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Abstract

In this paper we study a zero-sum switching game and its verification theorems ex-
pressed in terms of either a system of Reflected Backward Stochastic Differential Equations
(RBSDEs in short) with bilateral interconnected obstacles or a system of parabolic partial
differential equations (PDEs in short) with bilateral interconnected obstacles as well. We
show that each one of the systems has a unique solution. Then we show that the game
has a value.

Keywords: Zero-sum switching game; System of PDEs; HJB equations; Bilateral obstacles;
Viscosity solution; Reflected Backward SDEs; Perron’s method.

AMS Classification subjects: 491.25; 91A15; 35F21.

1 Introduction

This paper is related to zero-sum switching games, systems of reflected backward differen-
tial equations (RBSDESs) with bilateral interconnected obstacles and systems of variational in-
equalities of min-max type with interconnected obstacles, namely the Hamilton-Jacobi-Bellman
(HJB for short) system associated with the game.

First let us describe the zero-sum switching game which we will consider in this paper. Let T’
be the set {1,...,p}. Assume we have a system which has p working modes indexed by T'. This
system can be switched from one working mode to another one, e.g. due to economic, financial,
ecological puposes, etc, by two players or decision makers C; and C5. The main feature of the
switching actions is that when the system is in mode ¢ € I, and one of the players decides to
switch it, then it is switched to mode ¢ 4+ 1 (hereafter i + 1 is 1 if ¢ = p). It means that the
decision makers do not have their proper modes to which they can switch the system when
they decide to switch (see e.g. [10] for more details on this model). Therefore a switching
strategy for the players are sequences of stopping times u = (0, )n>0 for C1 and v = (7,)n>0
for Cy such that o, < 0,41 and 7, < 7,41 for any n > 0. On the other hand, the switching
actions are not free and generate expenditures for the players. Loosely speaking at time t < T,
they amount to A} (resp. By) given by:

AP =" g \(00) (vesp. BY =3 Go,0,11(m)).

on<t Tn <t
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The process gm_ﬂ(s) (resp. Gii+1(s)) is the switching cost payed by C; (resp. C2) is she makes
the decision to switch the system from mode i to mode i + 1 at time s while ¢, (resp. 0,) is
the mode in which the system is at time o,, (resp. 7,,). Next when the system is run under the
control u (resp. v) for Cy (resp. Cs), there is a payoff J(u,v) which is a profit (resp. cost) for
Cy (resp. C3) given by:

J(u,v) = E[[f f5(s)ds — A% + By + ¢°].

where § := (05)s<7 is the process valued in I' which indicates the working modes of the system
along with time. If at time s the system is in mode ig, then §; = ig. It is bind to the controls u
and v implemented by both players. On the other hand, for i € ', the process f* is the utility
of the system in mode i and finally ¢°7 is the terminal payoff or bequest.

The problem we are interested in is to know whether or not the game has a value, i.e.,
roughly speaking, if the following equality holds:

inf sup J(u, v) = supinf J(u, v)
v u u v

In case of equality we say that the game has a value. Finally we say that the game has a
saddle-point (u*,v*) if, for any « and v, controls of C; and Cs respectively, we have:

J(u,v*) < J(u',v*) < J(u*,v).

Note that in such a case, the game has a value.

From the probabilistic point of view, this zero-sum switching game problem turns into looking
for a solution of its associated system of reflected BSDEs with interconnected bilateral obstacles
(see e.g. [10] for the case of proper modes of players). A solution for such a system are adapted
processes (Y7, Z%, K"%);cr such that for any i € T', and s < T,

Y® and K%* continuous; K** increasing; (Z¢(w))¢<r is dt — square integrable;
Yi=¢+ [T fi(r)dr — [T ZidB, + Kit — Kit — (K&~ — Kim);
L(Y)s Y] SUYY)s;

—

S = Li(Y))dKit =0and [) (Y] —UY(Y),)dKi™ =0

S S

(1.1)

where: a) B := (By);<r is a Brownian motion; b) ¥ := (Y#);cp; ¢) L{(Y), = Yit? T C)
and UH(Y), = Yt + g i1 (s).

Actually the solution of the previous system provides the value of the zero-sum switching
game which is equal to Y{ if the starting mode of the system is i. Roughly speaking, system
(1.1) is the verification theorem for the zero-sum switching game problem.

In the Markovian framework, i.e., when randomness stems from a diffusion process X%*
((t,z) € [0, T] x R¥) which satifies:

dX5* =b(s, X%)ds + o (s, XE*)dBs, s € [t,,T] and X® =z for s <t (1.2)

and the data of the game are deterministic functions of (s, X*), the Hamilon-Jacobi-Bellman
system associated with this switching game is the following system of partial differential equa-
tions (PDEs in short) with a bilateral interconnected obstacles: Vi € ', V(t,z) € [0,T] x R¥,

min{vi(ta 17) - Lz(ﬁ)(a l’)7 max [vi(t7 :17) - Ul(a)(ta I); 76{01‘(@ ZL') - EX(HZ)(L :17) - fz(ta I)]} = Ov
v{(T,x) = hi(z).
(1.3)
where: a) ¥ = (v')ier; b) L'(0)(t,2) = o'} (t,2) — g, (t,2), U(@)(t,2) = v (t,2) +
Giipa(t,2); ¢) L, the infinitesimal generator of X, is given by: V¢ € C*2([0,T] x R¥),

LXp(t, x) = %Tr[UUT(t,x)Dizdt,m)] +b(t,z) " Dyo(t, ).



Usually it is shown that the value functions of the game is a unique solution of (1.3).

This work is originated by an article by N.Yamada [16] where the author deals with the
system of PDEs (1.3) in the case when the switching costs are constant and for bounded
domains Q. By penalization method, the author proved existence and uniqueness of the solution
of (1.3) in a weak sense (actually in a Sobolev space). Then he gives an interpretation of the
solution of this system as a value function of the zero-sum switching game described previously.
A saddle-point of the game is also given. However neither this interpretation nor the existence
of the saddle-point are clear because the question of admissiblity of the controls which are
supposed to realize the saddle-point property is not addressed. In zero-sum switching games
this issue of admissibility of those controls, defined implicitely through (Y?%);cr, is crucial (see
e.g. [10]). Note also that there is another paper by N.Yamada [17] where the solution of
system (1.3) is considered in viscosity sense. Once more by penalization, he shows existence
and uniqueness of the solution in bounded domains .

Therefore the main objectif of this work is to show that:

i) the system of reflected BSDEs with interconnected obstacles (1.1) has a unique solution in
the Markovian framework.

ii) the zero-sum switching game described above has a value in different settings.

iii) The system of PDEs (1.3) has a unique solution.

Actually in this paper we show that system of PDEs (1.3) has a unique continuous with
polynomial growth solution (v?);cr in viscosity sense on [0,7] x R¥. Mainly this solution is
constructed by using Perron’s method in combination with systems of reflected BSDEs with
one lower interconnected obstacle and the Feynman-Kac representation of their solutions in
the Markovian framework. Then we show that the following system of RBSDEs with intercon-
nected bilateral obstacles has a unique solution: For any ¢ € I and s € [t, T],

YZ and K%* are continuous; K»* are mcreasmg (K% = 0): (Zi(w w)i)e<T is dt — square integrable;
= W(XP) + [) fir XEo)dr — [ ZidB, + Ky = Kit — (Kp~ — KU7);
LZ(Y) < Yl <UY),;
JE = L(Y))dKit =0and [ (Y] — U (Y),)dKs™ =0
(1.4)

where X% is the Markov process solution of (1.2), Li(Y), = Yt — g (s, X%®) and

Zi,i+1
U(Y)s = Y+ Giiga (s, X07).

Finally we consider the zero-sum switching game and we show that when the processes Z?,
i €T, of (1.4) are:

a) dt ® dP-square integrable then Y is the value of the game under square integrable controls,
ie., E[(A%)2 + (BY)?] < o0.

b) only w by w, dt-square integrable then Y{ is the value of the game under integrable controls,
ie., E[AY + BY] < o0

The paper is organized as follows:

In Section 2, we introduce the zero-sum switching game and especially the notion of coupling
which is already used in several papers including [10, 15]. In Section 3, we show that the
solution of (1.4) is the value of the zero-sum switching game over square integrable controls
when Z%, i € T, are dt ® dP-square integrable. Without additional assumptions on the data
of the problem, this property is rather tough to check in practice because it_depends on the
room between the barriers L!(Y) and U?(Y) which depend on the solution Y. For example,
it is not clear how to assume an hypothesis like Mokobodski’s one (see e.g. [3, 12]) since the
barriers depend on the solution and this latter is not explicit. However by localiztion, we



can show that in some cases, e.g. when the switching costs are constant, Y{ is actually the
value function over square integrable controls even when we do not know that Z%, i € T, are
dt ® dP-square integrable. In the case when for any i € I' and P-a.s. (Z%(w))s<r is dt-square
integrable only, which is the minimum condition to define the stochastic integral, Y is the
value function of the zero-sum switching game over integrable controls. To show this property
we proceed by localization. Section 4 is devoted to existence and uniqueness of the solution
of system of PDEs (1.3) in a more general form. The result is given in Theorem 4.3, but the
main steps of its proof are postponed to Appendix. This proof is based on Perron’s method
and the construction of this solution (more or less the same as in [4]) proceeds as follows:
a) we first introduce the processes (Y™, Z»™ K+%™),cr m > 1, solution of the system of
reflected BSDEs with interconnected lower barriers associated with {fi(r, X1, 7, 2*) — m(y* —
Yyt — Giia (r, XEO) T, hi(X;’w),gi 1 X% Hier (see (4.7)). Tt is a decreasing penalization
scheme. As the framework is Markovian then there exist deterministic functions continuous
and of polynomial growth (v%™);cr such that the following Feynman-Kac representation holds:
For any i € T, m > 1 and s € [t,T],

}/Sz',m _ U’L’m(S,X;’x).

Asfor any i € T, m > 1, Y»™ > Y%+l then we have also v*™ > v»™*1, Now if we define
vt = lim,, v5™, then (v%);cr is a subsolution of (1.3) and for any fixed mg, (v>™°);cr is a
supersolution of (1.3). Next it is enough to use Perron’s method to show that (1.3) has a
unique solution since comparison principle holds. Finally, by uniqueness this solution does
not depend on mg and is (v%);er. Additionally for any i € T', v® is of polynomial growth
and continuous. In Section 5, we show existence and uniqueness of the solution of system of
RBSDEs (1.1) and give some extensions. This proof is based on results on zero-sum Dynkin
games and standard two barriers reflected BSDEs. The component Y?, i € T, is just the limit
of the processes (Y*™),,. We make use of the fact that, by Dini’s Theorem, (v*™),, converges
to v® uniformly on compact sets since v is continuous and then the sequence (Y™),,, converges
uniformly in L?(dP) to Y?, i € T'. As mentionned previously, this latter property stems from
the PDE part. Note also that the following representation holds:

Vs € [t,T), Y = v'(s, X17).

Here we should point out that since the switching of the system is made from 7 to ¢ + 1 and
the players do not have their proper sets of switching modes, then the method used e.g. in [10]
cannot be applied in our framework. As a consequence of this fact, the question of a solution
of (1.1) outside the Markovian framework still open. At the end of the paper there is the
Appendix. O

2 Preliminaries. Setting of the stochastic switching game

Let T be a fixed positive constant. Let (2, F,P) denote a complete probability space, B =
(Bt)tejo,r] & d-dimensional Brownian motion whose natural filtration is (F{ := 0{Bs,s < t})o<i<r
and we denote by F = (F;)o<i<7 the completed filtration of (Fp)o<;<7 with the P-null sets
of F. Then it satisfies the usual conditions. On the other hand, let P be the o-algebra on
[0,T] x Q of the F-progressively measurable sets.

Next, we denote by:

- §?: the set of P-measurable continuous processes ¢ = (¢);c[o,7) such that E(sup;e(o 1 [¢:]%) <

- A? : the subset of S? with all non-decreasing processes K = (Ky)i<r with Ky = 0;

- Ajoe: the set of P-measurable continuous non-decreasing processes K = (K;);<r with
Ky = 0 such that P — a.s. Kp(w) < o0;



- ”Hiﬁ(d > 1) : the set of P-measurable R%-valued processes ¢ = (t;)ic[0,7] such that
P—a.s., fOT |94 ?dt < o0.

- H>9: the subset of H?gf(d > 1) of processes ¥ = (¥t)se[o,] such that E(fOT |44)?dt) < .

For s < T, 7, is the set of stopping times v such that P-a.s., s <v < T.

S2%([t, T)) is the set S? reduced to the time interval [t,T]. The same meaning is valid for
the other spaces introduced above. O

Now for any (¢,z) € [0, T] xR¥, let us consider the process (X!®) e[, 7] solution of the following
standard SDEs:
dXb® =b(s, X0®)ds + o(s, X®)dBs, s € [t,T];
(2.1)
Xbo =g s<t

where, throughout this paper, b and o satisfy the following conditions:

[HO] The functions b and o are Lipschitz continuous w.r.t. z uniformly in ¢, i.e. for any
(t,xz,2") € [0,T] x R** there exists a non-negative constant C such that

lo(t,x) — o(t,z")| + |b(t,z) — b(t,2")| < Clz — 2’| (2.2)

Moreover we assume that they are jointly continuous in (¢,2). The continuity of b and
o imply their linear growth w.r.t. z, i.e. there exists a constant C such that for any
(t,z) € [0,T] x R¥,

b(t, 2)| + lo(t,2)| < C(1 + [z]). DO (2.3)

Therefore under assumption [H0], the SDE (2.1) has a unique solution X** which satisfies the
following estimates: Vv > 1,

Efsup |X5*"] < O(1 + [2). O (2.4)
s<T

Next a function @ : (¢,z) € [0, T] x R¥ — ®(t,x) € R is called of polynomial growth if there
exist two non-negative real constants C' and - such that

Y(t,z) € [0,T] x R¥, |®(t,z)| < C(1 + |z|").

Hereafter this class of functions is denoted by II,.

2.1 Description of the zero-sum stochastic switching game

Let I' := {1,2,...,p} and for i € T, let us set I'"* := I' — {i}. For ¢ := (y')ier € R? and
7 € R, we denote by [§/_;, 9] or [(y*)rer—:, ], the element of R? obtained in replacing the i-th
component of ¢ with g.

We now introduce the following deterministic functions: for any ¢ € T,
- [ (ta,g.2) € [0,T] x R¥PH — fi(t 2,9,2) € R

. k

SR (t,z) € [0,T] xR l—>gi’i+1(t,x) eR

- Giis1: (62) €0, T xRF =g, .4 (t,2) €R

- Btz e RF — Ri(z) €R



Next let us consider a system with p working modes indexed by the set I'. On the other hand,
there are two agents or controllers C; and Cs, whose interests or profits are antagonistic and
who act on this system, along with time, by switching its working mode from the current one,
say i, to the next one ig+1if 7o < p—1 and 1 if iy = p, whatever which agent decides to switch
first. Therefore a switching control for Cy (resp. C2) is u := (0p)n>0 (resp. v := (Tn)n>0)
an increasing sequence of stopping times which correspond to the successive times where C
(resp. Cs) decides to switch the system. The control u (resp. v) is called admissible if

Plo, < T,¥n > 0] =0 (resp. P[r, < T,Vn > 0] =0). (2.5)

The set of admissible controls of C; (resp. C3) is denoted by A (resp. B).
Now let u := (0 )n>0 (resp. v := (7,,)n>0) be an admissible control of C; (resp. Cs3). Let
(rn)n>0 and (s, )n>0 be the sequences defined by: 179 = s9 =0, 71 = 51 = 1 and for n > 2,

tm=Tn1+ 1, < yands,=s, 1+l <oy

For n > 0, let us set p, = o,, A Ts,. It is a stopping time and it stands for the time when the
n-th switching of the system, by one of the players, occurs. On the other hand, the piecewise
process (6(u,v)s)s<7 which indicates in which mode the system is at time s is given by: Vs < T,

011, v)s = 0011y 0,1 (5) + > OnLip, 1) ()
n>1
where:

i) (Pns pnt1] = @ on {py = pni1};

ii) 6y = i if at ¢t = 0, the system is in mode 3 ;

iii) Forn>1,60,=60,_1+1if0, 1 <p—1landf,=1if60,_1 =p.
The sequence O(u,v) = (pn,0n)n>0, called the coupling of (u,v), indicates the successive
times and modes of switching of the system operated by the players.

When the players implement the pair of admissible controls (u,v), this incurs switching
costs which amount to A% and BY, for C1 and Cy respectively, and given by:

0, _ 1 .
Vs < T, A" = ;Qen,len (Pns X0V, =0, <5} and A = lim AY;
nz

Vs <T,BY = g, 6, (Pn: X0 1(p,—r. <5} and B = lim BY.
n>1
The admissible control u (resp. v) of C; (resp. Cb) is called square integrable if

E[(A%)?] < oo (resp. E[(B%)?] < o).

The set of square integrable admissible controls of C; (resp. Cs) is denoted by A (resp. B).

The admissible control u (resp. v) of C; (resp. Cs) is called integrable if
E[A%] < oo (resp. E[B}] < o0).

The set of integrable admissible controls of Cy (resp. C) is denoted by A (resp. BM).

The coupling 8(u,v), of a pair (u,v) of admissible controls, is called square integrable (resp.
integrable) if
COwv) .= lim C%° € L*(dP) (resp. € L*(dP))

n— oo

where for any N > 1,

o(uw) _ : - :
o=y 9o o (P X0 pumor <ty = D Foo 10, (Ps X0 L (p=r,, <1}
n=1,N n=1,N



Note that Cﬁé“’”), defined as the pointwise limit of Cﬁ,("’v), exists since the controls v and v

are admissible. On the other hand, the quantity C’fv(u’v) is nothing but the switching costs
associated with the N first switching actions of both players.

Next when C; (resp. C3) implements u € A (resp. v € B), there is a payoff which a is
reward for C and a cost for Co which is given by (we suppose that 6y = 7):

T
Ji(6(u,0)) = E [R7C-07 (X77) +/ FO0 (o, X0 dr — OS5 (2.6)
0

It means that between C and Cs there is a game of zero-sum type. The main objective of this
section is to deal with the issue of existence of a value for this zero-sum switching game, i.e.,
whether or not it holds

inf sup J;(6(u,v)) = sup inf J;(6(u, 2.7
inf sup Ji(8(u,v)) = sup inf Ji(8(u, v)) (2.7)
or
inf J;(0(u,v)) = inf J;(0(u,v)). 2.8
uf,) sup (0(u,v)) Jsup It (0(u,v)) (2.8)

Remark 2.1. In our framework when the players decide to switch at the same time, we give
priority to the mazimizer Cy. This appears through the definition of r,, for n > 2. On the other
hand, for the well-posedness of J;(0(u,v)), it is enough that the coupling 6(u,v) is integrable.

To proceed we are going to define the notion of admissible square integrable and integrable
strategies.

Definition 2.2 (Non-anticipative switching strategies). Let s € [0,T] and v a stopping time

such that P-a.s. v > s. Two controls u! = (o}),>0 and u? = (62),>0 in A are said to be
equivalent, denoting this by u' = u?, on [s,v] if we have P-a.s.,

1[0(1),0}](7”) + Z 1(0},],0}#1](70) = 1[0%,0%](T) + Z l(ai,oflJrl](r)a s<r<uw.
n>1 n>1
A non-anticipative strategy for Cq is a mapping @: B — A such that for any s € [0,T], v € Ts,
and v',v? € B such that v! =v? on [s,v], we have a(v') = a(v?) on [s,v].

The non-anticipative strategy @ for Cy is called square — integrable (resp. integrable) if for
any v € B we have @(v) € A (resp. for any v € B we have a(v) € AW).

In a similar manner we define non-anticipative strategies, square integrable and merely inte-
grable strategies for Cy denote by 3.

We denote by A and B (resp. AWM and B(l)) the set of non-anticipative square integrable (resp.
integrable) strategies for Cy and Cq respectively. O

3 Existence of a value of the zero-sum switching game.
Link with systems of reflected BSDEs

We are now going to deal with the issue of existence of a value for the zero-sum switching game
described previously. For that let us introduce the following assumptions on the functions f?,
h*, 9is1 and g, ;1. Some assumptions will be only applied in the next sections.

Assumptions (H):

[H1] For any i € T', f* does not depend on (¥, 2), is continuous in (¢, z) and



belongs to class Il ;

[H2] For any i € T', the function h’, which stands for the terminal payoff, is continuous w.r.t.
x, belongs to class II, and satisfies the following consistency condition: Vi € I', Vo € RE,

Wtli(z) —g

9,01 (To2) () < () + 7544 (T ). (3.1)

[H3] a) For all i € T and (t,z) € [0,7] x R*, the functions 9,4, and g; 4, are continuous,
non-negative, belong to II, and verify:

gi,z‘ﬂ(t’x) +Giis1(t, ) > 0.
b) They satisfy the non-free loop property, i.e., for any j € T and (t,z) € [0,T] x R¥,

i+t ) + ot op1p(t @) +opa(tz) + o+ i1t ) #0 (3.2)

where g p41(t, z) is either —guﬂ(t,x) or gy ¢11(t, ). Let us notice that (3.2) also implies:

Gij1tm) + o+ G, 1,6 2) + G, (6 2) + oo+ G, ;(82) >0 (3.3)

and

g (t,z) > 0. (3.4)

7j’j+1 (t?x) + +Qp,17p(t7x) + gp,l(t’x) + +g]7

1,j
[H4] For any i = 1,...,m, the processes (i,i+1(s, XJ*))s<r and (g, iH(s,XS*f”))sST are non
decreasing. ' O

[H5] For any i € T,

a) f'is Lipschitz continuous in (¥, ) uniformly in (¢, ), i.e. for any i1, 7> € R?, 21, 25 € RY,
(t,x) € [0,T] x R¥,

|fo(t @, 01, 21) — (2, Gy 22)| < C(li — ol + 21 — 2a]);
b) Vj € T, the mapping ¥ — f*(t,z, [(¥*)rer—s,7], 2) is non-decreasing when the other
components t, x, (y*)ycr—; and z are fixed.
c¢) f'is continuous in (¢, ) uniformly in (7,2) and fi(¢,,0,0) belongs to IL,.

In order to deal with the zero-sum switching game we rely on solutions of systems of reflected
BSDEs with oblique reflection or inter-connected bilateral obstacles of type (3.5) below. The
following result whose proof is given in Section 5 will allow us to show that the zero-sum
switching game has a value.

Theorem 3.1. Assume that assumptions [H1], [H2] and [H3] are fulfilled. Then there exist
processes (Y, Z', K»%);cr such that: For any i € T and (t,z) € [0,T] x R*, ¥s € [t, T,

Vie S2([t,T]); K% € Ajpe (K;F =0) and Z' € Hp
Y= WX + [ £ XE)dr = [ Z,dBy + Kyt — Kt — (Kp™ = Ki0);

(3.5)
Li(?)s < Ysi < Ui(?)s§

fT(Ysi - Li(?)s)dK§’+ =0 and ftT(Yi — Ui(?)s)dK?_ —0:;

t S

where for any s € [t,T], Li(}_/')s =Yitl g

9,115 XE7) and UN(Y)s i= Yt +Giipa (s, X07).



Note that obviously the solution (Y?, Z%, K%*),cr of (3.5) depends also on (¢, z) which we omit
as there is no possible confusion.

To proceed let (Y?, Z', K%%);cr be the solution of (3.5) when ¢t = 0. We then have (see
e.g. [12], for more details):

Proposition 3.2. Foralli €T and s < T,

(a)
Yy = essinf esssup J; (0, 7) = esssupess inf J; (o, 7), (3.6)
7€To  geTy ocTo  TETo

where,

Jsi(a'v T) =E [ISUAT fi(Ta X797z)dr + 1{T<U}U7Z-—(Y) + l{agr, 0<T}in7(Y) + hi(X%z)l{U:T:T} | }—e]

(3.7)
(b) We have Y} = Ji(ol, i) where ot € Ty and 1¢ € T, are stopping times defined by,
P—inf{s <t<T:Y}=Li(Y)}AT, (3.8)
i inf{s <t <T:Y}=UY)} AT, '

and we use the convention that inf() = +oo. Moreover, (02,7'5) is a saddle-point for the
zero-sum Dynkin game, i.e.,

Ji(o,78) < Tilo, i) < Tilog,7) Vo, r€T,. O (3.9)

Remark 3.3. For any s <T and i € T, Plol = 7 < T] = 0 due to assumption [H3]-a) on
9 i1 4 Gy

3.1 Value of the zero-sum switching game on square integrable ad-
missible controls

We are now going to focus on the link between Y, i € I', with the value function of the zero-
sum switching game over square integrable controls, namely the relation (2.7). For that we are
going to make another supplementary assumption on the solution (Y?, Z?, K*¥);cr of system
(3.5) which is related to integrability of Z¢, i € T'. Later on we will show that we have also
the relation (2.7) without this latter assumption, but at the price of some additional regularity
properties of the switching costs 9in and g; ;+1 (see [H4]).

To proceed, consider the following sequence (py,, 85, )n>0 defined as following: py = 0, 6y =4
and for n > 1,

. o
Pn = 001 A Tg::ll and 0,, = { L Opy i 01 < p—1,

Pn—1 1if en_l = p;
where o=} and 7.7} are defined using (3.8). Next let ul) := (u{")scr (resp. u(® =
(u$?)e<r) be the piecewise process defined by: u{) = 0fors < pyandforn > 1,5 €
[Pns Prt1),

(1) i O On _ 0,z
uD = L, ifY," " =Y Qen,l,en(pn’XPn ),

1 0,
) 1f Yot > Ypﬁ: ~9y 4 (megf)

p*

(€0)

where w, (2)

is the left limit of u™) at p, (resp. us’ = 0 for s < p; and for n > 1,5 € [pn, Prs1),

ug2) :{ 1—|—u 1f Yp: ! YG”—&—gen L0 (meOw)

5,2>_ if Yor t <Y 4 Ge g (s X0F)



where uﬁl is the left limit of u(® at p,). Next let u* and v* be the following sequences of

stopping times: o5 = 7§ = 0 and for n > 1,
=inf{s > o’ ,,ull) > u(l)} AT and 7¥ = inf{s > 77, u® > u(f_)} AT.
Note that H(u*, v*) = (pn, 0n)n>0. We then have:

Proposition 3.4. Assume that [H1], [H2], [H3] and (Z')ier € H>?. Then the following
properties of u* = (03 )n>0 and v* = (7,5)n>0 hold true:

i) u* and v* are admissible ;

i) the coupling (u*,v*) is square integrable ;

i) ‘

Yy = Ji(0(u",v7)).

Proof. i) Let us show that u* is admissible. Assume that Plo} < T,¥n > 0] > 0. As the 0}’s
are defined through the p/ s, then there exists a loop {j,j +1,..,p — 1,p,1,....,5 — 1,4} such
that

Plw, 3 a subsequence (ng)e>o such that Yp{ = Yp{: + ¢;, j+1(an,Xp’fi) ey

Vit =Yh ey XS ),V 0] >0

Prg+p—1

where ¢; ;11 is the same as in (3.2) and equal to either Y i1
C7 or Cy makes the decision to switch from the current state jo to the next one. Next let us

set v = limy_ o0 pr,. Take the limit w.r.t £ in the previous equalities to deduce that:

P11 X37) 4 oo 4 0p-1,p(1: X37) 4+ 0p1 (1, XDF) + oo+ 05-1,5(7, X9F) = 0] > 0

which is contradictory with the non free loop property (3.2). By the same reasoning we obtain
the admissibility of v*.

or g, ;+1 depending on whether

ii) Let us recall the definition of the square integrability for 8(u*,v*). As u* and v* are proved
S

admissible in i), then the coupling 6(u*, v*) exists. Next we will prove that limy_, C}f;’”*

L2(dP).
For this recall that i is fixed, pg = 0 and 6y = . Next let us consider the equation satisfied
by Y% on [0, p1]. We then have:

. . . P P1 . P1 . P1 .
Y =h’(X%””>1<p1:T>+Yp’11<p1<T>+/0 o X0) dr—/o ZﬁdBrJr/O dKf«’*—/O AR
= WX oy + (Y = g, 0 (00 X)) Vg e Loy + (Y + G101 (7 X)) Lo
P pP1 .
+ / Fr(r, X2") dr — / ZldB,
0 0
ZhGO(X%z)l(plzT) +Yp6111(p1<T) {ge 01, (p1,X m) (o U
P1
+ / fo (r, X2") dr — / Z%dB,. (3.10)
0 0

Next we deal with Y?! by considering the doubly RBSDEs (3.5) in the interval [py, po], i.e

0) 99091(p17X01)1(p1 7— ):| 1(P1<T)

6 i+1
Yﬂll = YP1+
0 0,z T T
=h 1(XT )1(;02:T)+Y 1(p2<T) [99192(1027)(22 )1(/)2 01) galaz(anXO )l(pzz‘l'gll) 1(02<T)
P2
+/ o (r,X?’I)dr—/ Z%dB,. (3.11)
P1 P1

By replacing Y/ in (3.10) with (3.11), then (3.10) yields
P2 - P2 .
Zho" HXE ) (pu=t) Lpur <) + Yo L (pacr) +/ Fosr (T,X?’I)d’”_/ Z} 4B,
0 0

10



2
0,z =
z_: {g‘gn 10y (Pn, X, )1(pn:UzZi},pn<T) G0r 1.0 (p"’X )1(pn—ﬂf§ 11Pn<T)] (3:12)

Following (3.12) we replace iteratively Yf: forn=1,2,..., N we deduce that

N PN
x O(u* v* %
= Y B XY ) Ly <) + Vi Lper) — OF ) + /O FOCT I () X0 ) dr

n=1

PN o
—/ 70w )R, (3.13)
0

From (3.13) we obtain: VN > 1,

N

PN
O(u*,v* n— 0,z 1 u*,'u* r , T
ORI < ST RO (XYY L=ty sy + [V Ly | + Y]+ | / OO, X0 ) dr|

n=1

PN .

+| [ zeta,
0
< max |h*(X%")| + 2max sup |Y1|—|—/ | fOCT0 D (p, X0 dr 4+ sup \/ Z0W B, |

1€T 1€l sep0,1) s€fo, 7] Jo

Finally by taking the supremum over N we obtain:

sup C’e(u ] < max RH(X9")| 4 2max sup |V}
N>1 el 1€l s€[0,T)
T * * s * *
+ / | fOCT 0D (p X0 dr + sup | / Z0w v aB, . (3.14)
0 s€[0,7] Jo

MO s

As (ZY);er are dt ® dP-square integrable, then

2] < CE]| Z/ |Zi|%ds) <

i=1m

E[sup [MJ™"°
s<T

It implies that the right-hand side of (3.14) belongs to L?(dP) and then limy_, C}o\,(u*’v*) is
square integrable, therefore 6(u*,v*) is square integrable.

Finally for iii), by directly taking the expectation on both sides of (3.13) we obtain

N
YOZ - lz h’e’n71(X’?Jm)]'(pnzT)]-(pn,1<T) + Y 1(pN<T) O@(’u U )+/ f9 u*v* 7»(7,’ X?’z)dr
n=1

(3.15)

Now it is enough to take the limit w.r.t. N in (3.15) and to use the Lebesgue dominated
convergence theorem since limy_,o, py = T and considering (3.14), to deduce that

T
Ybi —F |pf@ )7 (X%l) —|—/ fa(“*7v*)7‘ (,r,7 X?,x)dr _ Cgéu*’v*)] _ Ji(9<u*’v*))
0
since llmN_>oo C’i/v(u*”“*) _ Ogc()u*,v*). -

Let ¢ be the starting mode of the system which is fixed. Let o = (0,)n>0 be an admissible
control of C (which then belongs to A) and v*(¢) =: (7, )n>0 be the optimal response strategy

11



of Cy which we define below. Indeed let (py,, 8,,)n>0 be the sequence defined as follows: py = 0,
0o =i and forn > 1
poZO, 9027;, andfornzl,

1+9n71 if 077,71 Sp_]-

P =05, AT, O = { ! £l (3.16)

where
T 1= Tg::ll i=inf {s > pp_1, YO =Y +gp,_,0.(s)} AT (according to (3.8))
and 7, is defined by 7o = 0,7 =1, for n > 2,
Ty = Tp—1+ 1{‘7%_1 <Fn_1}-

Next let ¥ be the piecewise process defined by: 9, = 0 for s < p; and for n > 1,8 € [pn, Prt1)s

1+, -if p, =7, < o0y,

Vs =
Bpu- iF P = 07, < T
where ¥, — = lim, ~,, ¥s. Now the stopping times 7,,, n > 0, are defined as follows:
To=0and forn > 1, 7, =inf{s > 7,_1, 05 > 0s_} AT (3.17)

where Us_ = lim, x, ¥y.

Next we are going to define the notion of optimal responce u*(v) = (65)n>0 of C1 to an
admissible control v = (7, ),>0 of the second player Cy. Indeed let (pn, 6y)n>0 be the sequence
defined as follows: pg =0, 6y =i and for n > 1

po =0, 6p =14, and for n > 1,

1+0,-1 if 0,1<p—1

Pn=0nNTs,, Op = { 1 i 0, | —p (3.18)

where

G 1= 022:1 := inf {s > ppo1, Y1 =y 9o 0. (s)} AT (according to (3.8))
and §,, is defined by $9 = 0,5; = 1, for n > 2,
Sp = 8p_1+ 1{5n71>75"71}.

Next let @ be the piecewise process defined by: s = 0 for s < p; and for n > 1,5 € [ppn, Pnt1)s

1+ i, _if p, = 6p <75,

g =
Up,— if pp =75, < 0p
where 1, - = lim, »,, .. Now the stopping times &,, n > 0, are defined as follows:
do=0and forn > 1, 5, =inf{s > 7,1, s >3-} AT (3.19)
where 1, = lim, »54,. We then have:

12



Proposition 3.5. Assume [H1], [H2], [H3] and (Z);er € H*>?. Then for any u € A and
v € B, we have:
i) u*(v) € A, v*(u) € B;
i)
Ji (0(u,v* (u))) < Y5 < J; (0(u” (v),v)). (3.20)

Proof. i) In order to show u*(v) € A, when v = (7,)n>0 € B, we need to prove that
u*(v) = (6n)n>0 is admissible and E [(Aéﬁ*(v))z} < 00.

Indeed if u*(v) = (G )n>0 is not admissible then there would exist a loop {j,7 +1,....,p —
1,p,1,...,5 — 1,7} which is visited infinitley many times, i.e.,

Plw, 3 a subsequence (ng)¢>( such that YJ Yj;:l 9, j+1(6w,X2£) :
j—1 N 0,z !
anﬁp L= anﬁpi1 _ijl,j(anﬁp 1,Xan . ),V > 0] > 0.

Next let us set n = limy_,o 0p,. Take the limit in the previous equalities yield:

P[gj7j+1(n,X2’“) + ... +gp71’p(n,X2’x) +gp’1(n, Xg””) +.ty, .(777X2””) =0] > 0.

—1,j
But this is contradictory with the non free loop property (3.4).
Next let us show that E [(A;* (”))2} < 00. Proceeding similarly as in the proof of Proposition
3.4, in the interval [0, p1] we have
p1 p1 p1 p1
Yy = h (X9 (py=1) + Yo, Ly <1) + /O Fi(r, X0)dr — / Z.dB, + / dKT — / AR~

0 0 0
(3.21)

Note that the minimizer C5’s control v = (Tn)n>0 is not necessarily optimal, then f[p YdKbT >0
and we know that for any s € [0,7], Y? < Y™ + g, ;41(s, X2%). On the other hand, since
p1 = 01 A Tz then fpl dKbT =0. Tt follows that

pP1

) . . ) P
Yy < hl(X%m)l(m:T) + }/pzll(Pl<T) + fi(r XS’I)dT - / Z,dB,
0 0

. P1 )
Shz( )1(01 T)+1(p1<T)( 1{/71 01}+ 1{P1:Tg1})+ 0 f( XOm) _/0 Z';L‘dBT

< hao(X’5)"7$)1(91:T) + Ypalll(p1<T) [9909 (p17X )1(01 61<T) — 96,64 (plvxgix)l(P1:T§1<T)}
P1 P1
+ / £o (r, X0 dr — / Z%dB,. (3.22)
0 0

Proceeding then iteratively for n = 1,2, ..., N to obtain

N

. PN .
YOZ < Zhenil(X%I)l(pn,1<T,pn=T) +YN 1(pN<T) Jr/ fa(u (v),v)r (7” XO a:)d 7/ Zf(u (v)’v)"dBr
n=1 0
[ggn 16, an )1(pn:6n<T) — 90,10, (pTL?XSf)l(pn:TS,”<T)] . (323)
n=1

Then we have

N
AZ;(”) < Z henﬂ(X%z)l(pnfﬁT,pn:T) + Y ~ Lon<T) +/ fe(u e (r, XO *)dr

n=1

PN N .
- /0 Z0w W gB, — Vi + B (3.24)
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Next as v € B and since (Z%);cr € H*9, taking the squares of each hand-side of the previous
inequality to deduce that:
E[(45.))] < O

for some real constant C'. Finally to conclude it is enough to use Fatou’s Lemma since py — T’
as N — oo.
In the same way we show that v*(u) belongs to B when u belongs to A.

iii) Let v € B. Going back to (3.35), take expectation to obtain:

X . N PN N "
Yy = E[Y§] < B> A (X8 (p, s <tpn =ty FY 0 L <)+ / FOE @0 () x00)gr g ),

n=1

As v € B and u*(v) € A, then for any N > 1, [C%" )| < A% 4 Bv ¢ [2(dP). Take
now the limit w.r.t IV in the right-hand side of the previous inequality and using dominated
convergence theorem to deduce that:

T
Vg < E[pfr@ @) (x0y 4 / FO @0 () X0 g — 0O V)] = Ji(0(u* (v),v)), Yo € B.
0

The other inequality is shown in a similar fashion. O
As a by-product we obtain the following result:

Theorem 3.6. Assume [H1], [H2], [H3] and (Z%);cr € H>?. Then for any i =1,...,m,

Yy = sup inf J;(8(u, v)) = inf sup Ji(8(u,)).

Proof. By (3.20), we know that for any u € A and v € B,
i (0(u, v* () < Y5 < Ji (0(u”(v),0)).
Therefore

sup J; (0(u,v*(u))) < Y¢ < inf J; (O(u*(v),v)).
ueA veB

As when u € A (resp. v € B), v*(u) € B (resp. u*(v) € A) then

inf sup J; (6(u,v))) < sup J; (0(u,v*(u))) < Yy < inf J; (0(u*(v),v)) < sup inf J; (6(u,v)))
veEB e A ueA veB ueAVEB

which implies the desired result since the right-hand side is smaller than the left-hand one. [J

Remark 3.7. Note that we have also the following equalities: For any i € T,

Y = sup J; (0(u,v" () = inf J; (6(u" (v),))

ueA
= inf sup Ji (0(u,v(u))) = Sup inf J; (6(u(v),v)).

Actually let us show the fourth equality. Let a(.) € A. Then

N T (000 < , —Vi— inf I (O(u*
;gngww(v),v))_522223%(9(%11)) Yy = inf J; (0(u" (v),v))

which implies the fourth equality since u*(.) € A. The third one is proved similarly. O
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As mentioned before, the bottleneck for proving the existence of a value for the zero-sum
switching game over square integrable controls is the square integrability of (Z%);cr. The point
now is whether or not it is possible to characterize Y as the value of the zero-sum switching
game without assuming the square integrability of (Z%);cr. At least at the cost of adding some
supplementary conditions on the data of the game. The answer is affirmative if we require
assumption [H4] on the switching costs. Note that this assumption [H4] is satisfied if g; ;41
and 9iitro i =1,...,p, do not depend on z and are non decreasing w.r.t ¢t (e.g. they are
constant)

We then have:
Theorem 3.8. Assume [H1], [H2],[H3] and [H4]. Then for any i € T,

Yy = sup inf J;(0(u,v)) = inf sup J;(0(u,v)).
uc AVEB veB yuc A

Proof. First recall the processes (Y?, Z*, K»*);cr that satisfy: For any i € T and s < T,
Yie 8% K+ e Aloc and Z' € H.%;
= Wi (X% + / fHr, X" dr —/ Z.dB, + Ky" — KiT — (Kp~ — Ki7);

LZ(Y) <YE<UWY)y;
S (i = LH(Y))dKi+ = 0and [ (

(3.25)
Yi - U(Y),)dKi™ =0

where for s < T, Li(Y), := Yit! — 9, i+1(s7X27i”) and U'(Y), 1= Y7 4 g; 511 (s, X00).
Next for any k > 0, let us define the following stopping time:

vk = inf{s >0 / {> 1ZiPYdr > K} AT (3.26)

1=1m

First note that the sequence (vy)r>1 is increasing, of stationnary type and converges to T
Next we have ka |Zi|?dr < k, which means that the processes (Z!1s<+,})s<7 belong to H*<.
Let us now define (Y?, Z%, K% i),ep as follows: For alli € I' and s < T,

Yi=Y!

SAYE)?

Zi=Z gy, KT = KUY, and K27 o= Kl (3.27)
Thus the family (Y, Z%, K*+, Ki’i)ier is the solution of the following system: Vi € T,

1) }_/l (S 82, Zl (S H2’d7ki7i € Aloc;
T T

i) Y=Y/ + / L) f1(r, X0 dr — | ZidB, + Kt — Kot — (Kp~ — K27),Vs < T
111) yitl - 9;. Hl(s X0y <VE <Yt +g1 iv1(s, X0%) Vs < T;
v) T ( ; ))dK“f—Oand I ( Uy )s>dK;v*:0

(3.28)

where U!(Y) and L!(Y) are defined as in (3.25). Let us amphazise that here we need the
assumption [H4] to show the inequalities in point iii) which actually hold true. Indeed for
s < vk, the inequalities hold true by the definition of the processes (Yi, Z Kot I_(i’_)ier and
(3.25). If s > i, by [H4] we have,

i1 0, i+l 0, i+1 0,
Yy _Qi,iH(S’XS ) =Y i z+1( XT) <Y _gi,i+1(’yk7X7kI)
<Y =Y <Y 4 Giaga (s, XOF) = VI 4 Giaga (s, XO7).
On the other hand, by definition of K+ and Y?, i € ', we have

I (Y ~Li(Y) ) AR+ = [TH(Yi— LI(Y),)dKi* = 0.
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Similarly we have also fOT(Y;fUi(?)s)df{(i*’ = 0. Therefore the processes (Y, Z*, K% ),cr
verify (3.28).
Now using the result of Theorem 3.6, we obtain: For any ¢ € T,

Yg =Yg = sup inf JF(0(u,v)) = inf sup JF(0(u,v)).

uwe AVEB vEB A
with
T
JEO(u,v)) =E | YIvIr 4 /0 Lz FO0 (o, X7 )dr — CE00)
where 6(u, v) is the coupling of the pair (u,v) of controls and Co"") := lim,, o C1". Next
let us set: . o
Yy = sup inf J;(0(u,v)) and Yy = inf sup J;(0(u,v)).
uc AVEB veB yue A
Therefore

|Y§ — Y¢| =| sup inf J;(0(u,v)) — sup inf JF(O(u,v))|
we AVEB we AVEB
< sup B[RO0 — DT (X))
(u,v)€EAXB

T
+ / Ly £ (r, X0 ) — 000, XO) ]

B[S 5 - K+ [ 17 X0 )

i=1,m Ve i=1,m
But the right-hand side converges to 0 as & — oo. Therefore

Vi =Y§ = sup inf J;(0(u,v)).
ue AVEB

In the same way we obtain also that

Y§ = Y¢ = inf sup J;(6(u,v)).
vEB yeA
It follows that 4
Yy = sup inf J;(0(u,v)) = inf sup J;(0(u,v)).
we AVEB vEB A

Thus the zero-sum switching game has a value on square integrable controls which is equal to
Yg. O

3.2 Value of the zerosum switching game on integrable admissible
controls

In this part, we are not going to assume the square integrability of (Z%);cr neither [H4] and show
that the relation (2.8) holds true and this common value is equal to Y, where (Y?, Z¢, K%,
is the solution of system (3.5). Actually we have the following result:

Theorem 3.9. Assume [H1], [H2] and [H3]. Then for any i € T,

Yi= inf sup Ji(0(u,v)) = sup inf J;(O(u,v)). (3.29)
vEBM e A ue AW veBW

Proof. Let w = (0p)n>0 and v = (7y)n>0 be two admissible controls which belong to AM and
B®) respectively. Next recall the optimal responses u*(v) = (5,)n>0 and v*(u) = (Fu)n>0
defined in (3.19) and (3.17) respectively. First note that, as shown in Proposition 3.5, the
controls u*(v) and v*(u) are admissible. Let us now show u*(v) belongs to AM. A similar
procedure will show that v*(u) belongs to B(Y).
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Indeed for k > 1, recall the stopping time - defined in (3.26) and the sequences (pp,)n>0
and (6,,)n>0 defined in (3.5). Next for k > 1, let us define: V n > 0,

Ph = onl{pacny + Tp, 2y and O = On1p, <oy + O, 1p, 2

where ny = inf{n > 0,p, > 7%} — 1. Note that p¥ is a stopping time and {pf < T} = {p, <

7 }. The sequences (p¥),>¢ and (6%),>0 constitute the fact that we freeze the actions of the
controllers when -~y is reached. Next going back to the system of equations (3.5) satisfied by
the family (Y?, Z%, K&, Ki’*)iEF and as in (3.33) we have:

oy

‘ ‘ ‘ oy oy , oy
Yg = W (X)L gy + Vi ar) + / Filr, XO%)dr — / ZidB, + / dKt — / dK~
0 0 0

0
=0
o , o o
< WXL ey + Vi sy + / Fi(r, XO)dr — / ZidB,. (3.30)
0 0
But {pf < T} = {p1 < v}. Therefore

Y 1(/) <T) — YP7;11(PI<'Yk) = (Yc‘ri11{m:51} + YTisl 1{P1:‘F§1})1(P1<’Yk)
and then
o , _ o "o
Yo < (X7 )1(Plf:T) + (Yffl11{/)1:51} + Yél 1{P1:7'51})1(P1<’Yk) +/0 [ X" )dr — /0 Z,dB,
(3.31)
But for any s € [0,7], Y < Y + g i11(s, X0%) and
Yt‘rill{m:?fl}l(ﬂKw) = (Y&ijl _Qz‘,i+1(01’X )>1{P1 a1} L (o1 <)
Plug now this in (3.31) to obtain:

Y(;L S hl(X%w)l( ) (Y’H_l 7.2 1(0—17X ))]‘{Pl 01}1(pl<"/k)
i+

®
/71 P1
(Yf:l_ +9“+1(T31,X ))1{p1 .,-gl}l(p1<,yk)_|_/o feo(r,Xgaw)dr—/O ZdeBT. (3.32)

As
i+l i+1
(Yﬁj_ 1{P1:51}+YT;1_ 1{P1:‘F§1})1(m<7k) Y 1(p1<’)’k)

and

(7gi7¢+1(61’X01 )1{»01 01}+g“+1(7—51’X )1{01 Tsl})l(p1<7k)
= (=g, o1 (01 X N pimsry + a0 (750 X2 mr 1)Lk <)

then from (3.33), we obtain:
0, 0,z ok
Yy < AO(X) L hmry Y Lk a) + (=8, g (01 XS ptmsy + G 00 (750 X2 L= 1)Lk <)

o} o
+ / £o (r, X0 dr — / Z%dB,. (3.33)
0 0

. ok .
But we can do the same with Yp,lj 1(p;f<%) to obtain:

YO,

ok 0,z ok
ok < W (X)L (b <y =1 + Yp’; Lps <yt

pPY<k)
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— 0,z
(_20’1“,05 (02, Xa0 ) L=z} T Tk, 9’“(7527X )1{p —rey Lo <)
Plzc p2 k
+ £ (r, X0 ) dr — / 72 dB,. (3.34)
Pt Pt
Plug now (3.34) in (3.33) and repeat this procedure N times to obtain:

k

N
1 k T 0% PN *(v
Yy < § :hgnfl(X% )1(p§L71<T7pﬁ:T) + Yp?lvvl(pﬂ“\;@k) +/0 e LU)T(T’ X2%)dr

n=1
p’f\, 0(u*(v),v) z k 0 k 0
u (v),v yT = »Z
_/ Zy "B, — Z 9o ok (pn’Xp;z Mok =5 <) — 9ok _ 6k (pn’Xpﬁ )Lk =rs,, <)
0 n=1 )
A ;(v) BU
PN pN

(3.35)

where 0 < B” < B”k , since C7 has priority when the two players decide to switch at the
same time. Then take expectatlon in both hand-sides to obtain:

N i
u* (v k 0,z u*(v),v), X v
Bl 0] < - YOHE[Zﬂha,L,I(XT Mt <rpior) + Yo Lk <o) /0 FOT I (¢ XO)dr + B .

(3.36)

Asv € BM | then E[B:)’k. | < E[B%] and then the right hand side of (3.36) is bounded. Therefore
N
there exists a constant C' such that

E[AZ;V(”)] < C +E[BY].

Finally by using twice Fatou’s Lemma (w.r.t k then N) we deduce that E[A7, (U)] < oo which
is the claim.

iii) Let v € BM. Going back to (3.35), take expectation to obtain:

YO <]E{Zh9n 1 Xom)l(pn L\ <T,pk= T)+Y l(PN<'Yk)+/ f@(u (v),v)r (T’ XOx)d

n=1
- Z [gek 0 meO M (ot =5 <) — Jor_ 0% (P7L,X2;’;)1(pﬁ:m,b<%) b (3.37)
By taking the limit w.r.t £ then N we obtain that
Yy < Ji(u*(v),v), Vv € BY.
In the same way as previously, for any u € AM, v*(u) belongs to B and
Yy = Ji(u, 0" (u)).

It follows that for any v € AN and v € B,

Therefore
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As u*(v) (resp. v*(u)) belongs to AM (resp. BM)) when v € B (resp. u € AM), then

inf  sup Ji(u,v) < sup Ji(u,v*(u)) <Yy < inf Ji(u*(v),v) < sup inf J;(u,v)

vEBM) e A u€AM) veB™) ue A veBM)
v+ V-
and the claim is proved since V™ > V. O

Remark 3.10. a) As in Remark 3.7 we have also the following equalities: For any i € T,

Yy = inf sup J;(0(u,v(u))) = sup inf J;(0(u(v),v)).
veEB) we A weAM) veBM)

b) Let (Yitz Zite KHELTY 1 be the P-measurable processes solution of the system (3.5).
Then, as previously one can show that for any i € T and s € [t,T],

Y5 = essinf esssup J©%(0(u,v))s = esssupessinf J“* (0(u, v))s
veBM e weA® veBd

where

T (O(u,v))s = E{ROCT (XE7) 4 [T (o0 (r, X0 )dr — CS| F}

and AV (resp. Bgl)) is the set of admissible integrable controls which start from i at s. O

4 System of PDEs of min-max type with interconnected
obstacles

We are going now to deal with the problem of existence and uniqueness of a solution in viscosity
sense of the following system of PDEs of min-max type with interconnected obstacles:

min{’ui(t,:p) - Li(f/’)(t,x_);max [vi(t_,:n) — U 9)(t, x); _
ot w) = LY ()t x) = fita, (Wt 2)er, ot 2) T D' (o))} =0, (4.)
v (T, x) = h'(x)
where for any i € ', L(?)(t,x) = v i(t,x) — gm._H(t,a:) and U (0)(t,z) := viT(t,z) +

Giiv1(t, ). Note that f? is more general w.r.t. the HJB system of (1.3) since it depends also
on ¢ and z°.

The result is given in Theorem 4.3 but its proof, based on Perron’s method, is postponed to
Appendix. Nonetheless in this section we will introduce some notions which we need also in
Section 5 when we deal with system of RBSDEs (1.1) or more generally (5.2).

For any locally bounded deterministic function  : [0, 7] x R¥ — R, we denote by u. (resp. u*)
the lower semi-continuous (Isc) (resp. upper semi-continuous (usc)) envelope of u as follows:
Y(t,z) € [0,T] x R,

us(t,z) = lim inf w(t',2") and u*(t,z) = limsup  u(t',z').
(t",x")—(t,x),t'<T (t",z" )~ (t,x),t'<T

Next for an Isc (resp. usc) function u we denote by J - u(t,x) (resp. JTu(t,z)), the parabolic
limiting subjet (resp. superjet) of u at (t,z) (see e.g. [2] for the definition and more details).

Definition 4.1. : Viscosity solution to (4.1)
Let ¥ := (v');er be a p-tuple of R-valued, locally bounded functions defined on [0,T] x R.

A) We say that U is a viscosity supersolution (resp. subsolution) of (4.1) if for any i € T':
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(i) vi(T,z) > hi(x) (resp. vi*(T x) < hi(z)), for any x € R* :
\ (ii) For any (t,z) € [0,T) x R* and for any (p,q, M) € J v ( x) (resp. Jto™(t,x)), we
min{v (t, ) — L' () (t, )1
max{—p — b(t,z).q — §Tr[(aa Y(t, ) M) — fi(t,z,vu(t, ), 0 (t,2)q); (4.2)
vi(t,x) = U (W) (t,2)}} >0

where U, = (v8);er (resp.

v*)(t, ),
x).q— =Tr[(co)(t,z)M] — fi(t,z,v*(t,z),0" (t,2)q); (4.3)
v¥)(t,z)}} <0

min{v**(t,z) —

I\DH

LY
max{ —p —b(t
"t ) = U

where v* = (v"*);cr ).

B) A locally bounded function ¥ = (v');er is called a viscosity solution of (4.1) if (v)ier and
(v™*)ier are viscosity supersolution and viscosity subsolution of (4.1) respectively. O

Next (¢, ) be fixed and let us consider the following sequence of BSDEs: Vm,n € N, Vi € T,
Yi,m,n c 82, Zi,m,n c HQ,d;
}/Si,m,n = hZ(X;'Z$) + fST fi,m,n(T7 Xﬁyl” (le’m’n)lel—‘a Zﬁ,m,n)dr - fsT Zvl;’m’ndBﬁ S S Ta
Vi~ ()
(4.4)

where

,m,n T = 7 T~ T 7 T B % % — T +
f’ ’ (87X;7 7y7z) :f (87X;/ 7y72’)+n {y _[y +1_Qi’i+1(8,Xﬁ7 )]} —-m {Z/ - [ZU —"_1_'_giﬂ;-|-1(87)(3;7 )}} .

As (4.4) is a classical BSDE without obstacle, thanks to the results by Pardoux-Peng [6], the
solution exists and is unique. In addition there exist deterministic functions (v™");cr (see
Theorem 4.1. in [6]) such that:

Vs € [t,T], Yo =™ (s, X517). (4.5)

On the other hand, we have the following properties which we collect in the following propo-
sition.

Proposition 4.2 (see [9],[5]). Assume that [H2], [H3] and [H5] are fulfilled. Then we have:

a) P— a.s.,Vs < T,Yimtln < yimn < yimntl i e T n,om > 0, which also implies the
same property for (vo™");cr, i.e. for any (t,z) € [0,T] x Rk i € T,

VLR 3) < bR (g, 3) < (), (4.6)

b) The sequence ((Yi,m,n)ier)nzo) (resp. ((Yi’m’n)iep)mzo) converges in (S%)P to (Y™)er
(resp. (Y"™)ier) which verifies the following system of reflected RBSDEFEs:

TS 7" e BT e A2
vhm 7 tz T 7.m ta (M T —=i,m —i,m,+ —zm-‘r
YS — B(XE) 4+ [L T X (Y e, 20 dr — [P 2B + Ky R s < T
v > Lz(<yl ™)er), s < T;
7,m,+
S - L((VEmYer))dR™ T =0

(4.7)
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where , 4 , 4
f (8 Xt x’?jv ) fl(S’X?x’ ?77 ZZ) - m(yl - [yH_l +§i,i+l(87X£’x)])+'

(resp.
Y e 82z e HE KT € A%
Xi,n hz tz +f fzn ,,, thc (Xln)lel", dr—f Zz ndB +K1n— Ki,n,f’s ST;

yin < Ul((xi%r) s<T;
S — Uiy er))dKE = 0
(4.8)
where

fim(S? X;717 :‘7’ ZZ) = fi(sa X?mv :’jv Zl) + n(yl - [yH_l o gi,i+1(37 X;7m)])+

c) There exist deterministic continuous functions (0°™);er (resp. (v*")ier) such that for
any (t,z) € [0,T] x R* s € [t, T,
V" = (s, X0 (4.9)
(resp.
Yir = b (s, X0)). (4.10)

In addition for any i € T', the sequence ((v '
w.r.t. m (resp. increasing w.r.t. m).

™)m>0)ier (resp. ((yi’n)nzo)iep) are decreasing

d) (V5™);er (resp. (v5™)) belong to class 11, and is the unique viscosity solution of following
system of variational inequalities with a reflected obstacle:

min{o"™ (¢, z) — L*((04™)1er) (¢, x);
=0, 0" (b, ) — LX (@) (8, x) = fo (@, (T (@) )ier, o (t, @) T D0 ™ (¢, )} = 0;
o™ (T, x) = hi(x).
(4.11)
(resp.
max{g_“”(t, x) — UZ((Q_l’m)leF)(t,x .
—0pu"" (b, ) — LX (") (8, @) — fo(t, @, (08(E 2))ier, o (t @) T Don™ (¢, @)} = 0;
v (T, x) = h'(x)).
(4.12)
Proof. The proofs can be found in [9] and [5] so we omit them. O

Next for any i € T and (¢,x) € [0,T] x R*, we denote by

Ti(t,x) = W}gnoo o™ (t,x) and v'(t,z) 1= nli_)rr;oyi’”

Then from (4.6) we deduce that for any (¢,z) € [0,T] x R¥
vi(t, ) < T (t, x).

Note that since for any ¢ € T',
Q < Q <7 <7 0

then v and * belong to II,. Additionnaly we have:

Theorem 4.3. Assume [H2],[H3] and [H5]. Then the p-tuple of functions (v%);er are con-
tinuous, of polynomial growth and unique viscosity solution, in the class 11, of the following
systems: Vi € T and (t,7) € [0,T] x R¥,

min{v’(t, &) — LY(0)(t, 2); max [v'(t, ) — U (0)(t, 2); _
0wt 2) — LX) (1) — (b, (0t D) ier ot 1) Do 2)]} = 05 (4.13)
v"(T,z) = h*(x).
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Proof. Tt is rather long and then postponed to Appendix. O
As a consequence we have the following result for the increasing scheme:

Corollary 4.4. The p-tuple of functions (v%);er is also continuous and the unique viscosity
solution, in the class Iy, of the following system of maz-min type: Yi € T and (t,x) € [0,T] x
RE,

max{v(t,x) — U'(0)(t, x); min [v'(t, 2) — L(7)(t, 2); .
- —O'(ta) — LX) () — fit,z, (V' (t, @))er, o(t, 2) T Dyvi(t )]} =0;  (4.14)
o' (T, z) = h'(x).

To obtain the proof of this result it is enough to consider (—v%);ecr which becomes a de-
creasing scheme associated with {(—f(¢, 2, =, —2))ier, (—h%)icr, (Gi)ier, (g,)ier}, to use the
previous theorem and finally a result by G.Barles ([1], pp.18).

5 Systems of Reflected BSDEs with bilateral intercon-
nected barriers

First note that throughout this section we assume that [H2], [H3] and [H5] are fulfilled. Next
recall the system of RBSDEs (Y#m:te Zimta [im+142) in Proposition 4.2-b)-c) and the
representation (4.9). As the sequence ((0%™)s)ier converges pointwise decreasingly to the
continuous functions (v*);er. Then, by Dini’s theorem, this convergence is uniform on compact
sets of [0, T x R¥. Next, the uniform polynomial growths of (v*);er and ((9™)>)ier combined
with estimate (2.4) of X%® imply that for any i € T,

E( sup D’/si,m,t,x _ }/si,t,m|2) oo 0 (51)
sE€t,T]
where we set: . ‘
Vs <Tandi€T, Y2U" =vi(svt, X57). (5.2)

Proposition 5.1. For any (t,z) € [0,T] x RF s € [t,T],i € T,
Y SUN(Y)ier) = YIS 4 G545 (s, X07). (5.3)
Proof. According to (5.2), it is enough to show the following inequality: for any i € T', (t,z) €
[0,7] x R, _ ,
o't ) <Nt @)+ Giina (¢ ). (5.4)

Indeed, we assume by contradiction that there exists some (o, zg) € [0,7) x R* and a strictly
positive € > 0 such that

’Ui(t(),l'()) — Ui+1(t(),.’r0) — gi’iJ’»](tO,xO) >e>0. (55)

By the uniform convergence of (2> );cr to the functions (v?);er on compact subsets, we can
find some p > 0 and a ball defined by

B((to, z0), p) := {(t,z) € [0,T] x R¥, s.t. [t — to| < pand |z — z0| < p}
and some my large enough such that for any m > my,

oM (t,x) — 0T (@) — Giit1(t, ) > = >0, V(t,z) € B((to, o), p)- (5.6)

| m

Next let us introduce the following stopping time

Tto,eo: = iInf{s > to, X1 & B((to, o), p)} A (to + p).
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Notice that for any s € [to, T¢o .20,
it i (s, o)
> 'l_1i+1’m(S,X§O’IU) +§i,i+1(5,X£0’m0)
> 'l_}i+1’m(8,X§0’IO) . gz i+1(87X§0’I0)
(s, X(0%0)

_ Sritlmito,zo
=Y, o 9iin1
As a result for s € [to, Tyy,z,), dKE™ 00 = (0 and then from (4.7) we deduce that: V s €
[tO’Tto,mo]a

i _ Tto,zo ) . ;
Y;ﬁmyto’zo :Y:;(T;(t)()ﬂ?g + / {-]MJn (7"7 Xf(hxo) (er*m7t0’10)ler7zvm’t0’z0) (57)
S
T76myto,To A+ Lmto,x0 | to,x0\1\+ 00 i m o0
- m(Yr - [Yr + gi,i+1(rﬂ X’r‘ ’ )]) }d?" - Zr dBT
s

i+1,m

Next as in [7], since g; ;,, 0™ and v are of polynomial growth (uniformly for these

latter) and by using (2.4) we deduce that:
Ttg,zg _ | .
mQE[{/ (YSZ,m,to,ro _ Ysz—‘rl,m,to,zo _ §i7i+1(S,X;0’m0))+dS}2]
to

. Ttg,x . (5’8)
<SCE[  sup  |Vimtom2] L CE[{[  fi(s, X",0,0)ds}?].

5€[to,Teg, 2], tEL to

for some cosntant C which is independant of m. Therefore using (5.6) we have

2 . Ttg.zo
m? —Plto < 11y00] < CE[  sup Y omtomo 2] 4 CE[{/ f(s, X", 0,0)ds}?].
to

64 s€[to,Ttg,20],0€T
(5.9)
which implies, in sending m to +o0, Plty < T¢y.4,] = 0, i.e. Plto = T¢,2,] = 1. But this is
contradictory since p > 0 and then (¢g,zo) satisfying (5.5) does not exists. The proof of the
claim is complete. O

We now give the main result of this section.

Theorem 5.2. Assume that the assumptions [H2],[H3] and [H5] are fulfilled anf for anyi € T,
[ does not depend on z*. Then for any (t,z) € [0, T]xR¥, there exist adapted processes KHt®
and Z** valued respectively in RT and R? such that, in combination with Y5, verify: For
any i€,

i) K4 are continuous, non decreasing and K'="" = 0 ; P-a.s. K%i’t’x < oo and
ftT |Z8872ds < oo ;

ii) Vs € [t, T),

Y = W) 4 [ S X0 (0 ier)dr = [ 73,
I R (K = K

LY )1er) S YE0R2 SUH(YH9)er);

LT(}/Si,t,x _ Lz"g((Yl,t,w)ler))ng,—i-,t,x =0 and ftT(}/Sz',t,x _ Usi((Yl,t,x)ler))dK;',—,i,t,x =0
(5.10)

where fors € [0,T), LL((Y"%)ier) = YEF 47—, (s, X0%) and US((Y4% )ier) s= Vit 0o

Gii+1(s, X7). S

Moreover if there exists another quadruple (Yl’t’leZ’t””,K”i’tjx) which satisfies (1)-(ii),
then for any s € [t,T] and i € T, Ypbo = Yjpbr KbEbe — KLELT and finally Z05" =
Zb0% ds @ dP on [t,T] x Q.

2441
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Proof. Ezistence

For any i € I" and m > 0, the processes Y *»% have the following representation (see e.g. A4
in [5] for more details): For any s € [t,T],

oNT
YEmhT — esssup essgnfE[hi(X%z)l(U:T=T) + / i, Xb® (Y hmbey, ) dr
o>s TZS s
+ Lo (Y™ )ier) L (g<ry + {UH(Y " ier) V Y™ (r<r e [ F]-
(5.11)

Now the convergence of (Y*™*%),  to Y in S?([t,T]) (by (5.1)) and the inequalities (5.3)
imply that, in taking the limits in both hand-sides of (5.11): Vs € [t, T,

ONT
Y® = esssup ess infE[hi(X%x)l(U:T:T) + / fi(r, X5 (Y0 er)dr

o>s T2>s

(5.12)
+ Lfr((yl’tw)lGF)l(UCr) + Ui((Yl,t7w)l€F)1(T§o,T<T)|]:S]‘

Next the third inequality in (4.7) and (5.3) imply that: For any s € [t,7] and i € T,

UN(Yier) = Y] = LL((Y )ier).

On the other hand by Assumption [H3]-a),

Us((Y"")ier) = Ly (Y )ier) = Giira (s, X0%) + g, (5, X07) > 0

Zii+1

which means that the obstacles U((Y!4%),cr) and L((Y5%)er), for any i € T, are completely
separated. Therefore by Theorem 3.7 in [?], there exist progressively measurable processes
YHh® KbEL and Z55® valued respectively in R, R™ and R? such that:

i) YobT e S2([t,T)), K"+5% are continuous non decreasing and K 5" = 0 ; P-as.
7 |z s < oo s
ii) The processes (Y""* K+t 7it2) verify: Vs € [t, T,
YT = hUXE) + [ O XEE (Y er)dr — [ 210 dB,

—|—K;l+’t’m _ KiHte (K;l_’t’m _ Ki,—,t,z).
S S

)

LY )ier) < Y5 S UH(YH5)ier);

T ~rist,x i T 7 T T ~rist,z % T i, —,t,x
ft (Xsyt’ _Ls((Ylyt’ )lEF)>sz7+’tﬂ =0and ft (Xsyt’ _Us((Ylyt’ )lEF))dK; HE = 0.

_ (5.13)
Moreover Y""* has the following representation: Vs € [t, T],
) ) . oNT . .
Y2h" = esssupessinf B[R (X 5")1 g re +/ i, X5 (Y er)dr
{4 = esssupessint BR (X 1oy [ 00X () -

+ L (Y )ier) Lo<r) + UL )ier) L (r<o,r<1) | Fal-

Thus for any s € [t,T], Y""" = Y% and by (5.13), (Y1, Kb&be Zi42) verify (5.10).
Finally as i is arbitrary then (Y#6® KH:6¢ 7it2), o is a solution for the system of reflected
BSDEs with double obstacles (5.10). The proof of existence is then stated. It remains to show
uniqueness.

Uniqueness: In this part we apply the fixed point argument over the value of the stochastic
game representation (Theorem 3.9), and the proof is similar to [13]. In the following proof,
the defined processes (Y ®?, 2% K®%%),cp and (Y, 29, K¥%),cr depend on (t, ), but
for simplicity of notations we omit it as there is no confusion.
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So let us define the following operator:
D HPP — HEP
6= (@)ier = () == (V" ier
where (Y, 2% K%"%),cr is the unique solution of

YWESQ([t T] asj; |29 2ds < 0o and K9Pt + K90~ < oo (KPP + KPP~ = 0);

Yot = / fir, X", ¢ ())dr—/ Z¢'dB,+

KO0 _ Koit (K& — K$47), s € [t, T);
Li((Y?)er) < Y97 < Usi((Y¢’l)ler),8 € [t,T);
T T

[ - L ) K —0ad [ (12 - U ) S <0,
t t

(5.15)

In the similar way we define another element of 2P by 15 = (¢¥")er and let (YY1, 2V, K;Z”i’i)se[tj]

be a solution of (5.15) where its driver is replaced with fi(t,z,1(t)),Vi € T.
Next we set the following norm, denoted by ||.|[2,5 on H*?:

T
92,6 = (E[ / 9y 2ds]) /2.

The following calculus is dedicated to prove that ® is a contraction on (H??, ||.||2,5) where the
appropriate value of g is determined later.

Let us recall Theorem 3.9 and Remark 3.10, for any (¢,z) € [0,7] x R and t < s < T, the
following representation holds true:

Y = ess 1nf esssup J?(O(u,v))s = esssup ess mf J?(O(u,v)), (5.16)

veBl! ueAM ueA® veB{!

T
where J?(O(u,v)), = E he(“’”)T(X;%’w) —|—/ fg("’”)"(r‘7 Xﬁ*,q?(r)) — C’go(“’”)

]:S] (u and v

start from i at time s). In the same way Y% has also the stochastic game representation by
replacing ¢ to .

Now we study the difference of |Y¢¢ — Y¥¢|. Indeed, Vi € Tt € [0,T],t < s < T,

[Vt — V¥ < esssupesssup |J?(O(u,v))s — JY(O(u,v))s|. (5.17)
ueAl” veBl”

Thanks to the martingale representation theorem, there exists an (Fs)s<r—adapted process
AP¥0uv) ¢ 2424 quch that

J¢(6(uvv))s - Jd)(@(um))s =

T
[ £ X ) = £ X G| 7

fS]

=E

T
[ 50000, x84 5, X8

0

- / FOO (o, X G(r)) = O (r, X4 (r) ) dr
0

APYIwGB,
0

T
-F / PO (r, X, Gr) = fOC (i, X P () )dr

0
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= [ X ) = O X
Therefore we obtain the following differential form for the difference of the two value functions:
ATHO (1)), = T (O(u,0)),) = [0 (5, X07, 3(s)) = 100 (5, X7, 13(5)] s+ AL,
Next for any s € [t, T], we apply Ito’s formula on e”* (J‘z’(@(u,v))s — Jw(@(u,v))s)2 yielding

d {eﬁs (J?(O(u,v))s — Jw(@(u,v))s)q = BeP* [J9(O(u,v))s — Jw((%(u,v))sf
265 (7000 0)), — IO, 0))s) [ (£ (5, X0%,8(s) — 5700 s, X1, () ) AP O)aB,

2
+ePs (Af“""’(“’”)) ds. (5.18)

By integrating (5.18) over [s,T] we obtain

e’ (J2(O(u,v))s — J¥(O(u, v))s)2 + /T BT (A?,d),e(u,v))2 dr

S

T
- —ﬁ/ efr (J¢(@(u,v))r — Jw(@(u,v))r)er
T

2 [T (IO, — IO 0),) (£ (X0, G(r)) U 1, X0 5(0)))

- 2/T (J2(0(u,v)), — J*(O(u,v)),) AP, (5.19)

b2
By applying the inequality 2ab < Ba? + R (5.19) yields

e (Jd)(@(ua U))s - Jl/}(@(u,v))s)Q + /T efr (Af-ﬂﬁﬁ(u,v))z dr

2

1 T Bs 0(u,v), 7 0(u,v), T
<5 e (£ X ) = £ X))
T
2 [ (O ), — I (O v)),) AF B,

By the Lipschitz condition on the driver f¢(**) and using the fact that
2
fST efr (Af’¢’9(u’v)> dr > 0, we then obtain

e (J9(0(u,v))s — J¥(O(u,v))s)”
2 T

T
<5 |6(r) — P(r)Pdr — 2/ (J2(O(u,v)), = J¥(O(u,v)),) AP OdB,  (5.20)

where C' = . C; with C; the Lipschitz constant w.r.t. fi,¥i € T. On the other hand

since (2/ (J?(O(u,v)), — J*(O(u,v)),) Af’w’o(“’”)dBr)ue[sﬁT] is a martingale, then taking

S
the conditional expectation w.r.t. Fs on both sides of (5.20) we have

e (J9(O(u,v))s — J¥(O(u,v))s)” < g

T
: /|q3‘<r>—1ﬁ<r>|2dr|fs. (5.21)

26



Let us recall (5.17), then by taking the expectation on both sides of (5.21) we obtain: V
s € t,T],

E {eﬁs (qun _ Y;p,i)q < C;]E

T = -
/t |¢<r>—w<r>|2dr]. (5.22)

The last step is integrating (5.22) over s € [t,T] and then summing over all ¢ € T' to obtain:

T

t jer

C?TP

< E

T - -
/t |¢<r>—w(r>2drl. (5.23)

Obviously it is enough to take 8 > C?TP (for example we can let 8 := 4C?TP) then the
operator ® is a contraction on H?? to itself. As a consequence, there exists a fixed point which
is nothing but the unique solution of (5.10).

Next we suppose that there exists another solution (Y, 2, K&%),cp of (5.10), i.e.

Yi= (X5 + [T filr, X0, (VY ier)dr — [T ZitedB,
HRy TN - KRt — (K = Kb s € [1,T);

(5.24)
Li((Y')ier) < Vi< UH(Y'ier), s € [t, T);

JE V= Li(Y ier)dKet =0and [ (Y7 — UN((YY)ier))dKD~ = 0.

Thanks to the fixed point result (5.23) we have immediately Yi=Y% VieT. By applying the
equality of Y and Y, we also have Z¢ = Z? since from the representation of (5.10) and (5.24),

their martingale parts should be equal, i.e. for any i € I',s € [t,T],fST ZidB,s = fST Z'dB,.
Moreover by (5.10) and (5.24) we have Vs € [t,T],i € I, Kbt — Kb~ = K+t — K~ It remains
us now to prove the equality of the increasing processes correspondingly.

For any s € [t,T],7 € T we have

[ = i) @i - ari) = [ (4~ B (e QR - dR). (529
On the other hand by the minimality conditions we have
Vs el Tlier, [ (v - Li(0hen) @G —dKi) = = [ (7 = Li(Orer) i
—— [ (Widier) - Li(i)ier) diE (5.26)

This last equality is due to the fact that Vr € [t,s],dK%~ # 0 only if Y*? touches the upper
obstacle. In the same way we have also the following condition for K~ :Vi € I',s € [t,T],

| = L) @R = dRi) = = [ (% = L (Yier) R
¢ ¢
=~ [ i) ~ B (Vier) aki (5.27)
¢
Combining (5.25)-(5.27) and (H3)-a)(the two obstacles are totally separated), we finally obtain

Viel,seltT], Ki- = Kb~

since K{'~ = K;"~ = 0. Finally the equality K" — K&~ = K& — Ki=, s € [t,T], implies
Kt = K%*t. The proof of uniqueness is now finished. O
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We now go back to systems (4.13) and (4.14) and the question is whether or not they have
the same solution. We have the following result:

Proposition 5.3. Assume that the assumptions [H2), [HB/ and [H5] are fulfilled anf for any
i €T, f' does not depend on z'. Then for any i € T, ¥ = o'.

Proof. : Actually (—v');cr is the unique solution of the following system of PDEs with obsta-
cles:

min{v’(t,z) — L*(0
—0Ov ( ) —
v'(T,x) = —h'(x)

] ) (5.28)
where L'(7)(t,x) = vi(t,z) — Gii41(t,z) and U(0)(¢t,z) = vi(t,x) — g, Z,H(t,ac). Therefore
—v’, has accordingly, the representation (5.12), i.e. for any (t,z) and i € T, setting Y“"* =
vi(s Vv t, X5 for s € [t, T], we have:

0)(t, ); max [vi(t, 2) — U (5)(t, 2); ‘
X( )(t w)—l—f’(tm( ’l)l(t,m))lep,—U(t,:E)Tval(t.'E)]}ZO;

ONT
—X;’t’“ = esssup ess ianE[—hi(X%"c)l(g:T:T) + / —fi(r, Xh (—Xﬁ:t’m)lep)dr

o>s TZ>s

+ Lia((_xl7t7l)l€r)1(0<7') + Ui((_Xl7t7w)ler)1(T§J,T<T)|]:s]

) (5.29)
= ess Zi?f esssup E[-h"(X3") L (gmret) + / — i, X5, (=Y L5 e )dr
+ LE((-Y""" Vier) L o<r) + UL((=Y"")ier) 1 (r<or et | F]
since the barriers are completely separated (see e.g. [?]). Therefore
' o oAT l
Vit = esssupess it B[l (X)) + [ f e @ e a0

+ Lg((xl7t7r)lef)1(a<‘r) + Ui((Xl,t’x)ZEF)l(TSU,T<T)|]:S]'

Which means that ((Xi’t’m)se[t,T])ier verifes (5.10). As the solution of this latter is unique
then for any ¢ € I, Y*® = Y% which means that for i € T, ¢ = v’ O

6 Appendix: Proof of Theorem 4.3

In this section, we prove that the system of (4.1) has a unique continuous solution in viscosity
sense in the class II,. Indeed, we firstly provide a comparison result of subsolution and super-
solution of (4.1) if they exist, then we show that (9%);cr is a solution by Perron’s method. We
recall once for all that the results in this section are constructed under [H2],[H3] and [H5].

6.1 A comparison result

Before investigating (4.1), we provide some a priori results and a comparison principle for sub.
and supersolutions of system (4.1). To begin with let us show the following:

Lemma 6.1. Let @ := (u');er (resp.a := (4")icr) be an usc subsolution (resp. sci supersolu-
tion) of (4.1). For any (t,z) € [0,T] x R¥, let T'(t,z) be the following set:

D(t,z) == {i e T,ui(t,z) — 0'(t,z) = I}learx(ul(t,a:) —al(t,z))}.

Then there exists i € T'(t, ) such that

u(t,x) > ut(t,2) — g,

Lio,i +1(t,l’) and ﬂio (t,l') < ﬂiOJrl(tax) +§io,i0+1(ta ‘Z‘)
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Proof. Let (t,z) € [0,T] x R¥ be fixed. As I is a finite set then I is not empty. To proceed,
we assume, by contradiction that for any i € I'(¢, z), either

u'(t, ) <utl(t,z) — g

9, 10 (17) (6.1)

or
ﬂi(t’x) 2 ai+1(t71’) +§i,i+1(taz) (62)
holds.

Assume first that (6.1) holds true i.e. u(t,z) < u'tl(t,z) —g

7““(75, z). As 4 is a superso-
lution of (4.1), we deduce that

’&'l(ta‘r) Z ﬂHFl(tx) -9

9, 10 (7) (6.3)

By taking into account of (6.1) we have

Wt (t, x) —a'(t,x) < t,x) < ut(t, ) —u'(t, x)

gi,i+1(

which implies A ‘ ‘ A
ul(t, o) — at(t,z) < u'tH(t ) — AT, o).

However as ¢ € f‘(t, x), then the previous inequality is an equality and then

W (1) — i (ha) = (e) it (he) = g, (). 64

As a result we deduce that (i 4+ 1) € I'(¢,2) and also the equality (6.4) holds.
Next if u'(t,x) < uiti(t,z) — gz,yﬂ_l(t,x) does not hold, then ui'(t,x) > u%*l(t, x) —
g, Z_H(t,x). On the other hand, assume that (6.2) holds true, i.e., 4'(t,z) > a**i(¢t,x) +

Giiv1(t, ). Since u' is a subsolution of (4.1), we have
u'(t,x) < u'(t o) +Giit1(t, @)

which implies A ‘ A ‘
aHl(tv ’JS) - ﬁ‘l(tv 3:) < *gi,i%»l(t, 1‘) < U‘Hl(tv ’JS) - ul(tv 3:)

and then 4 ‘ ‘ 4
u'(t, o) —a'(t,z) < u'THt ) — AT, o).

However as i € I'(t, ), then the last inequality is an equality and (i + 1) € I'(£, 2). Moreover

ui+1(ta $) - ui(tv ’I) = 7§i,i+1(t7 l’) - ’&iJrl(ta x) - ﬂi(tv ’I) (65)

It means that (6.1) or (6.2) imply that (i + 1) € I'(, ) and one of the equalities (6.4), (6.5).
Repeat now this reasonning as many times as necessary (actually p times) to find a loop such
that > .. @iit1(t,7) = 0 (@si41 is defined in (3.2)), which is contradictory to assumption
[H3]. O

Next we give the comparison result.

Proposition 6.2. Let i@ := (u');er be an usc subsolution (resp. W := (w')er be a lsc super-
solution) of the system (4.1) and for any i € T, both u* and w* belong to class I1,, i.e. there
exist two constants v and C such that

Vi e, (t,x) € [0,T] x R*, [ul(t,z)| + |wi(t,x)| < C(1 + |z|7).
Then it holds true that:

ui(t,x) <w'(t,z), Vi €T, (t,z) € [0,T] x R, (6.6)
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Proof. Let us show the result by contradiction, i.e. there exists ¢y > 0 and some (tg,xo) €
[0,7) x R” such that ' _
mafx(ul(to,mo) —w'(tg, z0)) > €o- (6.7)
1€

Next without loss of generality we assume that there exists R > 0 such that for ¢ € [0,T],
|z| > R we have for any ¢ € T, _ _
(u' —w*)(t,x) < 0. (6.8)

Actually if (6.8) does not hold, it is enough to consider the following functions w*%* defined
by -
wh?h = w'(t, ) + 96_/\t(1 + 2[27F2), (t,x) € [0,T] x R¥

which still a supersolution of (4.1) for any # > 0 and A > \g (A is fixed). Then to show that
u’ —wh%* < 0 for any i € I' and finally to take the limit as § — 0 to obtain (6.6). But for
any i € T, u* — w"%" is negative uniformly in ¢ when |z| is large enough since u’ belongs to
II; with polynomial exponent 7.

To proceed, let (6.7)-(6.8) be fulfilled. Then

it,x) —wi(t,z)} = Htx) —w'(t,
(e TR (B 2) mW B} = I oy e e () — )
= AN 1 ot >
r?earx(u w")(t*,x*) > € >0

where B(0, R) is the ball centered in the origin with radius R. Note that t* < T since
ul(T,z) < hi(z) < wi(T, x).

The proof now will be divided into two steps:
Step 1: To begin with, we introduce the following auxiliary condition: There exists A >

(p - 1) maxger Cf‘ such that for any (S F7 (t,JZ‘, 277 Z) € [OvT] x RF x Rp+d7 and (UlaUZ) € R?
such that v! > v? we have

fi(t,.%‘, [?j_i,vl]v Z) - fi(t’xa [g»—i7v2]’ Z) < _)‘(Ul - Uz) (6'9)

and where Cy: is the Lipschitz constant of fiwrt. 7.

So let ig be an element of T'(t*, z*) such that
w' (t*, ) > ult (t* 2*) — gio’ioﬂ(t*,x*) (6.10)
and ‘ ‘
w' (¢, 2%) < WO, 2) + Gy gy (T, 7) (6.11)
which exists by Lemma 6.1. Next we define the following function: For any n > 1,
(Di{) (ta z, y) = (uio (tv 1‘) - wio (tv y)) - ¢n(t7 xZ, y)a (ta z, y) € [07 T] X Rk+k

where
Pn(t,x,y) = nle —y[P7H? + |z — 2272 4 (¢t - t7)2

The function ®©(¢,x,y) is usc, then we can find a triple (¢,,7n,y,) € [0,T] x B(0, R)? such
that
DO (b, Ty Yn) = max D (t, x,
n( Un) = e e T B TY)

(B(0, R) is the closure of B(0, R)). Then we have
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From which we deduce that

@i?(t*,x*,m*) uio(t*,x*) — wi‘)(t*,x*)

DL (ty, Ty Yn)
0 (b, )

tnsTn)

IN

(6.12)

(3

o (tnayn) - ¢n(tnaxn7yn)
to (tnvyn) S CR

(Cg is a constant which may depend on R) since the sequences (tn)n, (Zn)n and (yn), are
bounded and u% and w are of polynomial growth. As a result (z,, — yn)n>0 converges to 0.
On the other hand, by boundedness of the sequences, we can find a subsequence, which we still
denote by (tn, Zn, Yn)n, converging to a point denoted (£,Z,2). By (6.12) it satisfies:

u'( —w
u'( —w

20

IA

uio(t*,x*) — w (t*,z*) < lim inf(ui0 (tn,xn) — w (tn,Yn))
n

< limsup(u’ (ty, 2,) — 0" (tn, Yn))

n

< lim sup u® (tn,pn) — liminf w™ (tnsYn)
n n

<t &) —w(t, ) (6.13)
since u’ (resp. w®) is usc (resp. lsc). As the maximum of u’ — w? on [0, T] x R* is reached
in (t*,2%), then u'(#,2) — w' (¢,2) = u'o (t*,2*) — wi(¢*, 2*) and consequently the sequence
(Ui (tp, Tn) — WO (tn, yn))n converges to u' (t*, x*) — w' (t*,2*). Next as we have

Oy (¢, 2%, ") = uo (7, 2") — W (", 2)
< ®30(tn, T, Yn) (6.14)
=’ (tn» xn) — w' (tnv yn) - ¢n(tn7 Tn, yn)
then (¢n(tn, Tn,yn))n converges to 0 as n — oo and then (t,)n, (Zn)n and (y,) converge
respectively to t*, * and x*. Finally
liminf u™ (t,,, z,) = u™ (t*, 2*) — w® (t*, 2*) + lim inf w" (t,,, y,,)
n n

> u' (t*, %) > limsup u® (¢, 2,,)
n

which implies that the sequence (u®(t,,,)), converges to u'(t*,2*) and then also the se-
quence (W™ (t,,yn))n converges to w (t*, x*).

Next, we recall the definition of iy € D(t*,2*). By (6.10)-(6.11), for n large enough we can
find a subsequence (¢, %, )n such that
1 io+1 _

U (b, Tn) > U (ty, p) gi0i0+1(tn,xn) (6.15)
and 4 '

W' (tn, yn) < wzo+1(tm Yn) + Figio+1 (tns Yn)- (6.16)
Next we apply Crandall-Ishii-Lions’s Lemma (see e.g. [8], pp.216) and then there exist (p};, ¢;;, M) €
JH(u)(tn, ) and (p, g, M) € J~ (w')(ty, y,) such that

pﬁ —pllu = at(bn(t'mxn»yn) = 2(tn - t*>7
qu = aw(bn(tn)xnayn)v

@y = —O0ybn(tn, Tn,yn) and (6.17)
MP 0 1
( 0 —M;;) S Aot g A

where A, = Diy(bn(tn,xn,yn). Next by taking into account that (u%);er and (w');er are
respectively subsolution and supersolution of (4.1) and the inequalities (6.15)-(6.16), we obtain

1 .
_pz_b(tna xn)qu_iTr[(UUT(tna xn))(tna xn)Mg]_fzo (tn7 L, (ul(tna xn))leFa U(tna xn)qu) <0
(6.18)
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and

1 .
=P =b(tn yn) " 4= 5 Tr(00 " (b Yn)) (b ) Mgl =7 (b, Y, (W' (E )i, 0 (b ) ") > 0.
(6.19)
By taking the difference of (6.18) and (6.19), one deduces that

1
—(Py — Piy) — (b(tn, wn)TQZ - b(tn,yn)-rq:f)) - §TT[{UUT(tnaxn)MZLL - UJT(tm Yn) My }]

7{fi0 (tna Tn, (ul(tna xn))leFa U(tna xn)TQZ) - fio (tna Yns (wl(tna yn))leFa U(tna yn)Tq:};)} <0.

Combining with (6.17), there exists some appropriate p, with limsup,, . pn < 0 such that
the last inequality yields the following one:

_{fio (tn; T, (Ul(tna wn))lEIV U(tna xn)TQZL) - fio (tna Ly (wl<tn7 yn))leFa U(tna l‘n)—rqz)} = Pn
Next by linearising f% and condition (6.9) we obtain
)\(uio (t'ru xn) - na yn Z Gk tny xn) - wk(tna yn)> S Pn (620)
kel'—

where ©F is the increment rate of f w.r.t. yk, which is uniformly bounded w.r.t. n and is
non negative by the monotonicity assumption of f*. Therefore (6.20) becomes

/\(Uig(tn,iﬂn) _wi nvyn Z @ tnvxn) _wk(tnvyn))+p”
ker—
< Cri Z (W (tns ) = 0" (b yn))* +
kel %

Then by taking n — oo the inequality yields
Au® (t*, 2*) — w' (t*,2%)) < limsup Criol Z (¥ (tn, 2n) — W (tny yn)) T

ker—io
< Crio| Z (lim sup(u” (tp, 2n) — 0" (tn, yn))) ]
ker—to "
< Crol 3 (W, ") — wh(t, %)
ker—'o

Next as ig € I'(t*, z*), we deduce that

Au (", 2") —w™(t*,2%)) < Cpio (p — 1) (u™ (", ") — w™ (t*,27))
which is contradictory with the definiton of A given in (6.9). As a consequence for any
iel,ul <t

Step 2: the general case

For any arbitrary A € R, let us define
a'(t, z) = eMul(t, ) and w'(t, z) = eMw'(t, z).

Note that (4?);er and (%);er is respectively the subsolution and the supersolution of the
following system of PDEs: for any i € I and (¢,x) € [0,T] x R¥,

min{v’(t, x) — v (¢, z) + e’\tgiyiﬂ(t, x);max[v'(t,z) — v (t, x) — e)‘tﬁi’iﬂ(t, x);

- atvi(t, x) — EXvi(t, x) + )\vi(t, x) — e)‘tfi(t, x, (e*)‘tvl(t, Z))iers, e*/\tUT(t7 x)Dmvi(t, z)]}=0

and v (T, x) = e*h;(z). For A large enough, the condition (6.9) holds, then we go back to the
result in Step 1 and we obtain, for any ¢ € I', 4* < w*, which also yields v’ < w’. The proof of
comparison is now complete. O
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6.2 Existence and uniqueness of viscosity solution of (4.1)

Let us recall (0%);er and (05™);er the functions defined in Proposition 4.2. We firstly prove that
(9%);er is a subsolution of (4.1), then we show that for a fixed mg, (7%™0);cr is a supersolution
of (4.1), finally by Perron’s method we show that (%);cr is the unique solution of (4.1).

Proposition 6.3. The family (v%);er is a viscosity subsolution of (4.1).

Proof. We first recall that Vi € I, 0% := limy,_ 0o 0°™, is usc function since the sequence
(0°™)m>0 is decreasing and (0"™);cr is continuous. Then thanks to the definition we have
v* = 0%, hence when t = T we have (T, x) = lim,, ,o, V"™ (T, x) = hi(x). )
Next let us recall Definition 4.1. For any (t,z) € [0,T7) x R*, i € T, (p,q, M) € Jt0vi(t, x), we
shall prove either ' 4

v'(t,x) — L'(D)(t,z) <0 (6.21)
or

max[v’ (¢, z) — U(0)(t, x);

—p—bT(t,7)g ~ %TT(UUT)(t, 2)M) — fi(t,z, (0 (t,2))ier, 0 (t,2).9)] <O (6.22)

To proceed, we first assume that there exists €y > 0 such that
Ot ) 2 0 w) — g, (B7) + o

then we need to prove (6.22).
As for any i € T', (0©™),,>0 decreasingly converges to @*, then there exists mg such that for
any m > mg we have

7 Sit+1,m _ Y
"M (t,x) >0 (t,x) gi’iﬂ(t,x) + 5

By the continuity of (™);cr and g, we can find a neighbourhood O,, of (¢, ) such that

Ji+1’

ﬁi’m(t/,x/) 2 @i+1’m(t/,$l) —yg

7i,i+1(t’7x/) + %0, V(t', 2') € Op,. (6.23)

Next by Lemma 6.1 in [2] there exists a subsequence (¢, zx)r>0 such that
(tr, Th) = koo (t,xz) and lim T°F(ty, zx) = (¢, ).
k—o00
In addition we can also find a sequence which we still denote by (pk, qx, My) € JTo0F (ty, 21)

such that
(Pk> @, M) = (p, ¢, M)

As_ the sequence (t,xy) can be chosen in the neighbourhood Oy, by applying the fact that
(9%)er is the unique viscosity solution of the following system: For any i € T,

min{v""™ (¢, x) — L' ("™ )ier) (t, 2);
— "™ (t, x) — bT(t7 ) Dy oo™ (t, ) — (¢, (ﬁl’m(t, Z))ier, UT(t, ) Do (t,z))} =0
T, ) = ha(a),

lim
k— o0

(6.24)

we obtain

1 )
—pr — b (th, Tk).qr — §T7“(UUT(1‘4@, z)My) — foR(t z, (09 (ts, ox) )ier, 0 T (tk, 2)gr) < 0
(6.25)

where fo* (¢, z, (v (t, 2))ier, 2) = fi(t,z, (V' (t,2))ier, 2) — k(vi(t,z) — UL (D) (¢, 2))*.
Moreover as the sequence (tx, Tk, Pk, Gk, My)r is bounded and (9™ );er is uniformly of poly-
nomial growth, then we deduce from (6.25) that

)
€ 1= (Ui’k(tk,Ik) - 17i+1’k(tk, Tk) — Giit1 (tes k)T ko0 O
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However for any fixed (t,x) and ko, (0% (¢, 2)) k>, is decreasing, then for k > ko,

0F (e, ) < OV, k) + Gisir (b T) + €k
<O TVR (b k) + Gisir (B k) + €
As ©9%0 is continuous, by taking k — oo we obtain that
lim " (tg, 21) = o' (t,2) < TR (8 ) + giiva (¢, 2).
k—o0
We then take ky — oo yielding
rDi(tv .T) < l_ji+1(ta :ZZ) + gi7i+1(t7 l’) (626)

In the second place we consider a subsequence (k;) of (k) such that for any a € T', (94 (ty,, z, )i
converges, then by taking | — oo in (6.25) we obtain

}H&{‘Pkl_b(tkmxkz)% —%TT(O’O’T(tk“xkl)Mkl)—fi(tk“.%‘k“ (T4 (tgy, 21y ))aer 0 (trys Ty)-Gry )} < 0.
Then we deduce that
—p— bT(t, T)q — %TT(UUT(t, x)M)
< llgglo £ty oy, (0" (), T1)acrs 0 (Ery, Th ) aiy)
— fi(t,x,lllrgo(@“’kl (tkl,xkl))aep,aT(t,x)g)
< [t w, (0°(82))aer, o' (8 2)9).

The last inequality holds true by the monotonicity assumption (H5) of f* and the fact that for
any a € I', 9% verifies

(6.27)

v (t,x) = 0" (t,x) = lim sup p@™ (', 2'), (t,xz) € [0,T] x RF

(t',z")—(t,x),m—00
Thus for any a € I'~* we have

2%(t,z) > lim il (tr, k)

leoco
and . .
ol (t,x) = lim 5% (ty,, 21, ).
l—o00
Thus (6.27) becomes
1 .
—p—b"(t,x)g— iTT(UO’T(t, )M) < fi(t,z, (0(t, 2))aer, 0 (t,2).q). (6.28)

Hence under (6.26) and (6.28), (6.22) is satisfied, then (9%);cr is a viscosity subsolution of
(4.1). O

Proposition 6.4. Let us fit mg € N. Then the family (9°™);cr is a viscosity supersolution

of (4.1).

Proof. We first recall that the triple (Y™, Zimo [émo.+), 1 is the unique solution of the

system of RBSDEs associated with (f%™o, hi,gi i+1)ier‘ where

fi’mo(sa Xﬁ’w> ga Z) = fi(sv X?ma g7 Z) - mO(yi - yi+1 - gi,i+1(sv X?I))Jr

In addition there exist unique deterministic continuous functions with polynomial growth
(9%™0);cr such that for any i € T', s € [t, T,

yimo = ghmo (s, XET) ((t,2) € [0,T] x R¥ is fixed).
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Now let us define the following processes: Vi € T, s € [t, T,
ﬁsi’mo =YV (Y 4 Fiiv1(s, X))

S
K;"mmi = mo/ (Ysi’mo - )/si+1’mo - gi,i+1(st£7E))+d5'
0

Then (Y™ Zimo [imo.t [imo, =), solves the following doubly reflected BSDEs: for any
iel, seltT),

Vimo = pi(XE") + [T fi(r, X07 (Ym0 Yiep, ZEmo)dr — [T ZEmodB,
_|_KZ ,mo,+ Kz ,mo,+ __ (K%mo - K;’,mo,—);

’img 7’L‘m0 ~im0
Limo < Yimo < [Tk

[l (vimo — pimoygiimot = 0 and [ (Vimo — Uimo)dKEme— = 0.

Accordingly by the results of [3] and [12], Y%™0 is also associated with a zero-sum Dynkin
game as follow: For any s € [t,T],

Yimo = esssup essinf E[f77 fi(r, X1, (Y™ cr, ZE™0)dr

o>s T2$
+ LE™ Y gy + TS L (<o rcry + W (XE) L (r— o) | Fi]

Next following Theorem 3.7 and Theorem 6.2 in [?], 9% is the unique solution in viscosity
sense of the following PDE with obstacle:

min{w(t, z) — L*((8"™0)1er) (¢, 7); maxl[w(t, x) — U((T"™ )1er) (¢, );
—Opw(t,z) — b (t,x)Dyw(t,z) — iTr[(UUT)(t,x)Diww(t,x)]
*fi(t’ T, (517m0)l€F7 UT(ta :E)wa(t, x))]} =0;

’LU(T7 :L') = hZ<X§"I)

where U((0"™0)ier)(t, @) := 0"™ (t, ) V (07170 4+ g, 5 ) (@),
In other words, for any (¢,z) € [0,T) x R* and for any (p,q, M) € J~ (v4™0)(¢, ), it still holds
that

ot (¢, ) > LH((08™0)er) (t, ) (6.29)

and
max[0"7 (t, ) — U (04 )er) (¢, 2);

—p—b"(t,x).q— %TT‘(O’O’T(t, )M) — fi(t,z, (T"™)ep, 0" (¢, 2)q)] > 0. (6.50)
Next apply the inequality @ — a V b < a — b, then (6.30) yields
max [0 (t, x) — (0TH0 + g i) (8 3);
—p—0b(t,x).q— 1Tr(ao—'—(t, )M) — fi(t, z, (3" er, 0 T (t, 2)q)] >0
Hence, with (6.29), this implies that (9%™0),cr is a viscosity supersolution of (4.1). O

We are now ready to use Perron’s method to provide a solution for (4.1). So let us consider
the following functions denoted by ("°v*);cr and defined as: Let

U™ = {ii := (u')er, @ is a subsolution of (4.1) and for any i € I', 0" < u’ < p"™0}
Note that U™ is not empty since (v%);er € U™0. Next for i € T, (t,z) € [0,7] x R* we set
moyt(t, x) := sup{u'(t,z), (u)ier € U™ }.
We then have:
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Theorem 6.5. Assume [H2],[H3] and [H5]. Then the functions ("™°v%);cr is the unique vis-
cosity solution of (4.1). Moreover the solution does not depend on mg. Finally for any i € T,
moyt = g,

Proof. Tt is obvious that for any i € T, the function ™°v* belongs to class I1, since (0%);er and
(9"™0)er are functions of II,.

To proceed, we divide the main proof into three steps. On the other hand, to simplify the
notation, we replace (™v");cr with (v)ser as there is no possible confusion.

Step 1: (v%);er is a viscosity subsolution of (4.1).
For any i € I',v* € Y™ and then it satisfies:

B < vf < g
The inequalities still valid for the upper semicontinuous envelops, i.e.,
b <y < ghmo
since ¥' is usc and ™0 is continuous. Therefore we have
7T, z) = v"* (T, ) = 0°™ (T, z) = hi(x).
It means that (v"*);cr verify the subsolution property of system (4.13) at time T

Next let (#%)rer be an arbitrary element of ™0 and let i € T be fixed. Since (%) per is a
subsolution of (4.1), then for any (t,x) € [0,T) x R* and (p,q, M) € JT5"*(¢, ) we have
min {5 (£, 2) — L((@ )ier) (t, 2); max[5 (£, 2) — U (64 ier) (1, 2);

)

—p— bT(t,iU q— %T’I‘(UJ (t,:];) ) f'z(t z, ( (t x))leF,UT(t,‘T)Q)]} <0. (631)

But for any k E T, 9% < ¥, then oF* < vF*, On the other hand, we notice that the operators
(wh)ier = % — Li((w')1er) and (w')er = 0% — Ul((w )lep) are decreasing, then by the
monotonicity of f¢ ([H5]) and (6.31) we have

min{ (9" — Li((vll’*)zer))(f,I);maX[(@"’* = U (" )ier))(t, 2);
-P— bT(t’ x)q - iTT(JUT(tv :L')M) - fi(t’ T, [(’Ul’*(t, x))lEF—iv 6i’*]a O—T (tv x)Q)]} <0.
(6.32)
It means that 9° is a subsolution of the following PDE:
min{(w —U((vl’*)zelr))(t ;@) max|(w — U*((v"*)ier)) (L, )
-p—- bT(tv $)q - iTT(O-O- (t’ JZ)M) - fl(tv €, [(Ul7*(t7 x))leF*i’ w]’ OT(t7 x)Q)]} =0
w(T,x) = hi(x).
(6.33)

In addition, the following function is Isc:

(t,z,w,p,q, M) €[0,T] x REHIHI+E o gF
+— min{w — L*((v"*)ier) (¢, 2); max[w — U ((v"*)ier) (t, 2);

—P— bT(tv ac)q - fi(ta L, [(Ulv*(t’ x))lel“*ivw]v UT(t7 1‘)(])]}

As v? is the supremum of @, thanks to Lemma 4.2 in [2], v* is a viscosity subsolution of (6.33).
But i is arbitrary, then (v*);cr is a viscosity subsolution of system (4.1).

Step 2: (v');er is a viscosity supersolution of (4.1).
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We first focus on the terminal condition. For any i € I', vi(T,z) = h'(z) from the inequality
vt =l <ol <ol < p™ =940 since v* is Isc and ¥4 is continuous.

Next by contradiction we assume that (v?);er is not a supersolution of (4.1), i.e. there

v
exists at least one i € I and for some (o, o) € (0,T) x R and (p,q, M) € J~(vi)(t,z) such
that we have:

min{v (to,z0) — L'((v})ier) (to, o); max[vl (to, zo) — U'((vL)ier) (to, 0);

—p—"b"(to,z0)q — %TT(UUT(fO, z0) M) — f*(to, o, (v.(to, 20))ier, o ' (to, 70)q)]} < 0.
(6.34)

Next for any positive constants ,~y and r let us define:

) 1
us~(t, ) == v (to, xo) + 0+ < q, & — o > +p(t — to) + 3 < (M —29)(x — xp), (x — x0) >

and B, := {(t,z) € [0,T] x R* such that |t — to| + |z — zo| < 7}.
(6.35)

By choosing ¢ and v small enough, we deduce from (6.34) that
min{v’ (o, o) — L'((v1)ier)(to, xo) + 6; max([v (to, z9) — U'((vl)ier)(to, xo) + 6
—p—0b"(ty, 0)q — %T’F(O’O‘T(to, x0)(M — 27)) (6.36)
— ['(to, zo, [(v(to, 20))ier—+, vl (to, 20) + 8,0 ' (to, 20)q)]} < 0.
Next let us define the following function:
O(t,2) = min{us, (t,2) — L' (v} yer) (1, 2)s maxfus (4, 2) — U0 ier) (8, )
—p—b'(t,x).q— %T?"(O’O’T(t, x))(M — 27)
= [t 2, (Lt @) ier-i, us (8, 2)] 0T (8 )q)]}

According to (6.36) we have O(tg, zg) < 0. On the other hand, © is usc since the functions v,
i € I, are lsc, us is continuous and f* is continuous and verifies the monotonicity property.
Therefore for any € > 0, there is some 1 > 0 such that for any (¢,2) € B, we have

@(t,l‘) < @(tml‘o) +e

Next as O(to, o) < 0, we can choose € small enough to obtain ©(¢,z) < 0 for any (t,z) € B,,.
Thus for any (t,z) € By, us is nothing but a viscosity subsolution of the following PDE (on
B,):

min{w(t, ) — L*((v})ier)(t, 2); max[w(t, ) — U ((v})er) (¢, 2);
— Quw(t,x) — b (t,2)Dyw(t, z) — %TT(JJT(Lm)Dng(t,x)) (6.37)
- fi(tv T, [(’Ui (tr x))lel‘*i ) w(tv 1‘)}, UT(ta QJ)wa(t, x))]} =0.

As for any i € T',v! < v™*, then us. is also a viscosity subsolution of (6.37) by replacing
(v1)ier with (v9*);er, ie.

min{w(t,z) — L*((v")ier) (¢, 2); max[w(t, z) — U'((v"*)ier) (t, 2);
— Qyw(t,z) — b (t,x)Dyw(t,z) — %TT(JUT(tw)Dimw(t,x))

- fi(ta T, [(Ul’*(tv I))lef‘*ia w(ta I)L UT(ta x)Dzw(t, l’))]} =0.
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On the other hand since (p,q, M) € J~(vi(tg,z0)), by the definition of the subjet ([2]) we
have: Vi € T,

. 1
> vl (to, zo) + p(t — to)+ < ¢, — xo > +§ < M(z —x0), (x —xg) >

+o([t = tol) + o]z — zof*).
Next let us set 6 = %’y and let us go back to the definition of us,, yielding
i i r2 1
vt x) > us(t, x) = v (to, xo) + §'y+ < q,x—x9 > +p(t—to) + 5 < M(z — x9), (x — x9) >
— <v(x — o), (x — 20) >

When % < |z—x9| < r and r small enough. Next let us take r < 1 and let us define the function
u* by: . '
i (ta) = { e G e (b)) € B
Then according to (6.37) and Lemma 1.2 in [2], @° is also a subsolution of the following PDE:
min{w(t, ) — L*((v"*)ier)(t, 2); maxfw(t, ) — U*((v"*)ier)(t, 2);
—p—b"(t,x)g— LTr(co™ (t,z)M)
—f(t 2, (01 (8 2))ier— w(t, @), 0 T (t, 2)q)]} = 0

w(T,x) = h(x).

Once more by the monotonicity of f and the fact that @’ > v?, [(v!);cp—+, @] is also a subso-
lution of (4.1) which belongs to IT,. Then by comparison we obtain that [(v!);cp-+, '] belongs
to U™, Next by the definition of v, we can find a sequence (tn,xn,vi(tmxn))nzl which
converges to (tg, o, v (to, o)), then we have

nl;rréo(ﬂl — 0 (tp, 2n) = nliﬁn;o(u(;vﬂ, — 02 (tn, x,)

=i (tg, 20) + 6 — vi(tg, 29) > 0

This result implies that we can find some points (t,,,) such that @'(t,,z,) > v(tn,z,),
which is contradictory against the fact that [(v');cp—+, @] belongs to 4™ and the definition of
(v*)ier. 4

Step 3: Continuity and uniqueness of (v*)ser.

Following the definition of usc envelop (v**);cr (resp. lsc envelop (v2);er), (vV5*)ier (resp.(v?)ier)
is a usc subsolution (resp. lsc supersolution) of (4.1), then by Proposition 6.2 we obtain Vi € T,

7,% 7
vt <oy

Meanwhile it holds true that vi < v* < v%* then v: = v>*, which implies the continuity of v’.

Next we assume that there exists another solution (9¢);cr of (4.1) which belongs to class
II,. As (v")jer and (9");er are both subsolutions and supersolutions, by the comparison result
we obtain both v < 9% and v* > ¢° with al i € T', as a result the solution is unique. The
uniqueness of solution leads us directly to the fact that the solution (v¢);er does not depend
on mg. Finally for any i € I" and mg we have

vt <ot <oh™Mo,

Just send mg to 400 to obtain that for any i € T, 2° = v°. O
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