performance and is observed to be stable for the same dataset. For this dataset, it is selected to be
0.5 for all the unsupervised and supervised models. The effect of other hyperparameters will be discussed
below.

For the baseline methods, the accuracies of PSI-BLAST and DeepSF are taken from [15]. The hyperpa-
rameters for CKN and RKN can be found in [5]. For Rep the Set [31] and Set Transformer [18], we use the
public implementations by the authors. These two models are used on the top of a convolutional layer of
the same filter size as CKN to extract k-mer features. As the exact version of Rep the Set does not provide
any implementation for back-propagation to a bottom layer of it, we consider the approximate version of
Rep the Set only, which also scales better to our dataset. The default architecture of Set Transformer did
not perform well due to overfitting. We therefore used a shallower architecture with one ISAB, one PMA
and one linear layer, similar to the one-layer architectures of CKN and our model. We tuned their model
hyperparameters, weight decay and learning rate. The search grids for these hyperparameters are shown in
Table 9.

Unsupervised embedding. The kernel embedding ϕ, which is infinite dimensional for the Gaussian
kernel, is approximated with the Nyström method using K-means on 300000 k-mers extracted from the
same training set as in [5]. The reference measures are learned by using either K-means or Wasserstein
to update centroids in 2-Wasserstein K-means on 3000 subsampled sequences for RAM-saving reason. We
evaluate our model on top of features extracted from CKNs of different dimensions, representing the number
of anchor points used to approximate κ. The number of iterations for Sinkhorn is fixed to 100 to ensure
the convergence. The results for different combinations of q and p are provided in Table 10. Increasing the
number of supports p can improve the performance and then saturate it when p is too large. On the other
hand, increasing the number of references while keeping the embedding dimension (i.e. p×q) constant is not
significantly helpful in this unsupervised setting. We also notice that Wasserstein Barycenter for learning
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Table 10: Classification accuracy (top 1/5/10) results of our unsupervised embedding for SCOP 1.75. We
show the results for different combinations of (number of references q × number of supports p). The reference
measures z are learned with either K-means or Wasserstein barycenter for updating centroids.

Nb. filters Method q
Embedding size (q × p)

10 50 100 200

128

K-means
1 76.5/91.5/94.4 77.5/91.7/94.5 79.4/92.4/94.9 78.7/92.1/95.1
5 72.8/89.9/93.7 77.8/91.7/94.6 78.6/91.9/94.6 78.1/92.1/94.7
10 62.7/85.8/91.1 76.5/91.0/94.2 78.1/92.2/94.9 78.6/92.2/94.7

Wass. bary.
1 64.0/85.9/91.5 71.6/88.9/93.2 77.2/91.4/94.2 77.5/91.9/94.8
5 70.5/89.1/93.0 76.6/91.3/94.4 78.4/91.7/94.3 77.1/91.9/94.7
10 63.0/85.7/91.0 75.9/91.4/94.3 77.5/91.9/94.6 77.7/92.0/94.7

1024 K-means
1 84.4/95.0/96.6 84.6/95.0/97.0 85.7/95.3/96.7 85.4/95.2/96.7
5 81.1/94.0/96.2 84.9/94.8/96.8 84.7/94.4/96.7 85.2/95.0/96.7
10 79.8/93.5/95.9 83.1/94.6/96.6 84.4/94.7/96.7 84.8/94.9/96.7

Table 11: Classification accuracy (top 1/5/10) of supervised models for SCOP 1.75. The accuracies obtained
by averaging 10 different runs. We show the results of using either one reference with 50 supports or 5
references with 10 supports. Here DeepSF is a 10-layer CNN model.

Method Runtime Top 1/5/10 accuracy on SCOP 2.06

PSI-BLAST [15] - 84.53/86.48/87.34
DeepSF [15] - 73.00/90.25/94.51
Set Transformer [18] 3.3h 79.15±4.61/91.54±1.40/94.33±0.63
ApproxRepSet [31] 2h 84.51±0.58/94.03±0.44/95.73±0.37

Number of filters 128 512

CKN [4] 1.5h 76.30±0.70/92.17±0.16/95.27±0.17 84.11±0.11/94.29±0.20/96.36±0.13
RKN [5] - 77.82±0.35/92.89±0.19/95.51±0.20 85.29±0.27/94.95±0.15/96.54±0.12

Ours
Φz (1 × 50) 3.5h 82.83±0.41/93.89±0.33/96.23±0.12 88.40±0.22/95.76±0.13/97.10±0.15
Φz (5 × 10) 4h 84.68±0.50/94.68±0.29/96.49±0.18 88.66±0.25/95.90±0.15/97.33±0.14

the references does not outperform K-means, while the latter is faster in terms of computation.

Supervised embedding. Our supervised embedding is initialized with the unsupervised method and then
trained in an alternating fashion which was also used for CKN: we use an Adam algorithm to update anchor
points in Nyström and reference measures z, and the L-BFGS algorithm to optimize the classifier. The
learning rate for Adam is initialized with 0.01 and halved as long as there is no decrease of the validation
loss for 5 successive epochs. In practice, we notice that using a small number of Sinkhorn iterations can
achieve similar performance to a large number of iteration, while being much faster to compute. We thus
fix it to 10 throughout the experiments. The accuracy results are obtained by averaging on 10 runs with
different seeds following the setting in [5]. The results are shown in Table 11 with error bars. The effect of
the number of supports q is similar to the unsupervised case, while increasing the number of references can
indeed improve performance.

C.4 Detection of chromatin profiles

Dataset description. Predicting the functional effects of noncoding variants from only genomic sequences
is a central task in human genetics. A fundamental step for this task is to simultaneously predict large-scale
chromatin features from DNA sequences [44]. We consider here the DeepSEA dataset, which consists in
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Table 12: Model architecture for DeepSEA dataset.

Model architecture

Conv1d(in channels=4, out channels=d, kernel size=16) + ReLU
(Ours) EmbeddingLayer(in channels=d, supports=64, references=1, ε = 1.0, PE=True, σpos = 0.1)
Linear(in channels=d, out channels=d) + ReLU
Dropout(0.4)
Linear(in channels=d× 64, out channels=919) + ReLU
Linear(in channels=919, out channels=919)

simultaneously predicting 919 chromatin profiles including 690 transcription factor (TF) binding profiles for
160 different TFs, 125 DNase I sensitivity profiles and 104 histone-mark profiles. In total, there are 4.4
million, 8000 and 455024 samples for training, validation and test. Each sample consists of a 1000-bp DNA
sequence from the human GRCh37 reference. Each sequence is represented as a 1000×4 binary matrix using
one-hot encoding on DNA characters. The dataset is available at http://deepsea.princeton.edu/media/
code/deepsea_train_bundle.v0.9.tar.gz. Note that the labels for each profile are very imbalanced in
this task with few positive samples. For this reason, learning unsupervised models could be intractable as
they may require an extremely large number of parameters if junk or redundant sequences cannot be filtered
out.

Model architecture and hyperparameters. For the above reason and fair comparison, we use here our
supervised embedding as a module in Deep NNs. The architecture of our model is shown in Table 12. We
use an Adam optimizer with initial learning rate equal to 0.01 and halved at epoch 1, 4, 8 for 15 epochs in
total. The number of iterations for Sinkhorn is fixed to 30. The whole training process takes about 30 hours
on a single GTX2080TI GPU. The dropout rate is selected to be 0.4 from the grid [0.1; 0.2; 0.3; 0.4; 0.5] and
the weight decay is 1e-06, the same as [44]. The σpos for position encoding is selected to be 0.1, by the
validation accuracy on the grid [0.05; 0.1; 0.2; 0.3; 0.4; 0.5]. The checkpoint with the best validation accuracy
is used to evaluate on the test set. Area under ROC (auROC) and area under precision curve (auPRC),
averaged over 919 chromatin profiles, are used to measure the performance. The hidden size d is chosen to
be either 1024 or 1536.

Results and importance of position encoding. We compare our model to the state-of-the-art CNN
model DeepSEA [44] with 3 convolutional layers, whose best hyper-parameters can be found in the corre-
sponding paper. Our model outperforms DeepSEA, while requiring fewer layers. The positional information
is known to be important in this task. To show the efficacy of our position encoding, we compare it to the
sinusoidal encoding used in the original transformer [35]. We observe that our encoding with properly tuned
σpos requires fewer layers, while being interpretable from a kernel point of view. We also find that larger
hidden size d performs better, as shown in Table 13. ROC and PR curves for all the chromatin profiles
and stratified by transcription factors, DNase I-hypersensitive sites and histone-marks can also be found in
Figure 2.

C.5 SST-2

Dataset description. The data set contains 67,349 training samples and 872 validation samples and
can be found at https://gluebenchmark.com/tasks. The test set contains 1,821 samples for which the
predictions need to be submitted on the GLUE leaderboard, with limited number of submissions. As a
consequence, our training and validation set are extracted from the original training set (80% of the original
training set is used for our training set and the remaining 20% is used for our validation set), and we report
accuracies on the standard validation set, used as a test set. The reviews are padded with zeros when their
length is shorter than the chosen sequence length (we choose 30 and 66, the latter being the maximum review
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Table 13: Results for prediction of chromatin profiles on the DeepSEA dataset. The metrics are area under
ROC (auROC) and area under PR curve (auPRC), averaged over 919 chromatin profiles. The accuracies
are averaged from 10 different runs. Armed with the positional encoding (PE) described in Section 3,
our embedding outperforms the state-of-the-art model and another model of our embedding with the PE
proposed in [35].

Method DeepSEA Ours Ours (d = 1024) Ours (d = 1536)
Position encoding - Sinusoidal [35] Ours Ours

auROC 0.933 0.917 0.935 0.936
auPRC 0.342 0.311 0.354 0.360

Figure 2: ROC and PR curves for all the chromatin profiles (first row) and stratified by transcription factors
(left column), DNase I-hypersensitive sites (middle column) and histone-marks (right column). The profiles
with positive samples fewer than 50 on the test set are not taken into account.
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Table 14: Accuracies on standard validation set for SST-2 with our unsupervised features depending on the
number of references and supports. The references were computed using K-means on samples for multiple
references and K-means on patches for multiple supports. The size of the input BERT features is (length×
dimension). The accuracies are averaged from 10 different runs.

BERT Input Feature Size (30 × 768) (66 × 768)

Features Pre-trained Fine-tuned Pre-trained Fine-tuned

[CLS] 84.6±0.3 90.3±0.1 86.0±0.2 92.8±0.1
Flatten 84.9±0.4 91.0±0.1 85.2±0.3 92.5±0.1
Mean pooling 85.3±0.3 90.8±0.1 85.4±0.3 92.6±0.2

Φz (1 × 3) 85.5±0.1 90.9±0.1 86.5±0.1 92.6±0.1
Φz (1 × 10) 85.1±0.4 90.9±0.1 85.9±0.3 92.6±0.1
Φz (1 × 30) 86.3±0.3 90.8±0.1 86.6±0.5 92.6±0.1
Φz (1 × 100) 85.7±0.7 90.9±0.1 86.6±0.1 92.7±0.1
Φz (1 × 300) 86.8±0.3 90.9±0.1 87.2±0.1 92.7±0.1

length in the data set) and the BERT implementation requires to add special tokens [CLS] and [SEP] at the
beginning and the end of each review.

Model architecture and hyperparameters. In most transformers such as BERT, the embedding as-
sociated to the token [CLS] is used for classification and can be seen in some sense as an embedding of the
review adapted to the task. The features we used are the word features provided by the BERT base-uncased
version, available at https://huggingface.co/transformers/pretrained_models.html. For this version,
the dimension of the word features is 768. Our model is one layer of our embedding, with ϕ the Gaussian
kernel mapping with varying number of Nyström filters in the supervised setting, and the Linear kernel in the
unsupervised setting. We do not add positonnal encoding as it is already integrated in BERT features. In
the unsupervised setting, the output features are used to train a large-scale linear classifier, a Pytorch linear
layer. We choose the best hyper-parameters based on the accuracy of a validation set. In the supervised
case, the parameters of the previous model, w and z, are optimized end-to-end. In this case, we tune the
learning rate. In both case, we tune the entropic regularization parameter of optimal transport and the
bandwidth of the Gaussian kernel. The parameters in the search grid are summed up in Table 15. The
best entropic regularization and Gaussian kernel bandwidth are typically and respectively 3.0 and 0.5 for
this data set. The supervised training process takes between half an hour for smaller models (typically 128
filters in w and 3 supports in z) and a few hours for larger models (256 filters and 100 supports) on a single
GTX2080TI GPU. The hyper-parameters of the baselines were similarly tuned, see 16. Mean Pooling and
[CLS] embedding did not require any tuning except for the regularization λ of the classifier, which followed
the same grid as in Table 15.

Results and discussion. As explained in Section 5, our unsupervised embedding improves the BERT pre-
trained features while still using a simple linear model as shown in Table 14, and its supervised counterpart
enables to get even closer to the state-of-the art (for the BERT base-uncased model) accuracy, which is usually
obtained after fine-tuning of the BERT model on the whole data set. This can be seen in Tables 17; 18. We
also add a baseline consisting of one layer of classical self-attention, which did not do well hence was not
reported in the main text.
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Table 15: Hyperparameter search grid for SST-2.

Hyperparameter Search range

Entropic regularization ε [10.0; 3.0; 1.0; 0.5]

λ for classifier (unsupervised setting) 10range(−10,1)

Gaussian kernel bandwidth [0.4; 0.4; 0.5; 0.6; 0.7; 0.8]
Learning rate (supervised setting) [0.1; 0.01; 0.001]

Table 16: Hyperparameter search grid for SST-2 baselines.

Model and Hyperparameter Search range

RepSet and ApproxRepSet: Hidden Sets × Cardinality [4; 20; 30; 50; 100] × [3; 10; 20; 30; 50]
ApproxRepSet: Learning Rate [0.0001; 0.001; 0.01]
Set Transformer: Heads × Dim Hidden [1; 4] × [8; 16; 64; 128]
Set Transformer: Learning Rate [0.001; 0.01]

Table 17: Classification accuracy on standard validation set of supervised models for SST-2, with pre-trained
BERT (30×768) features. The accuracies of our embedding were averaged from 3 different runs before being
run 10 times for the best results for comparison with baselines, cf. Section 5. 10 Sinkhorn iterations were
used. We show the results of using either one reference with various supports or 4 references with various
supports.

Method Accuracy on SST-2

Number of Nyström filters 32 64 128

Φz (1 × 3) 88.38 88.38 88.18
Φz (1 × 10) 88.11 88.15 87.61
Φz (1 × 30) 88.30 88.30 88.26
Φz (4 × 3) 88.07 88.26 88.30
Φz (4 × 10) 87.6 87.84 88.11
Φz (4 × 30) 88.18 88.68 88.07

Table 18: Classification accuracy on standard validation set of all baselines for SST-2, with pre-trained
BERT (30× 768) features, averaged from 10 different runs.

Method Accuracy on SST-2

[CLS] embedding [11] 90.3±0.1
Mean Pooling of BERT features [11] 90.8± 0.1
One Self-Attention Layer [35] 83.7±0.1
Approximate Rep the Set [31] 86.8±0.9
Rep the Set [31] 87.1±0.5
Set Transformer [18] 87.9±0.8
Φz (1 × 30) (dot-product instead of OT) 86.9±1.1
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