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Abstract

Work on summarization has explored both reinforcement
learning (RL) optimization using ROUGE as a reward and
syntax-aware models, such as models whose input is enriched
with part-of-speech (POS)-tags and dependency information.
However, it is not clear what is the respective impact of these
approaches beyond the standard ROUGE evaluation metric.
Especially, RL-based for summarization is becoming more
and more popular. In this paper, we provide a detailed com-
parison of these two approaches and of their combination
along several dimensions that relate to the perceived qual-
ity of the generated summaries: number of repeated words,
distribution of part-of-speech tags, impact of sentence length,
relevance and grammaticality. Using the standard Gigaword
sentence summarization task, we compare an RL self-critical
sequence training (SCST) method with syntax-aware mod-
els that leverage POS tags and Dependency information. We
show that on all qualitative evaluations, the combined model
gives the best results, but also that only training with RL
and without any syntactic information already gives nearly
as good results as syntax-aware models with less parameters
and faster training convergence.

Introduction
Early neural approaches to text generation tasks such as
machine translation, summarization and image captioning
mostly relied on sequence-to-sequence models (Sutskever,
Vinyals, and Le 2014) where the model was trained using
cross-entropy and features were learned automatically. More
recent work however, shows that using reinforcement learn-
ing or explicitly enriching the input with additional linguis-
tic features helps to improve performance.

Reinforcement learning was proposed to address two
shortcomings of cross entropy training. First, there is a dis-
crepancy between how the model is trained (conditioned
on the ground truth) and used at test time (using argmax
or beam search), namely the exposure bias problem. Sec-
ond, the evaluation metrics (for ex. ROUGE, METEOR,
BLEU, etc.) differ from the objective that is maximized
with the standard cross-entropy on each token; this is known
as the loss mismatch problem. Typically, RL is used to
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optimize task-specific objectives such as ROUGE for text
summarization systems (Paulus, Xiong, and Socher 2018;
Narayan, Cohen, and Lapata 2018; Celikyilmaz et al. 2018;
Pasunuru and Bansal 2018) and SARI (Xu et al. 2016) for
sentence simplification models (Zhang and Lapata 2017).

Similarly, while neural networks allow for features to be
learned automatically, explicitly enriching the input with lin-
guistic features was repeatedly shown to improve perfor-
mance. For instance, (Sennrich and Haddow 2016; Li et
al. 2017) show that adding morphological features, part-
of-speech (POS) tags, syntactic dependency and or parse
trees as input features improves the performance of neural
machine translation (NMT) systems; and (Nallapati et al.
2016) that integrating linguistic features such as POS tags
and named-entities helps to improve summarization.

In this paper, we explore the relative impact of these two
approaches on sentence summarization. More precisely, we
assess and compare the quality of the summaries generated
by syntax-aware, RL-trained and combined models with re-
gard to several qualitative aspects that strongly impact the
perceived quality of the generated texts: number of repe-
titions, sentence length, distribution of part-of-speech tags,
relevance and grammaticality.

Using the standard Gigaword benchmark corpus, we com-
pare and combine an RL self-critical sequence training
(SCST) method with syntax-aware models that leverage
POS tags and/or dependency information. We show that both
enhancements, syntactic information and RL training, bene-
fit to a sequence-to-sequence summarization model with at-
tention and copy-pointer mechanism. While the combined
model gives the best quality of summaries, we also show
that the reinforcement learning approach alone may be pre-
ferred when computational complexity is an issue, as it gives
nearly as good results as the syntax-aware model but with
less parameters and faster training convergence.

Related Work
We briefly discuss previous work on syntax-aware and RL-
based models for text-to-text generation focusing on sum-
marization and NMT and we position our work with respect
to these approaches.

Syntax models: Explicit modeling of syntax has frequently
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been used in text generation applications in particular, for
NMT and summarization. Thus (Sennrich and Haddow
2016) enrich the input to NMT with dependency labels, POS
tags, subword tags and lemmas so that each input token is
represented by the concatenation of word and features em-
beddings. Similarly, (Nallapati et al. 2016) enrich the en-
coder side of a neural summarization model with POS tag,
NER tag, TF-IDF features. The intuition is that words will
be better disambiguated by taking syntactic context into ac-
count. Speculating that full parse trees can be more benefi-
cial for NMT than shallow syntactic information, (Li et al.
2017) enrich the input with a linearization of its parse tree
and compares three ways of integrating parse tree and word
information (parallel, hierarchical and mixed). Other works
have focused on integrating syntax in the decoder or through
multi-task learning. Thus, (Le et al. 2017) defines machine
translation as a sequence-to-dependency task in which the
decoder generates both words and a linearized dependency
tree while (Kiperwasser and Ballesteros 2018) propose a
scheduled multi-task learning approach where the main task
is translation but the model is alternatively trained on POS
tag, Dependency Tree and translation sequences.

Our model for syntax-aware summarization is similar to
(Li et al. 2017) in that we use a hierarchical model to inte-
grate syntax in the encoder. We depart from it in that (i) we
enrich the input with POS tag and/or dependency informa-
tion rather than constituency parse trees; (ii) we apply our
model to summarization rather than translation.

RL sequence models: Various RL models have been pro-
posed for sequence-to-sequence models. (Ranzato et al.
2016) introduce an adaptation of REINFORCE (Williams
1992) to sequence model and a curriculum learning strategy
to alternate between ground truth and the sample from the
RL model. This vanilla REINFORCE is known to have high
variance. Thus, a learned baseline is equipped to mitigate
this issue. (Bahdanau et al. 2016) propose another reinforce-
ment learning model, namely actor-critic, to have lower vari-
ance of model estimations, offsetting by a little bias. The im-
pact of the bias, as well as the goodness of the model, relies
particularly on the careful design of the critic. In practice,
to ensure convergence, intricate techniques must be used
including an additional target network Q’, delayed actor,
a critic value penalizing term and reward shaping. In con-
trast, (Rennie et al. 2017) introduce a very simple and ef-
fective way to construct a better baseline for REINFORCE,
namely self-critical sequence training (SCST) method. In-
stead of looking for and constructing a baseline or using a
real critic as above, SCST uses its own prediction normally
used at inference time to construct the sequence and uses this
to normalize the reward. (Kryscinski et al. 2018) adapt this
training method to improve the abstraction of text summa-
rization via a combination of cross-entropy, policy learning,
pretrained language model and novel phrase reward. Simi-
larly, we use SCST to train a summarization model. How-
ever, our model uses ROUGE as a reward and we focus on
comparing models trained using different learning strategies
(RL vs Cross Entropy) and informed by different sources
(with and without syntax).

Models
We train and compare models that differ along two main di-
mensions: training (cross-entropy vs. RL) and syntax (with
and without syntactic information).

Baseline
The baseline is a sequence-to-sequence model consisting of
a bidirectional LSTM encoder and a decoder equipped with
and an attention and a copy pointer-generator mechanism.

Encoder. The source sentence is encoded using two recur-
rent neural networks (denoted bi-RNN) (Chung et al. 2014):
one reads the whole sequence of words x = (x1, ..., xm)
from left to right and the other from right to left. This re-
sults in a forward and backward sequence of hidden states
(
−→
h1, ...,

−→
hm) and (

←−
h1, ...,

←−
hm) respectively. The representa-

tion of each source word xj is the concatenation of the hid-
den states hj = [

−→
hj ,
←−
hj ].

Decoder. An RNN is used to predict the target summary y =
(y1, ..., yn). At each decoder timestep, a multi-layer percep-
tron (MLP) takes as input the recurrent hidden state si, the
previously predicted word yi−1 and a source-side context
vector ci to predict the target word yi. ci is the weighted sum
of the source-side vectors (h1, ..., hm). The weights in this
sum are obtained with an attention model (Bahdanau, Cho,
and Bengio 2014), which computes the similarity between
the target vector si−1 and every source vector hj .

Copy-Pointer. The attention encoder-decoder tends to ig-
nore the presence of rare words in the source, which might
be important especially for the summarization task. The
Copy-Pointer (See, Liu, and Manning 2017) enables to ei-
ther copy source words via a pointer or generate words from
a fixed vocabulary. A soft switch pgen is learned to choose
between generating a word from the vocabulary by sam-
pling from the output distribution of the decoder, or copy-
ing a word from the input sequence by sampling from the
attention distribution.

Integrating Syntax
Conventional neural summarization models only rely on the
sequence of raw words and ignore syntax information. We
include syntactic information in our summarization model
using the hierarchical-RNN topology introduced by (Li et
al. 2017) and comparing three sources of information: POS
tags (Postag), dependency relations (Deptag) and their com-
bination (Pos+Deptag). Figure 1 shows a graphical depiction
of the Pos+tag model. In essence, each source of information
(sequence of tokens, of POS tags, of dependency relations)
is encoded using a bidirectional LSTM and each input to-
ken is then represented by the concatenation of the hidden-
states produced by each information source considered. For
instance, in the Postag model, the POS tag bi-LSTM takes as
input a sequence of POS tags and outputs a sequence of hid-
den states

(
hpj = [

←−
hpj ;
−→
hpj ]

)
1≤j≤m

similarly to the word

bi-RNN. Each hpj is then concatenated with the input word
embeddings ewj and passed on to the word bi-RNN.



Figure 1: Pos+Deptag Model

For the Deptag model, the input sequence to the Deptag
bi-LSTM includes, for each input tokens, the name of the
dependency relation that relates this token to its syntactic
head (e.g., nsubj for the token “Mark” in the sentence shown
at the top of Figure 1). The Deptag bi-LSTM then output a
sequence of hidden states

(
hdj = [

←−
hdj ;
−→
hdj ]

)
1≤j≤m

which

are concatenated with the corresponding word embeddings
ewj and passed to the word bi-RNN.

Finally, for the Pos+Deptag model, both the POS tag
and the syntactic hidden states are concatenated with
the words embeddings to give the final input vector
[←−−ewj ;−−→ewj ;

←−
hpj ;
−→
hpj ;
←−
hdj ;
−→
hdj ] which is passed on to the

upper-level word bi-RNN.

RL Learning

Summarization as an RL problem Neural summariza-
tion models are traditionally trained using the cross en-
tropy loss. (Ranzato et al. 2016) propose to directly opti-
mize Natural Language Processing (NLP) metrics by casting
sequence generation as a Reinforcement Learning problem.
As most NLP metrics (BLEU, ROUGE, METEOR,...) are
non-differentiable, RL is appropriate to reach this objective.
The parameters θ of the neural network define a natural pol-
icy pθ, which can be used to predict the next word. At each
iteration, the decoder RNN updates its internal state (hid-
den states, attention weights, copy-pointer weights...). After
generating the whole sequence, a reward r(·) is computed,
for instance the ROUGE score. This reward is evaluated by
comparing the generated sequence and the gold sequence.
The RL training objective is to minimize the negative ex-
pected reward:

LRL(θ) = −Ews∼pθ [r(ws)] (1)
where ws = (ws1, . . . w

s
T ) and wst is the word sampled from

the decoder at time step t. Following (Williams 1992), the
gradient ∇θLLR(θ) can be computed as follows:

∇θLRL(θ) = −Ews∼pθ [r(ws)∇θ log pθ(ws)] (2)
In practice, the vanilla REINFORCE yields a very high

variance during training. In order to help the model stabilize
and converge to good local optima, vanilla REINFORCE is
extended to compute the reward relative to a baseline b:

∇θLRL(θ) =
− Ews∼pθ [(r(ws)− b)∇θ log pθ(ws)]

(3)

This baseline can be an arbitrary function (function of θ or
t), as long as it does not depend on ws (Sutton and Barto
1998).

Self-critical sequence training There are various ways
to reduce RL variance and choose a proper baseline: for
instance, using a second decoder (Ranzato et al. 2016) or
building a critic network and optimizing with a value net-
work instead of real reward (Bahdanau et al. 2016). In the
following, we have chosen the self-critical sequence train-
ing (SCST) technique (Rennie et al. 2017), which has been
shown to be very simple and effective. The main idea of
SCST is to use, as baseline in the vanilla REINFORCE al-
gorithm, the reward obtained with the inference algorithm
used at test time. Equation 3 then becomes:

∇θLRL(θ) =
− Ews∼pθ [(r(ws)− r(ŵ))∇θ log pθ(ws)]

(4)

where r(ŵ) is the reward obtained by the current model with
the inference algorithm used at test time. As demonstrated
by (Zaremba and Sutskever 2015), we can rewrite this gra-
dient formula as:

∂LRL(θ)

∂st
=

(r(ws)− r(ŵ))(pθ(wt|wst−1, ht)− 1wst )

(5)

where st is the input to the final softmax function in the de-
coder. The term on the right side resembles logistic regres-
sion, except that the ground truth wt is replaced by sampling
wst . In logistic regression, the gradient is the difference be-
tween the prediction and the actual 1-of-N representation of
the target word:

∂LXENT (θ)

∂st
= pθ(wt|wt−1, ht)− 1wt (6)

We see that samples that return a higher reward than r(ŵ)
will be encouraged while samples that result in a lower re-
ward will be discouraged. Therefore, SCST intuitively tack-
les well the exposure bias problem as it forces to improve
the performance of the model with the inference algorithm
used at test time. In order to speed up sequence evalua-
tion at training time, we use greedy decoding with ŵt =
argmaxwt p(wt |ht). 1

1Two variants of this training method exist: TD-SCST and the
“True” SCST, but both variants do not lead to significant additional



Training objective and Reward The number of words in
the vocabulary may be quite large in text generation, which
leads to a large state space that may be challenging for re-
inforcement learning to explore. To reduce this effect, we
follow (Kryscinski et al. 2018) and adopt a final loss that is
a linear combination of the cross-entropy loss and the policy
learning loss:

L = (1− α)LXENT + αLRL (7)

α is a hyper-parameter that is tuned on the development set.
We use ROUGE-F1 as the reward for the reinforce agent

as the generation should be as concise as the gold target sen-
tence.

Experiments
Data We evaluate our approach on the Gigaword cor-
pus (Rush, Chopra, and Weston 2015), a corpus of 3.8M
sentence-headline pairs and where the average input sen-
tence length is 31.4 words (in the training corpus) and the
average summary length is 8.3 words. The test set consists of
1951 sentence/summary pairs. As (Rush, Chopra, and We-
ston 2015), we use 2000 sample pairs (among 189K pairs)
as development set.

Automatic Evaluation Metric We adopt ROUGE (Lin
2004) for automatic evaluation. It measures the quality of the
summary by computing overlapping lexical units between
the candidate and gold summaries. We report ROUGE-
1 (unigram), ROUGE-2 (bi-gram) and ROUGE-L (longest
common sequence) F1 scores. ROUGE-1 and ROUGE-2
mainly represent informativeness while ROUGE-L is sup-
posed to be related to readability (Cao et al. 2018b).

Implementation Our models implementations are based
on the Fast-Abs-RL (Chen and Bansal 2018) code 2. Al-
though this code is not optimized to give the best possible
performances, it is flexible enough to allow for the integra-
tion of syntactic features.

The hyperparameter α in Eq 7 needs careful tuning. Fig-
ure 2 illustrates a problematic case when α continuously in-
creases until it reaches α = 1 at iteration 105, where the
RL models forget the previously learned patterns and de-
generate. A good balance between exploration and super-
vised learning is thus necessary to prevent such catastrophic
forgetting. We have found on the development set that the
Reinforcement Learning weight α may increase linearly by
(step/105) with the number of training iterations, until it
reaches a maximum of 0.82 for the RL-s2s model and of
0.4 for the RL-s2s-syntax model.

For all models, we use the Adam optimizer (Kingma and
Ba 2014) with a learning rate of 0.001 (tuned on the dev
set). The word vocabulary size is 30k, number of part-of-
speech tags 40 and number of dependency tags 244. We have

gain on image captioning (Rennie et al. 2017). So we didn’t explore
these two variants for summarization as greedy decoding already
obtains quite good result. We leave this for future work.

2https://github.com/ChenRocks/fast abs rl

chosen the default size (from the codebase) of 128 for word
embeddings, and arbitrarily 30 dimensions both for the part-
of-speech and dependency embeddings. Similarly, we have
chosen the default values of 256 hidden states for every bidi-
rectional RNN, 32 samples for the batch size, a gradient clip-
ping of 2 and early-stopping on the development set. Our
adapted code is given as supplementary material and will be
published with an open-source licence.

Figure 2: Catastrophic forgetting of the RL decoder on the
Gigaword dev set

Results and Analysis
ROUGE. Table 1 shows the performances measured in
ROUGE score. State-of-the-art summarization system come
from (Cao et al. 2018a), which appears to be the best system
on the Gigaword corpus reported in http://nlpprogress.com/
english/summarization.html, as of May 2019.

Both Syntactic and RL models outperform the baseline.
Syntax-aware models outperform the baseline by +1.84

(Postag), +1.86 (Deptag) and +2.01 (Dep+Postag) ROUGE-
2 points.

While RL without syntax slightly under-performs syntac-
tic models, it still achieves an improvement of +1.35 rouge-
2 over the baseline. In other words, directly optimizing the
ROUGE metric helps improve performance almost as much
as integrating syntactic information. The combination of re-
inforcement learning with syntax information keeps increas-
ing the score. However, the resulting improvement is smaller
than when adding syntax without RL. We speculate that be-
cause the search space with syntax has a larger number of
dimensions than without syntax, it may also be more diffi-
cult to explore with RL.

Parameters. The baseline model has 6.617M parameters.
This is increased by roughly 300K paramters for the Postag
and the Deptag model and correspondingly by roughly 600K
paramters for the Pos+Deptag model. In comparison, RL op-
timization does not involve any additional parameters. How-
ever, it requires two more decoder passes for the sampling
and greedy predictions.



Models #Params Time for 1 epoch R-1 R-2 R-L
Re3Sum (Cao et al. 2018a) - - 37.04 19.03 34.46
Our Baseline s2s 6.617M 13h18m 27.57 10.29 26.02
Postag s2s +312k +54m 30.52 12.13 28.8
Deptag s2s +318k +1h13m 30.25 12.15 28.73
Pos+Deptag s2s +630k +1h34m 30.8 12.3 29.22
RL s2s +0 -1h35m 29.94 11.64 28.54
RL postag s2s - - 30.82 12.19 29.12
RL deptag s2s - - 30.58 12.08 29.01
RL pos+deptag s2s - - 30.76 12.31 29.11

Table 1: Performance comparisons between models

Figure 3: Evolution on test set during training

Speed. Syntax-aware models are slightly longer to train
than the baseline. Running on a single GPU GeForce GTX
1080, the baseline model requires 13h18m per epoch with
114k updates while the training time of syntax-aware mod-
els increases by about 6% (Postag s2s). Also, it takes one
week to get the pre-processing tag labels of these syntac-
tic features for the whole 3.8M training samples of Giga-
word corpus on 16 cores cpu machine Dell Precision Tower
7810. Surprisingly, adding the RL loss (which requires re-
evaluating the ROUGE score for every generated text at ev-
ery timestep) reduces training time by 12%. We speculate
that the RL loss may act as a regularizer by smoothing the
search space and help gradient descent to converge faster.

Learning Curve. Figure 3 shows the evolution of Rouge-
2 on the test set over 1 epoch. We can observe that syn-
tactic models obtain a better performance than the baseline
after the first 6k iterations. Sequence models with RL also
quickly reach the same performance than syntactic models,
even though the RL loss is only weakly taken into account
at the start of training. As learning continues, the gap be-
tween the top models (with syntax and/or RL) and the base-
line stays constant. The increased speed of training with RL,
especially at the beginning of training, constitutes an impor-
tant advantage in many experimental conditions.

Figure 4: Repetition comparisons by length (lower is better)

Repetitions. Repetition is a common problem
for sequence-to-sequence models (Tu et al. 2016;
Sankaran et al. 2016). To assess the degree of repeti-
tions in the generated summaries, we use (Le et al. 2017)’s
repetition rate metric which is defined as follows:

rep rat =

T (y)∑
i=1

1 + r(ỹi)

1 + r(Y )
(8)

where ỹi and Yi are the ith generated sentence and ith gold
abstract target sentence respectively, and r is the number of
repeated words: r(X) = len(X) − len(set(X)). len(X)
is the length of sentence X and len(set(X)) is the num-
ber of words that are not repeated in sentence X . Figurer 4
compares the repetition rate of several models; the horizon-
tal axis is the length of sentences, and the vertical axis is
the repetition rate. The proposed RL-model combined with
syntactic information performs the best on long sentences,
with less repeated words than all other models. Indeed, short
sentences are less likely to contain repetitions, but it is in-
teresting to observe that RL-training enriched with syntax
improves the quality of long sentences on this aspect.

Analysis by Postags. To further investigate the linguistic
structure of the generated output, we compute for each POS
tag class T, the proportion of POS tags of type T relative to
the number of generated words (on the test set). We group
POS tags into 9 classes: cardinal numbers (CD), determiners
(DT), nouns and proper nouns (NN), verbs (VV), adjectives



Models Content words Function words MSE to gold
NN VV JJ RB CD DT TO IN SYM to gold

Gold target 49 12.5 12.9 1.6 1.3 1.5 2.5 10.6 4 0
Our baseline s2s 43.4 13.8 10.8 1.4 1.3 1.6 3.5 8.9 11.3 10.52
Postag s2s 50.4 14.5 12.1 1.3 1.3 1.1 3.9 8.1 2.1 2.07
Deptag s2s 49.8 14.5 12 1.7 1.3 1.1 3.7 8.9 1.9 1.59
Pos+Deptag s2s 51.4 14.7 12.6 1.6 1.1 1 3.7 7.9 1.8 2.72
RL s2s 50 14.1 11.9 1.3 1.6 1.2 4.1 9.1 1.6 1.71
RL pos+deptag s2s 49.9 14.3 12.4 1.3 1.5 1.2 3.6 9 2.2 1.28

Table 2: Proportion of generated postags

Source the us space shuttle atlantis separated from the orbiting russian mir space station early saturday ,
after three days of test runs for life in a future space facility , nasa announced .

Abstract atlantis mir part ways after three-day space collaboration by emmanuel unk
Baseline s2s atlantis atlantis atlantis separated from mir space station
Postag s2s us space shuttle atlantis separated from mir space station
Deptag s2s atlantis separated from russian space station
Rl s2s us shuttle atlantis separated from mir
Rl pos+deptag s2s us shuttle atlantis separated from russian space station
Source swedish telecommunications giant ericsson has reached a basic agreement to sell its relay production

to japanese electronics company UNK corp , ericsson said thursday .
Abstract ericsson sells relay production to unk ’s unk corp
Baseline s2s ericsson to sell its its to sell its
Postag s2s ericsson to sell relay production to unk
Deptag s2s ericsson reaches basic agreement to sell relay production
Rl s2s ericsson reaches basic agreement to sell relay production
Rl pos+deptag s2s ericsson sells relay production to unk corp
Source the shooting down of the largest transport plane in the sri lankan air force has wrecked supply lines

and slowed a major government offensive against the tamil rebel citadel of jaffna , analysts said .
Abstract downing of plane slows sri lanka ’s army onslaught on jaffna by amal jayasinghe
Baseline s2s sri lankan air force has
Postag s2s sri lankan air force plane shooting down
Deptag s2s sri lanka ’s largest transport plane shooting kills supply lines
Rl s2s sri lankan air force wrecked supply lines
Rl pos+deptag s2s sri lankan air force shooting down

Table 3: Generated examples of different models.

Figure 5: Performance comparisons by length

(JJ), adverbs (RB), to (TO), prepositions and subordinating
conjunctions (IN) and symbols (SYM).

We evaluate whether the generated summary has a simi-

Models Rel. Grammar.
Baseline s2s 2.13 (+/-0.14) 2.47 (+/-0.18)
Postag s2s 3.26 (+/-0.18) 4.19 (+/-0.16)
Deptag s2s 3.17 (+/-0.19) 4.2 (+/-0.17)
RL s2s 3.23 (+/-0.19) 4.26 (+/-0.16)
RL pos+deptag 3.45 (+/-0.18) 4.49 (+/-0.13)

Table 4: Human Evaluations

lar or different POS tags distribution than the ground truth
by computing for each model the mean square error (MSE)
between every generated and gold POS tag class. These er-
rors are shown in Table 2.

On average and for all POS tag classes, both syntax-aware
and RL models are much closer (about 5 times) to the gold
than the baseline. In a similar way as with repetitions, the
best summarization model in terms of POS tag classes is the
combined RL and syntax model.



Effects on Long Sentences. We group sentences of simi-
lar lengths together and compute the Rouge score. Figure 5
reports the Rouge-2 scores for various lengths of gener-
ated texts, with a 95% t-distribution confidence interval. It
shows that the RL and syntax models perform globally better
than the baseline as sentences get longer. For long sentences
(more than 10 words), this effect is more pronounced, the
syntax(+RL) models outperform significantly the RL and
baseline models.

Human Evaluation. In order to evaluate the quality of the
summaries produced by the models, we asked 3 annotators
to assess the relevance and grammaticality quality of the
summaries. Each criterion is rated with a score from 0 (bad)
to 5 (excellent). Annotators are instructed to evaluate 50
samples randomly selected from the test set. The model in-
formation is anonymous to the annotators. The evaluation re-
sults with a 95% t-distribution confidence interval is shown
in Table 4. We see that RL performs on par with postag,
deptag on relevance and grammaticality criterions and they
all outperfom baseline. This is consistent with the results on
POS tag classes above which indicate that these models gen-
erate more content words and less function words than the
baseline. Once again, RL with pos+deptag obtains the best
result.

Qualitative Analysis. Table 3 shows some sample outputs
of several models. Example 1 presents a typical repetition
problem (the word “atlantis”) often found in the baseline.
Both syntax and RL models manage to avoid repetitions.
Example 2 shows that RL (without any syntactic informa-
tion) can search and find surprisingly the same structure as
the syntax-aware model. In the last example, the baseline
fails as it stops accidentally after a modal verb while syntax
and RL models can successfully generate well-formed sen-
tences with subject-verb-object. However, semantically, RL
and RL with pos+dep tag (like the baseline model) fail to
capture the true meaning of the gold summary (“transport
plane” instead of “air force” should be the real subject in
this case). Deptag s2s seems the best in terms of summariz-
ing syntactic and semantic content on these examples.

Conclusion
We have studied in details in this work the quality of
syntactic implication of the summaries that are generated
by both syntactically-enriched summarization models and
reinforcement-learning trained models, beyond the tradi-
tional ROUGE-based metric classically used to evaluate
summarization tasks. We have thus focused on the quality
of the generated summaries, in terms of the number of re-
peated words, which is a common issue with summarization
systems, but also in terms of the distribution of various types
of words (through their POS-tags) as compared to the gold.
Because these aspects strongly depend on sentence length,
we have also studied the impact of sentence length. Finally,
we have manually evaluated the quality of the generated sen-
tences in terms of relevance and grammaticality. Our results

suggest that enriching summarization models with both syn-
tactic information and RL training improves the quality of
generation in all of these aspects. Furthermore, when com-
putational complexity is a concern, we have shown that RL-
only models may be a good choice because they provide
nearly as good results as syntactic-aware models but with
less parameters and faster convergence time. We plan to ex-
tend this work by further applying similar qualitative evalu-
ations to other types of summarization models and text gen-
eration tasks.
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