
HAL Id: hal-02883310
https://hal.science/hal-02883310

Submitted on 29 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interception-proof VoIP using dictionary-based
encryption

Ahmad Hammoud, Daniel Bourget

To cite this version:
Ahmad Hammoud, Daniel Bourget. Interception-proof VoIP using dictionary-based encryption. Cana-
dian journal on network and information security, 2010, 1 (1). �hal-02883310�

https://hal.science/hal-02883310
https://hal.archives-ouvertes.fr

Canadian Journal on Network & Information Security Vol. 1, No. 1, February 2010

Interception-proof VoIP using Dictionary-based Encryption
Ahmad Hammoud, Daniel Bourget

Abstract – Due to its many advantages, VoIP is nowadays
replacing the traditional analog communication. Although it
is a promising technology, it suffers from a big disadvantage
that makes wire tapping or sniffing much easier. The only
counter-measure is encryption. Many companies provided
plenty of products to minimize the chance for sniffers to
receive readable packets. Unfortunately, those chances are
minimized but not yet eliminated. Low enforcement agencies
and the products' manufacturers are still capable of
penetrating. In this article, we provide a way through which
VoIP communication will be encrypted using a user-defined
dictionary. The purpose of this article is to show to what
extent such an idea can provide sufficient immunity.

Keywords: Interception, Sniffing, Encryption, VoIP, Wire
Tapping.

I. INTRODUCTION
VoIP is an excellent technology. Its main drawback is

the fact that it travels on the LAN, WAN, WLAN,
Internet, and other exposed networks that are accessible
24 hours a day. That's why encryption is a major concern
[5]. All law enforcement agencies are highly interested in
"key escrow" or "key-recovery" mandates [3]. CALEA
(the Communications Assistance for Law Enforcement
Act) is a United States wiretapping law. The sole purpose
of CALEA is enhancing the ability of intelligence and law
enforcement agencies to conduct electronic surveillance.
CALEA does not just require telecommunication carriers
to cooperate with it by allowing US government to wire
tap all communication channels. It goes far beyond than
this. It requires telecommunication carriers and
manufacturers of telecommunication equipment to modify
and design their facilities, services, and equipment so that
CALEA has built-in surveillance capabilities. This would
allow federal agencies to monitor all broadband internet,
telephone, and VoIP traffic in real-time [1]. CALEA
forced phone companies to modify hardware and software
in their systems. As a result, the U.S. Congress had to
fund such network upgrades. CALEA came into force on
the first of January 1995. The pressure exerted by
CALEA became stronger after September 11, 2000. This
implies that commercial encryption solutions cannot be
blindly considered safe and secure products. Thus, there is
a crucial need for a solution that does not rely on
commercial encryption boxes since manufacturers are
required to provide the US government with the keys of
their implanted back doors. This necessitates having a
solution that provides maximum security. What we
provide in this article is a solution through which a phone
call is encrypted using a user-defined algorithm. We will
create a user-defined dictionary. The caller will use this
dictionary to encrypt his/her voice. Then, the encrypted

voice will be transferred to the callee who will use his/her
own copy of the same dictionary to decrypt the vocal
message. Our approach does not rule out the need for
VPN or encryption techniques and is not meant to replace
any commercial product. All of those solutions can still be
in use since many lines of defense are recommended [4].
Our only purpose is to try to find a solution that does not
rely on commercial products.

There is a good reason why we focus on VoIP while

the same approach can be applied to any other type of
communication such as emails. The person's voice is a
valid evidence. A country's ambassador might avoid
having sensitive conversations on the phone because
he/she is afraid of wire tapping. Sometimes, even
individuals who are aware of the danger of wiretapping
use the phone to convey sensitive information [2]. If an
electronic message is caught by the media or an
intelligence agency, it will not have the same effect as a
vocal message because there is no way to prove that this
email was sent by the person him/herself.

II. THE PROPOSED SOLUTION
Dictionary-based encryption is secure since it does

not rely on mathematical methods that can be cracked.
Our approach is very simple:

1. The caller will dial a number.
2. Asterisk will then start recording the voice of the

caller.
3. When the caller is done, Asterisk will call an

external program that will encrypt the recorded
sound file.

4. The sound file is then sent to Asterisk on the
other side where the callee is waiting to hear the
caller's voice.

5. Asterisk on the callee's side will call a program
to decrypt the message.

6. When the message is decrypted, Asterisk will
play it to the callee.

Each of the two communicating parties has his/her
own LAN that is protected behind a firewall. It would be
better not to rely on commercial firewalls. Open source
ones are a better choice since there is a good chance that
commercial black boxes include CALEA-compliant
interfaces. The presence of a firewall will protect the
dictionary from being exposed to the outside world.

It is obvious that this approach sacrifices the real-

time responsiveness that is required in normal VoIP
scenarios. In this article, we study how efficient our

1 1

Canadian Journal on Network & Information Security Vol. 1, No. 1, February 2010

approach is. We will implement many enhancements and
try to optimize the algorithm to see if the real time
constraint can be achieved. We believe two or even three
seconds of latency would be accepted since the gain is a
interception-proof phone call.

III. BASIC SCENARIO
Basically, the idea is to encrypt a digital media file

using an algorithm different from those implemented in
commercial products. In this article, we provide an
algorithm to read chunks of the source media file, encrypt
each byte of the chunks, and save them to another file.
The encrypted file will be sent to the callee. When the file
is received on the other side, bytes are decrypted and the
media file is played. Using the CURL function, Asterisk
will call an ASPX page which will in turn encrypt the
content of the media file. The C# code that we used to
retrieve the chunks is shown in “Fig. 1”.

FileStream fsw = new FileStream(dest,
FileMode.OpenOrCreate, FileAccess.Write);
BinaryWriter bw = new BinaryWriter(fsw);

// The size of the "chunks"
int bufferLen = 128;

FileStream fsr = new FileStream(src,
FileMode.Open, FileAccess.Read);
BinaryReader br = new BinaryReader(fsr);

byte[] buffer = br.ReadBytes(bufferLen);

while (buffer.Length > 0)
{
 for i < buffer.Length; i++) (int i = 0;
 { buffer[i]++; }

 bw.Write(buffer);
 bw.Flush();
 buffer = br.ReadBytes(bufferLen);
}
// Close br, bw, fsw, fsr

Fig. 1 – Source Code of the ASPX Page that retrieve the chunks

The code shown in “Fig. 1” does the simplest form of

encryption. It only adds a value of one to each byte in the
array. Our goal is to use a user-defined dictionary for the
encryption. Such a dictionary will be powered by some
RDBMS package. Each time a byte needs to be replaced,
the value is sent to the database that will return a
corresponding value. Consulting the database thousands
of times will no doubt have a huge impact on the
performance.

We have implemented our approach and tested it

using different hardware, operating systems, DBMS

packages, and programming technologies. “Table 1”
shows the different configurations used.

Table 1 – Servers Configurations

Hardware Operating
System

Web
Technology DBMS

Pentium IV
2.8 GHz
2 GB of RAM

Windows
Server
2003

IIS 6
ASP

SQL
Server
2000

Pentium IV
3.2 GHz
4 GB of RAM

Windows
Server
2003

IIS 6
ASP.NET

SQL
Server
2005

Pentium IV
3.2 GHz
3 GB of RAM

Linux
Fedora 9

Apache
PHP MySQL

2 Quad-Core
Xeon
2.5Ghz
8 GB of RAM

Linux
Fedora 9

IIS on
another
separate
server

Oracle
Database
11g

The reason why we used all of those different

configurations is the fact that the runtime of our first
executions was not accepted at all. Using a dictionary to
encrypt each byte slows down the whole process to an
extent that it becomes unacceptable.

IV. ENHANCEMENTS
In order to achieve our goal which is minimizing the

latency to 2 or 3 seconds, we had to come up with some
enhancements. All the improvements aimed only at
achieving better runtime on both sides: caller (encryption)
and callee (decryption).

Even with the powerful HW configuration shown in

the last row of table 1, the runtime is still unacceptable. If
the format of the recorded media file is gsm, an average
phrase will need 30 to 40 KB. This means we have around
35,000 bytes that need to be encrypted. Fetching the
database 35,000 times cannot be done in real time.

There is an obvious need to implement a set of

enhancements. Those enhancements are listed in “Table
2” along with some details.

Table 2 – Enhancements

Enhancement Details

Algorithm
Fine Tuning

The main problem is that we need to
access the database thousands of times.
If there is a way to minimize this
number, runtime will be better. For
example, encrypting every other byte
reduces the time to its half. It is so
important to decide on the percent of

2 2

Canadian Journal on Network & Information Security Vol. 1, No. 1, February 2010

the bytes that will be encrypted.

Parallel
Execution

We implemented an array of servers,
each of which will receive a part of the
problem. Using .NET threading, we
sent each chunk to a different server.
That way, many servers will be
working at the same time. We used 4
servers that helped us reduce the
required runtime by 75%.

DB Design
Improvement

Instead of storing the entire dictionary
in the same table, we decided to
partition the data. Since each byte is
only a number between 0 and 255, we
can create 256 tables each of which
will contain a long list of numbers
equivalent to the name of the table. For
example, there will be a table called
[17]. It might include 100,000 records.
Every record is only one number. All
of those numbers represent the
encrypted 17. Whenever a byte is
equal to 17, the first row in table 17
will be considered the encrypted byte.
That way, we will not execute a
statement that will retrieve data from a
table containing millions of records.
We will simply retrieve the first row.
Numbers in all of the 256 tables should
not overlap. Otherwise, we will not be
able to get back the original value
when it is the time to decrypt.

Code
Optimization

We do not want to use the same record
twice. If the value 17 is encrypted to
1234, there is no chance that the
number 1234 will be used again. This
dictates that we need to delete each
number that is used in the encryption
process. Such a deletion has a
considerable impact and will slow
down the encryption process. We have
a suggestion to postpone this deletion.

The last enhancement presented in “Table 2”

necessitates postponing the deletion until after the
encrypted file is created. When the file is sent, deletion
should start since it will not slow down the encryption
process anymore. As explained in the 3rd enhancement
presented in “Table 2”, we will have 256 tables. When we
use the first number in a table, we will not delete this
record. Instead, we will keep a counter (say, C) that tells
the number of used records. When the encryption is done,
we will delete the first C records from the table. To do so,
we created a multi-dimensional array to store the
counters. Since we want to achieve parallel execution, the
first dimension in the array is for the servers while the

second is for the 256 tables. At any moment, each cell in
the array will store the current position in the
corresponding table. For example, the cell [2,256] will
store the current position of the 256th table of the 2nd
server. This means that when the encryption is done, we
have to delete the first 2 records of that table.

When we applied all the above enhancements we got

an acceptable latency. On average, it was less than 4
seconds; however, occasionally it went above 6. The
reason is still unclear. There is a plenty of factors that
might have caused this. The duration and the format of
the sound file are among the most important factors.

V. LIMTATIONS
There are some limitations that affect the efficiency

and responsiveness of our proposal. They are as follows:
• Latency – our approach does not provide

real time VoIP phone calls. The caller will
say something and wait for the callee's
response. Then, the callee will respond and
wait for the caller's reply. This is not a real
time conversation but it is close to real time
as the latency is less than 3 seconds. It is a
huge price but the gain is getting
interception-proof VoIP phone calls.

• Another limitation is the fact that the
dictionary should exist on both sides. Such a
dictionary should not be sent over the
internet. Instead, it should be passed by
hand.

• The core component of the security of our
encryption algorithm is the dictionary. If this
dictionary is unveiled, the whole process is
jeopardized.

• The last limitation is the need for multiple
powerful servers. Based on many tests we
have made, each server can be replaced by
many PCs. The algorithm shown in “Fig. 1”
can, for example, split the file into 30
chunks and send each chunk to a different
PC. Each PC will work on encrypting just
one chunk. That way, average PCs can
replace powerful servers.

VI. CONCLUSION
In this article, we presented the way through which

we could achieve encrypted VoIP phone calls. The caller
will talk while Asterisk will be recording his/her voice.
Then, the recorded file will be encrypted based on a user-
defined dictionary that has a corresponding value to each
byte. The major problem was in runtime. However, we
could introduce a set of enhancements that led to a better
runtime. Those enhancements are encrypting a byte out of

3 3

Canadian Journal on Network & Information Security Vol. 1, No. 1, February 2010

each 3, using 4 parallel servers each encrypting a part of
the file, creating a table for each byte value, and
postponing the deletion.

VII. FUTURE WORK
Our lab tests were promising since we could achieve

an acceptable latency, but we still have to get better
results. Our simulated scenarios showed that our approach
was valid; however, implementing such a solution in the
real world is far more complicated than doing so in
controlled environments. Our next step is to try to
implement our approach in a call center to test how
efficient, stable, and available it is. Another thing to
investigate is loading the whole dictionary database in the
RAM so that accessing it would be fast and efficient. This
approach has a drawback which is consuming most of the
RAM. The size of the database, available RAM, number
of used servers, dictionary loading time, and other factors
need to be taken into consideration.

REFERENCES
[1] Communications Assistance for Law Enforcement Act. (2009,

November 9). In Wikipedia, The Free Encyclopedia. Retrieved
from
http://en.wikipedia.org/w/index.php?title=Communications_Assist
ance_for_Law_Enforcement_Act&oldid=324850309

[2] Diffie,Whitfield,& Landau, Susan. Privacy on the Line: The
Politics of Wiretapping and Encryption. Retrieved from
http://books.google.com/books?hl=en&lr=&id=nMY8yHaTQi4C
&oi=fnd&pg=PR9&dq=encrypting+voip+is+more+important+tha
n+other+communication&ots=DP_YEVDgch&sig=EY8psxSwT9
nPKOa1RgiVTQQGo8M#v=onepage&q=&f=false

[3] Singleton, Solveig. (1998). ENCRYPTION POLICY FOR THE
21ST CENTURY: A Future without Government-Prescribed Key
Recovery. Policy Analysis, 325. Retrieved from
http://www.cato.org/pubs/pas/pa325.pdf

[4] Technolgy, Media and Telecomunications. (2006). Deloite:
Protecting the Digital Assets. Retrieved from
http://www.deloitte.com/assets/Dcom-
Global/Local%20Assets/Document

[5] Tucker, Greg S. (2005). Voice Over Internet Protocol (VoIP) and
Security. Retrieved from
http://www.securitytechnet.com/resource/hot-topic/voip/1513.pdf

4 4

	I. INTRODUCTION
	II. The Proposed Solution
	III. Basic Scenario
	IV. Enhancements
	V. Limtations
	VI. Conclusion
	VII. Future Work
	REFERENCES

