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, but it is specifically designed for Coulombian interactions, taking into account the particular structure of the operator. It allows us to reduce the number of discrete convolutions to provide an approximation of the Landau operator. Then, we show that the method preserves the total mass whereas momentum and energy are approximated with spectral accuracy. Numerical results for the Landau equation in three dimensions in velocity space are presented to illustrate the efficiency of the present approach.

where the collision operator C(f, f ) is given by

(1.2) C(f, f ) = ∇ v • R 3 A(v -v * ) ∇ v f (v) f (v * ) -∇ v * f (v * ) f (v) dv * ,
with the matrix A(z),

(1.3) A(z) = |z| γ+2 I - z ⊗ z |z| 2 ,
where I represents the identity matrix in dimension three. The function f represents the density of a gas in phase space at positions x and velocities v, it is nonnegative and integrable together with its moments in velocity up to the second order f ∈ L 1 ((1 + |v| 2 )dxdv). Actually it is worth to mention that different values of γ lead to usual classification in hard potentials γ > 0, Maxwellian molecules γ = 0, or soft potentials γ < 0. However, this latter case is of primary importance in plasma physics since it involves the Coulombian case when γ = -3. Furthermore, the algebraic structure of the operator is similar to the Boltzmann one for rarefied gas dynamics, this leads to physical properties such as the conservation of mass, impulsion, and energy

R 3 C(f, f )(v)   1 v |v| 2   dv = 0,
and the decay of the kinetic entropy H[f ](t), (1.4) d

H[f ] dt = d dt R 3 f (v) ln(f (v)) dv ≤ 0.
Finally, the equilibrium states of the Landau operator, i.e. functions f such that C(f, f ) = 0, are given by Maxwellian distribution functions:

(1.5) M ρ,u,T (v) = ρ (2 π v 2 th ) 3/2 e - |v-u| 2 2 v 2 th ,
where ρ is the total mass, u the mean velocity, Notice that these quantities are observables and can be deduced directly from the moments of the distribution function with respect to the velocity.

To investigate the long time behavior of the solution, the relative entropy H[f |M ρ,u,T ] plays a major role, it is defined as

(1.8) H[f |M ρ,u,T ] := H[f |] -H[M ρ,u,T ] = R 3 f log f M ρ,u,T dv.
It allows to measure the distance between the solution f and the equilibrium. Indeed, thanks to the Csiszár-Kullback inequality, we have

f -M ρ,u,T 2 
L 1 ≤ C CK H[f |M ρ,u,T
]. On the one hand, the collision operator (1.2) is classically obtained as a remedy of the Boltzmann operator for a sequence of scattering cross sections which converge in a convenient sense to a delta function at zero scattering angle. In Coulomb collisions small angle collisions play a more important role than collision resulting in large velocity changes. The original derivation of the equation is based on this idea is due to Landau [START_REF] Landau | Die kinetische gleichung für den fall Coulombscher vechselwirkung[END_REF]. Depending on one's taste and notion of rigor several mathematical derivation of the equations have been performed, we mention here the works of Rosenbluth et al. [START_REF] Rosenbluth | Fokker-Planck equation for an inverse square force[END_REF], Bobylev [START_REF] Bobylev | On the expansion of the Boltzmann collision integral into Landau series[END_REF], Arsen'ev and Buryak [START_REF] Arsenev | On the connection between a solution of the Boltzmann equation and a solution of the Fokker-Planck-Landau equation[END_REF], Degond and Lucquin-Desreux [START_REF] Degond | The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case[END_REF] and Desvillettes [START_REF] Desvillettes | On asymptotics of the Boltzmann equation when the collisions become grazing[END_REF]. We refer to [START_REF] Villani | A review of mathematical topics in collisional kinetic theory Handbook of Fluid Mechanics[END_REF] for a review of the main mathematical aspects related to this issue.

On the other hand, Arsene'v and Peskov [START_REF] Arsenev | On the existence of a generalized solution of Landau equation[END_REF] have established the existence of weak solutions for short time in the spacially homogeneous case for the Coulomb potential. Later a global existence result of renormalized solution with a defect measure has been obtained by Alexandre and Villani [START_REF] Alexandre | On the Landau approximation in plasma physics[END_REF][START_REF] Villani | On the Cauchy problem for Landau equations: Sequential stability, global existence[END_REF] in the space dependance case and for an initial data with a finite energy.

Concerning the approximation of the Landau equation (1.1)-(1.2), various numerical methods have been studied. Depending on how to discretize the velocity space, these methods can be categorized into two classes,

• deterministic methods based on finite difference schemes on a grid in velocity;

• probabilistic algorithms also known as particles methods.

In contrast with the Boltzmann equation where Monte Carlo methods plays a major role in numerical simulations, the extension to long range forces, in particular Coulomb interactions, is more challenging and still requires a lot of attention [START_REF] Bobylev | Monte Carlo methods and their analysis for Coulomb collisions in multicomponent plasmas[END_REF][START_REF] Ricketson | An entropy based thermalization scheme for hybrid simulations of Coulomb collisions[END_REF]. Most of the particle methods for Coulomb interaction have been derived more on a physical intuition basis and not directly from the Landau equation [START_REF] Bobylev | Theory of collision algorithms for gases and plasmas based on the Boltzmann equation and the Landau-Fokker-Planck equation[END_REF][START_REF] Bobylev | Monte Carlo methods and their analysis for Coulomb collisions in multicomponent plasmas[END_REF]. A detailed discussion about this is beyond the aims of the present paper and we refer the reader to [START_REF] Bobylev | Theory of collision algorithms for gases and plasmas based on the Boltzmann equation and the Landau-Fokker-Planck equation[END_REF][START_REF] Bobylev | Monte Carlo methods and their analysis for Coulomb collisions in multicomponent plasmas[END_REF][START_REF] Potapenko | Deterministic and stochastic methods for nonlinear Landau-Fokker-Planck kinetic equations with applications to plasma physics[END_REF][START_REF] Ricketson | An entropy based thermalization scheme for hybrid simulations of Coulomb collisions[END_REF] for a more complete treatment and to [START_REF] Potapenko | Deterministic and stochastic methods for nonlinear Landau-Fokker-Planck kinetic equations with applications to plasma physics[END_REF][START_REF] Dimarco | Numerical methods for kinetic equations[END_REF] for reviews.

On the other hand, several deterministic numerical approaches have been considered for the Landau collision operator [START_REF] Berezin | Conservative finite difference schemes for the Fokker-Planck equation not violating the law of an increasing entropy[END_REF][START_REF] Bobylev | Completely conservative difference schemes for nonlinear kinetic equation of Landau (Fokker-Planck) type[END_REF][START_REF] Buet | Conservative and entropy decaying numerical scheme for the isotropic Fokker-Planck-Landau equation[END_REF][START_REF] Buet | Fast algorithms for numerical, conservative, and entropy approximations of the Fokker-Planck equation[END_REF][START_REF] Degond | An entropy scheme for the Fokker-Planck collision operator of plasma kinetic theory[END_REF][START_REF] Yu | Numerical Simulations of Plasmas[END_REF][START_REF] Epperlein | Implicit and conservative difference schemes for the Fokker-Planck equation[END_REF][START_REF] Lemou | Multipole expansions for the Fokker-Planck-Landau operator[END_REF][START_REF] Lucquin-Desreux | Discrétization de l'opérateur de Fokker-Planck dans le cas homogène[END_REF][START_REF] Potapenko | The completely conservative difference schemes for the nonlinear Landau-Fokker-Planck equation[END_REF][START_REF] Taitano | A mass, momentum, and energy conserving, fully implicit, scalable algorithm for the multi-dimensional, multi-species Rosenbluth-Fokker-Planck equation[END_REF][START_REF] Taitano | An equilibrium-preserving discretization for the nonlinear Rosenbluth-Fokker-Planck operator in arbitrary multi-dimensional geometry[END_REF][START_REF] Zaitsev | Difference schemes for the time evolution of threedimensional kinetic equations[END_REF]. However, due to the computational complexity of the equation, which is essentially caused by the large number of variables and the three-fold collision integral, many papers have been devoted to simplified problems as for the isotropic case [START_REF] Bobylev | Completely conservative difference schemes for nonlinear kinetic equation of Landau (Fokker-Planck) type[END_REF] or for cylindrically symmetric problems in [START_REF] Pekker | Conservative difference schemes for the Fokker-Planck equation[END_REF][START_REF] Khabibrakhmanov | The Spectral Collocation Method for the Kinetic Equation with the Nonlinear Two-Dimensional Coulomb Collisional Operator[END_REF]. Later from the late 1990s, a considerable amount of attention has been directed towards the full Landau equation. The construction of conservative and entropic finite difference schemes for the space homogeneous case has been proposed by Degond and Lucquin-Desreux in [START_REF] Degond | An entropy scheme for the Fokker-Planck collision operator of plasma kinetic theory[END_REF] and Buet and Cordier [START_REF] Buet | Conservative and entropy decaying numerical scheme for the isotropic Fokker-Planck-Landau equation[END_REF]. These schemes are built in such a way that the main physical properties are conserved at a discrete level. Positivity of the solution and discrete entropy inequality are also satisfied. Unfortunately, the direct implementation of such schemes for space non homogeneous computations is very expensive since the computational cost increases roughly in proportion to the square of the number of parameters used to represent the distribution function in the velocity space. Thus several fast approximated algorithms to reduce the computational complexity of these methods, based on multipole expansions [START_REF] Lemou | Multipole expansions for the Fokker-Planck-Landau operator[END_REF] or multigrid techniques [START_REF] Buet | Conservative and entropy decaying numerical scheme for the isotropic Fokker-Planck-Landau equation[END_REF] have been proposed. Although these fast schemes are able to preserve the most relevant physical properties, the range of applications seems limited and the degree of accuracy of such approaches has not been studied. Most of these results are provided when we neglect the space variable in (1.1), we refer to [START_REF] Crouseilles | Numerical approximation of collisional plasmas by high order methods[END_REF][START_REF] Duclous | High order resolution of the Maxwell-Fokker-Planck-Landau model intended for ICF applications[END_REF] for a direct implementation of such schemes taking into account and space variable and self-consistent interactions in one [START_REF] Crouseilles | Numerical approximation of collisional plasmas by high order methods[END_REF] or two dimensions [START_REF] Duclous | High order resolution of the Maxwell-Fokker-Planck-Landau model intended for ICF applications[END_REF] in the physical space and in three dimensions in velocity space.

In the meantime, a different approach based on spectral methods, has been proposed for the Boltzmann [START_REF] Pareschi | Numerical solution of the Boltzmann equation I: Spectrally accurate approximation of the collision operator[END_REF][START_REF] Pareschi | A Fourier spectral method for homogeneous Boltzmann equations[END_REF] and Landau [START_REF] Pareschi | Méthode spéctrale rapide pour l'equation de Fokker-Planck-Landau[END_REF][START_REF] Pareschi | Fast spectral methods for the Fokker-Planck-Landau collision operator[END_REF][START_REF] Filbet | A numerical method for the accurate solution of the Fokker-Planck-Landau equation in the nonhomogeneous case[END_REF] collision operators. In that case, the spectral scheme permits to obtain spectrally accurate solutions with a reduction of the quadratic cost N 2 to N log 2 N , where N is the total number of unknowns in the velocity space. The lack of discrete conservations in the spectral scheme (mass is preserved, whereas momentum and energy are approximated with spectral accuracy) is compensated by its higher accuracy and efficiency. In particular the scheme allows easily the implementation of grid-refinement techniques in the velocity space.

A detailed comparison of the spectral method with the schemes proposed in [START_REF] Buet | Fast algorithms for numerical, conservative, and entropy approximations of the Fokker-Planck equation[END_REF][START_REF] Lemou | Multipole expansions for the Fokker-Planck-Landau operator[END_REF] has been done in [START_REF] Buet | Comparison of Numerical schemes for Fokker-Planck-Landau equation[END_REF]. For the same degree of freedom N , the computational cost of spectral algorithm is much higher than multigrid [START_REF] Buet | Fast algorithms for numerical, conservative, and entropy approximations of the Fokker-Planck equation[END_REF] or multipole methods [START_REF] Lemou | Multipole expansions for the Fokker-Planck-Landau operator[END_REF] but this drawback can be compensated by a better accuracy at least asymptotically when N 1. Let us emphasize that more recently, spectral algorithms based on Hermite expansion of the distribution function have been proposed [START_REF] Li | Hermite spectral method for Fokker-Planck-Landau equation modeling collisional plasma[END_REF] allowing to get exact conservations of mass, momentum and energy but the computational cost is again larger than N log 2 N . This latter method is particularly efficient when the solution remains closed to the equilibrium since few modes may be used.

In the present paper, we pursue the idea of spectral methods, but in the frame of spectral collocation methods, where the distribution function is now discretized on a grid of the velocity space instead of computing the time evolution of Fourier modes. Fast Fourier transforms are only applied to evaluate non-local convolution terms and discrete derivatives. Here we will follow the idea of the spectral method described in [START_REF] Pareschi | Méthode spéctrale rapide pour l'equation de Fokker-Planck-Landau[END_REF][START_REF] Pareschi | Fast spectral methods for the Fokker-Planck-Landau collision operator[END_REF] and restrict ourselves to the Coulombian case γ = -3, which has a particular structure. We will take advantage of this framework to reduce the number of discrete convolutions.

The rest of the article is organized as follows. In the next section we describe the main features of our numerical methods and propose the a new spectral collocation method for the approximation of the collision operator. Next we discuss some properties of the numerical scheme as spectral accuracy and preservation of steady states. Finally, several numerical tests for three dimensional space homogeneous problems are presented to illustrate the efficiency of the spectral collocation method.

The numerical method

From now, we only consider the Coulombian case (γ = -3), which is the most significant for a physical point of view. In that case, the Landau operator has an additional property which will be the key point of our approximation. We set ψ(z) = |z| and observe that the matrix A in (1.2) is such that

A(z) = ∇ 2 ψ(z).
Hence, the Landau operator (1.2) can be now written as (2.1)

g = ψ f , C(f, f ) = div v ∇ 2 v g ∇ v f -∇ v ∆ v g f .
This formulation will be the key point of our spectral collocation method. Unfortunately, this formulation is not the most appropriate to prove conservation of momentum and energy. Indeed, to prove conservation of momentum, we may use that g satisfies

-∆ 2 g = 8 π f in R 3 ,
whereas the conservation of energy requires that we come back to the original formulation and observe that z ∈ ker A(z). However, this formulation is convenient to reduce the computational cost since the scalar and non-local function g may be evaluated using a discrete fast Fourier transform. Moreover, once the function g is provided, the operator C(f, f ) is a local convection/diffusion operator, hence it can be approximated either by finite difference formula or spectral approximation.

Let us emphasize that this formulation is widely used in physics where the potential g = ψ f refers to the Rosenbluth potential [START_REF] Rosenbluth | Fokker-Planck equation for an inverse square force[END_REF]. Now let us explain our spectral collocation method for (2.1). We consider a set of equidistant points 3 where n is an even integer and a real R > 0, which determines the computational domain in velocity. Let us suppose that an approximation of the distribution function is known at the mesh points (v j ) j∈Jn .

(v j ) j∈Jn ⊂ [-R, R] 3 with J n := -n/2, n/2-1
2.1. Computation of the convolution term. Similarly to classical spectral methods for Boltzmann or Landau equations [START_REF] Pareschi | A Fourier spectral method for homogeneous Boltzmann equations[END_REF][START_REF] Pareschi | Fast spectral methods for the Fokker-Planck-Landau collision operator[END_REF][START_REF] Filbet | Solving the Boltzmann equation in N log 2 N[END_REF], the first step will consists to reduce the integration domain R 3 to a bounded domain. It can be shown that for a collision operator such as (2.1), we have the following property Proposition 2.1. Let Supp(f ) ⊂ B(0, R), where B(0, R) is the ball of radius R centered in the origin. Then Proof. First we write C(f, f ) as

(2.2)    g = ψ R f , C(f, f ) = div v ∇ 2 v g ∇ v f -∇ v ∆ v g f , with ψ R = χ [-2R,2R]
C(f, f )(v) = div v ∇ 2 v R 3 ψ(u)f (v -u)du ∇ v f (v) -∇ v ∆ v R 3 ψ(u)f (v -u)du f (v)
and consider that f is compactly supported in a ball B(0, R). On the one hand, for v and vu ∈ B(0, R),

|u| = |v -v -u| ≤ |v| + |v + u| ≤ 2 R, hence in this case, it is enough to choose u ∈ [-2R, 2R] 3 . On the other hand, when v or v -u / ∈ B(0, R) we get that C(f, f ) = 0 since f ≡ 0 in R 3 \ B(0, R).
Therefore, the Landau operator may be written as

C(f, f ) = div v ∇ 2 v ψ R f ∇ v f -∇ v ∆ v ψ R f f , which gives formula (2.2). Finally |v| ≤ R and |u| ≤ 2R implies |v -u| ≤ |v| + |u| ≤ 3R.
Following Proposition 2.1, we want to discretize the Landau equation in a computational domain [-R, R] 3 , with R > 0, hence we define a truncated collision operator C R (f, f ) as

(2.3)    g R = ψ R f , C R (f, f ) = div v ∇ 2 v g R ∇ v f -∇ v ∆ v g R f . Remark 2.2.
Let us emphasize that this truncation of the domain will affect in practice the exact conservation of momentum and energy. We refer to [START_REF] Bobylev | Completely conservative difference schemes for nonlinear kinetic equation of Landau (Fokker-Planck) type[END_REF][START_REF] Degond | The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case[END_REF] or more recently [START_REF] Taitano | A mass, momentum, and energy conserving, fully implicit, scalable algorithm for the multi-dimensional, multi-species Rosenbluth-Fokker-Planck equation[END_REF][START_REF] Taitano | An equilibrium-preserving discretization for the nonlinear Rosenbluth-Fokker-Planck operator in arbitrary multi-dimensional geometry[END_REF] for specific numerical schemes ensuring these conservations by modifying boundary terms. Here we favor on spectral accuracy instead of exact conservations.

As for spectral approximations to Boltzmann [START_REF] Pareschi | A Fourier spectral method for homogeneous Boltzmann equations[END_REF][START_REF] Pareschi | Numerical solution of the Boltzmann equation I: Spectrally accurate approximation of the collision operator[END_REF] and Landau [START_REF] Pareschi | Fast spectral methods for the Fokker-Planck-Landau collision operator[END_REF][START_REF] Filbet | A numerical method for the accurate solution of the Fokker-Planck-Landau equation in the nonhomogeneous case[END_REF], we aim to compute the convolution term g R using a discrete fast Fourier transform. To avoid aliasing effects [START_REF] Canuto | Spectral methods in fluid dynamics[END_REF], we need to extend the distribution function f carefully in a larger domain. Following [START_REF] Pareschi | A Fourier spectral method for homogeneous Boltzmann equations[END_REF][START_REF] Pareschi | Numerical solution of the Boltzmann equation I: Spectrally accurate approximation of the collision operator[END_REF][START_REF] Filbet | Solving the Boltzmann equation in N log 2 N[END_REF] and Figure 1, we choose the cube [-T, T ] 3 , where 3 , and extend it by periodicity to a periodic function on [-T, T ]. As observed in [START_REF] Pareschi | A Fourier spectral method for homogeneous Boltzmann equations[END_REF][START_REF] Pareschi | Fast spectral methods for the Fokker-Planck-Landau collision operator[END_REF] and illustrated in Figure 1, it is enough to take T ≥ 3 R/2 to prevent intersections of the regions where f is different from zero. In practice we take T = 2 R and consider a set of equidistant points (v j ) j∈J 2n ⊂ [-T, T ] 3 with T = 2R with J 2n := -n, n -1 3 .

f = 0 on [-T, T ] 3 \ [-R, R]
We suppose that f is only known at the mesh points (v j ) j∈Jn ⊂ [-R, R] 3 and set f (v j ) = 0 for j ∈ J 2n \ J n . Then we compute a discrete Fourier transform as,

f 2n (k) := 1 (2n) 3 j∈J 2n f (v j ) e -iπ T k•v j , k ∈ J 2n
and get a function f 2n as a trigonometric polynomial in the domain [-T, T ] 3 , 

f 2n (v) := k∈J 2n f 2n (k) e i π T k•v . • 0 • T • 2T • 3T B(0, R) B(0, 2R)
g R 2n = ψ R f 2n . A sufficient condition is T > 0 is such that 2T ≥ 3 R.
Due to the orthogonality relation

(2.4) 1 (2n) 3 j∈J 2n e -i π T k•v j = 1, if k = 2n m 1, m = 0, ±1, ±2, . . . 0, else,
where 1 = (1, 1, 1), we have the relation for any j ∈ J 2n ,

f 2n (v j ) = k∈J 2n f (k) e i π T k•v j = f (v j ).
Consequently f 2n is the n-degree trigonometric interpolant of f at the nodes (v j ) j∈J 2n , that is,

f 2n (v j ) = f (v j ) for all j ∈ J 2n .
The first step consists in computing the convolution term g R 2n by substituting the function f 2n in the first equation of (2.3), which yields

(2.5) g R 2n := k∈J 2n g 2n (k) e i π T k•v ,
where g 2n is simply given by (2.6)

g 2n (k) = f 2n (k) ψ(k), with 
ψ(k) = [-T,T ] 3 ψ R (|u|) e -i π T k•u du = [-T,T ] 3 |u| e -i π T k•u du.
This kernel depends on the computational domain of f through the period T , hence in order to make this dependence explicit, we apply a simple change of variable and get

(2.7) ψ(k) = T π 4 [-π,π] 3 |z| e -i k•z dz.
Therefore, the computation of ψ(k) can be performed easily by computing the Fourier coefficients corresponding to the periodic function u → |u|.

2.2.

Computation of C(f n , f n ). From the trigonometric polynomials g R 2n defined in the cube [-T, T ] 3 , we want to evaluate the collision operator C at the collocation points (v j ) j∈Jn ⊂ [-R, R] 3 . Therefore, we compute a new approximation f n as a trigonometric polynomial in the domain

[-R, R] 3 , f n (v) := k∈Jn f n (k) e i π R k•v , with f n (k) := 1 n 3 j∈Jn f (v j ) e -iπ R k•v j , k ∈ J n , such that f n (v j ) = f (v j ) for all j ∈ J n .
Therefore, we define the interpolation operator I n such that f n = I n f , which can be considered as the orthogonal projection upon the space P n of trigonometric polynomials of degree n, with respect to the discrete approximation of the L 2 inner product,

P n := span e iπ R k•v , k = (k 1 , k 2 , k 3 ), with k α = -n/2, . . . , n/2 -1, for α ∈ {1, 2, 3} .
Actually , the bilinear form

f, h = 1 n 3 j∈Jn f (v j ) h(v j )
coincides with the inner product of L 2 ([-R, R] 3 ) when f and h ∈ P n . The interpolant I n f of a continuous function f satisfies the identity

I n f, h = f, h , h ∈ P n .
Thus, from f n and g 2n , we compute an approximation

C R n (f n , f n ) as C R n (f n , f n ) = div v I n ∇ 2 v g R 2n ∇ v f n -∇ v ∆ v g R 2n f
n , Now for the Fourier collocation method, we will require that the residual

R n = ∂f n ∂t -C R n (f n , f n ) vanishes at the grid points (v j ) j∈Jn ⊂ [-R, R] 3 , that is, R n (t, v j ) = 0, j ∈ J n .
This yields n 3 equations to determine the point values f n (t, v j ) of the numerical solution. In other words, the pseudospectral approximation f n satisfies the equation

(2.8) ∂f n ∂t = C R n (f n , f n ). Notice that from g R 2n defined in [-T, T ] 3 , we only compute ∇ 2 v g R 2n and ∇ v ∆ v g R 2n at the collocation points (v j ) j∈Jn in the smaller cube [-R, R] 3 to evaluate C R n (f n , f n ).

Properties of the pseudospectral method

We point out that because of the periodicity assumption on the operator I n , the collision operator C R n (f n , f n ) preserves in time the mass

[-R,R] 3 C R n (f n , f n )dv = [-R,R] 3 div v I n (∇ 2 v g R 2n ∇ v f n -∇ v ∆ v f n )dv = 0.
In contrast, momentum and energy are not exactly preserved in time but as we will see below these variations are controlled by spectral accuracy when the solution is smooth.

3.1. Spectral accuracy. As for spectral methods [START_REF] Pareschi | Fast spectral methods for the Fokker-Planck-Landau collision operator[END_REF], we can state the following theorem.

Theorem 3.1. Consider ψ R given by (2.2) and a distribution function f ∈ H p , with p ≥ 4, which is compactly supported in the ball B(0, R) with R > 0. Then there exists a nonnegative constant C R > 0, depending on R, such that

C R (f, f ) -C R n (f n , f n ) L 2 ≤ C R n p-4 f H p f H 4 .
Proof. First for f ∈ H r , with r ≥ 1, we consider g R = ψ R f , where ψ R is continuous and ψ R ∈ L 1 ∩ L ∞ , hence we get from the Young's convolution inequality, for any r ≥ 0

(3.1)    ∇ r v g R L ∞ ≤ ψ R L 2 ∇ r v f L 2 , ∇ r v g R L 2 ≤ ψ R L 1 ∇ r v f L 2 .
Also let us remind the following result in approximation theory : for f ∈ H l 0 # , we have for any 0 ≤ l ≤ l 0 ,

(3.2) f -I n f H l ≤ C R f H l 0 n l 0 -l . We now introduce    B R 1 (f, f ) = div v I n ∇ 2 v g R ∇ v f -∇ v ∆ v g R f , B R 2 (f, f ) = div v I n ∇ 2 v g R 2n ∇ v f -∇ v ∆ v g R 2n 
f , and estimate the numerical error as

C R (f, f ) -C R n (f n , f n ) L 2 ≤ C R (f, f ) -B R 1 (f, f ) L 2 (3.3) + B R 1 (f, f ) -B R 2 (f, f ) L 2 + B R 2 (f, f ) -C R n (f n , f n ) L 2 .
The first term on the right hand side of (3.3) measures the interpolation error of trigonometric polynomials. We set h = ∇ 2 v g R ∇ v f -∇ v ∆ v g R f and observe that since f is compactly supported in B(0, R), the function h is also compactly supported, hence it is periodic and belongs tp H p-3

# ([-R, R] 3 ). Indeed, from the Hölder inequality and next the first Young convolution's inequality (3.1), we get

h H p-3 ≤ C g R W p-1,∞ f H p-2 + g R W p,∞ f H p-3 , ≤ C g R W p,∞ f H p-2 , ≤ C ψ R L 2 f H p f H p-2 . Applying (3.2) to h with l = 1 and l 0 = p -3, it yields C R (f, f ) -B R 1 (f, f ) L 2 ≤ I n h -h H 1 ≤ C R h H p-3 n p-4 , hence, (3.4) C R (f, f ) -B R 1 (f, f ) L 2 ≤ C R n p-4 ψ R L 2 f H p f H p-2 .
The second term in (3.1) corresponds to the error between g R and its trigonometric interpolant g R 2n defined in the cube [-T, T ] 3 . Let us notice that since g R 2n ∈ P 2n ([-T, T ] 3 ) with T = 2R, whereas f is compactly supported in B(0, R), as a consequence the function

∇ 2 v g R 2n ∇ v f -∇ v ∆ v g R 2n f
is smooth and compactly supported in B(0, R) and its restriction to the cube [-R, R] 3 can be regarded as a smooth and periodic function. Again applying the stability estimate to any u ∈ H

1 # div v (I n u) L 2 ≤ I n u H 1 ≤ C u H 1
and the Hölder inequality, we get

B R 1 (f, f ) -B R 2 (f, f ) L 2 ≤ ∇ v f ∇ 2 v (g R -g R 2n H 1 + f ∇ v ∆ v (g R -g R 2n ) H 1 , ≤ C ∇ 2 v f L ∞ + f L ∞ g R -g R 2n H 4 .
Thus, using that f and ∇ 2 v f ∈ H 2 ⊂ L ∞ with continuous embedding, then applying (3.2) to g R with l = 4 and l 0 = p and next (3.1), it gives the following estimate on the second term of the right hand side in (3.3),

(3.5) B R 1 (f, f ) -B R 2 (f, f ) L 2 ≤ C R n p-4 ψ R L 1 f H p f H 4 .
Finally we estimate the third term in (3.3) which takes into account the error between f and its interpolant f n in the cube [-R, R] 3 . We have already seen that B R 2 (f, f ) is compactly supported and it can be considered as a periodic smooth function in [-R, R] 3 whereas C R n is the divergence of the interpolant of the function

h n = I n ∇ 2 v g R 2n ∇ v f n -∇ v ∆ v g R 2n f n , which is also periodic in [-R, R] 3 and infinitely smooth. B R 2 (f, f ) -C R n (f n , f n ) L 2 ≤ ∇ 2 v g R 2n L ∞ + ∇ 3 v g R 2n L ∞ ∇ v (f -f n ) H 1 + ∇ 3 v g R 2n L ∞ + ∇ 4 v g R 2n L ∞ f -f n H 1 ,
which gives applying the same argument as before,

(3.6) B R 2 (f, f ) -C R n (f n , f n ) L 2 ≤ C R n p-2 f H p ψ R L 2 f H 4 . Gathering (3.4)-(3.6) into (3.
3), we get the spectral accuracy, there exists a constant C R > 0 such that,

C R (f, f ) -C R n (f n , f n ) L 2 ≤ C R n p-4 f H p f H 4 .
Remark 3.2. Let us emphasize that in [START_REF] Pareschi | Méthode spéctrale rapide pour l'equation de Fokker-Planck-Landau[END_REF][START_REF] Pareschi | Fast spectral methods for the Fokker-Planck-Landau collision operator[END_REF]Corollary 2.1], the consistency error is slightly better since with the same assumptions on f ∈ H p , the authors get

C R (f, f ) -C R (f n , f n ) L 2 ≤ C R n p-2 f H p + C R (f n , f n ) H p
, where C R (f n , f n ) represents now a spectral approximation. In our case, we provide an estimate of the last term in the right-hand side for the Coulombian case, hence the error is deteriorated.

No information is available on the discrete equilibrium states, the decay of the numerical entropy and the preservation of positivity. [START_REF] Pareschi | Fast spectral methods for the Fokker-Planck-Landau collision operator[END_REF]. We have seen in the previous section that the spectral collocation method provides an approximation of the collision operator with spectral accuracy and preserves mass as the classical spectral method does [START_REF] Pareschi | Fast spectral methods for the Fokker-Planck-Landau collision operator[END_REF]. However, in term of computational efficiency the spectral collocation method has some advantages.

Comparison with the classical spectral method

On the one hand, for a distribution function f such that Suppf ⊂ B(0, R), the computational domain is kept relatively small [-R, R] 3 , since the distribution function is simply extended to zero for the evaluation of the convolution term g = ψ f , whereas the computational domain of the spectral method is taken as [-T, T ] 3 with T 2R.

On the other hand, as it is pointed out in [36, Section 3], the evaluation of the Fourier kernel of C(f, f ) requires nine convolutions of the form

q(k) = l+m=k α(l) f (l) β(m) f (m) ,
where f (l) is the Fourier coefficient of f . Each convolution term requires three discrete Fourier transforms with a computational cost of O (2n) 3 log((2n 3 )) to avoid aliasing [START_REF] Canuto | Spectral methods in fluid dynamics[END_REF], where n 3 represents the total number of Fourier coefficients. This computational cost is mainly due to the fact that C(f, f ) is quadratic with respect to f , hence nonlinear terms become discrete convolutions in Fourier variable, whereas the non-local term becomes local in Fourier variable.

Here we take advantage of the Coulombian case and the fact we discretize the nonlinear operator in the velocity space. Indeed, first the matrix (1.3) can be written as ∇ 2 v ψ, hence we only compute one convolution term g = ψ f , which corresponds to a nonlocal term in velocity then we differentiate its trigonometric polynomial approximation. The cost of this convolution is reduced since ψ is fixed and its discrete Fourier coefficient might be stored. Finally, since we compute C(f, f ) at collocation points (v j ) j∈Jn ⊂ [-R, R] 3 , the nonlinear terms do not require an additional cost, whereas the non-local term is a convolution, which can be evaluated with a cost O((2n) 3 log((2n) 3 )) to compute f 2n .

Finally the last comment concerns the Fourier coefficients. The classical spectral method may be written in the form [36, Section 3],

∂ f (k) ∂t = m∈Jn β(k -m, m) f (m) f (k -m) , with β(l, m) = |l| 2 Tr (I(m)) -l t I(m) l , and 
I(m) = B(0,π) 1 |z| I - z ⊗ z |z| 2 e -im•z dz .
This latter integral can be reduced to a one dimensional integral but the integrand has a singularity in z = 0, hence it has to be computed carefully using a recursive quadrature formula. With the spectral collocation, we only need to evaluate (2.7), given by

ψ(k) = T π 4 [-π,π] 3 |z| e -i k•z dz,
which can be done quickly using a fast Fourier transform to u → |u|. This latter function is not infinitively smooth in the cube [-π, π] 3 , hence a large number of collocation points has to be used to evaluate ψ(k) and to preserve spectral accuracy. Let us notice that in the proof of Theorem 3.1, we did not tale into account the error due to the approximation of these Fourier coefficients.

3.3. Steady-state-preserving method. A major drawback of (2.8) is the lack of exact conservations and, as a consequence, the incapacity of the scheme to preserve Maxwellian distribution function. In this section, we overcome this drawback thanks to a new reformulation of the method already propose in the context of Boltzmann equation [START_REF] Filbet | On steady-state preserving spectral methods for homogeneous Boltzmann equations[END_REF] that permits to preserve the spectral accuracy and to capture the long-time behavior of the system. Let us denote M n a trigonometric polynomial belonging to P n and interpolating the Maxwellian distribution M, given in (1.5), at the collocation points (v j ) j∈Jn . Note that due to space homogeneity, M does not change in time and so does M n . We simply modify the previous method (2.8) into

(3.7) ∂f n ∂t = L R n (f n , f n ) , where L R n (f n , f n ) := C R n (f n , f n ) -C R n (M n , M n ) .
Observe that thanks to Theorem 3.1, this additional term does not affect the spectral accuracy for smooth solutions to the Landau equation (1.1)-(1.2). Indeed, we have

C R n (M n , M n ) L 2 = C R n (M n , M n ) -C R (M, M) L 2 ≤ C R n p-4 M H p M H 4 .
Hence we get the same result as Theorem 3.1 to (3.7) in term of accuracy but also the conservation of the consistent steady state M n . We will illustrate in the next section the advantage of the steady state preserving method for the long time behavior of the solution to (1.1)-(1.2).

Numerical simulations

In this section we perform some numerical tests of the scheme (2.8) and (3.7), to check the accuracy and the efficiency of the method.

All calculations have been performed by a third-order Runge-Kutta scheme, with fixed time step. Of course, the Landau equation suffers from the stiffness typical of diffusion equations. The stability condition requires that the time step scales with the square of the velocity step. This means that by doubling the number of Fourier modes per direction, the total number of time steps becomes four times bigger to compute up to the same final time. We have not performed a stability analysis of the scheme, and the stability condition used in the computation has been found empirically. No attempt has been made to overcome the numerical stiffness of the problem caused by diffusion. Although this is a very important issue and deserves a careful study, it is beyond the scope of the present paper and we refer to [START_REF] Lemou | Implicit Schemes for the Fokker-Planck-Landau Equation[END_REF] or [START_REF] Filbet | A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources[END_REF][START_REF] Boscarino | High order semi-implicit schemes for time dependent partial differential equations[END_REF] for research directions on this topic. In our numerical test, we first look for the time step ∆t when n is small and then choose ∆t = O(1/n 2 ) when n is increased.

4.1. Order of accuracy. Unfortunately for Coulombian interactions, there is no explicit solution to the evolution problem (1.1) as it holds true when γ = 0 in (1.2)-(1.3). However, since the Maxwellian distribution (1.5) is a stationary state for (1.2)-(1.3) and since the spectral collocation method (2.8) does not preserve steady states, the Maxwellian may be used to evaluate the accuracy. To this aim we choose the initial data

f 0 = M 1,0,1 in [-7, 7] 3 ,
with a small time step ∆t = 0.005. Then, we perform numerical simulations on the time intervall t ∈ [0, 1] with respectively n 3 = 8 3 , n 3 = 16 3 and n 3 = 32 3 . In Figure 2, we represent the time evolution of the the relative entropy (1.8) and also L 1 , L 2 and L ∞ error norms. The rate at which the error decays with the increase of the number of modes is an indication of spectral accuracy. Let us emphasize that as we mentioned before, the crucial point is to get an accurate approximation of Fourier coefficients ( ψ(k)) k in order to get spectral accuracy. Indeed, for this test we use 1024 collocation points in each direction to evaluate (2.7). 13.64 3.99 × 10 -9 12.9

(a) f N -M 1,0,1 L 2 (b) f N -M 1,0,1 L ∞
Table 1. Order of accuracy: numerical error for L 2 and L ∞ norms and order of accuracy.

4.2. Rosenbluth problem. We choose the initial condition as

f 0 (v) = 1 S 2 exp -S (|v| -σ) 2 σ 2 ,
with σ = 0.3 and S = 10 and the integration time is T 0 = 50 with ∆t = 0.1 in the computational domain [-1, 1] 3 . This test is used to compute the time evolution of the numerical solution (3.7) and to compare the results with those obtained in [START_REF] Rosenbluth | Fokker-Planck equation for an inverse square force[END_REF][START_REF] Pareschi | Fast spectral methods for the Fokker-Planck-Landau collision operator[END_REF].

First, we again illustrate the spectral accuracy by plotting the time evolution of total momentum and temperature which are not exactly preserved by the spectral collocation method. In Figure 4, we present the time evolution of momentum and temperature in log scale and observe that their variations become smaller and smaller when the number of collocation point is increasing. With only n = 24, the variations of momentum and temperature are of order 10 -5 . We compute the time evolution of the distribution function and present the numerical results in Figures 4 and5 where computations were performed respectively with n 3 = 16 3 , n 3 = 24 3 and n 3 = 32 3 collocation points.

On the one hand, we present in Figure 4, the time evolution of the relative entropy (1.8) and the fourth order moment of the distribution function

(4.1) M 4 (t) = R 3 f (t, v) dv.
The relative entropy H[f |M ρ,u,T ] and the fourth order moment M 4 are computed by discretizing the expressions (1.8) and (4.1) on the velocity grid by a straightforward formula. We compare these quantities with a reference solution obtained with n 3 = 128 3 collocation points. We observe that with only n = 24 in each direction, we get an accurate solution. On the other hand, in Figure 5 , we show the cross section of the distribution function at times t = 0, 0.5, 1.5, 3, 5, and 50. The results are in good agreement with those presented in [START_REF] Rosenbluth | Fokker-Planck equation for an inverse square force[END_REF][START_REF] Pareschi | Fast spectral methods for the Fokker-Planck-Landau collision operator[END_REF] even if the time scale does not corresponds since we take all physical constants equal to one.

4.3.

Trend to equilibrium for the sum of two Gaussians. We now choose the initial condition as

f 0 (v) = 1 2(2πσ 2 ) 3/2 exp - |v -2σe 1 | 2 2σ 2 + exp - |v -2σe 1 | 2 2σ 2 ,
with σ = π/10 and e 1 = (1, 0, 0). We choose ∆t = 5. 10 -3 when n 3 = 32 3 and the computational domain is [-R, R] 3 with R = 2.75. This test is used to compute the evolution of the entropy and the pressure tensor defined by (4.2)

P(t) = R 3 (v -u) ⊗ (v -u) f (t, v) dv ,
where u is the mean velocity.

In this test, we compare the long time behavior of two numerical solutions given by (2.8) and by the steady state preserving method (3.7) with the same numerical resolution.

In the Figures 6 and7, the dotted lines represent the numerical solutions obtained with 32 3 modes whereas the continuous line represent a reference solution using 64 3 modes. Both schemes give similar results when we observe the time evolution of the relative entropy H[f |M ρ,u,T ], which decreases to zero, when t becomes large. However, passing to log scale allows to observe a difference on the two solutions around the equilibrium since the relative entropy corresponding to the solution (2.8) seems to saturate for t ≥ 1.5.

Furthermore, in Figure 7, we present the time evolution of the pressure tensor P and the fourth order moment. Again, the steady state preserving method gives satisfying results when time become 

Conclusion.

We have presented an efficient and accurate numerical method to solve the space homogeneous Landau equation for plasma physics. The collision operator is solved in only O(n 3 log 2 n) operations using a spectral collocation method and discrete fast Fourier transforms to evaluate the derivatives and the non-local term. We take advantage of the particular structure of Coulombian interactions to reduce the number of discrete convolutions. This approach highly improves the efficiency of the method and seems to be a good compromise between accuracy and computational cost. The scheme conserves mass, and approximate momentum and energy with spectral accuracy provided that a sufficiently large support is the velocity space is used. This is a first step in the construction of an effective scheme for the numerical solution of the Landau equation. We have seen that our method is suitable for treating cases when the distribution function can be effectively described with a reasonably low number of collocation points, in particular, when the distribution function is smooth. For non-smooth solutions, this require more investigations. In the near future we plan to extend this approach to spatially nonhomogeneous situations following the previous works in [START_REF] Crouseilles | Numerical approximation of collisional plasmas by high order methods[END_REF][START_REF] Duclous | High order resolution of the Maxwell-Fokker-Planck-Landau model intended for ICF applications[END_REF] and also to find a suitable time discretization to avoid the restriction (parabolic CFL) on the time step [START_REF] Filbet | A class of asymptotic-preserving schemes for kinetic equations and related problems with stiff sources[END_REF][START_REF] Lemou | Implicit Schemes for the Fokker-Planck-Landau Equation[END_REF]. 
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  (v) dv, ρ u = R f (v) v dv,and v th represents the thermal velocity, which depends on the temperature T , (1.7)3 ρ T = R f (v)|v -u| 2 dv, as v th = k B T /m, where m represents the mass of one particle and k B is the Boltzmann constant.

  3 ψ, where χ B denotes the characteristic function in the set B. Moreover, we have vu ∈ B(0, 3 R).

Figure 1 .

 1 Figure 1. Computation of the cube [-T, T ] 3 to avoid interactions between the domain of integration B(0, 2R) and the periodized distribution function fn for the convolution termg R 2n = ψ R f 2n . A sufficient condition is T > 0 is such that 2T ≥ 3 R.

Figure 2 .

 2 Figure 2. Order of accuracy: time evolution of the L 2 and L ∞ error norms for the scheme (2.8).

Figure 3 .

 3 Figure 3. Rosenbluth problem: time evolution of the variations of momentum (1.6) and temperature (1.7)

  (a) H[f |M ρ,u,T ] (b) M 4 [f ]

Figure 4 .

 4 Figure 4. Rosenbluth problem: time evolution of the relative entropy (1.8) and the fourth order moment (4.1).

  (a) n 3 = 16 3 (b) n 3 = 32 3

Figure 5 .

 5 Figure 5. Rosenbluth problem: time evolution the distribution function f (t, 0, 0, vz) for (a) n 3 = 16 3 and (b) n 3 = 32 3 at time t = 0, 0.5, 1.5, 3, 5, and 50.

Figure 6 .

 6 Figure 6. Trend to equilibrium for the sum of two Gaussians: time evolution of the relative entropy (1.8).

Figure 7 .

 7 Figure 7. Trend to equilibrium for the sum of two Gaussians: time evolution of the Pressure tensor P in (4.2) and the fourth order moment M 4 given by (4.1).

Figure 8 .

 8 Figure 8. Trend to equilibrium for the sum of two Gaussians: time evolution the projection of the distribution function f on the plane (O, vx, vy) at different time.
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