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Abstract
We introduce a kernel for sets of features based on an optimal transport distance, along with an

explicit embedding function. Our approach addresses the problem of feature aggregation, or pooling,
for sets that exhibit long-range dependencies between their members. More precisely, our embedding
aggregates the features of a given set according to the transport plan between the set and a reference
shared across the data set. Unlike traditional hand-crafted kernels, our embedding can be optimized for a
specific task or data set. It also has a natural connection to attention mechanisms in neural networks,
which are commonly used to deal with sets, yet requires less data. Our embedding is particularly suited
for biological sequence classification tasks and shows promising results for natural language sequences.
We provide an implementation of our embedding that can be used alone or as a module in larger learning
models. Our code is freely available at https://github.com/claying/OTK.

1 Introduction
Many popular applications of machine learning such as natural language processing (NLP), computer vision,
or bioinformatics rely on sets of features with positional information (sentences, pixels of an image, nodes of
a graph, or biological sequences). These objects are delicate to manipulate due to potentially long-range
and complex structural dependencies, or varying lengths. Before the resurgence of deep learning models,
kernel methods have been widely used to handle such data [35]. In particular, a family of kernels used
in biology and computer vision relies on the comparison of histograms of features [3, 21]. Yet, comparing
histograms bin per bin can be restrictive, which has motivated more flexible kernel methods, through, e.g.,
the creation of multi-resolution histograms [14], or by computing correspondences with more complex metrics.
In this last context, the earth-mover’s distance (which is another name for the 1-Wasserstein distance from
optimal transport theory [29]) between histograms was investigated relatively early for its flexibility and
robustness [34]. The main advantage of these metrics is that they do not require explicit computation of
histograms but only comparisons between each pair of features. However, when large amounts of data are
available, methods that optimize the representation to the task at hand are now preferred.

Among them, the concept of attention [2] was proposed to cope with long sentences in the context of neural
machine translation. This mechanism allows the model to automatically search for parts of a source sentence
∗Equal contribution.
†Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France.
‡D.I., UMR 8548, École Normale Supérieure, Paris, France.
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that are relevant for predicting the next word. A striking development of attention was the transformer [40],
a neural network architecture relying mostly on attention mechanisms, which led to major progress in many
NLP tasks [42] and to some extent in other fields relying on structured data such as computer vision [32]
or bioinformatics [33]. A major drawback of these models however is their possibly prohibitive number of
parameters: NLP state-of-the-art models such as T5 [30], may have up to 11 billion parameters. Moreover,
training these models requires setting up an auxiliary learning task such as predicting the next word in
a sentence, which is not always possible. Finally, some peculiarities of the transformer architecture, such
as the learned dot-product self-attention or the role of the attention heads are now being questioned and
investigated [31, 41, 45].

In this paper, we introduce a new kernel for sets of features, along with an embedding, based on mechanisms
posterior to traditional kernel approaches. First, the embedding can be optimized for a given task in the
fashion of [24], thus gaining the ability to become data- or task-adaptive. Second, the kernel embedding
performs feature alignment and crucially relies on a by-product of optimal transport (OT), the transport
plan. OT recently gained interest in machine learning and enjoys efficient solvers [10], which are compatible
with GPU computation and back-propagation. OT has been used in the context of computer vision (as
mentioned above), NLP [20] and graphs [37]. More recently, using the transport plan as an attention score
was proposed for network embeddings to align some data modalities [8]. Our paper goes beyond this idea
and uses transport plans as a principle for feature aggregation, or pooling. We demonstrate the effectiveness
of our kernel with images, sentences and biological sequences and clarify its relationship to attention and
the transformer architecture. Finally, we provide in the supplementary material an implementation of our
embedding that can be used alone or as a module in larger learning models.

Summary of contributions. First, we propose a new kernel for sets of features, which provides a rich
data representation based on optimal transport, along with an explicit embedding function. Second, we
demonstrate the scalability and effectiveness of our approach on images, biological and natural language
sequences in unsupervised and supervised settings. Finally, we provide an implementation of our embedding
that can be used alone or as a module in larger learning models. Our code is freely available at https:
//github.com/claying/OTK.

2 Preliminaries
In this section, we revisit classical kernels for sets and some important results in optimal transport, which
will be useful for the construction of our kernel.

2.1 Kernel Methods and Match Kernels
Kernel methods map data living in a space X to a reproducing kernel Hilbert space (RKHS) H, associated to a
positive definite (p.d.) kernel K through a mapping function ϕ : X → H, such that K(x,x′) = 〈ϕ(x), ϕ(x′)〉H.
In this paper, we handle sets of features living in Rd and we define

X =
{

x|x = {x1, . . . ,xn} such that x1, . . . ,xn ∈ Rd for some n ≥ 1
}
.

Members of X are typically vectorial representations of local data structures, such as patches for natural
images, or sentences for text. The length of x denoted by n may vary, which is not a problem since the
methods we introduce may take a sequence of any size as input, while providing a fixed-size embedding.
Popular tools for comparing sets of features are match kernels [23, 38], typically

Kmatch(x,x′) := 1
n

1
n′

n∑
i=1

n′∑
j=1

κ(xi,x′j) =
〈

1
n

n∑
i=1

ϕ(xi),
1
n′

n′∑
j=1

ϕ(x′j)
〉
H

,

where κ is a p.d. kernel and ϕ denotes its associated mapping to an RKHS H. A match kernel simply
compares all possible pairs of features of x and x′. The right-hand term exhibits the feature map of Kmatch,
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which corresponds to a mean pooling in the RKHS. In this process, important information may be averaged
(e.g., in biology, rare and relevant patterns may be drowned in useless ones), or artificially strong matches
can be made [16]. These issues can be addressed by weighting each comparison κ(xi,x′j). The weights are
typically independent from the data and may include domain knowledge [24]. In contrast, we will introduce
adaptive weights reflecting whether a pair (xi,x′j) is aligned before comparison or, put differently, whether
comparing xi and x′j is relevant for the task.

2.2 Optimal Transport
More precisely, our weights will be based on the transport plan between x and x′ seen as weighted point
clouds or discrete measures, which is a by-product of the optimal transport problem. OT has indeed been
widely used in alignment problems. Throughout the paper, we will refer to the Kantorovich relaxation of OT
with entropic regularization, detailed for example in [29]. Let a in ∆n (probability simplex) and b in ∆n′ be
the weights of the discrete measures

∑
i aiδxi and

∑
j bjδx′

j
with respective locations x and x′, where δx is

the Dirac at position x. Let C in Rn×n′ be a matrix representing the pairwise costs for aligning the elements
of x and x′. The entropic regularized Kantorovich relaxation of OT from x to x′ is

min
P∈U(a,b)

∑
ij

CijPij − εH(P), (1)

where H(P) = −
∑
ij Pij log(Pij − 1) is the entropic regularization with parameter ε, which controls the

sparsity of P, and U is the space of admissible couplings between a and b:

U(a,b) = {P ∈ Rn×n
′

+ : P1n = a and P>1n′ = b}.

In practice, a and b are uniform measures since we consider the mass to be evenly distributed between the
points. P is called the transport plan, which carries the information on how to distribute the mass of x in x′
with minimal cost. The objective is ε-strongly convex, such that (1) has a unique solution. It is typically
solved using a matrix scaling procedure known as Sinkhorn’s algorithm (see, e.g, [29]).

3 An Optimal Transport Based Kernel and its Embedding
In this section, we present an optimal transport based kernel and introduce an alternative that is more
scalable and can be optimized for a given task.

3.1 An Attractive yet non Positive Definite Kernel
We are now ready to introduce a first version of the match kernel, whose objective is to adaptively weight the
comparisons of features through a form of alignment given by the optimal transport plan.

Definition 3.1 (Optimal transport match kernel). Let x,x′ in X be two sets of respective length n and n′.
The Optimal Transport Match Kernel is defined as

KOT(x,x′) = 〈Pκ(x,x′), κ(x,x′)〉 :=
∑
i,j

Pκ(x,x′)ijκ(xi,x′j), (2)

where Pκ(x,x′) ∈ U (1/n, 1/n′) is the solution to the regularized optimal transport problem (1) between x and
x′, whose cost C ∈ Rn×n′ has entries Cij = −κ(xi,x′j).

When ε = 0, KOT is equivalent to the 2-Wasserstein distance associated to the distance dκ induced
by κ—defined as d2

κ(u, v) = κ(u, v)− 2κ(u, v) + κ(v, v) for any u, v—in the following sense:

W 2
2 (x,x′)= min

Pκ∈U( 1
n ,

1
n′ )
〈Pκ(x,x′), d2

κ(x,x′)〉= 1
n

n∑
i=1

κ(xi,xi)+ 1
n′

n′∑
j=1

κ(x′j ,x′j)−2KOT(x,x′). (3)
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KOT performs well in practice when ε is not too small, as shown in Section 5, but suffers from three issues:
(i) for small values of ε, it is not positive-definite (experiments exhibit negative eigenvalues in the Gram
matrix); (ii) computing KOT requires solving the transport problems between all pairs (x,x′) in the data set,
which grows quadratically with the number of samples; (iii) KOT cannot be optimized to the task at hand.
We therefore introduce a positive definite kernel addressing these issues in the next subsection.

3.2 Building a Positive Definite Optimal-Transport-Based Kernel
The issue of positive definiteness of the 2-Wasserstein distance, corresponding to KOT with ε = 0, is well
known and has been studied (see [29] Section 8.3, [48] and Appendix A). We go further and address the three
issues above at the same time. We propose a surrogate of KOT inspired by the following observation:

Pκ,z(x,x′) := p×Pκ(x, z)Pκ(x′, z)>,

with x, x′ and z sets of features and p = |z|, is a valid transport plan between x′ and x thanks to the gluing
lemma (see, e.g, [29]), and empirically, is a rough approximation of Pκ(x,x′). Other works explored the idea
of computing the transport with respect to a common reference [28, 43] yet for the unregularized transport
and with minimal use of the resulting embedding. By replacing the optimal transport plan Pκ(x,x′) in KOT
with Pκ,z(x,x′), we get a new kernel that enjoys better properties than KOT.

Definition 3.2 (Optimal Transport Kernel (OTK) and Embedding). The OTK is defined as

Kz(x,x′) := 〈Pκ,z(x,x′), κ(x,x′)〉, (4)

and its associated embedding Φz of x = (x1, . . . ,xn) such that Kz(x,x′) = 〈Φz(x),Φz(x′)〉 is

Φz(x) = √p×
(
Pκ(x, z)>1 ϕ(x), . . . ,Pκ(x, z)>p ϕ(x)

)
= √p×Pκ(x, z)>ϕ(x),

where Pκ(x, z)i denotes the i-th column of Pκ(x, z), i.e the couplings between the elements of x and zi, and
ϕ(x) := [ϕ(x1), . . . , ϕ(xn)]>, with ϕ : Rd → H the kernel embedding associated to κ and its RKHS H. We
design an element zi of z as a "support" and p as number of supports.

The OTK Kz solves the issues raised above: (i) it is p.d. since it can be cast as 〈Φz(x),Φz(x′)〉;
(ii) computing its Gram matrix requires computing only as many transport plans as samples (all the
transports from the samples x to the reference z); (iii) as we will show later, the parameter z can be adapted
to a specific task. Regarding the interpretation of the embedding Φz(x), the notion of pooling in the RKHS
H of κ arises naturally if p ≤ n. Φz simultaneously embeds x to Hn (via ϕ), aligns (via Pκ(x, z)), which
is a mechanism akin to that of an attention layer, see Section 4, but also pools to Hp. In other words, the
elements of x are non-linearly embedded and then aggregated in “buckets”, one for each element in the
reference z, given the values of Pκ(x, z). This process is illustrated in Figure 1.

From infinite-dimensional kernel embedding to finite dimension. In some cases, ϕ(x) is already
finite-dimensional, which allows to compute the embedding Φz(x) explicitly. This is particularly useful
when dealing with large-scale data, as it allows us to use our method for supervised learning tasks without
computing the Gram matrix, which grows quadratically with the number of samples. When ϕ is infinite-
or high-dimensional, it is nevertheless possible to use an approximation based on the Nyström method [17],
which provides an embedding ψ : Rd → Rk such that

〈ψ(xi), ψ(x′j)〉Rk ≈ κ(xi,x′j).

Concretely, the Nyström method consists in projecting points from the RKHS H onto a linear subspace F ,
which is parametrized by k anchor points F = Span(ϕ(w1), . . . , ϕ(wk)). The corresponding embedding
admits an explicit form ψ(xi) = κ(w,w)−1/2κ(w,xi), where κ(w,w) is the k×k Gram matrix of κ computed
on the set w = {w1, . . . ,wk} of anchor points and κ(w,xi) is in Rk. Then, there are several ways of learning
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x1

x2xn

z1

zp

P11

P2p
Pn1

ϕ(x1) ϕ(x2) . . . ϕ(xn)

Φz(x)1 . . . Φz(x)p

P11 Pn1 P2p

Figure 1: The input point cloud x is transported onto the reference z = (z1, . . . , zp) (left), yielding the
optimal transport plan Pκ(x, z) used to aggregate the embedded features and form Φz(x) (right).

the anchor points: (a) they can be chosen as random points from data; (b) they can be defined as centroids
obtained by K-means, (c) they can be learned by back-propagation for a supervised task, see [24]. Once ϕ is
replaced with ψ, the transport plan Pκ(x, z) with z ∈ Rd in (4) can be reparametrized as P(ψ(x), z′), i.e. a
transport whose cost is the opposite of the linear kernel and z′ = ψ(z) in Rk. By abuse of notation, we still
use z for the new parametrization. The OTK embedding becomes simply

Φz(x) = √p×P(ψ(x), z)>ψ(x) ∈ Rk×p, (5)

with k the dimension of the Nyström embedding and p the number of support in z. In our experiments, we
will often use a Gaussian kernel so that (5) is the embedding used in practice. Next, we discuss how to learn
the reference set z.

3.3 Unsupervised and Supervised Learning of z
Unsupervised learning. Without labels, and in the fashion of the Nyström approximation, the p elements
of z can be defined as the centroids obtained by K-means applied to features from available training sets in
X . The next lemma, proved in Appendix C, suggests another algorithm

Lemma 3.3 (Relation between Pκ(x,x′) and Pκ,z(x,x′) when ε = 0). For any x, x′ and z in X with
lengths n, n′ and p,

|W2(x,x′)− 〈Pκ,z(x,x′), d2
κ(x,x′)〉1/2︸ ︷︷ ︸

W z
2 (x,x′)

| ≤ 2 min(W2(x, z),W2(x′, z)). (6)

A corollary is a bound on the error term between W2 and W z
2 for m samples (x1, . . . ,xm)

E2 := 1
m2

m∑
i,j=1

|W2(xi,xj)−W z
2 (xi,xj)|2 ≤ 4

m

m∑
i=1

W 2
2 (xi, z). (7)

Equation (6) shows that the distance W z
2 resulting from Kz is related to the Wasserstein distance W2;

yet, this relation should not be interpreted as an approximation error, as our goal is not to approximate W2,
but rather to develop a different p.d. kernel with good computational properties. The right-hand term in
Equation (7) corresponds to the objective to minimize in the Wasserstein Barycenter [11] problem, which
yields the mean of a set of empirical measures (here the x’s) under the OT metric. The Wasserstein barycenter
is therefore an attractive candidate for choosing z. Both methods yield similar results as will be shown in
Section 5 and Appendix D. Wasserstein barycenters are less theoretically grounded for non-linear kernels
which further justifies our parametrization (5). The anchor points w and the references z may be computed
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using similar algorithms; however, their mathematical interpretation differs as exposed above. The task of
representing features (learning w in Rd for a specific κ) is decoupled from the task of aggregating (learning
the reference z in Rk), which is similar to the multilayer structure of neural networks.

Supervised learning. As mentioned in Section 2, P(ψ(x), z) is computed using Sinkhorn’s algorithm,
recalled in Appendix A, which can be easily adapted to batches of samples x, with possibly varying lengths,
leading to GPU-friendly forward computations of the OTK embedding Φz. More important, all Sinkhorn’s
operations are differentiable, which enables z to be optimized through back-propagation, thus paving the way
for supervised learning in the context of empirical risk minimization. Moreover, a small number of Sinkhorn
iterations is sufficient in practice to compute P(ψ(x), z). Since the anchors w in the embedding layer below
can also be learned end-to-end [24], the OTK is a module that can be injected into any deep network, as
demonstrated in our experiments.

3.4 Extensions
Integrating positional information into the OTK. The discussed kernels do not take the position of
the features into account, which may be problematic when dealing with structured data such as images or
sentences. To this end, we borrow the idea of convolutional kernel networks (CKN) [24, 26], i.e. to penalize
the similarity exponentially with the positional distance between a pair of elements in the sequences. More
precisely, we multiply κ by this positional term:

κ′(xi,x′j) = κ(xi,x′j)× e
− 1
σ2

pos
(i/n−j/n′)2

.

and replace it in the OTK. With similarity weights based both on content and position, the OTK can be
viewed as a generalization of the CKNs (whose similarity weights are based on position only), with feature
alignment based on optimal transport. The details on the resulting embedding can be found in Appendix B.
When dealing with multi-dimensional objects such as images, we just replace the index scalar i with an index
vector of the same spatial dimension as the object, representing the positions of each dimension.

Using multiple references. A naive reconstruction using different references z1, . . . , zq in X may yield a
better approximation of the transport plan. In this case, the embedding of x becomes

Φz1,...,zq (x) = 1/√q (Φz1(x), . . . ,Φzq (x)) , (8)

with q the number of references (the factor 1/√q comes from the mean). The references do not necessarily
have the same number of supports zi. Using relation (6) (see Appendix C for details), we can obtain an error
bound similar to (7) for a data set of m samples (x1, . . . ,xm) and q references. To choose multiple references,
we tried a K-means algorithm with 2-Wasserstein distance for assigning clusters, and we updated the centroids
as in the single-reference case. We observe in Section 5 that using multiple references is particularly useful
when optimizing z with supervision.

4 On the Relationship between the OTK and Self-Attention
Since our embedding and the transformer architecture, recalled in Appendix A, share the same type of
inductive bias, i.e, aggregating features relying on similarity weights, we will now clarify their relationship.
Our OTK embedding is arguably simpler as showed in Table 1, and may compete in some cases with the
transformer self-attention as illustrated in Section 5.

Shared reference versus self-attention. The embedding ΦA provided by a transformer layer with
attention weights W ∈ Rn×n and values V ∈ Rn×d, can be written (see Appendix A)

ΦA(x) =
(
W(x)>1 V(x), . . . ,W(x)>nV(x)

)
= W(x)>V(x).
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Table 1: Relationship between Φz and transformer self-attention. k depends on how the transformer integrates
positional information. q is the number of references / attention heads, d, the dimension of the embeddings, p,
the number of supports in z and n the sequence length. Typically, p� d. In recent transformer architectures,
positional encoding requires learning additional parameters (∼ qd2).

Transformer Φz

Attention score W = W>Q P
Size of attention O(n2) O(np)
Alignment w.r.t x itself z

Learned + Shared W and Q z
Nonlinear mapping Feed-forward ϕ or ψ

Position encoding k(ti, t′j) e
− 1
σ2

pos
( in−

j

n′ )2

Nb. parameters ∼ qd2 qpd
Supervision Needed Not needed

There is therefore a correspondence between V, W in the transformer and ϕ, P in Definition 3.2, yet also
noticeable differences. On the one hand, our embedding Φz aligns a given sequence x with respect to a
reference z, learned with or without supervision, and shared across the data set. On the other hand, ΦA

performs self-alignment (or self-attention): for a given xi, features are aggregated depending on a similarity
score between xi and the elements of x only. The similarity score is a matrix product between queries Q
and keys K matrices, learned with supervision and shared across the data set. In Section 5, we will show
that supervised Φz approaches a fully-trained transformer at a cheaper memory and parameter cost (see
respectively size of attention and number of parameters in Table 1). In this regard, our work complements a
recent line of research questioning the dot-product, learned self-attention [31, 45]. Note that self-attention-like
weights can also be obtained with the OTK by computing P(x, zi)P(x, zi)> for each reference i.

Position smoothing and relative positional encoding. For transformers, an absolute positional en-
coding was originally integrated to the word embeddings [40]; yet, relative positional encoding [12] is a current
standard for integrating positional information: the position offset between the query element and a given
key can be injected in the attention score [39], which is equivalent to our approach. The link between CKNs
and OTK, provided by this positional encoding, stands in line with a recent line of research casting attention
and convolution into a unified framework [1]. In particular, [9] shows that attention learns convolution in the
setting of image classification: the kernel pattern is learned at the same time as the filters.

Multiple references and attention heads. In the transformer architecture, the succession of blocks
composed of an attention layer followed by a fully-connected layer is called a head, with each head potentially
focusing on different parts of the input. Successful architectures have a few heads in parallel. The outputs of
the heads are then aggregated to output a final embedding. A layer of the OTK with non-linear kernel κ can
be seen as a transformer block, with the references playing the role of heads. As some recent work questions
the role of attention heads [41, 27], exploring the content of our learned references z may provide another
perspective on this question.

5 Experiments
We demonstrate the effectiveness of the OTK embedding in biology, natural language processing and image
classification tasks in unsupervised and supervised settings. Although KOT in (2) and its surrogate Kz
in (4) are of interest, their lack of scalability – they require to compute the Gram matrix, which is quadratic
in the number of samples – makes them less suited to large data sets, unlike our explicit embedding Φz.
Nevertheless, a brief study of their performance can be found in Appendix D.
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Table 2: Classification accuracy (top 1/5/10) on test set for SCOP 1.75 for different combinations of (number
of references q × number of supports p). The accuracies are averaged from 10 different runs. DeepSF is a
CNN with 10 convolutional layers. The OTK outperforms all baselines.

Unsupervised

Nb filters CKN [6] OTK (1 × 50) OTK (1 × 100)

128 64.7/86.3/91.6 77.5/91.7/94.5 79.4/92.4/94.9
1024 82.2/92.8/95.2 84.6/95.0/97.0 85.7/95.3/96.7

Supervised

Nb filters DeepSF [15] CKN [6] RKN [7] OTK (1 × 50) OTK (5 × 10)

128 73.0/90.3/94.5 76.3/92.2/95.3 77.8/92.9/95.5 82.8/93.9/96.2 84.7/94.7/96.5
512 84.1/94.3/96.4 85.3/95.0/96.5 88.4/95.8/97.1 88.7/95.9/97.3

Table 3: Results for prediction of chromatin profiles on the DeepSEA dataset. The metrics are area under
ROC (auROC) and area under PR curve (auPRC), averaged over 919 chromatin profiles. The accuracies are
averaged from 10 different runs. Armed with the positional encoding (PE) described in Section 3, the OTK
outperforms the state-of-the-art model and an OTK with the PE proposed in [40].

Method DeepSEA [47] (3-layer-CNN) OTK + Sinusoidal PE [40] OTK + Our PE

auROC 0.933 0.917 0.936
auPRC 0.342 0.311 0.360

Influence of z on the OTK embedding. The OTK embedding Φz defined in (8) is characterized by
the number of references q and the number p of features (supports) in each reference set. As mentioned in
Section 3, we investigate several algorithms for learning the references without supervision. The discussed
results can be found in Appendix D. Using more references and increasing the number of supports generally
yields better results at the expense of a larger computational cost and K-means turned out to be a simple
and effective approach for learning the references.

Protein fold classification on SCOP 1.75. We follow the protocol described in [15] for this classical
bioinformatics task. The training, validation and test set contain respectively 14699, 2013 and 2533 sequences
with 1195 labels. The sequence lengths vary from tens to thousands and each element of a sequence is a vector
of 45 dimensions. More details can be found in Appendix D.3. The sequences are encoded with a Gaussian
kernel as in CKNs [6]. While a global average pooling operation is used to aggregate the kernel embeddings
in CKNs, the OTK embedding (5) performs an adaptive pooling. Different numbers of anchor points (128,
512 and 1024) are considered in the Nyström approximation. In the unsupervised setting, we benchmark
our features against the regular, unsupervised state-of-the-art CKN features [7]. As shown in Table 2, the
OTK embedding clearly outperforms the CKN features. In the supervised setting, we compare our optimized
features to three state-of-the-art features for this task, obtained by recurrent kernel networks (RKN) [7]
and CKNs, both learned with supervision, and a more traditional model based on CNNs, DeepSF [15]. Our
method outperforms all baselines as shown in Table 2. Note how our unsupervised features are as good if
not better than the supervised baselines. Complementary results on the effect of z, and comparison with
Wasserstein barycenter for learning z and error bars can be found in Appendix D.3.

Detection of chromatin profiles. Predicting the chromatin features such as transcription factors (TF)
binding from genomic sequences has been studied extensively in the recent years. CNNs with pooling
operations have been shown effective for this task. We show that attention-based models like our OTK can
achieve competitive results. The DeepSEA dataset [47] consists in simultaneously predicting 919 chromatin
profiles. There are 4.4 million, 8000 and 455024 samples respectively in training, validation and test set.
Each sample consists of a 1000-bp DNA sequence from the human GRCh37 reference. The DNA characters
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Table 4: Unsupervised and supervised classification accuracies for SST-2 reported on standard validation
set. The accuracies are averaged from 10 different runs. The features are 30 words whose embedding has
dimension 768. The reference is computed using K-means, with (number of references q × number of supports
p). Our unsupervised OTK improves the pre-trained features, and its supervised counterpart trained on the
pre-trained features gets closer to the fine-tuned features.

[CLS] Flatten Mean pooling OTK (1×300) OTK (1×30)

BERT Features BERT [13] Baselines Unsupervised Supervised

Pre-trained 84.6 84.9 85.3 86.8 87.7
Fine-tuned 90.3 91.0 90.8 90.9 -

are represented using the one-hot encoding and each sequence is thus represented as a 1000× 4 binary matrix.
As this problem is very imbalanced for a given profile, learning an unsupervised model could require an
extremely large number of parameters. We thus use our supervised OTK in (5) as an adaptive pooling layer
and inject it into a deep neural network model, between a convolutional layer and a fully connected layer.
We compare it to the state-of-the art model [47], a CNN with 3 convolutional layers, in Table 3. In contrast
to a typical transformer which would have stored a 1000× 1000 matrix, our attention score, with a reference
of size 64, is only 1000× 64. Realizing that position encoding is crucial for this task, we also compare our
encoding to the sinusoidal encoding introduced in the transformer [40] and find that ours is more effective
here. More details about model architectures and training can be found in Appendix D.4.

Sentiment analysis on Stanford Sentiment Treebank. SST-2 [36] belongs to the classical NLP GLUE
benchmark [42] and consists in predicting whether a movie review is positive. The train, validation and test
sets contain respectively 67349, 872 and 1821 reviews. More details can be found in Appendix D. The test
predictions need to be submitted on the GLUE leaderboard, so that we report accuracies on the validation set
used as a test set. State-of-the-art accuracies are usually obtained after supervised fine-tuning of pre-trained
transformers on the data set. When the user does not have access to GPUs for fine-tuning, training a linear
model on the pre-trained features still yields good results. The word features fed to Φz (5) are provided by
the HuggingFace implementation [46] of the famous transformer BERT [13]. In the unsupervised setting, we
benchmark against various combinations of the BERT features. [CLS] denotes the BERT embedding used
for classification. The adaptive pooling of Φz notably improves the BERT pre-trained features, as shown in
Table 4. Complementary results on the effect of z can be found in Appendix D. In the supervised setting,
an OTK embedding with Gaussian kernel, trained on BERT pre-trained features, gets closer to the fully
fine-tuned BERT.

Image classification on CIFAR-10. Here we use CIFAR-10 features, i.e. 60000 images with 32 × 32
pixels and 10 classes encoded using a two-layer CKN [24], one of the baseline architectures for unsupervised
learning of CIFAR-10, and evaluate on the standard test set. The very best configuration of the CKN yields a
small number (3× 3) of high-dimensional (16384) patches and an accuracy of 85.8%. Because our embedding
is designed for larger sets of features, it is more consistent to illustrate it on a configuration which performs
slightly less but provides more patches (16× 16). While the CKN uses a Gaussian pooling (with pooling size
equal to 6) after a 2-layer convolutional kernel, our OTKs (5) performs an adaptive pooling. The results
are shown on Table 5. Again, without supervision, the adaptive pooling of the CKN features by the OTK
notably improves their performance. We notice that the position encoding is very important to this task,
which substantially improves the performance of its counterpart without it. More details can be found in
Appendix D.2.
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Table 5: Unsupervised classification with CIFAR-10 for various features extracted from 2-layer unsupervised
CKNs with different numbers of filters. The accuracies are averaged from 10 different runs. The unsupervised
OTK has one reference with 64 supports learned with K-means, with or without our position encoding (PE).
Our OTK embedding notably improves the base features.

Dataset Flatten Mean pooling Gaussian pooling [24] OTK OTK (with PE)

16 × 16 × 256 73.1 64.9 77.5 77.9 81.4
16 × 16 × 1024 76.1 73.4 82.0 80.1 83.2
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Appendix

Appendix A provides some background on notions used throughout the paper; Appendix B adds details
on the implementation and foundation of our OTK; Appendix C contains the proofs skipped in the paper;
Appendix D provides details on our experimental protocol for reproducibility and additional results.

A Background
This section provides some background on attention and transformers, Sinkhorn’s algorithm and the relation-
ship between optimal transport based kernels and positive definite histogram kernels.

A.1 Attention and transformers
We clarify the concept of attention — a mechanism yielding a context-dependent embedding for each element
of x — as a special case of non-local operations [44, 5], so that it is easier to understand its relationship to
the OTK. Let us assume we are given a set x ∈ X of length n. A non-local operation on an element xi of xi
is a function Φ : X 7→ X such that

Φ(x)i =
n∑
j=1

w(xi,xj)v(xj) = W(x)>i V(x),

where W(x)i denotes the i-th column of W(x), a weighting function, and V(x) = [v(x1), . . . , v(xn)]>, an
embedding. In contrast to operations on local neighborhood such as convolutions, non-local operations
theoretically account for long range dependencies between elements in the set. In attention and the context
of neural networks, w is a learned function reflecting the relevance of each other elements xj with respect to
the element xi being embedded and given the task at hand. In the context of the paper, we compare to a
type of attention coined as dot-product self-attention, which can typically be found in the encoder part of the
transformer architecture [40]. Transformers are neural network models relying mostly on a succession of an
attention layer followed by a fully-connected layer. Transformers can be used in sequence-to-sequence tasks —
in this setting, they have an encoder with self-attention and a decoder part with a variant of self-attention
—, or in sequence to label tasks, with only the encoder part. The paper deals with the latter. The name
self-attention means that the attention is computed using a dot-product of linear transformations of xi and
xj , and x attends to itself only. In its matrix formulation, dot-product self-attention is a non-local operation
whose matching vector is

W(x)i = Softmax
(
WQxix>W>K√

dk

)
,

where WQ ∈ Rn×dk and WK ∈ Rn×dk are learned by the network. In order to know which xj are relevant to
xi, the network computes scores between a query for xi (WQxi) and keys of all the elements of x (WKx).
The softmax turns the scores into a weight vector in the simplex. Moreover, a linear mapping V(x) = WV x,
the values, is also learned. WQ and WK are often shared [18]. A drawback of such attention is that for a
sequence of length n, the model has to store an attention matrix W with size O(n2). More details can be
found in [40].

A.2 Sinkhorn’s Algorithm: Fast Computation of Pκ(x, z)
Without loss of generality, we consider here κ the linear kernel. We recall that Pκ(x, z) is the solution of
an optimal transport problem, which can be efficiently solved by Sinkhorn’s algorithm [29] involving matrix
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multiplications only. Specifically, Sinkhorn’s algorithm is an iterative matrix scaling method that takes the
opposite of the pairwise similarity matrix K with entry Kij := 〈xi, zj〉 as input C and outputs the optimal
transport plan Pκ(x, z) = Sinkhorn(K, ε). Each iteration step ` performs the following updates

u(`+1) = 1/n
Ev(`) and v(`+1) = 1/p

E>u(`) , (9)

where E = eK/ε. Then the matrix diag(u(`))Ediag(v(`)) converges to Pκ(x, z) when ` tends to ∞. However
when ε becomes too small, some of the elements of a matrix product Ev or E>u become null and result in a
division by 0. To overcome this numerical stability issue, computing the multipliers u and v is preferred
(see e.g. [29, Remark 4.23]). This algorithm can be easily adapted to a batch of data points x, and with
possibly varying lengths via a mask vector masking on the padding positions of each data point x, leading to
GPU-friendly computation. More importantly, all the operations above at each step are differentiable, which
enables z to be optimized through back-propagation. Consequently, this module can be injected into any
deep networks.

A.3 On the Relationship Between Optimal Transport Match Kernel and His-
togram Kernels

When features are living in a discrete set F , it is classical to represent a set of features x as a histogram
H(x) = (Hu(x))u∈F , with Hu(x) the number of occurrences of the pattern u in x. The spectrum kernel [21]
used in biology computes the dot product between the normalized histograms Ĥ(x) = H(x)/|x| and Ĥ(x′).
Interestingly, this kernel can be rewritten [19]

Kspectrum(x,x′) := 〈Ĥ(x), Ĥ(x′)〉 = 1
n

1
n′

n∑
i=1

n′∑
j=1

δ(xi,x′j),

where δ denotes the Dirac kernel. As the spectrum kernel performs exact matches between elements, more
flexible variants where then proposed, either by allowing mismatches for sequence data [22], or by using
a Gaussian kernel for comparing features [6]. A related version of Kspectrum is the histogram intersection
kernel [3], proposed in the context of computer vision, which computes the minimum of the counts at each
bin of the two histograms instead of the dot product in the spectrum kernel. Interestingly, this kernel exhibits
a well-known relation with optimal transport, see [48]:
Lemma A.1 (Histograms intersection as an optimal match kernel). The histogram intersection can be cast
as the optimization of a match kernel:

Khist(x,x′) :=
∑
u∈F

min(Ĥu(x), Ĥu(x′)) = max
P∈Ur( 1

n ,
1
n′ )

n∑
i=1

n′∑
j=1

Pijδ(xi,x′j),

where Ur is a relaxed Kantorovich coupling constraint

Ur

(
1
n
,

1
n′

)
=
{

P ∈ Rn×n
′

+ : P1n ≤
1
n

and P>1n′ ≤ 1
n′
}
.

Proof. For completeness, a proof can be found in Appendix C.

It is possible to show that the distance induced by Khist is the `1-norm between two histograms in contrast
to the `2-norm in Kspectrum. A similar relation between the intersection kernel and a variation of optimal
transport was also studied in [48]. When dealing with discrete feature sets, our kernel KOT differs from Khist
in three aspects: (i) the relaxed Kantorovich constraint becomes exact; (ii) we add an entropic penalty term
H(P), which brings both flexibility as it interpolates between Khist (when ε = 0) and Kspectrum (when ε gets
bigger, we maximize the entropy, which is equivalent to summing all the pairs with identical weights as in
Kspectrum), and computational scalability as well as differentiability thanks to Sinkhorn’s algorithm; (iii) we
relax δ by a positive definite, differentiable kernel κ allowing mismatches and end-to-end learning [6], e.g, a
Gaussian kernel.
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B Additional details
This section provides additional details on the positional encoding in the OTK, and the reconstruction of the
transport plan for Gaussian distributions.

B.1 Position encoding of OTK
We introduced in Subsection 3.4 a kernel form of the OTK integrating positional information. However,
its resulting embedding function is not obvious to see as it is not trivial how to approximate the position
term with a dot-product. We thus detail here an embedding that works well in practice. After adding the
positional term to the OTK, the kernel becomes

KOT(x,x′) =
n∑
i=1

n′∑
j=1

Pκ′(x,x′)ijκ
′(xi,x′j),

where
κ′(xi,x′j) = κ(xi,x′j)× e

− 1
σ2

pos
(i/n−j/n′)2

.

Computing the transport plan against a reference measure Pκ′(x, z)ij is similar to the OTK without position
encoding, by simply replacing the input similarity matrix K in (9) with S�K where S denotes the matrix

with entry Sij = e
− 1
σ2

pos
(i/n−j/p)2

. Whereas, the kernel mapping of κ′ is no more ϕ (or ψ when ϕ is infinite
dimensional) as there is this additional position term. However, we can mimic its effect without adding
further dimensions by multiplying elementwisely Pκ′(x, z) with S. This results in the following embedding
with position information

Φz(x) = √p× [Pκ′(x, z)� S]>ϕ(x).

B.2 Reconstruction of the transport for Gaussian distributions
In the case of Gaussian distributions and Monge formulation of optimal transport, the reconstruction formula
given in 3.2 is exact. Before we prove this, we introduce the notion of Bures-Wasserstein distance and its
well-known relationship to optimal transport. Let x, x′ and z be random gaussian vectors in Rn with zero
mean and respective covariance matrices A, B and C. For such distributions, the Bures-Wasserstein distance
between A and B, defined as

d(A,B) :=
[
trA+ trB − 2tr(A1/2BA

1/2)1/2
]1/2

,

coincides with the 2-Wasserstein distance between x and x′, W2(x, x′). As a result, Bures-Wasserstein theory
(see, e.g, [4]) provides a closed form solution to the optimal transport problem cast as

W2(x, x′) := inf
γ∈Γ(µ,ν)

 ∫
Rn×Rn

‖x− y‖2dγ(x, y)

1/2

,

where µ and ν are mass distributions: the minimum is indeed attained in x′ = Tx, with

T = A−1#B := A−1(AB)1/2 = (A−1B−1)1/2B.

Lemma B.1. Let x, x′ and z be gaussian distributions with covariance matrices A, B and C. We assume
that we know the Monge optimal transport mapping TA→C from x to z and TB→C from x′ to z. Then, the
mapping from x to x′ can be obtained with

T̃A→B := T−1
B→CTA→C .
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Proof. If we use the regular transport from x (covariance matrix A) to x′ (covariance matrix B) the new
covariance matrix is

E(TA→Bxx>T>A→B) = TA→BE(xx>)T>A→B
= TA→BATA→B

= A−1(AB)1/2AA−1(AB)1/2

= B.

Now, transporting x to z then z to x′, the reconstructed covariance matrix is

E(TC→BTA→Cxx>T>A→CT>C→B) = TC→BTA→CE(xx>)T>A→CT>C→B
= TC→BTA→CATA→CTC→B

= TC→BTA→CAA
−1(AC)1/2TC→B

= TC→BA
−1ACTC→B

= TC→BCTC→B

= B.

So, transporting x to z before transporting the result to x′ is equivalent to directly transporting x to x′. The
reconstructed transport yields the same distribution. Since T−1

B→C = TC→B , we can conclude.

Remark B.2. If x and x′ have non-zero means, one just needs to use the mapping T̃A→B(x− µx) + µx′ .

C Proofs
C.1 Proof of Lemma A.1
Proof. For any P ∈ Ur

( 1
n ,

1
n′

)
, we have

n∑
i=1

n′∑
j=1

Pijδ(xi,x′j) =
n∑
i=1

n′∑
j=1

∑
u∈F

Pijδ(xi, u)δ(x′j , u)

=
∑
u∈F

n∑
i=1

n′∑
j=1

Pijδ(xi, u)δ(x′j , u)︸ ︷︷ ︸
:=fu(x,x′)

.

Then,

fu(x,x′) =
n∑
i=1

δ(xi, u)
n′∑
j=1

Pijδ(x′j , u) ≤
n∑
i=1

δ(xi, u)
n′∑
j=1

Pij︸ ︷︷ ︸
≤1/n

≤ Hu(x)/n = Ĥu(x),

and similarly, fu(x,x′) ≤ Ĥu(x′). Consequently, fu(x,x′) ≤ min(Ĥu(x)Ĥu(x′)). Since the index sets
Iu(x,x′) = {(i, j) ∈ [1, n]× [1, n′] : xi = x′j = u} are disjoint for different u, we will show that the equality
for any u ∈ F can be attained with

Pij = min
(

1
nHxi(x′)

,
1

n′Hx′
j
(x)

)
δ(xi,x′j).
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First,
∑n′

j=1 Pij = min(1/n,Hxi(x′)/n′Hxi(x)) ≤ 1/n and, similarly,
∑n
i=1 Pij ≤ 1/n′. As a consequence,

P ∈ Ur
( 1
n ,

1
n′

)
. Moreover,

fu(x,x′) =
∑

(i,j)∈Iu(x,x′)

Pij

= Hu(x)Hu(x′) min(1/nHu(x′), 1/n′Hu(x))
= min(Ĥu(x), Ĥu(x′)),

so we have an equality case, which concludes the proof.

A direct conclusion from this Lemma is that the optimal match problem A.1 defines a positive definite
kernel since the histogram intersection kernel is known to be positive definite.

C.2 Proof of Lemma 3.3
Proof. First, since

∑n′

j=1 pP(x′, z)jk = 1 for any k, we have

W2(x, z)2 =
n∑
i=1

p∑
k=1

P(x, z)ikd2
κ(xi, zk)

=
n∑
i=1

p∑
k=1

n′∑
j=1

pP(x′, z)jkP(x, z)ikd2
κ(xi, zk)

= ‖u‖22,

with u a vector in Rnn′p whose entries are
√
pP(x′, z)jkP(x, z)ikdκ(xi, zk) for i = 1, . . . , n, j = 1, . . . , n′

and k = 1, . . . , p. We can also rewrite W z
2 (x,x′) as an `2-norm of a vector v in Rnn′p whose entries are√

pP(x′, z)jkP(x, z)ikdκ(xi,x′j). Then by Minkowski inequality for the `2-norm, we have

|W2(x, z)−W z
2 (x,x′)| = |‖u‖2 − ‖v‖2|

≤ ‖u− v‖2

=

 n∑
i=1

p∑
k=1

n′∑
j=1

pP(x′, z)jkP(x, z)ik(dκ(xi, zk)− dκ(xi,x′j))2

1/2

≤

 n∑
i=1

p∑
k=1

n′∑
j=1

pP(x′, z)jkP(x, z)ikd2
κ(x′j , zk)

1/2

=

 p∑
k=1

n′∑
j=1

P(x′, z)jkd2
κ(x′j , zk)

1/2

= W2(x′, z),

where the second inequality is the triangle inequality for the distance dκ. Finally, we have

|W2(x,x′)−W z
2 (x,x′)|

≤|W2(x,x′)−W2(x, z)|+ |W2(x, z)−W z
2 (x,x′)|

≤W2(x′, z) +W2(x′, z)
=2W2(x′, z),

where the second inequality is the triangle inequality for the 2-Wasserstein distance. By symmetry, we also
have |W2(x,x′)−W z

2 (x,x′)| ≤ 2W2(x, z), which concludes the proof.
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C.3 Relationship between W2 and W z
2 for multiple references

Using relation (6) (see Appendix C for details), we can obtain a bound on the error term between W2 and
W z

2 for a data set of m samples (x1, . . . ,xm) and q references (z1, . . . , zq)

E2 := 1
m2

m∑
i,j=1

|W2(xi,xj)−W z1,...,zq
2 (xi,xj)|2 ≤ 4

mq

m∑
i=1

q∑
j=1

W 2
2 (xi, zj). (10)

When q = 1, the right-hand term in the inequality is the objective to minimize in the Wasserstein barycenter
problem [11], which further explains why we considered it: Once W z

2 is close to the Wasserstein distance W2,
Kz will also be close to KOT thanks to relation (3). We extend here the bound given in Lemma 3.3 in the
case of one reference to the multiple-reference case. The approximate 2-Wasserstein distance W z

2 (x,x′) thus
becomes

W z1,...,zq
2 (x,x′) :=

〈
1
q

q∑
j=1

Pzj (x,x′), d2
κ(x,x′)

〉1/2

=

1
q

q∑
j=1

W zj
2 (x,x′)2

1/2

.

Then by Minkowski inequality for the `2-norm we have

|W2(x,x′)−W z1,...,zq
2 (x,x′)| =

∣∣∣∣∣∣∣
1
q

q∑
j=1

W2(x,x′)2

1/2

−

1
q

q∑
j=1

W zj
2 (x,x′)2

1/2
∣∣∣∣∣∣∣

≤

1
q

q∑
j=1

(W2(x,x′)−W zj
2 (x,x′))2

1/2

,

and by Lemma 3.3 we have

|W2(x,x′)−W z1,...,zq
2 (x,x′)| ≤

4
q

q∑
j=1

min(W2(x, zj),W2(x′, zj))2

1/2

.

Finally the approximation error in terms of Frobenius is bounded by

E2 := 1
m2

m∑
i,j=1

|W2(xi,xj)−W z1,...,zq
2 (xi,xj)|2 ≤ 4

mq

m∑
i=1

q∑
j=1

W 2
2 (xi, zj).

In particular, when q = 1 that is the case of single reference, we have

E2 ≤ 4
m

m∑
i=1

W 2
2 (xi, z),

where the right term equals to the objective of the Wasserstein barycenter problem, which justifies the choice
of z when learning without supervision.

D Additional experimental results
In this section, we provide details on our experimental protocol for reproducibility, as well as additional
experimental results. The results are generally averaged over different runs, and the uncertainty is represented
with the standard deviation.
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Table 6: Accuracies obtained by computing the kernel matrices on 5000 samples of CIFAR-10 for various
feature size: [(patch × patch), embedding dimension]. Metric: accuracy on validation set.

Dataset Mean pooling Linear kernel KOT Kz KOT+ Pos. enc. Kz+ Pos. enc.

(3 × 3), 256 0.584 0.649 0.619 0.61 0.661 0.652
(3 × 3), 8192 0.636 0.690 0.652 0.65 0.693 0.694

Table 7: Hyperparameter search range for CIFAR-10

Hyperparameter Search range

Entropic regularization ε [1.0; 0.1; 0.01; 0.001]
Position encoding bandwidth σpos [0.5; 0.6; 0.7; 0.8; 0.9; 1.0]

D.1 Experiments on Kernel Matrices.
Here, we study the optimal transport kernel KOT (2) and its surrogate Kz (4) which exhibit interesting
properties. Although our embedding Φz is scalable, the exact kernel require the computation of Gram
matrices. Therefore, 5000 samples only of CIFAR-10 (images with 32 × 32 pixels) are encoded without
supervision using a two-layer convolutional kernel network [24]. The resulting features are 3× 3 patches living
in Rd with d = 256 or 8192. Since the features are already the output of a Gaussian Nyström embedding, the
intermediate kernel κ is linear, which means that KOT and Kz aggregate existing features linearly given the
computed weight matrix P. In that sense, we can say that our kernels work as an adaptive pooling. We
therefore compare it to kernel matrices corresponding to mean pooling and no pooling at all (linear kernel).
A linear classifier is trained from this matrices. Although we cannot prove that KOT is positive definite,
the classifier trained on the kernel matrix converges when ε is not too small. The results can be seen on
Table 6. Without positional information, our kernels do better than Mean pooling. When the positions are
encoded, the Linear kernel is also outperformed. Note that including positions in Mean pooling and Linear
kernel means interpolating between these two kernels: in the Linear kernel, only patches with same index are
compared while in the Mean pooling, all patches are compared. All interpolations did worse than the Linear
kernel.

D.2 CIFAR-10
We build our OTK on top of the state-of-the-art unsupervised features for CIFAR-10, extracted from a
2-layer CKN [26, 24] model with kernel sizes equal to 3 and 3, and Gaussian pooling size equal to 2 and 1.
We consider the following configurations of the number of filters at each layer, to simulate different input
dimensions for OTKs

• 64 filters at first and 256 at second layer, which yields a 16× 16× 256 representation for each image;

• 256 filters at first and 1024 at second layer, which yields a 16× 16× 1024 representation for each image.

We feed to OTKs the output features of a CKN model, which is already a kernel embedding. κ in OTKs
will therefore be a linear kernel. The OTK embedding is learned with one reference using K-means method
described in Section 3 and compared to several classical pooling baselines, including the original CKN’s
Gaussian pooling with pooling size equal to 6. The hyperparameters are entropic regularization ε and
bandwidth for position encoding σpos. Their search grids are shown in Table 7. The results are shown
in Table 8. We notice that the position encoding is crucial to this task, and substantially improves the
performance of its counterpart without it.
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Table 8: Classification results for CIFAR-10. We consider here OTKs with one reference with different number
of supports, learned with K-means. The embeddings are computed with or without position encoding (PE).

Method Nb. supports 16 × 16 × 256 16 × 16 × 1024

Flatten 73.1 76.1
Mean pooling 64.9 73.4
Gaussian pooling [24] 77.5 82.0

OTK 9 75.6 79.3
OTK (with PE) 78.0 82.2
OTK 64 77.9 80.1
OTK (with PE) 81.4 83.2
OTK 144 78.4 80.7
OTK (with PE) 81.8 83.4

Table 9: Hyperparameter search grid for SCOP 1.75

Hyperparameter Search range

ε for Sinkhorn [1.0; 0.5; 0.1; 0.05; 0.01]
λ for classifier (unsupervised OTKs) 1/2range(5,20)

λ for classifier (supervised OTKs) [1e-6;1e-5;1e-4;1e-3]

D.3 Protein fold recognition
Dataset description. Our protein fold recognition experiments consider the Structural Classification Of
Proteins (SCOP) version 1.75 and 2.06. We follow the data preprocessing protocols in [15], which yields a
training and validation set composed of 14699 and 2013 sequences from SCOP 1.75, and a test set of 2533
sequences from SCOP 2.06. The resulting protein sequences belong to 1195 different folds, thus the problem
is formulated as a multi-classification task. The input sequence is represented as a 45-dimensional vector at
each amino acid. The vector consists of a 20-dimensional one-hot encoding of the sequence, a 20-dimensional
position-specific scoring matrix (PSSM) representing the profile of amino acids, a 3-class secondary structure
represented by a one-hot vector and a 2-class solvent accessibility. The lengths of the sequences are varying
from tens to thousands.

Models setting and hyperparameters. We consider here the one-layer models followed by a global
mean pooling for the baseline methods CKN [6] and RKN [7]. We build our OTK on top of the one-layer
CKN model, where κ can be seen as a Gaussian kernel on the k-mers in sequences. The only difference
between our model and CKN is thus the pooling operation, which is given by our embedding introduced in
Section 3. The bandwidth parameter of the Gaussian kernel κ on k-mers is fixed to 0.6 for unsupervised
models and 0.5 for supervised models, the same as used in CKN which were selected by the accuracy on
the validation set. The filter size k is fixed to 10 and different numbers of anchor points in Nyström for κ
are considered in the experiments. The other hyperparameters for OTKs are the entropic regularization
parameter ε, the number of supports in a reference p, the number of references q, the number of iterations for
Sinkhorn’s algorithm and the regularization parameter λ in the linear classifier. The search grid for ε and λ
is shown in Table 9 and they are selected by the accuracy on validation set. ε plays an important role in the
performance and is observed to be stable for the same dataset. For this dataset, it is selected to be 0.5 for all
the unsupervised and supervised models. The effect of other hyperparameters will be discussed below.

Learning unsupervised OTKs. The kernel embedding ϕ, which is infinite dimensional for the Gaussian
kernel, is approximated with the Nyström method using K-means on 300000 k-mers extracted from the same
training set as in [7]. The reference measures are learned by using either K-means or Wasserstein to update

21



Table 10: Classification accuracy (top 1/5/10) results of unsupervised OTKs for SCOP 1.75. We show the
results for different combinations of (number of references q × number of supports p). The reference measures
z are learned with either K-means or Wasserstein barycenter for updating centroids.

Nb. filters Method q
Embedding size (q × p)

10 50 100 200

128

K-means
1 76.5/91.5/94.4 77.5/91.7/94.5 79.4/92.4/94.9 78.7/92.1/95.1
5 72.8/89.9/93.7 77.8/91.7/94.6 78.6/91.9/94.6 78.1/92.1/94.7
10 62.7/85.8/91.1 76.5/91.0/94.2 78.1/92.2/94.9 78.6/92.2/94.7

Wass. bary.
1 64.0/85.9/91.5 71.6/88.9/93.2 77.2/91.4/94.2 77.5/91.9/94.8
5 70.5/89.1/93.0 76.6/91.3/94.4 78.4/91.7/94.3 77.1/91.9/94.7
10 63.0/85.7/91.0 75.9/91.4/94.3 77.5/91.9/94.6 77.7/92.0/94.7

1024 K-means
1 84.4/95.0/96.6 84.6/95.0/97.0 85.7/95.3/96.7 85.4/95.2/96.7
5 81.1/94.0/96.2 84.9/94.8/96.8 84.7/94.4/96.7 85.2/95.0/96.7
10 79.8/93.5/95.9 83.1/94.6/96.6 84.4/94.7/96.7 84.8/94.9/96.7

Table 11: Classification accuracy (top 1/5/10) of supervised models for SCOP 1.75. The accuracies obtained
by averaging 10 different runs. We show the results of using either one reference with 50 supports or 5
references with 10 supports. Here DeepSF is a 10-layer CNN model.

Method Top 1/5/10 accuracy on SCOP 2.06

PSI-BLAST [15] 84.53/86.48/87.34
DeepSF [15] 73.00/90.25/94.51

Number of filters 128 512

CKN [6] 76.30±0.70/92.17±0.16/95.27±0.17 84.11±0.11/94.29±0.20/96.36±0.13
RKN [7] 77.82±0.35/92.89±0.19/95.51±0.20 85.29±0.27/94.95±0.15/96.54±0.12

Ours
OTK (Φz 1 × 50) 82.83±0.41/93.89±0.33/96.23±0.12 88.40±0.22/95.76±0.13/97.10±0.15
OTK (Φz 5 × 10) 84.68±0.50/94.68±0.29/96.49±0.18 88.66±0.25/95.90±0.15/97.33±0.14

centroids in 2-Wasserstein K-means on 3000 subsampled sequences for RAM-saving reason. We evaluate
OTKs on top of features extracted from CKNs of different dimensions, representing the number of anchor
points used to approximate κ. The number of iterations for Sinkhorn is fixed to 100 to ensure the convergence.
The results for different combinations of q and p are provided in Table 10. Increasing the number of supports
p can improve the performance and then saturate it when p is too large. On the other hand, increasing the
number of references while keeping the embedding dimension (i.e. p× q) constant is not significantly helpful
in this unsupervised setting. We also notice that Wasserstein Barycenter for learning the references does not
outperform K-means, while the latter is faster in terms of computation.

Learning supervised OTKs. The supervised OTKs are initialized with the unsupervised method and
then trained in an alternating fashion which was also used for CKN: we use an Adam algorithm to update
anchor points in Nyström and reference measures z, and the L-BFGS algorithm to optimize the classifier.
The learning rate for Adam is initialized with 0.01 and halved as long as there is no decrease of the validation
loss for 5 successive epochs. In practice, we notice that using a small number of Sinkhorn iterations can
achieve similar performance to a large number of iteration, while being much faster to compute. We thus
fix it to 10 throughout the experiments. The accuracy results are obtained by averaging on 10 runs with
different seeds following the setting in [7]. The results are shown in Table 11 with error bars. The effect of
the number of supports q is similar to the unsupervised case, while increasing the number of references can
indeed improve performance.

22



Table 12: Model architecture for DeepSEA dataset.

Model architecture

Conv1d(in channels=4, out channels=d, kernel size=16) + ReLU
OTKLayer(in channels=d, supports=64, references=1, ε = 1.0, PE=True, σpos = 0.1)
Linear(in channels=d, out channels=d) + ReLU
Dropout(0.4)
Linear(in channels=d× 64, out channels=919) + ReLU
Linear(in channels=919, out channels=919)

D.4 Detection of chromatin profiles
Dataset description. Predicting the functional effects of noncoding variants from only genomic sequences
is a central task in human genetics. A fundamental step for this task is to simultaneously predict large-scale
chromatin features from DNA sequences [47]. We consider here the DeepSEA dataset, which consists in
simultaneously predicting 919 chromatin profiles including 690 transcription factor (TF) binding profiles
for 160 different TFs, 125 DNase I sensitivity profiles and 104 histone-mark profiles. In total, there are 4.4
million, 8000 and 455024 samples for training, validation and test. Each sample consists of a 1000-bp DNA
sequence from the human GRCh37 reference. Each sequence is represented as a 1000× 4 binary matrix using
one-hot encoding on DNA characters. The dataset is available at http://deepsea.princeton.edu/media/
code/deepsea_train_bundle.v0.9.tar.gz. Note that the labels for each profile are very imbalanced in
this task with few positive samples. For this reason, learning unsupervised models could be intractable as
they may require an extremely large number of parameters if junk or redundant sequences cannot be filtered
out.

Model architecture and hyperparameters. For the above reason and fair comparison, we use here the
supervised OTK as a module in Deep NNs. The architecture of our model is shown in Table 12. We use an
Adam optimizer with initial learning rate equal to 0.01 and halved at epoch 1, 4, 8 for 15 epochs in total.
The number of iterations for Sinkhorn is fixed to 30. The whole training process takes about 30 hours on a
single GTX2080TI GPU. The dropout rate is selected to be 0.4 from the grid [0.1; 0.2; 0.3; 0.4; 0.5] and the
weight decay is 1e-06, the same as [47]. The σpos for position encoding is selected to be 0.1, by the validation
accuracy on the grid [0.05; 0.1; 0.2; 0.3; 0.4; 0.5]. The checkpoint with the best validation accuracy is used to
evaluate on the test set. Area under ROC (auROC) and area under precision curve (auPRC), averaged over
919 chromatin profiles, are used to measure the performance. The hidden size d is chosen to be either 1024 or
1536.

Results and importance of position encoding. We compare our model to the state-of-the-art CNN
model DeepSEA [47] with 3 convolutional layers. Our model outperforms DeepSEA, while requiring fewer
layers. The positional information is known to be important in this task. To show the efficacy of our position
encoding, we compare it to the sinusoidal encoding used in the original transformer [40]. We observe that our
encoding with properly tuned σpos requires fewer layers, while being interpretable from a kernel point of view.
We also find that larger hidden size d performs better, as shown in Table 13. ROC and PR curves for all the
chromatin profiles and stratified by transcription factors, DNase I-hypersensitive sites and histone-marks can
also be found in Figure 2.

D.5 SST-2
Dataset description. The data set contains 67349 training samples and 872 validation samples and can be
found at https://gluebenchmark.com/tasks. The test set contains 1821 samples for which the predictions
need to be submitted on the GLUE leaderboard, with limited number of submissions. As a consequence, our
training and validation set are extracted from the original training set (80% of the original training set is
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Table 13: Results for prediction of chromatin profiles on the DeepSEA dataset. The metrics are area under
ROC (auROC) and area under PR curve (auPRC), averaged over 919 chromatin profiles. The accuracies are
averaged from 10 different runs. Armed with the positional encoding (PE) described in Section 3, the OTK
outperforms the state-of-the-art model and an OTK with the PE proposed in [40].

Method DeepSEA [47] OTK OTK (d = 1024) OTK (d = 1536)
Position encoding - Sinusoidal [40] Ours Ours

auROC 0.933 0.917 0.935 0.936
auPRC 0.342 0.311 0.354 0.360

Figure 2: ROC and PR curves for all the chromatin profiles (first row) and stratified by transcription factors
(left column), DNase I-hypersensitive sites (middle column) and histone-marks (right column). The profiles
with positive samples fewer than 50 on the test set are not taken into account.
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Table 14: Accuracies on standard validation set for SST-2 with unsupervised OTK features depending
on the number of references and supports. The references were computed using K-means on samples for
multiple references and K-means on patches for multiple supports. The size of the input BERT features is
(length× dimension). The accuracies are averaged from 10 different runs.

BERT Input Feature Size (30 × 768) (66 × 768)

Features Pre-trained Fine-tuned Pre-trained Fine-tuned

[CLS] 84.6±0.3 90.3±0.1 86.0±0.2 92.8±0.1
Flatten 84.9±0.4 91.0±0.1 85.2±0.3 92.5±0.1
Mean pooling 85.3±0.3 90.8±0.1 85.4±0.3 92.6±0.2

OTK (1 × 3) 85.5±0.1 90.9±0.1 86.5±0.1 92.6±0.1
OTK (1 × 10) 85.1±0.4 90.9±0.1 85.9±0.3 92.6±0.1
OTK (1 × 30) 86.3±0.3 90.8±0.1 86.6±0.5 92.6±0.1
OTK (1 × 100) 85.7±0.7 90.9±0.1 86.6±0.1 92.7±0.1
OTK (1 × 300) 86.8±0.3 90.9±0.1 87.2±0.1 92.7±0.1

used for our training set and the remaining 20% is used for our validation set), and we report accuracies on
the standard validation set, used as a test set. The reviews are padded with zeros when their length is shorter
than the chosen sequence length (we choose 30 and 66, the latter being the maximum review length in the
data set) and the BERT implementation requires to add special tokens [CLS] and [SEP] at the beginning and
the end of each review.

Model architecture and hyperparameters. In most transformers such as BERT, the embedding
associated to the token [CLS] is used for classification and can be seen in some sense as an embedding of the
review adapted to the task. The features we used are the word features provided by the BERT base-uncased
version, available at https://huggingface.co/transformers/pretrained_models.html. For this version,
the dimension of the word features is 768. In the unsupervised case, the word embeddings of the reviews
are kept as is, i.e we do not embed it using a Gaussian kernel. In this setting, the OTK linearly recombines
the word features based on the transport plan. The resulting features are used to train a large-scale linear
classifier using the Cyanure library [25]. In the supervised case, the OTK uses a Gaussian Nyström embedding
with varying number of filters before the pooling layer, and the parameters of the two layers, w and z, are
optimized end-to-end. In this case, we have to tune the bandwidth of the Gaussian kernel as well as the
learning rate. The classifier is here a fully-connected layer. In both case, we tune the entropic regularization
parameter of optimal transport and the regularization parameter (or weight decay) of the classifier so as to
get the best accuracy on the standard validation set, which is our test set. The parameters in the search grid
are summed up in Table 15. The best entropic regularization and Gaussian kernel bandwidth are typically
ans respectively 3.0 and 0.5 for this data set. In BERT models, the positional information is integrated in
the initial word embeddings. As a consequence, we do not use our own positional encoding. The supervised
training process takes between half an hour for smaller models (typically 128 filters in w and 3 supports in z)
and a few hours for larger models (256 filters and 100 supports) on a single GTX2080TI GPU.

Results and discussion. As explained in Section 5, our unsupervised OTK improves the BERT pre-trained
features while still using a simple linear model as shown in Table 14, and its supervised counterpart enables to
get even closer to the state-of-the art (for the BERT base-uncased model) accuracy, which is usually obtained
after fine-tuning of the BERT model on the whole data set. This can be seen in Table 16.
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Table 15: Hyperparameter search grid for SST-2.

Hyperparameter Search range
Entropic regularization ε [3.0; 1.0; 0.5]
λ for classifier (unsupervised OTKs) 10range(−10,1)

λ for classifier (supervised OTKs) [1e-4;1e-3;1e-2]
Gaussian kernel bandwidth (supervised OTKs) [0.5; 1.0; 1.5]
Learning rate (supervised OTKs) [0.1; 0.01; 0.001]

Table 16: Accuracies on standard validation set for SST-2 with supervised OTK features from pre-trained
BERT (30× 768) depending on the number of supports in the reference. The accuracies are averaged from 10
different runs, and 30 Sinkhorn iterations were used.

Number of supports p 3 10 30

Nyström filters
128 87.59 87.59 87.53
256 87.45 87.44 87.50
512 87.27 87.16 87.29
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