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Abstract—Local energy markets (LEMs) have been proposed
to mitigate the variability introduced in power systems by
distributed renewable energy resources such as photo-voltaic
energy. During the progressive release of LEMs, the decision
problem faced by prosumers (consumers that might also produce
energy), will differ from the wholesale electricity market’s one
because there is always the alternative to buy from or sell
to the utility company. In this setting, guaranteeing that the
aggregated energy consumption will be well behaved depends on
the properties of the mechanisms used to implement the market,
the alternative tariff offered to participants by their utility and
how prosumers interact among themselves.

We present a pathological example of a LEM in which the best
strategy for the agents results in unnecessary peaks of demand. A
decision model for players participating in LEMs is developed to
study the existence of undesirable behaviour while using realistic
data and number of participants.

Through numerical experiments, we identify the key aspects
of the player’s behaviour, strategy and environment that lead to
the aforementioned peaks, all under reasonable circumstances.
Simple fixes are discussed to overcome the pitfalls of such
markets.

I. INTRODUCTION

Among demand-response programs, those that incentivize
local exchanges of energy, i.e., energy produced in a Low
Voltage (LV) grid being consumed in the same LV grid, are
of particular interest as they can reduce congestion in the
main grid. Local energy markets (LEM) have been proposed
as demand-response programs capable of incentivizing local
exchanges and several projects are currently under implemen-
tation [1], [2].

In this paper, we consider LEMs among residential house-
holds. These households have a demand or surplus energy
(if they produce more than what they consume) which they
would normally settle by buying (or selling) from a Tradi-
tional Energy Company (TEC). Furthermore, we examine only
LEMs implemented as sequential double auctions in which
households can offer to buy or sell energy in the next time-
slot (usually 30 minutes). Households that fail to trade in the
LEM can decide to trade with the TEC instead. An example of
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such an architecture was implemented in Switzerland [3]. Our
approach is related to [4], [5] in that we model the interaction
of agents with both the TEC and the LEM at the same time.
We consider households with energy storage which enables
flexible energy consumption profiles. As the LEM can create
more competitive prices than the TEC when there is surplus of
local energy, LEMs can serve as demand-response programs
by providing more competitive prices.

A. Motivation

A demand-response program offers incentives to users to
change their consumption. Ideally, such a change is beneficial
for both the participants and the power grid. In other words,
a good demand-response program aligns the utility of agents
and grid operators such that a benefit for one gets reflected in
a benefit for the other.

Unfortunately, this needs not be the case for Local Energy
Markets. Kok et al. [6] observed that sequential markets do not
take into account the inter temporal constraints of consumption
and can lead to problems. We explore this issue at depth in this
paper but, we begin by presenting a toy example illustrating
this phenomenon.

1) Example: There are 4 players (3 buyers and one seller)
and 3 time-slots. The 3 buyers need one unit and can get it in
any of the 3 time-slots. The buyers can buy their unit in the
local market at a variable price, or from the TEC at price 2.
The seller has one unit to sell, only in the 3rd time-slot. He
can sell it in the market or to the TEC for a price of 1. There
is a probability p for each buyer to have 0 demand instead
of desiring one unit, those events being independent, and the
other buyers know that.

All buyers have an incentive to wait until the last time-slot:
there is no loss in doing so (the price of the TEC does not
change) and the profit can be bigger (because of the possible
lower price in the market, e.g., with probability p2(1−p) they
will be the only buyer facing the seller)

Although this is not necessarily bad for players, this is a
bad equilibrium for the grid: it creates a peak in the last time-
slot. Also, this outcome is not flexibility-efficient: in the best
scenario, each buyer consumes in a different time-slot and the
peak is the smallest possible.



B. Contributions

The example presented above points to a gap in our un-
derstanding of local energy markets. This problem is related
to the coexistence of LEMs with alternative ways of trading
energy and, in particular, to how agents plan their schedule
with respect to future prices, a topic usually not considered in
the literature [7], [8].

The work from Alabdullatif et al. [9] is closely related to
our approach. They study a set of agents that participate in a
LEM and have the option to trade with a TEC instead. They
do not model the scheduling of each player’s flexibility as an
optimization problem nor they forecast trading prices in the
market for more than one time-slot ahead. Because of that,
some of the behaviours and shortfalls of LEMS described in
this paper cannot be captured by their approach, as they arise
form the higher (but realistic) complexity of the system.

An exploratory approach is proposed in this paper to un-
derstand the feasibility of LEMs implemented as sequential
markets.

The contributions of this paper can be summarized as
follows: First, we uncover the existence of misalignments of
objectives in local energy markets when players can trade
with the TEC. Secondly, we propose a multi-stage stochastic
game to model the interaction of agents through LEMs and
with the TEC. Thirdly, we derive a simple but realistic model
of prosumers with storage that optimizes her decisions to
participate in a LEM. Finally, we identify possible roots of the
aforementioned misalignments and we suggest alternatives on
how to fix them.

II. PRELIMINARIES

A. Mathematical Model for Players

We begin by introducing a mathematical model for a player
that needs to consume energy and has a contract with a TEC.

Let N = {1, . . . , N} be the set of players and T =
{1, . . . , T} the set of time-slots. The superscript i will denote
variables that correspond to player i and the subscript t will
be used to explicit the time-slot.

Each player i ∈ N has a fixed demand profile li that can
be observed every time-slot li = (li1, . . . , l

i
T ), where lit is the

demand of player i at time-slot t ∈ T . The load profile li is the
sum of the consumption driven by appliances of player i and
the energy generation she might have thanks to a photovoltaic
panel (possibly). A positive value of li will indicate a net
energy consumption and a negative value energy a surplus
(due to the renewable generation).

Assumption 1. We model players with inflexible energy con-
sumption profiles, i.e., all their flexibility is due to energy
storage. In our model, the utility of player i is 0 if her required
load profile is satisfied or −∞ if it is not, minus payments.
Namely, she maximizes her utility when she minimizes how
much she is paying for the same energy consumption.

Players can own batteries. If they do, their capacity will
be denoted by Si (Si ≥ 0). The maximum energy that the

battery can provide in a given time-slot (ramp constraint) will
be denoted by δi and the maximum energy that the battery can
store in a single time-slot by δ

i
. Furthermore, batteries are not

perfectly efficient. We will denote by ηc the charging efficiency
and by ηd the discharging efficiency. The only action that
players can take to change their energy consumption profile is
to use the battery. That is, players can only decide how much
to charge or discharge the battery. We will denote by yt the real
amount of energy that enters (positive value of yt) or leaves
the battery (negative values of yt) and ~y = (y1, . . . , yT ).

The feasible set of actions of player i is defined by the set
X i =

{
~yi : 0 ≤ Si0 +

∑j
t=1 yt ≤ Si, ∀j ∈ T , yj ∈ [δi, δ

i
]
}

Proposition 1. The set X i is non-empty, closed and convex.

Proof. It is defined as the intersection of half spaces.

In this context, the net consumption in time-slot t is given
by: zit = lit + 1

ηc
max{yit, 0} −max{−yit, 0}ηd with yi ∈ X i.

The TEC offers player i a buying price βit and a selling price
γit . With the above prices, the utility of player i is given by
ui(yi) =

∑T
t=1 max{zit, 0}βit −max{−zit, 0}γit , yi ∈ X i.

B. MUDA

In this paper, we use MUDA (Multi Unit Double Auction)
[10] as the local market mechanism.

To participate in MUDA, agents can submit a bid for buying
or for selling. In both cases, a bid consists of a finite list
of quantity-price pairs B = ((q1, p1), (q2, p2), . . . , (qm, pm))
with qi < qi+1 and pi > pi+1 (pi < pi+1 for selling).
Because MUDA is an auction for divisible goods, when the
market clears, players might receive only a fraction of their
desired quantity. After all bids have been received, the market
mechanism randomly splits all participants into two groups
and determines the clearing price 1 for each of the two. MUDA
is strategy-proof. To guarantee so, participants trade with the
clearing price of the group to which they do not belong. To
do so, all the buyers in one side of the market that offered
to buy at a price higher than the clearing price of the other
side and all the sellers that offered to sell below that price
are pre-selected to trade. Because there might be more supply
than demand (or vice versa), a rule is used to select which of
the pre-selected sellers (or buyers) gets to trade. By doing so,
agents cannot influence their trading price.

Furthermore, MUDA is individually rational (agents do not
lose money by participating), weakly budget balanced (the
market maker does not lose money by running the market
and might have a profit) and is efficient only asymptotically
in the number of players (as it is impossible to satisfy all
described properties at the same time [11]). More details on
the mechanism can be found [10].

III. GAME THEORETICAL MODEL

Having introduced a very small example of how a Local
Energy market game looks like and a model for a prosumer
with a battery, we introduce a formal model.

1By finding the intersection of the supply and demand curves.



Consider a setting with N players and T = {1, 2, . . . , T}
stages (or time-slots). Each stage is composed of two steps:
a market trading and a final settlement with the traditional
electricity company (TEC).

Following the conventions used in game theory, the super-
script −i will stand for all players expect player i. The state
of player i (sit) at time-slot t will contain information about
the state of charge of the battery and the load of the current
and future time-slots of the player. The set Bit(sit) will denote
the feasible bids of player i at time-slot t given her state of
charge.

Assumption 2. Players restrict their bids in the market to
quantities that they can physically buy or sell.

In practice, a player that often bids a quantity that she cannot
latter provide (or consume) could see her access to the market
restricted. Players can be buyers or sellers, but not both in the
same time-slot.

After the market clears, player i observes her traded quantity
q̃it and price p̃it just before the first step finishes. In the second
step, she makes sure that her energy demands are satisfied. She
can decide to schedule some of her energy needs for later but
the rest will have to be bought (or sold) from the TEC. The
set of possible settlements with the TEC at time t that player
i can offer is given by Git

∆
= Git(sit, q̃it, p̃it) and depends on

the state of the player (how much energy is needed and how
flexible that consumption is) and the result of the market. The
cost of trading a quantity git with the TEC at time-slot t is
given by Cit(g

i
t).
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Fig. 1. Timeline of decision process and decision flow for a player in the
LEM game

Figure 1 illustrates the decision and information flow for a
given player as described above2.

After implementing an action git ∈ Git , player i transitions
to the new state sit+1 = f it (s

i
t, q̃

i
t, p̃

i
t, g

i
t) (where f it defines

the dynamics of the state transition) and the stage finishes.
Denoting by ait = (bit, g

i
t) the pair of actions taken by player i

during stage t, where bit is the bid submitted and git is the
quantity traded with the TEC, the set of all such possible
actions at the beginning of the stage will be denoted by Ait
The set of all possible actions that players other than i can

2We shall use the convention that positive quantities gi, q̃i imply buying
energy while negative values are used for selling.

take at stage t is defined as A−it
∆
=
∏
j 6=i

Ajt . This set depends

on the past actions of all players and their future load profiles.
In a setting with perfect information, player i will have a

belief about the likelihood of her opponents playing a given
strategy and the equally likely splits of the market into two
groups. Let ∆A−it be the set of probability distributions over
A−it ×W , where W is the set of all possible 2N−1 splits into
two groups. Then player’s i belief about the possible outcomes
of the game at time-slot t is given by dit ∈ ∆A−it .

Finally, we will denote the expected Cost-to-go of player i
from stage t onwards while being in state sit as Qit(sit). In this
setting, it is defined as the solution of the two step stochastic
optimization problem (1a).

Qit(sit) = min
bit ∈ Bit(sit)

Edit [A(bit, a
−i
t , w, sit)] (1a)

where

A(bit, a
−i
t , w, sit) = min

git

p̃itq̃
i
t + Cit(g

i
t) +Qit+1(sit+1)

(2a)

s.t. q̃it, p̃
i
t =M(bit, a

−i
t , w), (2b)

git ∈ Git(sit, q̃it, p̃it), (2c)

sit+1 = f it (s
i
t, q̃

i
t, p̃

i
t, g

i
t) (2d)

with QiT+1 = 0. In optimization problem (2a), M is
a function that outputs the results of the market according
to MUDA rules, given the bids of all players. Optimization
problem (1a) is solved every stage before bidding in the
market. We shall assume that if no quantity is traded in
the market, it is always possible to buy or sell the required
amount of energy with the traditional utility company. As a
consequence, the set Git(sit, 0, p̃it) is always non-empty. This is
a realistic assumption as consumers can always buy all their
energy from their utility. The model above defines a multi-
stage stochastic game.

Remark 1. In real implementations of the market, it is
possible that players will only be able to observe the result
of their trade, but not the bids of other players (privacy is
one of those reasons). This would limit the ability of players
to reason about the game. In that case, player’s beliefs will
likely only consider prices and quantities, but not actions.

IV. A MODEL FOR PROSUMERS PLAYING LEMS

It should not come as a surprise to the reader that the model
introduced in the previous section is quite difficult to solve.
We do not try to solve such a model in this work. Instead,
we search for realistic simulations of it that might exhibit the
undesirable effects introduced at the beginning of the paper.
To do so, we need to model rational agents in a simple way
that is coherent with the game being played and that is able
to capture the behaviour in question.



Assumption 3. We consider agents that reason about the
future inasmuch as they schedule their consumption taking into
account future prices and that they update their beliefs about
the future after observing the results of their actions. We do
not model agents that, before deciding on their actions for
time-slot t, take into account how those actions will change
their environment in future time-slots (only how their state of
charge might change).

We believe that Assumption 3 is realistic and we do not
expect implementations of such systems to behave differently.

Remark 2. Even though the stochastic game as a whole might
not be truthful, if as part of a player’s strategy, she decides
that she wants to buy q units at price at most p during time-
slot t, then bidding truthfully in MUDA is the optimal action
(in that time-slot).

As a consequence of Assumption 3 and Remark 2, the first-
stage optimization problem can be substituted with the optimal
amount of energy that each player wishes to consume, given
her beliefs about market prices. Indeed, the proposed model
is exactly the optimal control of a battery with one addition:
for each time-slot, apart from the price of the TEC, there is a
market price with an associated maximum tradable quantity.
This model extends the model introduced in Section II-A and
we will use the same notation.

To keep the model simple, we assume that agents have
a probabilistic belief about prices, but to avoid solving a
stochastic optimization problem in each step, they use an
unbiased estimator of each quantity instead.

As we mentioned earlier, each player has a belief in the form
of a probability distribution about each market outcome q̃it, p̃

i
t.

Because players can be either buyers or sellers in the market,
they will have a possibly different belief for each case. Let
PBt,PSt,QBt,QSt be the priors for the buying price, selling
price, buying quantity and selling quantities respectively for
each time-slot t. The notation X̂ will be used to denote an
unbiased estimator of X .

For a player i that wishes to buy, the best option is to buy
as much as possible in the market (at a better price than the
TEC), and acquire the remaining energy with the TEC. The
same holds for a player that wishes to sell. Substituting the
player’s beliefs about quantity and prices of the market in
time-slot t, the cost (or profit) of player i during time-slot t
associated with a net consumption profile of zit is given by
Equation (3).

F it (z
i
t) =


P̂BQ̂Bt + βtz

i
t if zit > Q̂Bt

P̂Bzit if Q̂Bt ≥ zit ≥ 0

P̂Szit if Q̂St ≤ zit ≤ 0

P̂SQ̂St + γtz
i
t if zit < Q̂St

(3)

With the above conventions, the decision problem faced by
a player is given by optimization problem (4).

min
y∈X i

T∑
t=1

F it (z
i
t)

s.t.: zit = lit +
max{yt, 0}

ηc
−max{−yt, 0}ηd, ∀t ∈ T

(4)

Because the market is truthful, we find the bid of player i
as bit = (zi,∗t , ˆPSt) if zi,∗t < 0 or bit = (zi,∗t , ˆPBt) otherwise,
where zi,∗ is the value of z in an optimal solution of (4).

Proposition 2. If the function F it as defined in Equation (3)
is convex (which happens as long as P̂B ≥ β ≥ P̂S > γ, for
every time-slot), then optimization problem (4) is linear. The
ideas of the proof are the same as in [12].

This is closely related to the setting in [13].

A. Post market

After the market clears, based on the results of the market,
players have to decide how much to finally trade with the TEC,
if any. To do so, players should modify the cost function (3) by
replacing their beliefs about market prices with the real results.
Furthermore, if the player managed to trade in the market a
quantity q̃i then an additional constraint zit ≥ q̃it (if q̃it > 0 or
zit ≤ q̃it otherwise), should be added to guarantee that players
adhere to their commitments in the market. Here, we assume
that players adhere willingly to their commitments with the
market, but we could also envision a penalty for deviating
from the market.

The value of git, the quantity to be traded with the TEC is
be the difference between the new optimal value of zit and q̃it.

B. Beliefs about the game

As it was mentioned before, we assume that players have
a belief (probability distribution) about future market prices
and maximum tradable quantities. As these players play the
game, they will observe new market’s results and they will
update their beliefs using the new information, improving their
representation of the game.

We model players’ beliefs as conjugate distributions and use
a Bayesian rule to update them.

In theory, players could have up to 4T different beliefs
where the 4 is because of the 2 quantities and 2 prices in-
volved. In practice, players will reuse the same belief in time-
slots in which they expect them market the behave similarly.
For example, because of time-of-day patterns. Each belief
will be represented as normal probability distributions with
unknown mean but known variance N 1(µit, σt). Furthermore,
each player will have a belief about the value of the mean
of such distribution in the form of a normal distribution
µit ∼ N 2(υit, τ

i
t ).

After observing n outcomes of the variable of interest
over time (which we will assume independent), the new
values of υ and τ are given as: τ ′ = ( 1

τ2 + n
σ2 )−1 and

υ′ = τ ′
(
υ
τ2 +

∑n
1 xi

σ2

)
.

If players use a different belief for each time-slot, they will
only observe one outcome and that belief will never be used



again. In contrast, if players reuse their beliefs across several
days, updating them can be useful.

Players can change their beliefs about the game by doing
two things. First, by deciding how to map time-slots to
distributions (reuse), i.e., two time-slots can use the same dis-
tribution and the data of both updates the same prior. Secondly,
players can change the initial value of her distribution to reflect
their beliefs about the market before observing it.

We proceed to introduce the types of representations used in
the rest of the paper. We will denote the number of time-slots
in a single day by D.

First we describe three representations: Optimistic (OPT),
Neutral (NEU) and Pessimistic (PES). The 3 representations
map the 4 distributions at each time-slot t ∈ T to the 4
representations of time-slot (t mod D), effectively keeping
4D beliefs: one for each quantity and price for each time-slot
in day. This exploits the time-of-day effects. Their difference
lies in the initial value of υi. The OPT belief assumes that
prices in the market are 30% better than the trading with
the TEC (both, while buying and selling). The NEU belief
assumes that prices are only 10% better than the TEC. Finally,
PES assumes that the prices are the same as the TEC.

We consider two more types of beliefs. One named Solar
(SOL) and one named Unique (UNQ). The SOL tariff
considers only two different distributions of each type. Time-
slots that occur when the sun should be shining3 are mapped
to a distribution and the rest are mapped to another one.
The distribution associated with sun hours is initialized by
assuming prices to be 20% better than the market while in
the other belief prices are the same as the TEC. At last,
the UNQ belief considers only 4 distributions, one for each
price and quantity. In this case, the prices are considered to
be 10% better than those offered by the TEC. Beliefs about
quantities are initialized at a large value, stimulating an initial
participation in the market.

In addition to different representations, we also consider
different frequencies to update beliefs: with every new obser-
vation of the market, every n observations of the market or
the most extreme case of never updating the belief.

V. NUMERICAL EXPERIMENTS

At the beginning of this paper we presented an undesirable
example of local energy market. In it, players had an incentive
to behave in a way that resulted in unnecessary peaks.

In this section, we make use of the model of a prosumer
participating in a LEM to replicate the behaviour encountered
in the motivating example. Our intention is to understand
which characteristics of Example I-A1 can be observed with a
large number of players and which of them are only an effect
of the size of the example. To do so, we resort to computational
simulations of the whole multi-agent system.

Each simulation consists of 9 consecutive days in which
prosumers optimize their energy storage and trade using the
LEM. Each agent will use the mathematical model described

3(t mod D) ∈ [12, 36]

in Section IV. Different simulations will reflect different load
profiles and representations of the uncertainty.

Each prosumer owns a battery and some agents have access
to solar generation. The demand of each agent is sampled from
the Ausgrid dataset [14]. The dataset contains samples every
30 minutes, yielding 48 time-slots (D = 48) per day. For each
instance of the simulation, the demand of N = 50 prosumers
is sampled out of the 127 available in the dataset.

Because the generation in the data is not enough to support
a LEM (there is little surplus available for trading), for half
of the users we generate extra surplus at random. To do so,
for each time-slot t in {15, . . . , 30} and each selected agent i,
we sample extra generation from a uniform distribution Rit ∼
U [− 3

10 , 0] i.i.d such that the new demand is given by l′t =
lt +Rt.

The battery characteristics are the same for each prosumer:
S = 13, δ = −δ = 5, ηc = ηd = 0.95.

Two price tariffs are used for our simulations: a flat rate and
a time-of-use tariff. In the flat rate, the price of buying energy
is constant with a value of 30. The time-of-use tariff consists
of two periods: a cheap one and an expensive one. The first
one spans the first 32 time-slots of every day and has a value
of 20 while the latter spans the remaining time-slots of every
day and has a value of 30. Both tariffs have the same price for
selling for all time-slots: 10. All prices are in cents per kilo
watt hour.

In this paper, players use a rolling horizon of length 48
time-slots (or 1 day) to solve the optimization problem (4).
Participants only implement the first decision out of the 48
that they obtain before moving to the next time-slot.

To solve optimization problem (4), prosumers need to know
their load in the next day (because of the rolling horizon
procedure). Players have perfect knowledge of their load in the
first of the 48 time-slots, and use a forecast for the remaining
47. We adopt the AvgPast forecast as described in [15] as
it has been shown to provide a good performance for the
operation of storage without being too complex.

All market mechanisms will be run using the auction
mechanism MUDA as implemented in PyMarket [16] and the
optimization problems involved in controlling the battery are
solved in CPLEX. Simulations were run in parallel using GNU
parallel [17].

In all our simulations, players learn from their own expe-
rience. That is, they update their belief based solely on the
market prices and quantities they have been subject to, but
not those of the other players. A player will update her beliefs
about prices only if she gets to trade.

We conclude this section with the four metrics of interest
studied in this paper. First, we looked at the Social Cost (SC),
the sum of the cost incurred by all players during all time-
slots. This is an indicator of how well the market performs
from the perspective of the players. Secondly, we look at two
statistics, the maximum peak and the most negative peak of
the aggregated net consumption profiles. We refer to them as
max and min respectively. Finally, we look at the total amount
of energy that gets matched locally (LM). This is an upper



bound of the energy traded in the market since all the energy
traded in the market gets matched locally, but it is possible
for two prosumers to consume and inject at the same time
without having traded. Because all of the above metrics are
difficult to contextualize on their own, instead of presenting the
corresponding value, we will always show the relative change
of the metric with respect to the scenario without a market
in which players optimize their battery independently of each
other.

A. Results and Discussion

We begin our presentation of the results obtained by direct-
ing the attention of the reader to Table I.

TABLE I
STATISTICS OBTAIN WITH DIFFERENT CONFIGURATIONS.

SC min max LM net LM
Tariff Freq Belief

Flat 0 SOL -11 6 95 62 396
TOU 1 NEU -2 -54 57 -36 187

OPT 1 -150 -40 -3 284
PES -1 0 40 -6 282
SOL -1 -7 7 -3 285
UNQ -1 -6 -7 13 337

0 PES 0 0 0 0 297
SOL -11 -155 -1 50 435

In it, the average relative change with respect to the scenario
without a market is presented. For SC, a negative value
indicates that the market managed to decrease the total cost (a
positive outcome). For both min and max, a negative value is
desirable as it denotes that the maximum positive peak or the
maximum negative peak were reduced. Finally, a higher and
positive value of the locally matched energy LM is beneficial
as this was one of the motivations to introduce energy markets.

In Table I, the column Freq denotes the number of sam-
ples collected before updating the beliefs. In addition to not
updating their beliefs, in simulations with a Freq value of 0,
players did not trade in the market, they only used the belief to
change their battery schedule planning. Solar Tariff as used
in the legend of Figures 2 and 4 refers to the SOL belief
in the Freq 0 scenario. The last column of the table shows
the total amount of energy (in kWh) that got traded locally
during the simulation. We can observe that the Solar Tariff is
less effective when paired with a Flat tariff.

In Figures 2 and 4, each curve represents the difference be-
tween the aggregated net load of a simulation using the market
and a set of beliefs and the aggregated load obtained without
a market (for the same parameters). The x-axis coincides with
the default aggregated load. In Figure 2 players are subject to
a Time-of-Use tariff, while in 4 they use a Flat tariff.

By turning our attention to Figure 2 we notice two things.
First, of all the beliefs plotted in red, most of them produce
small deviations with respect of the default operation (close
to 0) while one of them creates very high peaks. The belief
producing the peaks in red is NEU. Interestingly, Table I
indicates that for a ToU tariff, the NEU achieved a reduction

in the social cost, while creating higher peaks and reducing
the amount of energy locally matched. Indeed, we observe
a misalignment of objectives. To explain why this behaviour
emerges, we refer the reader to Figure 3. In it, we plotted
the same curve producing the peaks of Figure 2 in blue. In
red, we plotted the total amount of energy that participants
asked in the market at the beginning of each time-slot. We
observe that there is a mismatch between the two quantities.
Moreover, players try to trade in the market until the change
in price. At that point, they decide to buy all their required
quantity. This is a consequence of the expected market price
in the most expensive period: 30 ∗ 0.9 = 27 > 20, the
default low TOU price. We argue that this type of behaviour,
only due to the beliefs of a player, can show up in real
deployments of LEMs with dire consequences. Unfortunately,
from an economic perspective, this behaviour is rational for
agents as it allows them to delay their expenditure [18].

One might wonder why we do not see the same effect
observed for NEU for OPT if we still have that 30 × 0.7 =
21 > 20. This is because the actual price of electricity is
related to the round-trip efficiency of the battery. In this
case, with a round-trip efficiency of 0.952, the actual cost
of charging during the low period and discharging in the
most expensive period is 20/0.952 ∼ 22.16 > 21. This
explains why players do not engage in the frenetic behaviour
of consuming pre-peak: they still believe that trading in the
market during the most expensive period will be cheaper.

The second thing to notice in Figure 2 is that the Solar
Tariff that performs fairly well, performs quite badly when the
default tariff is flat. This is important to notice as it reveals
that a belief is not bad on itself, but only inasmuch as it is
coupled with a default electricity tariff.
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Fig. 2. All net profiles obtained by using different beliefs in one simulation
with a ToU rate.
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Fig. 3. Net load asked in the market versus the net load actually consumed.



0 100 200 300 400

Time-slots

0

50

N
et

en
er

gy
co

ns
um

pt
io

n
(k

W
h) Other beliefs Solar Tariff

Fig. 4. All net profiles obtained by using different beliefs in one simulation
with a flat rate.

Our numerical findings support the hypothesis formulated
around the example in Section I-A. When players have access
to an unlimited supply of energy outside the market, the
tariff at which that energy can be bought should be carefully
designed. Otherwise, it is possible that players (inadvertently)
game the system, trying to increase their profits at the cost of
the physical grid.

Flat rates offer less incentives than ToUs to change the
patterns of consumption in ways that result in spikes, for most
of the beliefs tested in this paper. Nevertheless, they offer
slightly less efficient environments. It is not unthinkable to
imagine a trial in which the flat rate is replaced with incentives
in special times of the day to increase local consumption. Such
incentives should be designed carefully, as we showed that
they could prove dangerous to the operation of the power grid.

VI. CONCLUSIONS

Local Energy Markets are increasingly being proposed as
a solution for distributed energy resource management on
smart distribution grids. Nevertheless, several aspects of such
programs related to their implementations and how they will
alter the behaviour of their participants remains unknown
and further analysis is required to understand all possible
ramifications.

In this paper we formalize the notion of a local energy
market with a secondary supplier and we study the effect
of players’ beliefs in the net aggregated load of the system.
Simple pathological examples in which the equilibrium strate-
gies produce undesirable peaks for the grid operator were
presented. A decision model for prosumers participating in
LEMs was developed and used to reproduce the pathological
behaviour in numerical simulations with realistic data.

Our experiments indicate that some strategies and beliefs of
players can create peaks of consumption that would not exist
without the market. Flat tariffs seem to be better adapted to be
coupled with local energy markets, even though they provide
lower energy matching capabilities.

Local energy markets will require the design of new mech-
anisms capable of dealing with existing tariffs or new tariffs
capable of supporting markets while still providing efficient
outcomes.
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