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Abstract—Local energy markets (LEMs) have been proposed to
mitigate the variability introduced in power systems by distributed
renewable energy resources such as photo-voltaic energy. During
the progressive release of LEMs, the decision problem faced by
prosumers (consumers that might also produce energy), will differ
from the wholesale electricity market’s one because there is always
the alternative to buy from or sell to the utility company. In this
setting, guaranteeing that the aggregated energy consumption will
be well behaved depends on the properties of the mechanisms
used to implement the market, the alternative tariff offered to
participants by their utility and how prosumers interact among
themselves.

We present a pathological example of a LEM in which the best
strategy for the agents results in unnecessary peaks of demand. A
decision model for players participating in LEMs is developed to
study the existence of undesirable behaviour while using realistic
data and number of participants.

Through numerical experiments, we identify the key aspects of
the player’s behaviour, strategy and environment that lead to the
aforementioned peaks, all under reasonable circumstances. Simple
fixes are discussed to overcome the pitfalls of such markets.

I. INTRODUCTION

Among demand-response programs, those that incentivize
local exchanges of energy, i.e., energy produced in a Low Voltage
(LV) grid being consumed in the same LV grid, are of particular
interest as they can reduce congestion in the main grid. Local
energy markets (LEM) have been proposed as demand-response
programs capable of incentivizing local exchanges and several
projects are currently under implementation [1], [2].

In this paper, we consider LEMs among residential house-
holds. These households have a demand or surplus energy
(if they produce more than what they consume) which they
would normally settle by buying (or selling) from a Traditional
Energy Company (TEC). Furthermore, we examine only LEMs
implemented as sequential double auctions in which households
can offer to buy or sell energy in the next time-slot (usually 30
minutes). Households that fail to trade in the LEM can decide to
trade with the TEC instead. An example of such an architecture
was implemented in Switzerland [3].

As the LEM can create more competitive prices than the
TEC when there is surplus of local energy, LEMs can serve
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as demand-response programs by providing more competitive
prices.

Our approach is related to [4], [5] in that we model the
interaction of agents with both the TEC and the LEM at the
same time, while considering a flexible energy consumption
due to energy storage. This is in different from other proposals
such as Ilic et al. [6] where the authors propose the use of a
continuous auction to trade among agents but do not model the
intra-temporal flexibility of agents or [7], where grid constraints
are considered and there is a model for flexibility but actions are
not taken sequentially.

A. Motivation

A demand-response program offers incentives to users to
change their consumption. Ideally, such a change is beneficial
for both the participants and the power grid. In other words, a
good demand-response program aligns the utility of agents and
grid operators such that a benefit for one gets reflected in a
benefit for the other.

Unfortunately, this needs not be the case for Local Energy
Markets. Kok et al. [8] observed that sequential markets do not
take into account the inter temporal constraints of consumption
and can lead to problems. We explore this issue at depth in this
paper but, we begin by presenting a toy example illustrating this
phenomenon.

1) Example: There are 4 players (3 buyers and one seller)
and 3 time-slots. The 3 buyers need one unit and can get it in
any of the 3 time-slots. The buyers can buy their unit in the local
market at a variable price, or from the TEC at price 2. The seller
has one unit to sell, only in the 3rd time-slot. He can sell it in
the market or to the TEC for a price of 1. There is a probability
p for each buyer to have 0 demand instead of desiring one unit,
those events being independent, and the other buyers know that.

All buyers have an incentive to wait until the last time-slot:
there is no loss in doing so (the price of the TEC does not
change) and the profit can be bigger (because of the possible
lower price in the market, e.g., with probability p2(1 − p) they
will be the only buyer facing the seller)

Although this is not necessarily bad for players, this is a bad
equilibrium for the grid: it creates a peak in the last time-slot.
Also, this outcome is not flexibility-efficient: in the best scenario,
each buyer consumes in a different time-slot and the peak is the
smallest possible.



B. Contributions

The example presented above points to a gap in our under-
standing of local energy markets. This problem is related to the
coexistence of LEMs with alternative ways of trading energy
and, in particular, to how agents plan their schedule with respect
to future prices, a topic usually not considered in the literature
[9], [7].

The work from Alabdullatif et al. [10] is closely related to
our approach. They study a set of agents that participate in a
LEM and have the option to trade with a TEC instead. They
do not model the scheduling of each player’s flexibility as an
optimization problem nor they forecast trading prices in the
market for more than one time-slot ahead. Because of that, some
of the behaviours and shortfalls of LEMS described in this paper
cannot be captured by their approach, as they arise form the
higher (but realistic) complexity of the system.

An exploratory approach is proposed in this paper to under-
stand the feasibility of LEMs implemented as sequential markets.

The contributions of this paper can be summarized as follows:
First, we uncover the existence of misalignments of objectives
in local energy markets when players can trade with the TEC.
Secondly, we propose a multi-stage stochastic game to model the
interaction of agents through LEMs and with the TEC. Thirdly,
we derive a simple but realistic model of prosumers with storage
that optimizes her decisions to participate in a LEM. Finally, we
identify possible roots of the aforementioned misalignments and
we suggest alternatives on how to fix them.

II. PRELIMINARIES

A. Mathematical Model for Players

We begin by introducing a mathematical model for a player
that needs to consume energy and has a contract with a TEC.

LetN = {1, . . . , N} be the set of players and T = {1, . . . , T}
the set of time-slots. The superscript i will denote variables that
correspond to player i and the subscript t will be used to explicit
the time-slot.

Each player i ∈ N has a fixed demand profile li that can
be observed every time-slot li = (li1, . . . , l

i
T ), where lit is the

demand of player i at time-slot t ∈ T . The load profile li is the
sum of the consumption driven by appliances of player i and
the energy generation she might have thanks to a photovoltaic
panel (possibly). A positive value of li will indicate a net energy
consumption and a negative value energy a surplus (due to the
renewable generation).

Assumption 1. We model players with inflexible energy con-
sumption profiles, i.e., all their flexibility is due to energy storage.
In our model, the utility of player i is 0 if her required load
profile is satisfied or −∞ if it is not, minus payments. Namely,
she maximizes her utility when she minimizes how much she is
paying for the same energy consumption.

Players can own batteries. If they do, their capacity will be
denoted by Si (Si ≥ 0). The maximum energy that the battery
can provide in a given time-slot (ramp constraint) will be denoted
by δi and the maximum energy that the battery can store in a
single time-slot by δ

i
. Furthermore, batteries are not perfectly

efficient. We will denote by ηic the charging efficiency and by

ηid the discharging efficiency. The only action that players can
take to change their energy consumption profile is to use the
battery. That is, players can only decide how much to charge
or discharge the battery. We will denote by yit the real amount
of energy that enters (positive value of yit) or leaves the battery
(negative values of yit) and ~yi = (yi1, . . . , y

i
T ).

The feasible set of actions of player i is defined by the set
X i =

{
~yi : 0 ≤ Si0 +

∑j
t=1 y

i
t ≤ Si, ∀j ∈ T , yj ∈ [δi, δ

i
]
}

Proposition 1. The set X i is non-empty, closed and convex.

Proof. It is defined as the intersection of half spaces.

In this context, the net consumption in time-slot t is given by:
zit = lit + 1

ηic
max{yit, 0} −max{−yit, 0}ηid with yi ∈ X i.

The TEC offers player i a buying price βit and a selling price
γit . With the above prices, the utility of player i is given by
ui(yi) =

∑T
t=1 max{zit, 0}βit −max{−zit, 0}γit , yi ∈ X i.

B. MUDA

In this paper, we use MUDA (Multi Unit Double Auction)
[11] as the local market mechanism.

To participate in MUDA, agents can submit a bid for buying
or for selling. In both cases, a bid consists of a finite list of
quantity-price pairs B = ((q1, p1), (q2, p2), . . . , (qm, pm)) with
qi < qi+1 and pi > pi+1 (pi < pi+1 for selling). Because MUDA
is an auction for divisible goods, when the market clears, players
might receive only a fraction of their desired quantity. After all
bids have been received, the market mechanism randomly splits
all participants into two groups and determines the clearing price
1 for each of the two. MUDA is strategy-proof. To guarantee so,
participants trade with the clearing price of the group to which
they do not belong. To do so, all the buyers in one side of the
market that offered to buy at a price higher than the clearing
price of the other side and all the sellers that offered to sell
below that price are pre-selected to trade. Because there might
be more supply than demand (or vice versa), a rule is used to
select which of the pre-selected sellers (or buyers) gets to trade.
By doing so, agents cannot influence their trading price.

Furthermore, MUDA is individually rational (agents do not
lose money by participating), weakly budget balanced (the mar-
ket maker does not lose money by running the market and might
have a profit) and is efficient only asymptotically in the number
of players (as it is impossible to satisfy all described properties
at the same time [12]). More details on the mechanism can be
found [11].

III. GAME THEORETICAL MODEL

Having introduced a very small example of how a Local
Energy market game looks like and a model for a prosumer
with a battery, we introduce a formal model.

Consider a setting with N players and T = {1, 2, . . . , T}
stages (or time-slots). Each stage is composed of two steps:
a market trading and a final settlement with the traditional
electricity company (TEC).

Following the conventions used in game theory, the superscript
−i will stand for all players expect player i. The state of player

1By finding the intersection of the supply and demand curves.



i (sit) at time-slot t will contain information about the state of
charge of the battery and the load of the current and future time-
slots of the player. The set Bit(sit) will denote the feasible bids
of player i at time-slot t given her state of charge.

Assumption 2. Players restrict their bids in the market to
quantities that they can physically buy or sell.

In practice, a player that often bids a quantity that she cannot
latter provide (or consume) could see her access to the market
restricted. Players can be buyers or sellers, but not both in the
same time-slot.

After the market clears, player i observes her traded quantity
q̃it and price p̃it just before the first step finishes. In the second
step, she makes sure that her energy demands are satisfied. She
can decide to schedule some of her energy needs for later but
the rest will have to be bought (or sold) from the TEC. The set
of possible settlements with the TEC at time t that player i can
offer is given by Git

∆
= Git(sit, q̃it, p̃it) and depends on the state

of the player (how much energy is needed and how flexible that
consumption is) and the result of the market. The cost of trading
a quantity git with the TEC at time-slot t is given by Cit(g

i
t).
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Fig. 1. Timeline of decision process and decision flow for a player in the LEM
game

Figure 1 illustrates the decision and information flow for a
given player as described above2.

After implementing an action git ∈ Git , player i transitions
to the new state sit+1 = f it (s

i
t, q̃

i
t, p̃

i
t, g

i
t) (where f it defines the

dynamics of the state transition) and the stage finishes. Denoting
by ait = (bit, g

i
t) the pair of actions taken by player i during

stage t, where bit is the bid submitted and git is the quantity
traded with the TEC, the set of all such possible actions at the
beginning of the stage will be denoted by Ait The set of all
possible actions that players other than i can take at stage t is
defined as A−it

∆
=
∏
j 6=i

Ajt . This set depends on the past actions

of all players and their future load profiles.
In a setting with perfect information, player i will have a belief

about the likelihood of her opponents playing a given strategy
and the equally likely splits of the market into two groups. Let
∆A−it be the set of probability distributions over A−it × W ,
where W is the set of all possible 2N−1 splits into two groups.
Then player’s i belief about the possible outcomes of the game
at time-slot t is given by dit ∈ ∆A−it .

Finally, we will denote the expected Cost-to-go of player i
from stage t onwards while being in state sit as Qit(sit). In this

2We shall use the convention that positive quantities gi, q̃i imply buying
energy while negative values are used for selling.

setting, it is defined as the solution of the two step stochastic
optimization problem (1a).

Qit(sit) = min
bit ∈ Bit(sit)

Edit [A(bit, a
−i
t , w, sit)] (1a)

where

A(bit, a
−i
t , w, sit) = min

git

p̃itq̃
i
t + Cit(g

i
t) +Qit+1(sit+1) (2a)

s.t. q̃it, p̃
i
t =M(bit, a

−i
t , w), (2b)

git ∈ Git(sit, q̃it, p̃it), (2c)

sit+1 = f it (s
i
t, q̃

i
t, p̃

i
t, g

i
t) (2d)

withQiT+1 = 0. In optimization problem (2a),M is a function
that outputs the results of the market according to MUDA rules,
given the bids of all players. Optimization problem (1a) is solved
every stage before bidding in the market. We shall assume that if
no quantity is traded in the market, it is always possible to buy
or sell the required amount of energy with the traditional utility
company. As a consequence, the set Git(sit, 0, p̃it) is always non-
empty. This is a realistic assumption as consumers can always
buy all their energy from their utility. The model above defines
a multi-stage stochastic game.

Remark 1. In real implementations of the market, it is possible
that players will only be able to observe the result of their trade,
but not the bids of other players (privacy is one of those reasons).
This would limit the ability of players to reason about the game.
In that case, player’s beliefs will likely only consider prices and
quantities, but not actions.

IV. A MODEL FOR PROSUMERS PLAYING LEMS

It should not come as a surprise to the reader that the model
introduced in the previous section is quite difficult to solve.
We do not try to solve such a model in this work. Instead,
we search for realistic simulations of it that might exhibit the
undesirable effects introduced at the beginning of the paper. To
do so, we need to model rational agents in a simple way that is
coherent with the game being played and that is able to capture
the behaviour in question.

Assumption 3. We consider agents that reason about the future
inasmuch as they schedule their consumption taking into account
future prices and that they update their beliefs about the future
after observing the results of their actions. We do not model
agents that, before deciding on their actions for time-slot t, take
into account how those actions will change their environment in
future time-slots (only how their state of charge might change).

We believe that Assumption 3 is realistic and we do not expect
implementations of such systems to behave differently.

Remark 2. Even though the stochastic game as a whole might
not be truthful, if as part of a player’s strategy, she decides that
she wants to buy q units at price at most p during time-slot t,
then bidding truthfully in MUDA is the optimal action (in that
time-slot).



Fig. 2. Graphical representation of the cost function (3).

As a consequence of Assumption 3 and Remark 2, the first-
stage optimization problem can be substituted with the optimal
amount of energy that each player wishes to consume, given
her beliefs about market prices. Indeed, the proposed model is
exactly the optimal control of a battery with one addition: for
each time-slot, apart from the price of the TEC, there is a market
price with an associated maximum tradable quantity. This model
extends the model introduced in Section II-A and we will use
the same notation.

To keep the model simple, we assume that agents have a
probabilistic belief about prices, but to avoid solving a stochastic
optimization problem in each step, they use an unbiased estima-
tor of each quantity instead.

As we mentioned earlier, each player has a belief in the form
of a probability distribution about each market outcome q̃it, p̃

i
t.

Because players can be either buyers or sellers in the market,
they will have a possibly different belief for each case. Let
PBt,PSt,QBt,QSt be the priors for the buying price, selling
price, buying quantity and selling quantities respectively for each
time-slot t. The notation X̂ will be used to denote an unbiased
estimator of X .

For a player i that wishes to buy, the best option is to buy
as much as possible in the market (at a better price than the
TEC), and acquire the remaining energy with the TEC. The same
holds for a player that wishes to sell. Substituting the player’s
beliefs about quantity and prices of the market in time-slot t,
the cost (or profit) of player i during time-slot t associated with
a net consumption profile of zit is given by Equation (3) and
graphically depicted in Figure 2.

F it (z
i
t) =


P̂BQ̂Bt + βtz

i
t if zit > Q̂Bt

P̂Bzit if Q̂Bt ≥ zit ≥ 0

P̂Szit if Q̂St ≤ zit ≤ 0

P̂SQ̂St + γtz
i
t if zit < Q̂St

(3)

With the above conventions, the decision problem faced by a
player is given by optimization problem (4).

min
y∈X i

T∑
t=1

F it (z
i
t)

s.t.: zit = lit +
max{yt, 0}

ηc
−max{−yt, 0}ηd, ∀t ∈ T

(4)

Because the market is truthful, we find the bid of player i
as bit = (zi,∗t , ˆPSt) if zi,∗t < 0 or bit = (zi,∗t , ˆPBt) otherwise,
where zi,∗ is the value of z in an optimal solution of (4).

Proposition 2. If the function F it as defined in Equation (3) is
convex (which happens as long as P̂B ≥ β ≥ P̂S > γ, for every
time-slot), then optimization problem (4) is linear. The ideas of
the proof are the same as in [13].

This is closely related to the setting in [14].

A. Post market

After the market clears, based on the results of the market,
players have to decide how much to finally trade with the TEC,
if any. To do so, players should modify the cost function (3) by
replacing their beliefs about market prices with the real results.
Furthermore, if the player managed to trade in the market a
quantity q̃i then an additional constraint zit ≥ q̃it (if q̃it > 0 or
zit ≤ q̃it otherwise), should be added to guarantee that players
adhere to their commitments in the market. Here, we assume that
players adhere willingly to their commitments with the market,
but we could also envision a penalty for deviating from the
market.

The value of git, the quantity to be traded with the TEC is be
the difference between the new optimal value of zit and q̃it.

B. Beliefs about the game

As it was mentioned before, we assume that players have a
belief (probability distribution) about future market prices and
maximum tradable quantities. As these players play the game,
they will observe new market’s results and they will update their
beliefs using the new information, improving their representation
of the game.

We model players’ beliefs as conjugate distributions and use
a Bayesian rule to update them.

In theory, players could have up to 4T different beliefs where
the 4 is because of the 2 quantities and 2 prices involved.
In practice, players will reuse the same belief in time-slots
in which they expect them market the behave similarly. For
example, because of time-of-day patterns. Each belief will be
represented as normal probability distributions with unknown
mean but known variance N 1(µit, σt). Furthermore, each player
will have a belief about the value of the mean of such distribution
in the form of a normal distribution µit ∼ N 2(υit, τ

i
t ).

After observing n outcomes of the variable of interest over
time (which we will assume independent), the new values of υ
and τ are given as: τ ′ = ( 1

τ2 + n
σ2 )−1 and υ′ = τ ′

(
υ
τ2 +

∑n
1 xi

σ2

)
.

If players use a different belief for each time-slot, they will
only observe one outcome and that belief will never be used
again. In contrast, if players reuse their beliefs across several
days, updating them can be useful.



Players can change their beliefs about the game by doing two
things. First, by deciding how to map time-slots to distributions
(reuse), i.e., two time-slots can use the same distribution and
the data of both updates the same prior. Secondly, players can
change the initial value of her distribution to reflect their beliefs
about the market before observing it.

We proceed to introduce the types of representations used in
the rest of the paper. We will denote the number of time-slots
in a single day by D.

First we describe three representations: Optimistic (OPT),
Neutral (NEU) and Pessimistic (PES). The 3 representations
map the 4 distributions at each time-slot t ∈ T to the 4
representations of time-slot (t mod D), effectively keeping 4D
beliefs: one for each quantity and price for each time-slot in
day. This exploits the time-of-day effects. Their difference lies
in the initial value of υi. The OPT belief assumes that prices in
the market are 30% better than the trading with the TEC (both,
while buying and selling). The NEU belief assumes that prices
are only 10% better than the TEC. Finally, PES assumes that
the prices are the same as the TEC.

We consider two more types of beliefs. One named Solar
(SOL) and one named Unique (UNQ). The SOL tariff considers
only two different distributions of each type. Time-slots that
occur when the sun should be shining3 are mapped to a distri-
bution and the rest are mapped to another one. The distribution
associated with sun hours is initialized by assuming prices to be
20% better than the market while in the other belief prices are
the same as the TEC. At last, the UNQ belief considers only 4
distributions, one for each price and quantity. In this case, the
prices are considered to be 10% better than those offered by
the TEC. Beliefs about quantities are initialized at a large value,
stimulating an initial participation in the market.

In addition to different representations, we also consider dif-
ferent frequencies to update beliefs: with every new observation
of the market, every n observations of the market or the most
extreme case of never updating the belief.

Remark 3. The solar belief described in the previous section is
an example of the behaviour that could not have been modeled
using the approach in [10]. Under such belief, the players will
delay all of their flexible demand until the beginning of the hours
in which the sun shines, under the assumption that it will result
in a cheaper trade, never consider the possibility of offering that
same energy during non-sun hours.

V. NUMERICAL EXPERIMENTS

At the beginning of this paper we presented an undesirable
example of local energy market. In it, players had an incentive
to behave in a way that resulted in unnecessary peaks.

In this section, we make use of the model of a prosumer
participating in a LEM to replicate the behaviour encountered
in the motivating example. Our intention is to understand which
characteristics of Example I-A1 can be observed with a large
number of players and which of them are only an effect of
the size of the example. To do so, we resort to computational
simulations of the whole multi-agent system.

3(t mod D) ∈ [12, 36]

Each simulation consists of 9 consecutive days in which
prosumers optimize their energy storage and trade using the
LEM. Each agent will use the mathematical model described
in Section IV. Different simulations will reflect different load
profiles and representations of the uncertainty.

Each prosumer owns a battery and some agents have access
to solar generation. The demand of each agent is sampled from
the Ausgrid dataset [15]. The dataset contains samples every
30 minutes, yielding 48 time-slots (D = 48) per day. For each
instance of the simulation, the demand of N = 50 prosumers is
sampled out of the 127 available in the dataset.

Because the generation in the data is not enough to support a
LEM (there is little surplus available for trading), for half of the
users we generate extra surplus at random. To do so, for each
time-slot t in {15, . . . , 30} and each selected agent i, we sample
extra generation from a uniform distribution Rit ∼ U [− 3

10 , 0]
i.i.d such that the new demand is given by l′t = lt +Rt.

The battery characteristics are the same for each prosumer:
S = 13, δ = −δ = 5, ηc = ηd = 0.95.

Two price tariffs are used for our simulations: a flat rate and
a time-of-use tariff. In the flat rate, the price of buying energy
is constant with a value of 30. The time-of-use tariff consists of
two periods: a cheap one and an expensive one. The first one
spans the first 32 time-slots of every day and has a value of 20
while the latter spans the remaining time-slots of every day and
has a value of 30. Both tariffs have the same price for selling
for all time-slots: 10. All prices are in cents per kilo watt hour.

In this paper, players use a rolling horizon of length 48
time-slots (or 1 day) to solve the optimization problem (4).
Participants only implement the first decision out of the 48 that
they obtain before moving to the next time-slot.

To solve optimization problem (4), prosumers need to know
their load in the next day (because of the rolling horizon
procedure). Players have perfect knowledge of their load in the
first of the 48 time-slots, and use a forecast for the remaining
47. We adopt the AvgPast forecast as described in [16] as it has
been shown to provide a good performance for the operation of
storage without being too complex.

All market mechanisms will be run using the auction mech-
anism MUDA as implemented in PyMarket [17] and the opti-
mization problems involved in controlling the battery are solved
in CPLEX. Simulations were run in parallel using GNU parallel
[18].

In all our simulations, players learn from their own experience.
That is, they update their belief based solely on the market prices
and quantities they have been subject to, but not those of the
other players. A player will update her beliefs about prices only
if she gets to trade.

We conclude this section with the four metrics of interest
studied in this paper. First, we looked at the Social Cost (SC),
the sum of the cost incurred by all players during all time-slots.
This is an indicator of how well the market performs from the
perspective of the players. Secondly, we look at two statistics,
the maximum peak and the most negative peak of the aggregated
net consumption profiles. We refer to them as max and min
respectively. Finally, we look at the total amount of energy that
gets matched locally (LM). This is an upper bound of the energy



traded in the market since all the energy traded in the market
gets matched locally, but it is possible for two prosumers to
consume and inject at the same time without having traded.
Because all of the above metrics are difficult to contextualize
on their own, instead of presenting the corresponding value, we
will always show the relative change of the metric with respect
to the scenario without a market in which players optimize their
battery independently of each other.

A. Results and Discussion

We begin our presentation of the results obtained by directing
the attention of the reader to Table I.

TABLE I
STATISTICS OBTAIN WITH DIFFERENT CONFIGURATIONS.

SC min max LM net LM
Tariff Freq Belief

Flat 0 SOL -11 6 95 62 396
TOU 1 NEU -2 -54 57 -36 187

OPT 1 -150 -40 -3 284
PES -1 0 40 -6 282
SOL -1 -7 7 -3 285
UNQ -1 -6 -7 13 337

0 PES 0 0 0 0 297
SOL -11 -155 -1 50 435

In it, the average relative change with respect to the scenario
without a market is presented. For SC, a negative value indicates
that the market managed to decrease the total cost (a positive
outcome). For both min and max, a negative value is desirable
as it denotes that the maximum positive peak or the maximum
negative peak were reduced. Finally, a higher and positive value
of the locally matched energy LM is beneficial as this was one
of the motivations to introduce energy markets.

In Table I, the column Freq denotes the number of samples
collected before updating the beliefs. In addition to not updating
their beliefs, in simulations with a Freq value of 0, players did
not trade in the market, they only used the belief to change their
battery schedule planning. Solar Tariff as used in the legend of
Figures 3 and 5 refers to the SOL belief in the Freq 0 scenario.
The last column of the table shows the total amount of energy
(in kWh) that got traded locally during the simulation. We can
observe that the Solar Tariff is less effective when paired with
a Flat tariff.

In Figures 3 and 5, each curve represents the difference
between the aggregated net load of a simulation using the market
and a set of beliefs and the aggregated load obtained without a
market (for the same parameters). The x-axis coincides with the
default aggregated load. In Figure 3 players are subject to a
Time-of-Use tariff, while in 5 they use a Flat tariff.

By turning our attention to Figure 3 we notice two things.
First, of all the beliefs plotted in red, most of them produce
small deviations with respect of the default operation (close to 0)
while one of them creates very high peaks. The belief producing
the peaks in red is NEU. Interestingly, Table I indicates that
for a ToU tariff, the NEU achieved a reduction in the social
cost, while creating higher peaks and reducing the amount of
energy locally matched. Indeed, we observe a misalignment of
objectives. To explain why this behaviour emerges, we refer the

reader to Figure 4. In it, we plotted the same curve producing the
peaks of Figure 3 in blue. In red, we plotted the total amount of
energy that participants asked in the market at the beginning of
each time-slot. We observe that there is a mismatch between the
two quantities. Moreover, players try to trade in the market until
the change in price. At that point, they decide to buy all their
required quantity. This is a consequence of the expected market
price in the most expensive period: 30 ∗ 0.9 = 27 > 20, the
default low TOU price. We argue that this type of behaviour, only
due to the beliefs of a player, can show up in real deployments of
LEMs with dire consequences. Unfortunately, from an economic
perspective, this behaviour is rational for agents as it allows them
to delay their expenditure [19].

One might wonder why we do not see the same effect observed
for NEU for OPT if we still have that 30 × 0.7 = 21 > 20.
This is because the actual price of electricity is related to the
round-trip efficiency of the battery. In this case, with a round-
trip efficiency of 0.952, the actual cost of charging during the
low period and discharging in the most expensive period is
20/0.952 ∼ 22.16 > 21. This explains why players do not
engage in the frenetic behaviour of consuming pre-peak: they
still believe that trading in the market during the most expensive
period will be cheaper.

The second thing to notice in Figure 3 is that the Solar Tariff
that performs fairly well, performs quite badly when the default
tariff is flat. This is important to notice as it reveals that a belief
is not bad on itself, but only inasmuch as it is coupled with a
default electricity tariff.
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Fig. 3. All net profiles obtained by using different beliefs in one simulation with
a ToU rate.
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Fig. 4. Net load asked in the market versus the net load actually consumed.

Our numerical findings support the hypothesis formulated
around the example in Section I-A. When players have access
to an unlimited supply of energy outside the market, the tariff at
which that energy can be bought should be carefully designed.
Otherwise, it is possible that players (inadvertently) game the
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Fig. 5. All net profiles obtained by using different beliefs in one simulation with
a flat rate.

system, trying to increase their profits at the cost of the physical
grid.

Flat rates offer less incentives than ToUs to change the patterns
of consumption in ways that result in spikes, for most of the
beliefs tested in this paper. Nevertheless, they offer slightly less
efficient environments. It is not unthinkable to imagine a trial
in which the flat rate is replaced with incentives in special
times of the day to increase local consumption. Such incentives
should be designed carefully, as we showed that they could prove
dangerous to the operation of the power grid.

VI. CONCLUSIONS

Local Energy Markets are increasingly being proposed as a
solution for distributed energy resource management on smart
distribution grids. Nevertheless, several aspects of such programs
related to their implementations and how they will alter the
behaviour of their participants remains unknown and further
analysis is required to understand all possible ramifications.

In this paper we formalize the notion of a local energy
market with a secondary supplier and we study the effect
of players’ beliefs in the net aggregated load of the system.
Simple pathological examples in which the equilibrium strategies
produce undesirable peaks for the grid operator were presented.
A decision model for prosumers participating in LEMs was
developed and used to reproduce the pathological behaviour in
numerical simulations with realistic data.

Our experiments indicate that some strategies and beliefs of
players can create peaks of consumption that would not exist
without the market. Flat tariffs seem to be better adapted to be
coupled with local energy markets, even though they provide
lower energy matching capabilities.

Local energy markets will require the design of new mech-
anisms capable of dealing with existing tariffs or new tariffs
capable of supporting markets while still providing efficient
outcomes.

Looking at the results obtained in the paper we notice that
some of the problems seem to arise from players ”waiting” for
better deals. A mechanism that clears day-ahead could provide
the players with additional information to better schedule their
load. Some possible examples include [8], [20], [21].
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