Said Hamadène 
email: hamadene@univ-lemans.fr
  
Tingshu Mu 
email: tingshu.mu.etu@univ-lemans.fr
  
Zero-sum Switching Game, Systems of Reflected Backward SDEs and Parabolic PDEs with bilateral interconnected obstacles

Keywords: Zero-sum switching game, System of PDEs, HJB equations, Bilateral obstacles, Viscosity solution, Reflected Backward SDEs, Perron's method AMS Classification subjects: 49L25, 91A15, 35F21

In this paper we study a zero-sum switching game and its verification theorems expressed in terms of either a system of Reflected Backward Stochastic Differential Equations (RBSDEs in short) with bilateral interconnected obstacles or a system of parabolic partial differential equations (PDEs in short) with bilateral interconnected obstacles as well. We show that each one of the systems has a unique solution. Then we show that the game has a value.

Introduction

This paper is related to zero-sum switching games, systems of reflected backward differential equations (RBSDEs) with bilateral interconnected obstacles and systems of variational inequalities of min-max type with interconnected obstacles, namely the Hamilton-Jacobi-Bellman (HJB for short) system associated with the game. First let us describe the zero-sum switching game which we will consider in this paper. Let Γ be the set {1, ..., p}. Assume we have a system which has p working modes indexed by Γ. This system can be switched from one working mode to another one, e.g. due to economic, financial, ecological puposes, etc, by two players or decision makers C 1 and C 2 . The main feature of the switching actions is that when the system is in mode i ∈ Γ, and one of the players decides to switch it, then it is switched to mode i + 1 (hereafter i + 1 is 1 if i = p). It means that the decision makers do not have their proper modes to which they can switch the system when they decide to switch (see e.g. [START_REF] Hamadene | A probabilistic verification theorem for the finite horizon two-player zero-sum optimal switching game in continuous time[END_REF] for more details on this model). Therefore a switching strategy for the players are sequences of stopping times u = (σ n ) n≥0 for C 1 and v = (τ n ) n≥0 for C 2 such that σ n ≤ σ n+1 and τ n ≤ τ n+1 for any n ≥ 0. On the other hand, the switching actions are not free and generate expenditures for the players. Loosely speaking at time t ≤ T , they amount to A u t (resp. B v t ) given by:

A u t = σn≤t g ζn,ζn+1 (σ n ) (resp. B v t = τn≤t ḡθn,θn+1 (τ n )).
The process g i,i+1 (s) (resp. ḡi,i+1 (s)) is the switching cost payed by C 1 (resp. C 2 ) is she makes the decision to switch the system from mode i to mode i + 1 at time s while ζ n (resp. θ n ) is the mode in which the system is at time σ n (resp. τ n ). Next when the system is run under the control u (resp. v) for C 1 (resp. C 2 ), there is a payoff J(u, v) which is a profit (resp. cost) for C 1 (resp. C 2 ) given by:

J(u, v) = E[ T 0 f δs (s)ds -A u T + B v T + ζ δ T ]
. where δ := (δ s ) s≤T is the process valued in Γ which indicates the working modes of the system along with time. If at time s the system is in mode i 0 , then δ s = i 0 . It is bind to the controls u and v implemented by both players. On the other hand, for i ∈ Γ, the process f i is the utility of the system in mode i and finally ζ δ T is the terminal payoff or bequest.

The problem we are interested in is to know whether or not the game has a value, i.e., roughly speaking, if the following equality holds:

inf v sup u J(u, v) = sup u inf v J(u, v)
In case of equality we say that the game has a value. Finally we say that the game has a saddle-point (u * , v * ) if, for any u and v, controls of C 1 and C 2 respectively, we have:

J(u, v * ) ≤ J(u * , v * ) ≤ J(u * , v).
Note that in such a case, the game has a value.

From the probabilistic point of view, this zero-sum switching game problem turns into looking for a solution of its associated system of reflected BSDEs with interconnected bilateral obstacles (see e.g. [START_REF] Hamadene | A probabilistic verification theorem for the finite horizon two-player zero-sum optimal switching game in continuous time[END_REF] for the case of proper modes of players). A solution for such a system are adapted processes (Y i , Z i , K i,± ) i∈Γ such that for any i ∈ Γ, and s ≤ T ,

        
Y i and K i,± continuous; K i,± increasing; (Z i (ω) t ) t≤T is dt -square integrable; 

Y i s = ζ i + T s f i (r)dr - T s Z i r dB r + K i,+ T -K i,+ s -(K i,- T -K i,- s ); L i ( Y ) s ≤ Y i s ≤ U i ( Y ) s ; T 0 (Y i s -L i ( Y )
Y := (Y i ) i∈Γ ; c) L i ( Y ) s = Y i+1 s -g i,i+1 (s) 
and U i ( Y ) s = Y i+1 s + ḡi,i+1 (s). Actually the solution of the previous system provides the value of the zero-sum switching game which is equal to Y i 0 if the starting mode of the system is i. Roughly speaking, system (1.1) is the verification theorem for the zero-sum switching game problem.

In the Markovian framework, i.e., when randomness stems from a diffusion process X t,x ((t, x) ∈ [0, T ] × R k ) which satifies: dX t,x s = b(s, X t,x s )ds + σ(s, X t,x s )dB s , s ∈ [t, , T ] and X t,x s = x for s ≤ t (1.2)

and the data of the game are deterministic functions of (s, X t,x s ), the Hamilon-Jacobi-Bellman system associated with this switching game is the following system of partial differential equations (PDEs in short) with a bilateral interconnected obstacles: ∀i ∈ Γ, ∀(t, x)

∈ [0, T ] × R k ,    min{v i (t, x) -L i ( v)(t, x); max v i (t, x) -U i ( v)(t, x); -∂ t v i (t, x) -L X (v i )(t, x) -f i (t, x) } = 0; v i (T, x) = h i (x).
(1.3) where: a) v = (v i ) i∈Γ ; b) L i ( v)(t, x) := v i+1 (t, x) -g i,i+1 (t, x), U i ( v)(t, x) := v i+1 (t, x) + g i,i+1 (t, x); c) L X , the infinitesimal generator of X, is given by: ∀φ ∈ C 1,2 

([0, T ] × R k ), L X φ(t, x) := 1 2
Tr[σσ (t, x)D 2 xx φ(t, x)] + b(t, x) D x φ(t, x).

Usually it is shown that the value functions of the game is a unique solution of (1.3).

This work is originated by an article by N.Yamada [START_REF] Yamada | A system of elliptic variational inequalities associated with a stochastic switching game[END_REF] where the author deals with the system of PDEs (1.3) in the case when the switching costs are constant and for bounded domains Ω. By penalization method, the author proved existence and uniqueness of the solution of (1.3) in a weak sense (actually in a Sobolev space). Then he gives an interpretation of the solution of this system as a value function of the zero-sum switching game described previously. A saddle-point of the game is also given. However neither this interpretation nor the existence of the saddle-point are clear because the question of admissiblity of the controls which are supposed to realize the saddle-point property is not addressed. In zero-sum switching games this issue of admissibility of those controls, defined implicitely through (Y i ) i∈Γ , is crucial (see e.g. [START_REF] Hamadene | A probabilistic verification theorem for the finite horizon two-player zero-sum optimal switching game in continuous time[END_REF]). Note also that there is another paper by N.Yamada [START_REF] Yamada | Viscosity solutions for a system of elliptic inequalities with bilateral obstacles[END_REF] where the solution of system (1.3) is considered in viscosity sense. Once more by penalization, he shows existence and uniqueness of the solution in bounded domains Ω.

Therefore the main objectif of this work is to show that: i) the system of reflected BSDEs with interconnected obstacles (1.1) has a unique solution in the Markovian framework. ii) the zero-sum switching game described above has a value in different settings. iii) The system of PDEs (1.3) has a unique solution.

Actually in this paper we show that system of PDEs (1.3) has a unique continuous with polynomial growth solution (v i ) i∈Γ in viscosity sense on [0, T ] × R k . Mainly this solution is constructed by using Perron's method in combination with systems of reflected BSDEs with one lower interconnected obstacle and the Feynman-Kac representation of their solutions in the Markovian framework. Then we show that the following system of RBSDEs with interconnected bilateral obstacles has a unique solution: For any i ∈ Γ and s ∈ [t, T ],

        
Y i and K i,± are continuous; K i,± are increasing (K i,± t = 0); (Z i (ω) t ) t≤T is dt -square integrable; Y i s = h i (X t,x T ) + T s f i (r, X t,x r )dr -

T s Z i r dB r + K i,+ T -K i,+ s -(K i,- T -K i,- s ); L i ( Y ) s ≤ Y i s ≤ U i ( Y ) s ; T t (Y i s -L i ( Y ) s )dK i,+ s = 0 and T t (Y i s -U i ( Y ) s )dK i,- s = 0
(1.4) where X t,x is the Markov process solution of (1.2), L i ( Y ) s = Y i+1 s -g i,i+1 (s, X t,x s ) and

U i ( Y ) s = Y i+1 s + ḡi,i+1 (s, X t,x s ).
Finally we consider the zero-sum switching game and we show that when the processes Z i , i ∈ Γ, of (1.4) are: a) dt ⊗ dP-square integrable then Y i 0 is the value of the game under square integrable controls, i.e., E[(

A u T ) 2 + (B v T ) 2 ] < ∞. b) only ω by ω, dt-square integrable then Y i 0 is the value of the game under integrable controls, i.e., E[A u T + B v T ] < ∞.
The paper is organized as follows:

In Section 2, we introduce the zero-sum switching game and especially the notion of coupling which is already used in several papers including [START_REF] Hamadene | A probabilistic verification theorem for the finite horizon two-player zero-sum optimal switching game in continuous time[END_REF][START_REF] Stettner | Zero-sum Markov games with stopping and impulsive strategies[END_REF]. In Section 3, we show that the solution of (1.4) is the value of the zero-sum switching game over square integrable controls when Z i , i ∈ Γ, are dt ⊗ dP-square integrable. Without additional assumptions on the data of the problem, this property is rather tough to check in practice because it depends on the room between the barriers L i ( Y ) and U i ( Y ) which depend on the solution Y . For example, it is not clear how to assume an hypothesis like Mokobodski's one (see e.g. [START_REF] Cvitanic | Backward stochastic differential equations with reflection and Dynkin games[END_REF][START_REF] Hamadène | Reflected BSDE's and mixed game problem[END_REF]) since the barriers depend on the solution and this latter is not explicit. However by localiztion, we can show that in some cases, e.g. when the switching costs are constant, Y i 0 is actually the value function over square integrable controls even when we do not know that Z i , i ∈ Γ, are dt ⊗ dP-square integrable. In the case when for any i ∈ Γ and P-a.s. (Z i s (ω)) s≤T is dt-square integrable only, which is the minimum condition to define the stochastic integral, Y i 0 is the value function of the zero-sum switching game over integrable controls. To show this property we proceed by localization. Section 4 is devoted to existence and uniqueness of the solution of system of PDEs (1.3) in a more general form. The result is given in Theorem 4.3, but the main steps of its proof are postponed to Appendix. This proof is based on Perron's method and the construction of this solution (more or less the same as in [START_REF] Djehiche | On the equality of solutions of max-min and min-max systems of variational inequalities with interconnected bilateral obstacles[END_REF]) proceeds as follows: a) we first introduce the processes (Y i,m , Z i,m , K ±,i,m ) i∈Γ , m ≥ 1, solution of the system of reflected BSDEs with interconnected lower barriers associated with {f i (r, X t,x r , y, z i ) -m(y i -

y i+1 -ḡi,i+1 (r, X t,x r )) + , h i (X t,x T ), g i,i+1 (r, X t,x r )} i∈Γ (see (4.7))
. It is a decreasing penalization scheme. As the framework is Markovian then there exist deterministic functions continuous and of polynomial growth (v i,m ) i∈Γ such that the following Feynman-Kac representation holds:

For any i ∈ Γ, m ≥ 1 and s ∈ [t, T ], Y i,m s = v i,m (s, X t,x s ).

As for any

i ∈ Γ, m ≥ 1, Y i,m ≥ Y i,m+1 then we have also v i,m ≥ v i,m+1 . Now if we define v i = lim m v i,m , then (v i ) i∈Γ is a subsolution of (1.
3) and for any fixed m 0 , (v i,m0 ) i∈Γ is a supersolution of (1.3). Next it is enough to use Perron's method to show that (1.3) has a unique solution since comparison principle holds. Finally, by uniqueness this solution does not depend on m 0 and is (v i ) i∈Γ . Additionally for any i ∈ Γ, v i is of polynomial growth and continuous. In Section 5, we show existence and uniqueness of the solution of system of RBSDEs (1.1) and give some extensions. This proof is based on results on zero-sum Dynkin games and standard two barriers reflected BSDEs. The component Y i , i ∈ Γ, is just the limit of the processes (Y i,m ) m . We make use of the fact that, by Dini's Theorem, (v i,m ) m converges to v i uniformly on compact sets since v i is continuous and then the sequence (Y i,m ) m converges uniformly in L 2 (dP) to Y i , i ∈ Γ. As mentionned previously, this latter property stems from the PDE part. Note also that the following representation holds:

∀s ∈ [t, T ], Y i s = v i (s, X t,x s ).
Here we should point out that since the switching of the system is made from i to i + 1 and the players do not have their proper sets of switching modes, then the method used e.g. in [START_REF] Hamadene | A probabilistic verification theorem for the finite horizon two-player zero-sum optimal switching game in continuous time[END_REF] cannot be applied in our framework. As a consequence of this fact, the question of a solution of (1.1) outside the Markovian framework still open. At the end of the paper there is the Appendix.

Preliminaries. Setting of the stochastic switching game

Let T be a fixed positive constant. Let (Ω, F, P) denote a complete probability space, B = (B t ) t∈[0,T ] a d-dimensional Brownian motion whose natural filtration is (F 0 t := σ{B s , s ≤ t}) 0≤t≤T and we denote by F = (F t ) 0≤t≤T the completed filtration of (F 0 t ) 0≤t≤T with the P-null sets of F. Then it satisfies the usual conditions. On the other hand, let P be the σ-algebra on [0, T ] × Ω of the F-progressively measurable sets.

Next, we denote by: -S 2 : the set of P-measurable continuous processes φ

= (φ t ) t∈[0,T ] such that E(sup t∈[0,T ] |φ t | 2 ) < ∞;
-A 2 : the subset of S 2 with all non-decreasing processes K = (K t ) t≤T with K 0 = 0; -A loc : the set of P-measurable continuous non-decreasing processes K = (K t ) t≤T with

K 0 = 0 such that P -a.s. K T (ω) < ∞; -H 2,d loc (d ≥ 1) : the set of P-measurable R d -valued processes ψ = (ψ t ) t∈[0,T ] such that P -a.s., T 0 |ψ t | 2 dt < ∞. -H 2,d : the subset of H 2,d loc (d ≥ 1) of processes ψ = (ψ t ) t∈[0,T ] such that E( T 0 |ψ t | 2 dt) < ∞.
-For s ≤ T , T s is the set of stopping times ν such that P-a.s., s ≤ ν ≤ T .

-S 2 ([t, T ]) is the set S 2 reduced to the time interval [t, T ]. The same meaning is valid for the other spaces introduced above. Now for any (t, x) ∈ [0, T ]×R k , let us consider the process (X t,x s ) s∈[t,T ] solution of the following standard SDEs:

   dX t,x s = b(s, X t,x s )ds + σ(s, X t,x s )dB s , s ∈ [t, T ]; X t,x s = x, s ≤ t (2.1)
where, throughout this paper, b and σ satisfy the following conditions:

[H0] The functions b and σ are Lipschitz continuous w.r.t. x uniformly in t, i.e. for any (t, x, x ) ∈ [0, T ] × R k+k , there exists a non-negative constant C such that

|σ(t, x) -σ(t, x )| + |b(t, x) -b(t, x )| ≤ C|x -x |. (2.2)
Moreover we assume that they are jointly continuous in (t, x). The continuity of b and σ imply their linear growth w.r.t. x, i.e. there exists a constant C such that for any

(t, x) ∈ [0, T ] × R k , |b(t, x)| + |σ(t, x)| ≤ C(1 + |x|). (2.3) 
Therefore under assumption [H0], the SDE (2.1) has a unique solution X t,x which satisfies the following estimates: ∀γ ≥ 1,

E[sup s≤T |X t,x s | γ ] ≤ C(1 + |x| γ ). (2.4) Next a function Φ : (t, x) ∈ [0, T ] × R k → Φ(t,
x) ∈ R is called of polynomial growth if there exist two non-negative real constants C and γ such that

∀(t, x) ∈ [0, T ] × R k , |Φ(t, x)| ≤ C(1 + |x| γ ).
Hereafter this class of functions is denoted by Π g .

Description of the zero-sum stochastic switching game

Let Γ := {1, 2, ..., p} and for i ∈ Γ, let us set Γ -i := Γ -{i}. For y := (y i ) i∈Γ ∈ R p and ŷ ∈ R, we denote by [ y -i , ŷ] or [(y k ) k∈Γ -i , ŷ], the element of R p obtained in replacing the i-th component of y with ŷ.

We now introduce the following deterministic functions: for any i ∈ Γ,

-f i : (t, x, y, z) ∈ [0, T ] × R k+p+d → f i (t, x, y, z) ∈ R -g i,i+1 : (t, x) ∈ [0, T ] × R k → g i,i+1 (t, x) ∈ R -g i,i+1 : (t, x) ∈ [0, T ] × R k → g i,i+1 (t, x) ∈ R -h i : x ∈ R k → h i (x) ∈ R
Next let us consider a system with p working modes indexed by the set Γ. On the other hand, there are two agents or controllers C 1 and C 2 , whose interests or profits are antagonistic and who act on this system, along with time, by switching its working mode from the current one, say i 0 , to the next one i 0 +1 if i 0 ≤ p-1 and 1 if i 0 = p, whatever which agent decides to switch first. Therefore a switching control for C 1 (resp. C 2 ) is u := (σ n ) n≥0 (resp. v := (τ n ) n≥0 ) an increasing sequence of stopping times which correspond to the successive times where C 1 (resp. C 2 ) decides to switch the system. The control u (resp. v) is called admissible if P[σ n < T, ∀n ≥ 0] = 0 (resp. P[τ n < T, ∀n ≥ 0] = 0).

(2.5)

The set of admissible controls of C 1 (resp. C 2 ) is denoted by A (resp. B). Now let u := (σ n ) n≥0 (resp. v := (τ n ) n≥0 ) be an admissible control of C 1 (resp. C 2 ). Let (r n ) n≥0 and (s n ) n≥0 be the sequences defined by: r 0 = s 0 = 0, r 1 = s 1 = 1 and for n ≥ 2,

r n = r n-1 + 1 {σr n-1 ≤τs n-1 } and s n = s n-1 + 1 {τs n-1 <σr n-1 } .
For n ≥ 0, let us set ρ n = σ rn ∧ τ sn . It is a stopping time and it stands for the time when the n-th switching of the system, by one of the players, occurs. On the other hand, the piecewise process (θ(u, v) s ) s≤T which indicates in which mode the system is at time s is given by: ∀s ≤ T ,

θ(u, v) s = θ 0 1 [ρ0,ρ1] (s) + n≥1 θ n 1 (ρn,ρn+1] (s) where: i) (ρ n , ρ n+1 ] = ∅ on {ρ n = ρ n+1 } ; ii) θ 0 = i if at t = 0, the system is in mode i ; iii) For n ≥ 1, θ n = θ n-1 + 1 if θ n-1 ≤ p -1 and θ n = 1 if θ n-1 = p. The sequence Θ(u, v) := (ρ n , θ n ) n≥0
, called the coupling of (u, v), indicates the successive times and modes of switching of the system operated by the players.

When the players implement the pair of admissible controls (u, v), this incurs switching costs which amount to A u T and B v T , for C 1 and C 2 respectively, and given by:

∀s < T, A u s = n≥1 g θn-1θn (ρ n , X 0,x ρn )1 {ρn=σr n ≤s} and A u T = lim s→T A u s ; ∀s < T, B v s = n≥1 g θn-1θn (ρ n , X 0,x ρn )1 {ρn=τs n ≤s} and B v T = lim s→T B v s . The admissible control u (resp. v) of C 1 (resp. C 2 ) is called square integrable if E[(A u T ) 2 ] < ∞ (resp. E[(B v T ) 2 ] < ∞).
The set of square integrable admissible controls of C 1 (resp. C 2 ) is denoted by A (resp. B).

The admissible control u (resp. v) of C 1 (resp. C 2 ) is called integrable if E[A u T ] < ∞ (resp. E[B v T ] < ∞).
The set of integrable admissible controls of C 1 (resp. C 2 ) is denoted by A (1) (resp. B (1) ).

The coupling θ(u, v), of a pair (u, v) of admissible controls, is called square integrable

(resp. integrable) if C θ(u,v) ∞ := lim n→∞ C u,v N ∈ L 2 (dP) (resp. ∈ L 1 (dP))
where for any N ≥ 1,

C θ(u,v) N := n=1,N g θn-1θn (ρ n , X 0,x ρn )1 {ρn=σr n <T } - n=1,N g θn-1θn (ρ n , X 0,x ρn )1 {ρn=τs n <T } . Note that C θ(u,v) ∞
, defined as the pointwise limit of C θ(u,v) N

, exists since the controls u and v are admissible. On the other hand, the quantity C θ(u,v) N is nothing but the switching costs associated with the N first switching actions of both players.

Next when C 1 (resp. C 2 ) implements u ∈ A (resp. v ∈ B), there is a payoff which a is reward for C 1 and a cost for C 2 which is given by (we suppose that θ 0 = i):

J i (θ(u, v)) = E h θ(u,v) T (X 0,x T ) + T 0 f θ(u,v)r (r, X 0,x r )dr -C θ(u,v) ∞ . (2.6) 
It means that between C 1 and C 2 there is a game of zero-sum type. The main objective of this section is to deal with the issue of existence of a value for this zero-sum switching game, i.e., whether or not it holds

inf v∈B sup u∈A J i (θ(u, v)) = sup u∈A inf v∈B J i (θ(u, v)) (2.7)
or inf v∈B (1) sup u∈A (1) J i (θ(u, v)) = sup u∈A (1) inf v∈B (1) J i (θ(u, v)).

(2.8)

Remark 2.1. In our framework when the players decide to switch at the same time, we give priority to the maximizer C 1 . This appears through the definition of r n for n ≥ 2. On the other hand, for the well-posedness of J i (θ(u, v)), it is enough that the coupling θ(u, v) is integrable.

To proceed we are going to define the notion of admissible square integrable and integrable strategies.

Definition 2.2 (Non-anticipative switching strategies). Let s ∈ [0, T ] and ν a stopping time such that P-a.s. ν ≥ s. Two controls u 1 = (σ 1 n ) n≥0 and u 2 = (σ 2 n ) n≥0 in A are said to be equivalent, denoting this by u 1 ≡ u 2 , on [s, ν] if we have P-a.s.,

1 [σ 1 0 ,σ 1 1 ] (r) + n≥1 1 (σ 1 n ,σ 1 n+1 ] (r) = 1 [σ 2 0 ,σ 2 1 ] (r) + n≥1 1 (σ 2 n ,σ 2 n+1 ] (r), s ≤ r ≤ ν.
A non-anticipative strategy for C 1 is a mapping α : B → A such that for any s ∈ [0, T ], ν ∈ T s , and

v 1 , v 2 ∈ B such that v 1 ≡ v 2 on [s, ν], we have α(v 1 ) ≡ α(v 2 ) on [s, ν].
The non-anticipative strategy α for C 1 is called square -integrable (resp. integrable) if for any v ∈ B we have α(v) ∈ A (resp. for any v ∈ B (1) we have α(v) ∈ A (1) ).

In a similar manner we define non-anticipative strategies, square integrable and merely integrable strategies for C 2 denote by β.

We denote by A and B (resp. A (1) and B (1) ) the set of non-anticipative square integrable (resp. integrable) strategies for C 1 and C 2 respectively.

3 Existence of a value of the zero-sum switching game.

Link with systems of reflected BSDEs

We are now going to deal with the issue of existence of a value for the zero-sum switching game described previously. For that let us introduce the following assumptions on the functions f i , h i , g i,i+1 and g i,i+1 . Some assumptions will be only applied in the next sections.

Assumptions (H):

[H1] For any i ∈ Γ, f i does not depend on ( y, z), is continuous in (t, x) and belongs to class Π g ;

[H2] For any i ∈ Γ, the function h i , which stands for the terminal payoff, is continuous w.r.t.

x, belongs to class Π g and satisfies the following consistency condition:

∀i ∈ Γ, ∀x ∈ R k , h i+1 (x) -g i,i+1 (T, x) ≤ h i (x) ≤ h i+1 (x) + g i,i+1 (T, x). (3.1) 
[H3] a) For all i ∈ Γ and (t, x) ∈ [0, T ] × R k , the functions g i,i+1 and g i,i+1 are continuous, non-negative, belong to Π g and verify:

g i,i+1 (t, x) + g i,i+1 (t, x) > 0.
b) They satisfy the non-free loop property, i.e., for any j ∈ Γ and (t, [H4] For any i = 1, ..., m, the processes (ḡ i,i+1 (s, X 0,x s )) s≤T and (g i,i+1 (s, X 0,x s )) s≤T are non decreasing.

x) ∈ [0, T ] × R k , ϕ j,
[H5] For any i ∈ Γ, a) f i is Lipschitz continuous in ( y, z) uniformly in (t, x), i.e. for any

y 1 , y 2 ∈ R p , z 1 , z 2 ∈ R d , (t, x) ∈ [0, T ] × R k , |f i (t, x, y 1 , z 1 ) -f i (t, x, y 2 , z 2 )| ≤ C(| y 1 -y 2 | + |z 1 -z 2 |); b) ∀j ∈ Γ -i , the mapping ȳ → f i (t, x, [(y k ) k∈Γ -j , ȳ], z
) is non-decreasing when the other components t, x, (y k ) k∈Γ -j and z are fixed. c) f i is continuous in (t, x) uniformly in ( y, z) and f i (t, x, 0, 0) belongs to Π g .

In order to deal with the zero-sum switching game we rely on solutions of systems of reflected BSDEs with oblique reflection or inter-connected bilateral obstacles of type (3.5) below. The following result whose proof is given in Section 5 will allow us to show that the zero-sum switching game has a value. 

(Y i , Z i , K i,± ) i∈Γ such that: For any i ∈ Γ and (t, x) ∈ [0, T ] × R k , ∀s ∈ [t, T ],                      Y i ∈ S 2 ([t, T ]); K i,± ∈ A loc (K i,± t = 0) and Z i ∈ H 2,d loc ; Y i s = h i (X t,x T ) + T s f i (r, X t,x r )dr - T s Z r dB r + K i,+ T -K i,+ s -(K i,- T -K i,- s ); L i ( Y ) s ≤ Y i s ≤ U i ( Y ) s ; T t (Y i s -L i ( Y ) s )dK i,+ s = 0 and T t (Y i s -U i ( Y ) s )dK i,- s = 0; (3.5)
where for any s

∈ [t, T ], L i ( Y ) s := Y i+1 s -g i,i+1 (s, X t,x s ) and U i ( Y ) s := Y i+1 s + ḡi,i+1 (s, X t,x s ).
Note that obviously the solution (Y i , Z i , K i,± ) i∈Γ of (3.5) depends also on (t, x) which we omit as there is no possible confusion. To proceed let (Y i , Z i , K i,± ) i∈Γ be the solution of (3.5) when t = 0. We then have (see e.g. [START_REF] Hamadène | Reflected BSDE's and mixed game problem[END_REF], for more details):

Proposition 3.2. For all i ∈ Γ and s ≤ T , (a) Y i 0 = ess inf τ ∈T0 ess sup σ∈T0 J i 0 (σ, τ ) = ess sup σ∈T0 ess inf τ ∈T0 J i 0 (σ, τ ), (3.6) 
where,

J i s (σ, τ ) = E σ∧τ s f i (r, X 0,x r )dr + 1 {τ <σ} U i τ (Y ) + 1 {σ≤τ, σ<T } L i σ (Y ) + h i (X 0,x T )1 {σ=τ =T } F s . (3.7) (b) We have Y i s = J i s (σ i s , τ i s )
where σ i s ∈ T s and τ i s ∈ T s are stopping times defined by,

σ i s = inf{s ≤ t ≤ T : Y i t = L i t ( Y )} ∧ T, τ i s = inf{s ≤ t ≤ T : Y i t = U i t ( Y )} ∧ T, (3.8) 
and we use the convention that inf ∅ = +∞. Moreover, σ i s , τ i s is a saddle-point for the zero-sum Dynkin game, i.e.,

J i s (σ, τ i s ) ≤ J i s (σ i s , τ i s ) ≤ J i s (σ i s , τ ) ∀σ, τ ∈ T s . (3.9) 
Remark 3.3. For any s < T and i ∈ Γ, P[σ i s = τ i s < T ] = 0 due to assumption [H3]-a) on g i,i+1 and g i,i+1 .

Value of the zero-sum switching game on square integrable admissible controls

We are now going to focus on the link between Y i , i ∈ Γ, with the value function of the zerosum switching game over square integrable controls, namely the relation (2.7). For that we are going to make another supplementary assumption on the solution (Y i , Z i , K i,± ) i∈Γ of system (3.5) which is related to integrability of Z i , i ∈ Γ. Later on we will show that we have also the relation (2.7) without this latter assumption, but at the price of some additional regularity properties of the switching costs g i,i+1 and ḡi,i+1 (see [H4]).

To proceed, consider the following sequence (ρ n , θ n ) n≥0 defined as following: ρ 0 = 0, θ 0 = i and for n ≥ 1,

ρ n = σ θn-1 ρn-1 ∧ τ θn-1 ρn-1 and θ n = 1 + θ n-1 if θ n-1 ≤ p -1, 1 if θ n-1 = p;
where σ θn-1 ρn-1 and τ θn-1 ρn-1 are defined using (3.8). Next let u (1) := (u

(1) s ) s≤T (resp. u (2) := (u (2)
s ) s≤T ) be the piecewise process defined by: u

(1) s = 0 for s < ρ 1 and for n ≥ 1, s ∈ [ρ n , ρ n+1 ), u (1) s =    1 + u (1) ρn-if Y θn-1 ρn = Y θn ρn -g θn-1,θn (ρ n , X 0,x ρn ), u (1) ρn-if Y θn-1 ρn > Y θn ρn -g θn-1,θn (ρ n , X 0,x ρn )
where u

(1) ρn-is the left limit of u (1) at ρ n (resp. u

s = 0 for s < ρ 1 and for n ≥ 1, s ∈ [ρ n , ρ n+1 ), u (2) s = 1 + u (2) ρn-if Y θn-1 ρn = Y θn ρn + g θn-1,θn (ρ n , X 0,x ρn ), u (2) ρn-if Y θn-1 ρn < Y θn ρn + g θn-1,θn (ρ n , X 0,x ρn ) (2) 
where u

(2) ρn-is the left limit of u (2) at ρ n ). Next let u * and v * be the following sequences of stopping times: σ * 0 = τ * 0 = 0 and for n ≥ 1,

σ * n = inf{s ≥ σ * n-1 , u (1) s > u (1) s-} ∧ T and τ * n = inf{s ≥ τ * n-1 , u (2) s > u (2) s-} ∧ T. Note that θ(u * , v * ) = (ρ n , θ n ) n≥0 .
We then have:

Proposition 3.4. Assume that [H1], [H2], [H3] and (Z i ) i∈Γ ∈ H 2,d . Then the following properties of u * = (σ * n ) n≥0 and v * = (τ * n ) n≥0 hold true: i) u * and v * are admissible ; ii) the coupling θ(u * , v * ) is square integrable ; iii) Y i 0 = J i (θ(u * , v * )). Proof. i) Let us show that u * is admissible. Assume that P[σ * n < T, ∀n ≥ 0] > 0.
As the σ * n 's are defined through the ρ n s, then there exists a loop {j, j + 1, ..., p -1, p, 1, ..., j -1, j} such that

P[ω, ∃ a subsequence (n ) ≥0 such that Y j ρn = Y j+1 ρn + ϕ j,j+1 (ρ n , X 0,x ρn ), . . . , Y j-1 ρn +p-1 = Y j ρn +p-1 + ϕ j-1,j (ρ n +p-1 , X 0,x ρn +p-1 ), ∀ ≥ 0] > 0
where ϕ i,i+1 is the same as in (3.2) and equal to either -g i,i+1 or g i,i+1 depending on whether C 1 or C 2 makes the decision to switch from the current state j 0 to the next one. Next let us set γ = lim →∞ ρ n . Take the limit w.r.t in the previous equalities to deduce that:

P[ϕ j,j+1 (γ, X 0,x γ ) + ... + ϕ p-1,p (γ, X 0,x γ ) + ϕ p,1 (γ, X 0,x γ ) + ... + ϕ j-1,j (γ, X 0,x γ ) = 0]
> 0 which is contradictory with the non free loop property (3.2). By the same reasoning we obtain the admissibility of v * .

ii) Let us recall the definition of the square integrability for θ(u * , v * ). As u * and v * are proved admissible in i), then the coupling θ(u * , v * ) exists. Next we will prove that lim

N →∞ C u * ,v * N ∈ L 2 (dP).
For this recall that i is fixed, ρ 0 = 0 and θ 0 = i. Next let us consider the equation satisfied by Y i on [0, ρ 1 ]. We then have:

Y i 0 = h i (X 0,x T )1 (ρ1=T ) + Y i ρ1 1 (ρ1<T ) + ρ1 0 f i r, X 0,x r dr - ρ1 0 Z i r dB r + ρ1 0 dK i,+ r - ρ1 0 dK i,- r = h i (X 0,x T )1 (ρ1=T ) + Y i+1 σ i 0 -g i,i+1 (σ i 0 , X 0,x σ i 0 ) 1 (σ i 0 ≤τ i 0 ) 1 (σ i 0 <T ) + Y i+1 τ i 0 + ḡi,i+1 (τ i 0 , X 0,x τ i 0 ) 1 (τ i 0 <σ i 0 ) + ρ1 0 f i r, X 0,x r dr - ρ1 0 Z i r dB r = h θ0 (X 0,x T )1 (ρ1=T ) + Y θ1 ρ1 1 (ρ1<T ) -g θ0θ1, (ρ 1 , X 0,x ρ1 )1 (ρ1=σ θ 0 0 ) -ḡθ0θ1 (ρ 1 , X 0,x ρ1 )1 (ρ1=τ θ 0 0 ) 1 (ρ1<T ) + ρ1 0 f θ0 r, X 0,x r dr - ρ1 0 Z θ0 r dB r . (3.10) 
Next we deal with Y θ1 ρ1 by considering the doubly RBSDEs (3.5) in the interval [ρ 1 , ρ 2 ], i.e. 

Y θ1 ρ1 = Y i+1 ρ1 = h θ1 (X 0,x T )1 (ρ2=T ) + Y θ2 ρ2 1 (ρ2<T ) -g θ1θ2 (ρ 2 , X 0,x ρ2 )1 (ρ2=σ θ 1 ρ 1 ) -ḡθ1θ2 (ρ 2 , X 0,x ρ2 )1 (ρ2=τ θ 1 ρ 1 ) 1 (ρ2<T ) + ρ2 ρ1 f θ1 r, X 0,x r dr - ρ2 ρ1 Z θ1 r dB r . ( 3 
Y i 0 = 2 n=1 h θn-1 (X 0,x T )1 (ρn=T ) 1 (ρn-1<T ) + Y θ2 ρ2 1 (ρ2<T ) + ρ2 0 f θ(u * ,v * )r r, X 0,x r dr - ρ2 0 Z θ(u * ,v * )r r dB r - 2 n=1 g θn-1θn (ρ n , X 0,x ρn )1 (ρn=σ θ n-1 ρ n-1 ,ρn<T ) -ḡθn-1θn (ρ n , X 0,x ρn )1 (ρn=τ θ n-1 ρ n-1 ,ρn<T ) .
(3.12) Following (3.12) we replace iteratively Y θn ρn for n = 1, 2, ..., N we deduce that

Y i 0 = N n=1 h θn-1 (X 0,x T )1 (ρn=T ) 1 (ρn-1<T ) + Y θ N ρ N 1 (ρ N <T ) -C θ(u * ,v * ) N + ρ N 0 f θ(u * ,v * )r (r, X 0,x r )dr - ρ N 0 Z θ(u * ,v * )r r dB r . (3.13) 
From (3.13) we obtain:

∀N ≥ 1, |C θ(u * ,v * ) N | ≤ N n=1 |h θn-1 (X 0,x T )|1 (ρn=T ) 1 (ρn-1<T ) + |Y θ N ρ N 1 (ρ N <T ) | + |Y i 0 | + | ρ N 0 f θ(u * ,v * )r (r, X 0,x r )dr| + | ρ N 0 Z θ(u * ,v * )r r dB r | ≤ max ı∈Γ h i (X 0,x T ) + 2 max ı∈Γ sup s∈[0,T ] |Y i s | + T 0 |f θ(u * ,v * )r (r, X 0,x r )|dr + sup s∈[0,T ] | s 0 Z θ(u * ,v * )r r dB r |.
Finally by taking the supremum over N we obtain:

sup

N ≥1 C θ(u * ,v * ) N ≤ max ı∈Γ h i (X 0,x T ) + 2 max ı∈Γ sup s∈[0,T ] |Y i s | + T 0 |f θ(u * ,v * )r (r, X 0,x r )|dr + sup s∈[0,T ] | s 0 Z θ(u * ,v * )r r dB r M θ(u * ,v * )s s |. (3.14) 
As (Z i ) i∈Γ are dt ⊗ dP-square integrable, then

E[sup s≤T |M θ(u * ,v * )s s | 2 ] ≤ CE[ i=1,m T 0 |Z i s | 2 ds] < ∞.
It implies that the right-hand side of (3.14) belongs to L 2 (dP) and then lim

N →∞ C θ(u * ,v * ) N is square integrable, therefore θ(u * , v * ) is square integrable.
Finally for iii), by directly taking the expectation on both sides of (3.13) we obtain

Y i 0 = E N n=1 h θn-1 (X 0,x T )1 (ρn=T ) 1 (ρn-1<T ) + Y θ N ρ N 1 (ρ N <T ) -C θ(u * ,v * ) N + ρ N 0 f θ(u * ,v * )r (r, X 0,x r )dr (3.15)
Now it is enough to take the limit w.r.t. N in (3.15) and to use the Lebesgue dominated convergence theorem since lim N →∞ ρ N = T and considering (3.14), to deduce that

Y i 0 = E h θ(u * ,v * ) T (X 0,x T ) + T 0 f θ(u * ,v * )r (r, X 0,x r )dr -C θ(u * ,v * ) ∞ = J i (θ(u * , v * )) since lim N →∞ C θ(u * ,v * ) N = C θ(u * ,v * ) ∞ .
Let i be the starting mode of the system which is fixed. Let σ = (σ n ) n≥0 be an admissible control of C 1 (which then belongs to A) and v * (σ) =: (τ n ) n≥0 be the optimal response strategy of C 2 which we define below. Indeed let (ρ n , θ n ) n≥0 be the sequence defined as follows: ρ 0 = 0, θ 0 = i and for n ≥ 1 ρ 0 = 0, θ 0 = i, and for n ≥ 1,

ρ n = σ řn ∧ τn , θ n = 1 + θ n-1 if θ n-1 ≤ p -1 1 if θ n-1 = p (3.16)
where

τn := τ θn-1 ρn-1 := inf s ≥ ρ n-1 , Y θn-1 s = Y θn s + ḡθn-1θn (s) ∧ T (according to (3.8))
and řn is defined by ř0 = 0, ř1 = 1, for n ≥ 2,

řn = řn-1 + 1 {σř n-1 ≤τn-1} .
Next let v be the piecewise process defined by: vs = 0 for s < ρ 1 and for

n ≥ 1, s ∈ [ρ n , ρ n+1 ), vs =    1 + vρn-if ρ n = τn < σ řn vρn-if ρ n = σ řn ≤ τn
where vρn-= lim s ρn vs . Now the stopping times τn , n ≥ 0, are defined as follows:

τ0 = 0 and for n ≥ 1, τn = inf{s ≥ τn-1 , vs > vs-} ∧ T (3.17) 
where vs-= lim r s vr .

Next we are going to define the notion of optimal responce u * (v) = (σ n ) n≥0 of C 1 to an admissible control v = (τ n ) n≥0 of the second player C 2 . Indeed let (ρ n , θ n ) n≥0 be the sequence defined as follows: ρ 0 = 0, θ 0 = i and for n ≥ 1 ρ 0 = 0, θ 0 = i, and for n ≥ 1,

ρ n = σn ∧ τ šn , θ n = 1 + θ n-1 if θ n-1 ≤ p -1 1 if θ n-1 = p (3.18)
where

σn := σ θn-1 ρn-1 := inf s ≥ ρ n-1 , Y θn-1 s = Y θn s -g θn-1θn (s) ∧ T (according to (3.8))
and šn is defined by š0 = 0, š1 = 1, for n ≥ 2,

šn = šn-1 + 1 {σn-1>τš n-1 } .
Next let ǔ be the piecewise process defined by: ǔs = 0 for s < ρ 1 and for

n ≥ 1, s ∈ [ρ n , ρ n+1 ), ǔs =    1 + ǔρn-if ρ n = σn ≤ τ šn ǔρn-if ρ n = τ šn < σn
where ǔρn-= lim s ρn ǔs . Now the stopping times σn , n ≥ 0, are defined as follows:

σ0 = 0 and for n ≥ 1, σn = inf{s ≥ σn-1 , ǔs > šs-} ∧ T (3.19)
where ǔs-= lim r s ǔr . We then have: 

i) u * (v) ∈ A, v * (u) ∈ B; ii) J i (θ(u, v * (u))) ≤ Y i 0 ≤ J i (θ(u * (v), v)) . (3.20) Proof. i) In order to show u * (v) ∈ A, when v = (τ n ) n≥0 ∈ B, we need to prove that u * (v) = (σ n ) n≥0 is admissible and E (A u * (v) T ) 2 < ∞. Indeed if u * (v) = (σ n ) n≥0
is not admissible then there would exist a loop {j, j + 1, ..., p -1, p, 1, ..., j -1, j} which is visited infinitley many times, i.e.,

P[ω, ∃ a subsequence (n ) ≥0 such that Y j σn = Y j+1 σn -g j,j+1 (σ n , X 0,x σn ), . . . , Y j-1 σn +p-1 = Y j σn +p-1 -g j-1,j (σ n +p-1 , X 0,x σn +p-1 ), ∀ ≥ 0] > 0.
Next let us set η = lim →∞ σn . Take the limit in the previous equalities yield:

P[g j,j+1 (η, X 0,x η ) + ... + g p-1,p (η, X 0,x η ) + g p,1 (η, X 0,x η ) + ... + g j-1,j (η, X 0,x η ) = 0] > 0.
But this is contradictory with the non free loop property (3.4).

Next let us show that E (A

u * (v) T
) 2 < ∞. Proceeding similarly as in the proof of Proposition 3.4, in the interval [0, ρ 1 ] we have

Y i 0 = h i (X 0,x T )1 (ρ1=T ) + Y ρ1 1 (ρ1<T ) + ρ1 0 f i (r, X 0,x r )dr - ρ1 0 Z i r dB r + ρ1 0 dK i,+ r - ρ1 0 dK i,- r . (3.21)
Note that the minimizer C 2 's control v = (τ n ) n≥0 is not necessarily optimal, then ρ1 0 dK i,- r ≥ 0 and we know that for any s ∈ [0, T ], Y i s ≤ Y i+1 s + ḡi,i+1 (s, X 0,x s ). On the other hand, since ρ 1 = σ1 ∧ τ š1 then ρ1 0 dK i,+ r = 0. It follows that:

Y i 0 ≤ h i (X 0,x T )1 (ρ1=T ) + Y i ρ1 1 (ρ1<T ) + ρ1 0 f i (r, X 0,x r )dr - ρ1 0 Z i r dB r ≤ h i (X 0,x T )1 (ρ1=T ) + 1 (ρ1<T ) (Y i σ1 1 {ρ1=σ1} + Y i τš 1 1 {ρ1=τš 1 } ) + ρ1 0 f i (r, X 0,x r )dr - ρ1 0 Z i r dB r ≤ h θ0 (X 0,x T )1 (ρ1=T ) + Y θ1 ρ1 1 (ρ1<T ) -g θ0θ1 (ρ 1 , X 0,x ρ1 )1 (ρ1=σ1<T ) -ḡθ0θ1 (ρ 1 , X 0,x ρ1 )1 (ρ1=τš 1 <T ) + ρ1 0 f θ0 (r, X 0,x r )dr - ρ1 0 Z θ0 r dB r . (3.22)
Proceeding then iteratively for n = 1, 2, ..., N to obtain

Y i 0 ≤ N n=1 h θn-1 (X 0,x T )1 (ρn-1<T,ρn=T ) + Y θ N ρ N 1 (ρ N <T ) + ρ N 0 f θ(u * (v),v)r (r, X 0,x r )dr - ρ N 0 Z θ(u * (v),v)r r dB r - N n=1 g θn-1θn (ρ n , X 0,x ρn )1 (ρn=σn<T ) -ḡθn-1θn (ρ n , X 0,x ρn )1 (ρn=τš n <T ) . (3.23)
Then we have

A u * (v) ρ N ≤ N n=1 h θn-1 (X 0,x T )1 (ρn-1<T,ρn=T ) + Y θ N ρ N 1 (ρ N <T ) + ρ N 0 f θ(u * (v),v)r (r, X 0,x r )dr - ρ N 0 Z θ(u * (v),v)r r dB r -Y i 0 + B v ρ N . (3.24)
Next as v ∈ B and since (Z i ) i∈Γ ∈ H 2,d , taking the squares of each hand-side of the previous inequality to deduce that:

E[(A u * (v) ρ N ) 2 ] ≤ C for some real constant C. Finally to conclude it is enough to use Fatou's Lemma since ρ N → T as N → ∞.
In the same way we show that v * (u) belongs to B when u belongs to A.

iii) Let v ∈ B. Going back to (3.35), take expectation to obtain:

Y i 0 = E[Y i 0 ] ≤ E[ N n=1 h θn-1 (X 0,x T )1 (ρn-1<T,ρn=T ) +Y θn ρn 1 (ρn<T ) + ρ N 0 f θ(u * (v),v)r (r, X 0,x r )dr-C θ(u * (v),v) N ].
As v ∈ B and u * (v) ∈ A, then for any

N ≥ 1, |C θ(u * (v),v) N | ≤ A u * (v) T + B v T ∈ L 2 ( 
dP). Take now the limit w.r.t N in the right-hand side of the previous inequality and using dominated convergence theorem to deduce that:

Y i 0 ≤ E[h θ T (u * (v),v) (X 0,x T ) + T 0 f θ(u * (v),v)r (r, X 0,x r )dr -C θ(u * (v),v) ∞ ] = J i (θ(u * (v), v)), ∀v ∈ B.
The other inequality is shown in a similar fashion.

As a by-product we obtain the following result:

Theorem 3.6. Assume [H1], [H2], [H3] and (Z i ) i∈Γ ∈ H 2,d . Then for any i = 1, ..., m, Y i 0 = sup u∈A inf v∈B J i (θ(u, v)) = inf v∈B sup u∈A J i (θ(u, v)).
Proof. By (3.20), we know that for any u ∈ A and v ∈ B,

J i (θ(u, v * (u))) ≤ Y i 0 ≤ J i (θ(u * (v), v)) .
Therefore sup

u∈A J i (θ(u, v * (u))) ≤ Y i 0 ≤ inf v∈B J i (θ(u * (v), v)) .
As when

u ∈ A (resp. v ∈ B), v * (u) ∈ B (resp. u * (v) ∈ A) then inf v∈B sup u∈A J i (θ(u, v))) ≤ sup u∈A J i (θ(u, v * (u))) ≤ Y i 0 ≤ inf v∈B J i (θ(u * (v), v)) ≤ sup u∈A inf v∈B J i (θ(u, v)))
which implies the desired result since the right-hand side is smaller than the left-hand one.

Remark 3.7. Note that we have also the following equalities: For any i ∈ Γ,

Y i 0 = sup u∈A J i (θ(u, v * (u))) = inf v∈B J i (θ(u * (v), v)) = inf v∈B sup u∈A J i (θ(u, v(u))) = sup u∈A inf v∈B J i (θ(u(v), v)) .
Actually let us show the fourth equality. Let ũ(.) ∈ A. Then

inf v∈B J i (θ(ũ(v), v)) ≤ inf v∈B sup u∈A J i (θ(u, v)) = Y i 0 = inf v∈B J i (θ(u * (v), v))
which implies the fourth equality since u * (.) ∈ A. The third one is proved similarly.

As mentioned before, the bottleneck for proving the existence of a value for the zero-sum switching game over square integrable controls is the square integrability of (Z i ) i∈Γ . The point now is whether or not it is possible to characterize Y i as the value of the zero-sum switching game without assuming the square integrability of (Z i ) i∈Γ . At least at the cost of adding some supplementary conditions on the data of the game. The answer is affirmative if we require assumption [H4] on the switching costs. Note that this assumption [H4] is satisfied if ḡi,i+1 and g i,i+1 , i = 1, . . . , p, do not depend on x and are non decreasing w.r.t t (e.g. they are constant).

We then have: 

Y i 0 = sup u∈A inf v∈B J i (θ(u, v)) = inf v∈B sup u∈A J i (θ(u, v)).
Proof. First recall the processes (Y i , Z i , K i,± ) i∈Γ that satisfy: For any i ∈ Γ and s ≤ T ,

             Y i ∈ S 2 ; K i,± ∈ A loc and Z i ∈ H 2,d loc ; Y i s = h i (X 0,x T ) + T s f i (r, X 0,x r )dr - T s Z r dB r + K i,+ T -K i,+ s -(K i,- T -K i,- s ); L i ( Y ) s ≤ Y i s ≤ U i ( Y ) s ; T 0 (Y i s -L i ( Y ) s )dK i,+ s = 0 and T 0 (Y i s -U i ( Y ) s )dK i,- s = 0 (3.25) where for s ≤ T , L i ( Y ) s := Y i+1 s -g i,i+1 (s, X 0,x s ) and U i ( Y ) s := Y i+1 s
+ ḡi,i+1 (s, X 0,x s ). Next for any k ≥ 0, let us define the following stopping time:

γ k := inf{s ≥ 0, s 0 { i=1,m |Z i r | 2 }dr ≥ k} ∧ T. (3.26) 
First note that the sequence (γ k ) k≥1 is increasing, of stationnary type and converges to T . Next we have

γ k 0 |Z i r | 2 dr ≤ k,
which means that the processes (Z i s 1 {s≤γ k } ) s≤T belong to H 2,d . Let us now define ( Ȳ i , Zi , Ki,± ) i∈Γ as follows: For all i ∈ Γ and s ≤ T ,

Ȳ i s := Y i s∧γ k , Zi s = Z i s 1 {s≤γ k } , Ki,+ s := K i,+
s∧γ k and Ki,-

s := K i,- s∧γ k . (3.27)
Thus the family Ȳ i , Zi , Ki,+ , Ki,-i∈Γ is the solution of the following system: ∀i ∈ Γ,

             i) Ȳ i ∈ S 2 , Zi ∈ H 2,d , Ki,± ∈ A loc ; ii) Ȳ i s = Y i γ k + T s 1 (r≤γ k ) f i (r, X 0,x r )dr - T s Zi r dB r + Ki,+ T -Ki,+ s -( Ki,- T -Ki,- s ), ∀s ≤ T ; iii) Ȳ i+1 s -g i,i+1 (s, X 0,x s ) ≤ Ȳ i s ≤ Ȳ i+1 s + ḡi,i+1 (s, X 0,x s ), ∀s ≤ T ; iv) T 0 Ȳ i s -L i ( Ȳ ) s d Ki,+ s = 0 and T 0 Ȳ i s -U i ( Ȳ ) s d Ki,- s = 0
(3.28) where U i ( Ȳ ) and L i ( Ȳ ) are defined as in (3.25). Let us amphazise that here we need the assumption [H4] to show the inequalities in point iii) which actually hold true. Indeed for s ≤ γ k , the inequalities hold true by the definition of the processes Ȳ i , Zi , Ki,+ , Ki,-i∈Γ and (3.25). If s > γ k , by [H4] we have,

Ȳ i+1 s -g i,i+1 (s, X 0,x s ) = Y i+1 γ k -g i,i+1 (s, X 0,x s ) ≤ Y i+1 γ k -g i,i+1 (γ k , X 0,x γ k ) ≤ Y i γ k = Ȳ i s ≤ Y i+1 γ k + ḡi,i+1 (s, X 0,x s ) = Ȳ i+1 s + ḡi,i+1 (s, X 0,x s ).
On the other hand, by definition of K±,i and Ȳ i , i ∈ Γ, we have

T 0 Ȳ i s -L i ( Ȳ ) s d Ki,+ s = γ k 0 (Y i s -L i ( Y ) s )dK i,+ s = 0.
Similarly we have also

T 0 ( Ȳ i s -U i ( Ȳ ) s )d Ki,- s = 0
. Therefore the processes ( Ȳ i , Zi , Ki,± ) i∈Γ verify (3.28). Now using the result of Theorem 3.6, we obtain: For any i ∈ Γ,

Y i 0 = Ȳ i 0 = sup u∈A inf v∈B J k i (θ(u, v)) = inf v∈B sup u∈A J k i (θ(u, v)).
with

J k i (θ(u, v)) = E Y θ(u,v) T γ k + T 0 1 (r≤γ k ) f θ(u,v)r (r, X 0,x r )dr -C θ(u,v)
∞ where θ(u, v) is the coupling of the pair (u, v) of controls and

C θ(u,v) ∞ := lim n→∞ C u,v N . Next let us set: Y i 0 = sup u∈A inf v∈B J i (θ(u, v)) and Ỹ i 0 = inf v∈B sup u∈A J i (θ(u, v)).
Therefore

| Y i 0 -Y i 0 | =| sup u∈A inf v∈B J i (θ(u, v)) -sup u∈A inf v∈B J k i (θ(u, v))| ≤ sup (u,v)∈A×B E[|Y θ(u,v) T γ k -h θ(u,v) T (X 0,x T )| + T 0 |1 (r≤γ k ) f θ(u,v)r (r, X 0,x r )dr -f θ(u,v)r (r, X 0,x r )|dr] ≤ E[ i=1,m |Y i γ k -h i (X 0,x T )| + T γ k i=1,m |f i (r, X 0,x r )|dr].
But the right-hand side converges to 0 as k → ∞. Therefore

Y i 0 = Y i 0 = sup u∈A inf v∈B J i (θ(u, v)).
In the same way we obtain also that

Ỹ i 0 = Y i 0 = inf v∈B sup u∈A J i (θ(u, v)).
It follows that

Y i 0 = sup u∈A inf v∈B J i (θ(u, v)) = inf v∈B sup u∈A J i (θ(u, v)).
Thus the zero-sum switching game has a value on square integrable controls which is equal to Y i 0 .

Value of the zerosum switching game on integrable admissible controls

In this part, we are not going to assume the square integrability of (Z i ) i∈Γ neither [H4] and show that the relation (2.8) holds true and this common value is equal to Y i 0 , where (Y i , Z i , K i,± ) i∈Γ is the solution of system (3.5). Actually we have the following result: 

Y i 0 = inf v∈B (1)
sup u∈A (1) J i (θ(u, v)) = sup u∈A (1) inf v∈B (1) J i (θ(u, v)).

(3.29)

Proof. Let u = (σ n ) n≥0 and v = (τ n ) n≥0 be two admissible controls which belong to A (1) and B (1) respectively. Next recall the optimal responses u * (v) = (σ n ) n≥0 and v * (u) = (τ n ) n≥0 defined in (3.19) and (3.17) respectively. First note that, as shown in Proposition 3.5, the controls u * (v) and v * (u) are admissible. Let us now show u * (v) belongs to A (1) . A similar procedure will show that v * (u) belongs to B (1) .

Indeed for k ≥ 1, recall the stopping time γ k defined in (3.26) and the sequences (ρ n ) n≥0 and (θ n ) n≥0 defined in (3.5). Next for k ≥ 1, let us define: ∀ n ≥ 0,

ρ k n = ρ n 1 {ρn<γ k } + T 1 {ρn≥γ k } and θ k n = θ n 1 {ρn<γ k } + θ n k 1 {ρn≥γ k }
where n k = inf{n ≥ 0, ρ n ≥ γ k } -1. Note that ρ k n is a stopping time and {ρ k n < T } = {ρ n < γ k }. The sequences (ρ k n ) n≥0 and (θ k n ) n≥0 constitute the fact that we freeze the actions of the controllers when γ k is reached. Next going back to the system of equations (3.5) satisfied by the family Y i , Z i , K i,+ , K i,- i∈Γ and as in (3.33) we have:

Y i 0 = h i (X 0,x T )1 (ρ k 1 =T ) + Y i ρ k 1 1 (ρ k 1 <T ) + ρ k 1 0 f i (r, X 0,x r )dr - ρ k 1 0 Z i r dB r + ρ k 1 0 dK i,+ r =0 - ρ k 1 0 dK i,- r ≤ h i (X 0,x T )1 (ρ k 1 =T ) + Y i ρ k 1 1 (ρ k 1 <T ) + ρ k 1 0 f i (r, X 0,x r )dr - ρ k 1 0 Z i r dB r . (3.30) But {ρ k 1 < T } = {ρ 1 < γ k }. Therefore Y i ρ k 1 1 (ρ k 1 <T ) = Y i ρ1 1 (ρ1<γ k ) = (Y i σ1 1 {ρ1=σ1} + Y i τš 1 1 {ρ1=τš 1 } )1 (ρ1<γ k )
and then

Y i 0 ≤ h i (X 0,x T )1 (ρ k 1 =T ) + (Y i σ1 1 {ρ1=σ1} + Y i τš 1 1 {ρ1=τš 1 } )1 (ρ1<γ k ) + ρ k 1 0 f i (r, X 0,x r )dr - ρ k 1 0 Z i r dB r (3.31) But for any s ∈ [0, T ], Y i s ≤ Y i+1 s + ḡi,i+1 (s, X 0,x s ) and Y i σ1 1 {ρ1=σ1} 1 (ρ1<γ k ) = (Y i+1 σ1 -g i,i+1 (σ 1 , X 0,x σ1 ))1 {ρ1=σ1} 1 (ρ1<γ k ) .
Plug now this in (3.31) to obtain:

Y i 0 ≤ h i (X 0,x T )1 (ρ k 1 =T ) + (Y i+1 σ1 -g i,i+1 (σ 1 , X 0,x σ1 ))1 {ρ1=σ1} 1 (ρ1<γ k ) + (Y i+1 τš 1 + ḡi,i+1 (τ š1 , X 0,x τš 1 ))1 {ρ1=τš 1 } 1 (ρ1<γ k ) + ρ k 1 0 f θ0 (r, X 0,x r )dr - ρ k 1 0 Z θ0 r dB r . (3.32) As (Y i+1 σ1 1 {ρ1=σ1} + Y i+1 τš 1 1 {ρ1=τš 1 } )1 (ρ1<γ k ) = Y θ k 1 ρ k 1 1 (ρ k 1 <γ k ) and (-g i,i+1 (σ 1 , X 0,x σ1 )1 {ρ1=σ1} + ḡi,i+1 (τ š1 , X 0,x τš 1 )1 {ρ1=τš 1 } )1 (ρ1<γ k ) = (-g θ0,θ k 1 (σ 1 , X 0,x σ1 )1 {ρ k 1 =σ1} + ḡθ0,θ k 1 (τ š1 , X 0,x τš 1 )1 {ρ k 1 =τš 1 } )1 (ρ k 1 <γ k )
then from (3.33), we obtain:

Y i 0 ≤ h θ0 (X 0,x T )1 (ρ k 1 =T ) + Y θ k 1 ρ k 1 1 (ρ k 1 <γ k ) + (-g θ0,θ k 1 (σ 1 , X 0,x σ1 )1 {ρ k 1 =σ1} + ḡθ0,θ k 1 (τ š1 , X 0,x τš 1 )1 {ρ k 1 =τš 1 } )1 (ρ k 1 <γ k ) + ρ k 1 0 f θ0 (r, X 0,x r )dr - ρ k 1 0 Z θ0 r dB r . (3.33)
But we can do the same with Y

θ k 1 ρ k 1 1 (ρ k 1 <γ k ) to obtain: Y θ k 1 ρ k 1 1 (ρ k 1 <γ k ) ≤ h θ k 2 (X 0,x T )1 (ρ k 1 <γ k ,ρ k 2 =T ) + Y θ k 2 ρ k 2 1 (ρ k 2 <γ k ) + (-g θ k 1 ,θ k 2 (σ 2 , X 0,x σ2 )1 {ρ k 2 =σ2} + ḡθ k 1 ,θ k 2 (τ š2 , X 0,x τš 2 )1 {ρ k 2 =τš 2 } )1 (ρ k 2 <γ k ) + ρ k 2 ρ k 1 f θ k 2 (r, X 0,x r )dr - ρ k 2 ρ k 1 Z θ k 2 r dB r . (3.34)
Plug now (3.34) in (3.33) and repeat this procedure N times to obtain:

Y i 0 ≤ N n=1 h θ k n-1 (X 0,x T )1 (ρ k n-1 <T,ρ k n =T ) + Y θ k N ρ k N 1 (ρ k N <γ k ) + ρ k N 0 f θ(u * (v),v)r (r, X 0,x r )dr - ρ k N 0 Z θ(u * (v),v)r r dB r - N n=1 g θ k n-1 θ k n (ρ k n , X 0,x ρ k n )1 (ρ k n =σn<γ k ) -ḡθ k n-1 θ k n (ρ k n , X 0,x ρ k n )1 (ρ k n =τš n <γ k ) A u * (v) ρ k N -Bv ρ k N (3.35)
where 0 ≤ Bv

ρ k N ≤ B v ρ k N
, since C 1 has priority when the two players decide to switch at the same time. Then take expectation in both hand-sides to obtain:

E[A u * (v) ρ k N ] ≤ -Y i 0 + E[ N n=1 h θ k n-1 (X 0,x T )1 (ρ k n-1 <T,ρ k n =T ) + Y θ k N ρ k N 1 (ρ k N <γ k ) + ρ k N 0 f θ(u * (v),v)r (r, X 0,x r )dr + B v ρ k N ]. (3.36) 
As v ∈ B (1) , then

E[B v ρ k N ] ≤ E[B v
T ] and then the right hand side of (3.36) is bounded. Therefore there exists a constant C such that

E[A u * (v) ρ k N ] ≤ C + E[B v T ].
Finally by using twice Fatou's Lemma (w.r.t k then N ) we deduce that E[A

u * (v) T
] < ∞ which is the claim.

iii) Let v ∈ B (1) . Going back to (3.35), take expectation to obtain:

Y i 0 ≤ E{ N n=1 h θ k n-1 (X 0,x T )1 (ρ k n-1 <T,ρ k n =T ) + Y θ k N ρ k N 1 (ρ k N <γ k ) + ρ k N 0 f θ(u * (v),v)r (r, X 0,x r )dr - N n=1 g θ k n-1 θ k n (ρ k n , X 0,x ρ k n )1 (ρ k n =σn<γ k ) -ḡθ k n-1 θ k n (ρ k n , X 0,x ρ k n )1 (ρ k n =τš n <γ k ) }. (3.37)
By taking the limit w.r.t k then N we obtain that (1) .

Y i 0 ≤ J i (u * (v), v), ∀v ∈ B
In the same way as previously, for any u ∈ A (1) , v * (u) belongs to B (1) and

Y i 0 ≥ J i (u, v * (u)).
It follows that for any u ∈ A (1) and v ∈ B (1) ,

J i (u, v * (u)) ≤ Y i 0 ≤ J i (u * (v), v).
Therefore sup

u∈A (1) J i (u, v * (u)) ≤ Y i 0 ≤ inf v∈B (1) J i (u * (v), v).
As u * (v) (resp. v * (u)) belongs to A (1) (resp. B (1) ) when v ∈ B (1) (resp. u ∈ A (1) ), then inf v∈B (1) sup u∈A (1) J i (u, v)

V + ≤ sup u∈A (1) J i (u, v * (u)) ≤ Y i 0 ≤ inf v∈B (1) J i (u * (v), v) ≤ sup
u∈A (1) inf v∈B (1) J i (u, v)

V - and the claim is proved since V + ≥ V -.

Remark 3.10. a) As in Remark 3.7 we have also the following equalities: For any i ∈ Γ,

Y i 0 = inf v∈B (1)
sup u∈A (1) J i (θ(u, v(u))) = sup u∈A (1) inf v∈B (1) J i (θ(u(v), v)) .

b) Let (Y i,t,x , Z i,t,x , K i,±,t,x ) i∈Γ be the P-measurable processes solution of the system (3.5).

Then, as previously one can show that for any i ∈ Γ and s ∈ [t, T ],

Y i,t,x s = ess inf v∈B (1) s ess sup u∈A (1) s J t,x (θ(u, v)) s = ess sup u∈A (1) s ess inf v∈B (1) s J t,x (θ(u, v)) s where J t,x (θ(u, v)) s := E{h θ(u,v) T (X t,x T ) + T s f θ(u,v)r (r, X t,x r )dr -C θ(u,v) ∞ |F s } and A (1) s (resp. B (1) 
s ) is the set of admissible integrable controls which start from i at s.

System of PDEs of min-max type with interconnected obstacles

We are going now to deal with the problem of existence and uniqueness of a solution in viscosity sense of the following system of PDEs of min-max type with interconnected obstacles:

   min{v i (t, x) -L i ( v)(t, x); max v i (t, x) -U i ( v)(t, x); -∂ t v i (t, x) -L X (v i )(t, x) -f i (t, x, (v l (t, x)) l∈Γ , σ(t, x) D x v i (t, x) } = 0; v i (T, x) = h i (x) (4.1)
where for any i ∈ Γ, L i ( v)(t, x) := v i+1 (t, x) -g i,i+1 (t, x) and U i ( v)(t, x) := v i+1 (t, x) + g i,i+1 (t, x). Note that f i is more general w.r.t. the HJB system of (1.3) since it depends also on y and z i .

The result is given in Theorem 4.3 but its proof, based on Perron's method, is postponed to Appendix. Nonetheless in this section we will introduce some notions which we need also in Section 5 when we deal with system of RBSDEs (1.1) or more generally (5.2).

For any locally bounded deterministic function u : [0, T ] × R k → R, we denote by u * (resp. u * ) the lower semi-continuous (lsc) (resp. upper semi-continuous (usc)) envelope of u as follows:

∀(t, x) ∈ [0, T ] × R k , u * (t, x) = lim inf (t ,x ) →(t,x),t <T u(t , x ) and u * (t, x) = lim sup (t ,x ) →(t,x),t <T u(t , x ).
Next for an lsc (resp. usc) function u we denote by Ju(t, x) (resp. J+ u(t, x)), the parabolic limiting subjet (resp. superjet) of u at (t, x) (see e.g. [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] for the definition and more details). A) We say that v is a viscosity supersolution (resp. subsolution) of (4.1) if for any i ∈ Γ:

(i) v i * (T, x) ≥ h i (x) (resp. v i * (T, x) ≤ h i (x)
), for any x ∈ R k ; (ii) For any (t, x) ∈ [0, T ) × R k and for any (p, q, M ) ∈ Jv i * (t, x) (resp. J+ v i * (t, x)), we have:

min{v i * (t, x) -L i ( v * )(t, x), max{-p -b(t, x).q - 1 2 T r[(σσ )(t, x)M ] -f i (t, x, v * (t, x), σ (t, x)q); v i * (t, x) -U i ( v * )(t, x)}} ≥ 0 (4.2)
where v * = (v i * ) i∈Γ (resp.

min{v i * (t, x) -L i ( v * )(t, x), max{-p -b(t, x).q - 1 2 T r[(σσ )(t, x)M ] -f i (t, x, v * (t, x), σ (t, x)q); v i * (t, x) -U i ( v * )(t, x)}} ≤ 0 (4.3)
where v * = (v i * ) i∈Γ ).

B) A locally bounded function v = (v i ) i∈Γ is called a viscosity solution of (4.1) if (v i * ) i∈Γ and (v i * ) i∈Γ are viscosity supersolution and viscosity subsolution of (4.1) respectively.

Next (t, x) be fixed and let us consider the following sequence of BSDEs

: ∀m, n ∈ N, ∀i ∈ Γ,    Y i,m,n ∈ S 2 , Z i,m,n ∈ H 2,d ; Y i,m,n s = h i (X t,x T ) + T s f i,m,n (r, X t,x r , (Y l,m,n r ) l∈Γ , Z i,m,n r )dr - T s Z i,m,n r dB r , s ≤ T ; Y i,m,n T = h i (X t,x T ) (4.4) where f i,m,n (s, X t,x s , y, z) = f i (s, X t,x s , y, z)+n y i -[y i+1 -g i,i+1 (s, X t,x s )] - -m y i -[y i+1 + g i,i+1 (s, X t,x s )] + .
As (4.4) is a classical BSDE without obstacle, thanks to the results by Pardoux-Peng [START_REF] Karoui | Backward stochastic differential equations in finance[END_REF], the solution exists and is unique. In addition there exist deterministic functions (v i,m,n ) i∈Γ (see Theorem 4.1. in [START_REF] Karoui | Backward stochastic differential equations in finance[END_REF]) such that:

∀s ∈ [t, T ], Y i,m,n s = v i,m,n (s, X t,x s ). (4.5)
On the other hand, we have the following properties which we collect in the following proposition.

Proposition 4.2 (see [START_REF] Hamadène | Viscosity solutions of systems of PDEs with interconnected obstacles and switching problem[END_REF], [START_REF] Djehiche | Viscosity solutions of systems of variational inequalities with interconnected bilateral obstacles[END_REF]). Assume that [H2], [H3] and [H5] are fulfilled. Then we have:

a) P -a.s., ∀s ≤ T, Y i,m+1,n s ≤ Y i,m,n s ≤ Y i,m,n+1
s , ∀i ∈ Γ, n, m ≥ 0, which also implies the same property for (v i,m,n ) i∈Γ , i.e. for any

(t, x) ∈ [0, T ] × R k , i ∈ Γ, v i,m+1,n (t, x) ≤ v i,m,n (t, x) ≤ v i,m,n+1 (t, x). (4.6) b) The sequence ((Y i,m,n ) i∈Γ ) n≥0 ) (resp. ((Y i,m,n ) i∈Γ ) m≥0 ) converges in (S 2 ) p to ( Ȳ i,m ) i∈Γ (resp. (Y i,n
) i∈Γ ) which verifies the following system of reflected RBSDEs:

         Y i,m ∈ S 2 , Z i,m ∈ H 2 , K i,m,+ ∈ A 2 ; Y i,m s = h i (X t,x T ) + T s f i,m (r, X t,x r , (Y l,m r ) l∈Γ , Z i,m r )dr - T s Z i,m r dB r + K i,m,+ T -K i,m,+ s , s ≤ T ; Y i,m s ≥ L i (( Ȳ l,m s ) l∈Γ ), s ≤ T ; T 0 (Y i,m s -L i (( Ȳ l,m s ) l∈Γ ))dK i,m,+ s = 0 (4.7)
where

f i,m (s, X t,x s , y, z i ) = f i (s, X t,x s , y, z i ) -m(y i -[y i+1 + g i,i+1 (s, X t,x s )]) + . (resp.          Y i,n ∈ S 2 , Z i,n ∈ H 2 , K i,n,-∈ A 2 ; Y i,n s = h i (X t,x T ) + T s f i,n (r, X t,x r , (Y l,n r ) l∈Γ , Z i,n r )dr - T s Z i,n r dB r + K i,n,- T -K i,n,- s , s ≤ T ; Y i,n s ≤ U i ((Y l,m s ) l∈Γ ), s ≤ T ; T 0 (Y i,m s -U i ((Y l,m s ) l∈Γ ))dK i,n,- s = 0 (4.8) where f i,n (s, X t,x s , y, z i ) = f i (s, X t,x s , y, z i ) + n(y i -[y i+1 -g i,i+1 (s, X t,x s )]) + .
c) There exist deterministic continuous functions

(v i,m ) i∈Γ (resp. (v i,n ) i∈Γ ) such that for any (t, x) ∈ [0, T ] × R k , s ∈ [t, T ], Y i,m s = v i,m (s, X t,x s ) (4.9) (resp. Y i,n s = v i,n (s, X t,x s )). ( 4 

.10)

In addition for any i ∈ Γ, the sequence

((v i,m ) m≥0 ) i∈Γ (resp. ((v i,n ) n≥0 ) i∈Γ ) are decreasing w.r.t. m (resp. increasing w.r.t. n). d) (v i,m ) i∈Γ (resp. (v i,n
)) belong to class Π g and is the unique viscosity solution of following system of variational inequalities with a reflected obstacle:

   min{v i,m (t, x) -L i ((v l,m ) l∈Γ )(t, x); -∂ x v i,m (t, x) -L X (v i,m )(t, x) -f i,m (t, x, (v l,m (t, x)) l∈Γ , σ(t, x) D x v i,m (t, x))} = 0; v i,m (T, x) = h i (x). (4.11) (resp.    max{v i,n (t, x) -U i ((v l,m ) l∈Γ )(t, x); -∂ x v i,n (t, x) -L X (v i,n )(t, x) -f i,n (t, x, (v l,n (t, x)) l∈Γ , σ(t, x) D x v i,n (t, x))} = 0; v i,n (T, x) = h i (x)).
(4.12)

Proof. The proofs can be found in [START_REF] Hamadène | Viscosity solutions of systems of PDEs with interconnected obstacles and switching problem[END_REF] and [START_REF] Djehiche | Viscosity solutions of systems of variational inequalities with interconnected bilateral obstacles[END_REF] so we omit them.

Next for any i ∈ Γ and (t, x) ∈ [0, T ] × R k , we denote by

v i (t, x) := lim m→∞ vi,m (t, x) and v i (t, x) := lim n→∞ v i,n .
Then from (4.6) we deduce that for any (t,

x) ∈ [0, T ] × R k v i (t, x) ≤ v i (t, x).

Note that since for any

i ∈ Γ, v i,0 ≤ v i ≤ vi ≤ vi,0
then v i and vi belong to Π g . Additionnaly we have: 

t, x) ∈ [0, T ] × R k ,    min{v i (t, x) -L i ( v)(t, x); max v i (t, x) -U i ( v)(t, x); -∂ t v i (t, x) -L X (v i )(t, x) -f i (t, x, (v l (t, x)) l∈Γ , σ(t, x) D x v i (t, x) } = 0; v i (T, x) = h i (x). (4.13)
Proof. It is rather long and then postponed to Appendix.

As a consequence we have the following result for the increasing scheme: Corollary 4.4. The p-tuple of functions (v i ) i∈Γ is also continuous and the unique viscosity solution, in the class Π g , of the following system of max-min type: ∀i ∈ Γ and (t,

x) ∈ [0, T ] × R k ,    max{v i (t, x) -U i ( v)(t, x); min v i (t, x) -L i ( v)(t, x); -∂ t v i (t, x) -L X (v i )(t, x) -f i (t, x, (v l (t, x)) l∈Γ , σ(t, x) D x v i (t, x) } = 0; v i (T, x) = h i (x). (4.14)
To obtain the proof of this result it is enough to consider (-v i ) i∈Γ which becomes a decreasing scheme associated with {(-f i (t, x, -y, -z)) i∈Γ , (-h i ) i∈Γ , (ḡ i ) i∈Γ , (g i ) i∈Γ }, to use the previous theorem and finally a result by G. Barles ([1], pp.18).

Systems of Reflected BSDEs with bilateral interconnected barriers

First note that throughout this section we assume that [H2], [H3] and [H5] are fulfilled. Next recall the system of RBSDEs ( Ȳ i,m,t,x , Zi,m,t,x , Ki,m,+,t,x ) in Proposition 4.2-b)-c) and the representation (4.9). As the sequence ((v i,m ) ≥0 ) i∈Γ converges pointwise decreasingly to the continuous functions (v i ) i∈Γ . Then, by Dini's theorem, this convergence is uniform on compact sets of [0, T ]×R k . Next, the uniform polynomial growths of (v i ) i∈Γ and ((v i,m ) ≥0 ) i∈Γ combined with estimate (2.4) of X t,x imply that for any i ∈ Γ,

E( sup s∈[t,T ] | Ȳ i,m,t,x s -Y i,t,x s | 2 ) → m→∞ 0 (5.1)
where we set: ∀s ≤ T and i ∈ Γ, Y i,t,x s = v i (s ∨ t, X t,x s∨t ).

(5.2)

Proposition 5.1. For any (t, x) ∈ [0, T ] × R k , s ∈ [t, T ], i ∈ Γ, Y i s ≤ U i ((Y l s ) l∈Γ ) := Y i+1 s + g i,i+1
(s, X t,x s ).

(5.3)

Proof. According to (5.2), it is enough to show the following inequality: for any i ∈ Γ, (t,

x) ∈ [0, T ] × R k , v i (t, x) ≤ v i+1 (t, x) + ḡi,i+1 (t, x).
(5.4) Indeed, we assume by contradiction that there exists some (t 0 , x 0 ) ∈ [0, T ) × R k and a strictly positive > 0 such that

v i (t 0 , x 0 ) -v i+1 (t 0 , x 0 ) -ḡi,i+1 (t 0 , x 0 ) ≥ > 0. (5.5)
By the uniform convergence of (v i,m ) i∈Γ to the functions (v i ) i∈Γ on compact subsets, we can find some ρ > 0 and a ball defined by

B((t 0 , x 0 ), ρ) := {(t, x) ∈ [0, T ] × R k , s.t. |t -t 0 | ≤ ρ and |x -x 0 | ≤ ρ}
and some m 0 large enough such that for any m ≥ m 0 , vi,m (t, x) -vi+1,m (t, x) -ḡi,i+1 (t, x) ≥ 8 > 0, ∀(t, x) ∈ B((t 0 , x 0 ), ρ).

(5.6)

Next let us introduce the following stopping time

τ t0,x0 ; = inf{s ≥ t 0 , X t,x s ∈ B((t 0 , x 0 ), ρ)} ∧ (t 0 + ρ).
Notice that for any s ∈ [t 0 , τ t0,x0 ],

Ȳ i,m,t0,x0 s = vi,m (s, X t0,x0 s ) > vi+1,m (s, X t0,x0 s ) + ḡi,i+1 (s, X t0,x0 s ) > vi+1,m (s, X t0,x0 s ) -g i,i+1 (s, X t0,x0 s ) = Ȳ i+1,m,t0,x0 s -g i,i+1 (s, X t0,x0 s )
As a result for s ∈ [t 0 , τ t0,x0 ], d Ki,m,+,t0,x0 s = 0 and then from (4.7) we deduce that:

∀ s ∈ [t 0 , τ t0,x0 ], Y i,m,t0,x0 s = Ȳ i,m,t0,x0 τt 0 ,x 0 + τt 0 ,x 0 s {f i,m (r, X t0,x0 r , (Y l,m,t0,x0 r ) l∈Γ , Z i,m,t0,x0 r ) (5.7) -m(Y i,m,t0,x0 r -[Y i+1,m,t0,x0 r + g i,i+1 (r, X t0,x0 r )]) + }dr - τt 0 ,x 0 s Z i,m,t0,x0 r dB r .
Next as in [START_REF] Karoui | Reflected solutions of backward SDE's, and related obstacle problems for PDE's[END_REF], since g i,i+1 , vi,m and vi+1,m are of polynomial growth (uniformly for these latter) and by using (2.4) we deduce that:

m 2 E[{ τt 0 ,x 0 t0 ( Ȳ i,m,t0,x0 s -Ȳ i+1,m,t0,x0 s -ḡi,i+1 (s, X t0,x0 s )) + ds} 2 ] ≤ CE[ sup s∈[t0,τt 0 ,x 0 ],i∈Γ | Ȳ i,m,t0,x0 s | 2 ] + CE[{ τt 0 ,x 0 t0 f i (s, X t0,x0 s , 0, 0)ds} 2 ].
(5.8)

for some cosntant C which is independant of m. Therefore using (5.6) we have

m 2 2 64 P[t 0 < τ t0,x0 ] ≤ CE[ sup s∈[t0,τt 0 ,x 0 ],i∈Γ | Ȳ i,m,t0,x0 s | 2 ] + CE[{ τt 0 ,x 0 t0 f i (s, X t,x s , 0, 0)ds} 2 ]. (5.9) 
which implies, in sending m to +∞, P[t 0 < τ t0,x0 ] = 0, i.e. P[t 0 = τ t0,x0 ] = 1. But this is contradictory since ρ > 0 and then (t 0 , x 0 ) satisfying (5.5) does not exists. The proof of the claim is complete.

We now give the main result of this section.

Theorem 5.2. Assume that the assumptions [H2],[H3] and [H5] are fulfilled anf for any i ∈ Γ, f i does not depend on z i . Then for any (t, x) ∈ [0, T ]×R k , there exist adapted processes K i,±,t,x and Z i,t,x valued respectively in R + and R d such that, in combination with Y i,t,x , verify: For any i ∈ Γ, i) K i,±,t,x are continuous, non decreasing and K i,±,t,x t = 0 ; P-a.s. K i,±,t,x T < ∞ and

T t |Z i,t,x s | 2 ds < ∞ ; ii) ∀s ∈ [t, T ],                      Y i,t,x s = h i (X t,x T ) + T s f i (r, X t,x r , (Y l,t,x r ) l∈Γ )dr - T s Z i,t,x r dB r +K i,+,t,x T -K i,+,t,x s -(K i,-,t,x T -K i,-,t,x s ); L i s ((Y l,t,x ) l∈Γ ) ≤ Y i,t,x s ≤ U i s ((Y l,t,x ) l∈Γ ); T t (Y i,t,x s -L i s ((Y l,t,x ) l∈Γ ))dK i,+,t,x s = 0 and T t (Y i,t,x s -U i s ((Y l,t,x ) l∈Γ ))dK i,-,i,t,x s = 0 (5.10) where for s ∈ [0, T ], L i s ((Y l,t,x ) l∈Γ ) := Y i+1,t,x s -g i,i+1 (s, X t,x s ) and U i s ((Y l,t,x ) l∈Γ ) := Y i+1,t,x s + ḡi,i+1 (s, X t,x
s ). Moreover if there exists another quadruple ( Ȳ i,t,x , Zi,t,x , Ki,±,t,x ) which satisfies (i)-(ii), then for any s ∈ [t, T ] and i ∈ Γ, Ȳ i,t,x s = Y i,t,x s , Ki,±,t,x s = K i,±,t,x s and finally Zi,t,x = Z i,t,x s , ds ⊗ dP on [t, T ] × Ω.

Proof. Existence

For any i ∈ Γ and m ≥ 0, the processes Ȳ i,m,,t,x have the following representation (see e.g. A4 in [START_REF] Djehiche | Viscosity solutions of systems of variational inequalities with interconnected bilateral obstacles[END_REF] for more details): For any s ∈ [t, T ],

Ȳ i,m,t,x s = ess sup σ≥s ess inf τ ≥s E[h i (X t,x T )1 (σ=τ =T ) + σ∧τ s f i (r, X t,x r , ( Ȳ l,m,t,x r ) l∈Γ )dr + L i σ (( Ȳ l,m,t,x ) l∈Γ )1 (σ<τ ) + {U i τ (( Ȳ l,m ) l∈Γ ) ∨ Ȳ i,m,t,x τ }1 (τ ≤σ,τ <T ) |F s ]. (5.11) 
Now the convergence of ( Ȳ i,m,t,x ) m to Y i,,t,x in S 2 ([t, T ]) (by (5.1)) and the inequalities (5.3) imply that, in taking the limits in both hand-sides of (5.11): ∀s ∈ [t, T ],

Y i,t,x s = ess sup σ≥s ess inf τ ≥s E[h i (X t,x T )1 (σ=τ =T ) + σ∧τ s f i (r, X t,x r , (Y l,t,x r ) l∈Γ )dr + L i σ ((Y l,t,x ) l∈Γ )1 (σ<τ ) + U i τ ((Y l,t,x ) l∈Γ )1 (τ ≤σ,τ <T ) |F s ].
(5.12)

Next the third inequality in (4.7) and ( 5.3) imply that: For any s ∈ [t, T ] and i ∈ Γ,

U i s ((Y l ) l∈Γ ) ≥ Y i s ≥ L i s ((Y l ) l∈Γ ).
On the other hand by Assumption [H3]-a),

U i s ((Y l,t,x ) l∈Γ ) -L i s ((Y l,t,x ) l∈Γ ) = ḡi,i+1 (s, X t,x s ) + g i,i+1 (s, X t,x s ) > 0
which means that the obstacles U i ((Y l,t,x ) l∈Γ ) and L i ((Y l,t,x ) l∈Γ ), for any i ∈ Γ, are completely separated. Therefore by Theorem 3.7 in [?], there exist progressively measurable processes Y i,t,x , K i,±,t,x and Z i,t,x valued respectively in R, R + and R d such that: i) Y i,t,x ∈ S 2 ([t, T ]), K i,±,t,x are continuous non decreasing and K i,±,t,x t = 0 ; P-a.s.

T t |Z i,t,x s | 2 ds < ∞ ; ii)
The processes (Y i,t,x , K i,±,t,x , Z i,t,x ) verify: ∀s ∈ [t, T ],

                     Y i,t,x s = h i (X t,x T ) + T s f i (r, X t,x r , (Y l,t,x r ) l∈Γ )dr - T s Z i,t,x r dB r +K i,+,t,x T -K i,+,t,x s -(K i,-,t,x T -K i,-, t,x s 
);

L i s ((Y l,t,x ) l∈Γ ) ≤ Y i,t,x s ≤ U i s ((Y l,t,x ) l∈Γ ); T t (Y i,t,x s -L i s ((Y l,t,x ) l∈Γ ))dK i,+,t,x s = 0 and T t (Y i,t,x s -U i s ((Y l,t,x ) l∈Γ ))dK i,-, t,x s = 0. 
(5.13) Moreover Y i,t,x has the following representation:

∀s ∈ [t, T ], Y i,t,x s = ess sup σ≥s ess inf τ ≥s E[h i (X t,x T )1 (σ=τ =T ) + σ∧τ s f i (r, X t,x r , (Y l r ) l∈Γ )dr + L i σ ((Y l,t,x ) l∈Γ )1 (σ<τ ) + U i τ ((Y l,t,x ) l∈Γ )1 (τ ≤σ,τ <T ) |F s ]. (5.14) 
Thus for any s ∈ [t, T ], Y i,t,x = Y i,t,x and by (5.13), (Y i,tx , K i,±,t,x , Z i,t,x ) verify (5.10). Finally as i is arbitrary then (Y i,t,x , K i,±,t,x , Z i,t,x ) i∈Γ is a solution for the system of reflected BSDEs with double obstacles (5.10). The proof of existence is then stated. It remains to show uniqueness.

Uniqueness: In this part we apply the fixed point argument over the value of the stochastic game representation (Theorem 3.9), and the proof is similar to [START_REF] Hamadène | Systems of reflected BSDEs with interconnected bilateral obstacles: Existence, Uniqueness and Applications[END_REF]. In the following proof, the defined processes (Y φ,i , Z φ,i , K φ,i,± ) i∈Γ and (Y ψ,i , Z ψ,i , K ψ,i,± ) i∈Γ depend on (t, x), but for simplicity of notations we omit it as there is no confusion.

So let us define the following operator:

Φ : H 2,p → H 2,p φ := (φ i ) i∈Γ → Φ( φ) := (Y φ,i ) i∈Γ where (Y φ,i , Z φ,i , K φ,i,± ) i∈Γ is the unique solution of                      Y φ,i ∈ S 2 ([t, T ]), P -a.s. T t |Z φ,i s | 2 ds < ∞ and K φ,i,+ T + K φ,i,- T < ∞ (K φ,i,+ t + K φ,i,- t = 0); Y φ,i s = h i (X t,x T ) + T s f i (r, X t,x r , φ(r))dr - T s Z φ,i r dB r + K φ,i,+ T -K φ,i,+ s -(K φ,i,- T -K φ,i,- s ), s ∈ [t, T ]; L i s ((Y φ,l ) l∈Γ ) ≤ Y φ,i s ≤ U i s ((Y φ,l ) l∈Γ ), s ∈ [t, T ]; T t Y φ,i s -L i s ((Y φ,l ) l∈Γ ) dK φ,i,+ s = 0 and T t Y φ,i s -U i s ((Y φ,l ) l∈Γ ) dK φ,i,- s = 0.
(5.15)

In the similar way we define another element of H 2,p by ψ := (ψ i ) i∈Γ and let (Y ψ,i s , Z ψ,i s , K ψ,i,± s

) s∈[t,T ] be a solution of (5.15) where its driver is replaced with f i (t, x, ψ(t)), ∀i ∈ Γ.

Next we set the following norm, denoted by . 2,β on H 2,p :

y 2,β := (E[ T t e βs |y s | 2 ds]) 1/2 .
The following calculus is dedicated to prove that Φ is a contraction on (H 2,p , . 2,β ) where the appropriate value of β is determined later. Let us recall Theorem 3.9 and Remark 3.10, for any (t, x) ∈ [0, T ] × R k and t ≤ s ≤ T, the following representation holds true:

Y φ,i s = ess inf v∈B (1) s ess sup u∈A (1) s J φ (Θ(u, v)) s = ess sup u∈A (1) s ess inf v∈B (1) s J φ (Θ(u, v)) s (5.16) 
where

J φ (Θ(u, v)) s = E h θ(u,v) T (X t,x T ) + T s f θ(u,v)r (r, X t,x r , φ(r)) -C θ(u,v) ∞ F s (u and v
start from i at time s). In the same way Y ψ,i has also the stochastic game representation by replacing φ to ψ.

Now we study the difference of |Y

φ,i -Y ψ,i |. Indeed, ∀i ∈ Γ, t ∈ [0, T ], t ≤ s ≤ T, |Y φ,i s -Y ψ,i s | ≤ ess sup u∈A (1) s ess sup v∈B (1) s |J φ (Θ(u, v)) s -J ψ (Θ(u, v)) s |. (5.17) 
Thanks to the martingale representation theorem, there exists an (F s ) s≤T -adapted process ∆ φ,ψ,θ(u,v) ∈ H 2,d such that

J φ (Θ(u, v)) s -J ψ (Θ(u, v)) s = E T s f θ(u,v)r (r, X t,x r , φ(r)) -f θ(u,v)r (r, X t,x r , ψ(r))dr F s = E T 0 f θ(u,v)r (r, X t,x r , φ(r)) -f θ(u,v)r (r, X t,x r , ψ(r))dr F s - s 0 f θ(u,v)r (r, X t,x r , φ(r)) -f θ(u,v)r (r, X t,x r , ψ(r))dr = E T 0 f θ(u,v)r (r, X t,x r , φ(r)) -f θ(u,v)r (r, X t,x r , ψ(r))dr + s 0 ∆ φ,ψ,θ(u,v) r dB r - s 0 f θ(u,v)r (r, X t,x r , φ(r)) -f θ(u,v)r (r, X t,x r , ψ(r))dr.
Therefore we obtain the following differential form for the difference of the two value functions:

d(J φ (Θ(u, v)) s -J ψ (Θ(u, v)) s ) = f θ(u,v)s (s, X t,x s , φ(s)) -f θ(u,v)s (s, X t,x s , ψ(s)) ds + ∆ φ,ψ,θ(u,v) s dB s
Next for any s ∈ [t, T ], we apply Itô's formula on e βs J φ (Θ(u, v)) s -J ψ (Θ(u, v)) s 2 yielding

d e βs J φ (Θ(u, v)) s -J ψ (Θ(u, v)) s 2 = βe βs J φ (Θ(u, v)) s -J ψ (Θ(u, v)) s 2 + 2e βs J φ (Θ(u, v)) s -J ψ (Θ(u, v)) s -f θ(u,v)s (s, X t,x s , φ(s)) -f θ(u,v)s (s, X t,x s , ψ(s)) ∆ φ,ψ,θ(u,v) s dB s + e βs ∆ φ,ψ,θ(u,v) s 2
ds.

(5.18)

By integrating (5.18) over [s, T ] we obtain T s e βs f θ(u,v)r (r, X t,x r , φ(r)) -f θ(u,v)r (r, X t,x r , ψ(r))

e βs J φ (Θ(u, v)) s -J ψ (Θ(u, v)) s 2 + T s e βr ∆ φ,ψ,θ(u,v) r 2 dr = -β T s e βr J φ (Θ(u, v)) r -J ψ (Θ(u, v)) r 2 dr + 2 T s e βr J φ (Θ(u, v)) r -J ψ (Θ(u, v)) r f θ(u,v)r (r, X t,x r , φ(r)) -f θ(u,v)r (r, X t,x r , ψ(r)) dr -2 T s J φ (Θ(u, v)) r -J ψ (Θ(u, v)) r ∆ φ,ψ,θ(u,v)
2 dr -2 T s J φ (Θ(u, v)) r -J ψ (Θ(u, v)) r ∆ φ,ψ,θ(u,v) r dB r .
By the Lipschitz condition on the driver f θ(u,v) , and using the fact that T s e βr ∆ φ,ψ,θ(u,v) r 2 dr ≥ 0, we then obtain

e βs J φ (Θ(u, v)) s -J ψ (Θ(u, v)) s 2 ≤ C 2 β T s | φ(r) -ψ(r)| 2 dr -2 T s J φ (Θ(u, v)) r -J ψ (Θ(u, v)) r ∆ φ,ψ,θ(u,v) r dB r (5.20)
where C = i∈Γ C i with C i the Lipschitz constant w.r.t. f i , ∀i ∈ Γ. On the other hand since (2

u s J φ (Θ(u, v)) r -J ψ (Θ(u, v)) r ∆ φ,ψ,θ(u,v) r dB r ) u∈[s,
T ] is a martingale, then taking the conditional expectation w.r.t. F s on both sides of (5.20) we have

e βs J φ (Θ(u, v)) s -J ψ (Θ(u, v)) s 2 ≤ C 2 β E T s | φ(r) -ψ(r)| 2 dr|F s .
(5.21)

Let us recall (5.17), then by taking the expectation on both sides of (5.21) we obtain:

∀ s ∈ [t, T ], E e βs Y φ,i s -Y ψ,i s 2 ≤ C 2 β E T t | φ(r) -ψ(r)| 2 dr . (5.22)
The last step is integrating (5.22) over s ∈ [t, T ] and then summing over all i ∈ Γ to obtain:

E T t i∈Γ e βs Y φ,i s -Y ψ,i s 2 ds ≤ C 2 T P β E T t | φ(r) -ψ(r)| 2 dr . (5.23)
Obviously it is enough to take β > C 2 T P (for example we can let β := 4C 2 T P ) then the operator Φ is a contraction on H 2,p to itself. As a consequence, there exists a fixed point which is nothing but the unique solution of (5.10).

Next we suppose that there exists another solution ( Ŷ i , Ẑi , Ki,± ) i∈Γ of (5.10), i.e. 

                     Ŷ i s = h i (X t,x T ) + T s f i (r, X t,
L i s (( Ŷ l ) l∈Γ ) ≤ Y i s ≤ U i s (( Ŷ l ) l∈Γ ), s ∈ [t, T ]; T t ( Ŷ i s -L i s (( Ŷ l ) l∈Γ ))d Ki,+ s = 0 and T t ( Ŷ i s -U i s (( Ŷ l ) l∈Γ ))d Ki,- s = 0.
(5.24)

Thanks to the fixed point result (5.23) we have immediately Y i = Ŷ i , ∀i ∈ Γ. By applying the equality of Y i and Ŷ i , we also have Z i = Ẑi since from the representation of (5.10) and (5.24), their martingale parts should be equal, i.e. for any i ∈ Γ, s ∈ [t, T ],

T s Z i s dB s = T s Ẑi s dB s . Moreover by (5.10) and (5.24) we have ∀s ∈ [t, T ], i ∈ Γ, K i,+ s -K i,- s = Ki,+ s -Ki,s . It remains us now to prove the equality of the increasing processes correspondingly.

For any s ∈ [t, T ], i ∈ Γ we have

s t Y i r -L i r ((Y l ) l∈Γ ) (dK i,+ r -dK i,- r ) = s t Y i r -L i r ((Y l ) l∈Γ ) (d Ki,+ r -d Ki,- r ). (5.25)
On the other hand by the minimality conditions we have

∀s ∈ [t, T ], i ∈ Γ, s t Y i r -L i r ((Y l ) l∈Γ ) (dK i,+ r -dK i,+ r ) = - s t Y i r -L i r ((Y l ) l∈Γ ) dK i,- r = - s t U i r ((Y l ) l∈Γ ) -L i r ((Y l ) l∈Γ ) dK i,- r . (5.26)
This last equality is due to the fact that ∀r ∈ [t, s], dK i,- r = 0 only if Y i touches the upper obstacle. In the same way we have also the following condition for Ki,-: We now go back to systems (4.13) and (4.14) and the question is whether or not they have the same solution. We have the following result: Proposition 5.3. Assume that the assumptions [H2],[H3] and [H5] are fulfilled anf for any i ∈ Γ, f i does not depend on z i . Then for any i ∈ Γ, vi = v i .

∀i ∈ Γ, s ∈ [t, T ], s t Y i r -L i r ((Y l ) l∈Γ ) (d Ki,+ r -d Ki,+ r ) = - s t Y i r -L i r ((Y l ) l∈Γ ) d Ki,- r = - s t U i r ((Y l ) l∈Γ ) -L i r ((Y l ) l∈Γ ) d Ki,- r . ( 5 
Proof. : Actually (-v i ) i∈Γ is the unique solution of the following system of PDEs with obstacles:

   min{v i (t, x) -Ľi ( v)(t, x); max v i (t, x) -Ǔ i ( v)(t, x); -∂ t v i (t, x) -L X (v i )(t, x) + f i (t, x, (-v l (t, x)) l∈Γ , -σ(t, x) D x v i (t, x) } = 0; v i (T, x) = -h i (x)
(5.28) where Ľi ( v)(t, x) = v i (t, x) -ḡi,i+1 (t, x) and Ǔ i ( v)(t, x) = v i (t, x) -g i,i+1 (t, x). Therefore -v i , has accordingly, the representation (5.12), i.e. for any (t, x) and i ∈ Γ, setting Y i,t,x s = v i (s ∨ t, X t,x s∨t ) for s ∈ [t, T ], we have:

-Y i,t,x s = ess sup σ≥s ess inf τ ≥s E[-h i (X t,x T )1 (σ=τ =T ) + σ∧τ s -f i (r, X t,x r , (-Y l,t,x r ) l∈Γ )dr + Ľi σ ((-Y l,t,x ) l∈Γ )1 (σ<τ ) + Ǔ i τ ((-Y l,t,x ) l∈Γ )1 (τ ≤σ,τ <T ) |F s ] = ess inf τ ≥s ess sup σ≥s E[-h i (X t,x T )1 (σ=τ =T ) + σ∧τ s -f i (r, X t,x r , (-Y l,t,x r ) l∈Γ )dr + Ľi σ ((-Y l,t,x ) l∈Γ )1 (σ<τ ) + Ǔ i τ ((-Y l,t,x ) l∈Γ )1 (τ ≤σ,τ <T ) |F s ]
(5.29) since the barriers are completely separated (see e.g. [?]). Therefore

Y i,t,x s = ess sup σ≥s ess inf τ ≥s E[h i (X t,x T )1 (σ=τ =T ) + σ∧τ s f i (r, X t,x r , (Y l,t,x r ) l∈Γ )dr + L i σ ((Y l,t,x ) l∈Γ )1 (σ<τ ) + U i τ ((Y l,t,x ) l∈Γ )1 (τ ≤σ,τ <T ) |F s ].
(5.30)

Which means that ((Y i,t,x s

) s∈[t,T ] ) i∈Γ verifes (5.10). As the solution of this latter is unique then for any i ∈ Γ, Y i,t,x = Y i,t,x which means that for i ∈ Γ, vi = v i .

6 Appendix: Proof of Theorem 4.3

In this section, we prove that the system of (4.1) has a unique continuous solution in viscosity sense in the class Π g . Indeed, we firstly provide a comparison result of subsolution and supersolution of (4.1) if they exist, then we show that (v i ) i∈Γ is a solution by Perron's method. We recall once for all that the results in this section are constructed under [H2],[H3] and [H5].

A comparison result

Before investigating (4.1), we provide some a priori results and a comparison principle for sub. and supersolutions of system (4.1). To begin with let us show the following: Lemma 6.1. Let u := (u i ) i∈Γ (resp. û := (û i ) i∈Γ ) be an usc subsolution (resp. sci supersolution) of (4.1). For any (t, x) ∈ [0, T ] × R k , let Γ(t, x) be the following set:

Γ(t, x) := {i ∈ Γ, u i (t, x) -ûi (t, x) = max l∈Γ (u l (t, x) -ûl (t, x))}.
Then there exists i 0 ∈ Γ(t, x) such that u i0 (t, x) > u i0+1 (t, x) -g i0,i0+1 (t, x) and ûi0 (t, x) < ûi0+1 (t, x) + g i0,i0+1 (t, x).

Proof. Let (t, x) ∈ [0, T ] × R k be fixed. As Γ is a finite set then Γ is not empty. To proceed, we assume, by contradiction that for any i ∈ Γ(t, x), either

u i (t, x) ≤ u i+1 (t, x) -g i,i+1 (t, x) (6.1) or ûi (t, x) ≥ ûi+1 (t, x) + g i,i+1 (t, x) (6.2) 
holds.

Assume first that (6.1) holds true i.e. u i (t, x) ≤ u i+1 (t, x) -g i,i+1 (t, x). As û is a supersolution of (4.1), we deduce that ûi (t, x) ≥ ûi+1 (t, x) -g i,i+1 (t, x) (

By taking into account of (6.1) we have

ûi+1 (t, x) -ûi (t, x) ≤ g i,i+1 (t, x) ≤ u i+1 (t, x) -u i (t, x) which implies u i (t, x) -ûi (t, x) ≤ u i+1 (t, x) -ûi+1 (t, x).
However as i ∈ Γ(t, x), then the previous inequality is an equality and then

ûi+1 (t, x) -ûi (t, x) = u i+1 (t, x) -u i (t, x) = g i,i+1 (t, x). (6.4) 
As a result we deduce that (i + 1) ∈ Γ(t, x) and also the equality (6.4) holds.

Next if u i (t, x) ≤ u i+1 (t, x) -g i,i+1 (t, x) does not hold, then u i (t, x) > u i+1 (t, x)g i,i+1 (t, x). On the other hand, assume that (6.2) holds true, i.e., ûi (t, x) ≥ ûi+1 (t, x) + g i,i+1 (t, x). Since u i is a subsolution of (4.1), we have

u i (t, x) ≤ u i+1 (t, x) + g i,i+1 (t, x) which implies ûi+1 (t, x) -ûi (t, x) ≤ -g i,i+1 (t, x) ≤ u i+1 (t, x) -u i (t, x)
and then u i (t, x) -ûi (t, x) ≤ u i+1 (t, x) -ûi+1 (t, x).

However as i ∈ Γ(t, x), then the last inequality is an equality and (i + 1) ∈ Γ(t, x). Moreover

u i+1 (t, x) -u i (t, x) = -g i,i+1 (t, x) = ûi+1 (t, x) -ûi (t, x). (6.5) 
It means that (6.1) or (6.2) imply that (i + 1) ∈ Γ(t, x) and one of the equalities (6.4), (6.5).

Repeat now this reasonning as many times as necessary (actually p times) to find a loop such that i∈Γ ϕ i,i+1 (t, x) = 0 (ϕ i,i+1 is defined in (3.2)), which is contradictory to assumption [H3].

Next we give the comparison result. Proposition 6.2. Let u := (u i ) i∈Γ be an usc subsolution (resp. w := (w i ) i∈Γ be a lsc supersolution) of the system (4.1) and for any i ∈ Γ, both u i and w i belong to class Π g , i.e. there exist two constants γ and C such that

∀i ∈ Γ, (t, x) ∈ [0, T ] × R k , |u i (t, x)| + |w i (t, x)| ≤ C(1 + |x| γ ).
Then it holds true that:

u i (t, x) ≤ w i (t, x), ∀i ∈ Γ, (t, x) ∈ [0, T ] × R k . (6.6) and -p n w -b(t n , y n ) q n w - 1 2 T r[(σσ (t n , y n ))(t n , y n )M n w ]-f i0 (t n , y n , (w l (t n , y n )) l∈Γ , σ(t n , y n ) q n w ) ≥ 0. (6.19)
By taking the difference of (6.18) and (6.19), one deduces that

-(p n u -p n w ) -(b(t n , x n ) q n u -b(t n , y n ) q n w ) - 1 2 T r[{σσ (t n , x n )M n u -σσ (t n , y n )M n w }] -{f i0 (t n , x n , (u l (t n , x n )) l∈Γ , σ(t n , x n ) q n u ) -f i0 (t n , y n , (w l (t n , y n )) l∈Γ , σ(t n , y n ) q n w )} ≤ 0.
Combining with (6.17), there exists some appropriate ρ n with lim sup n→∞ ρ n ≤ 0 such that the last inequality yields the following one:

-{f i0 (t n , x n , (u l (t n , x n )) l∈Γ , σ(t n , x n ) q n u ) -f i0 (t n , x n , (w l (t n , y n )) l∈Γ , σ(t n , x n ) q n u )} ≤ ρ n
Next by linearising f i0 and condition (6.9) we obtain

λ(u i0 (t n , x n ) -w i0 (t n , y n )) - k∈Γ -i 0 Θ k n (u k (t n , x n ) -w k (t n , y n )) ≤ ρ n (6.20)
where Θ k n is the increment rate of f i0 w.r.t. y k , which is uniformly bounded w.r.t. n and is non negative by the monotonicity assumption of f i . Therefore (6.20) becomes

λ(u i0 (t n , x n ) -w i0 (t n , y n )) ≤ k∈Γ -i 0 Θ k n (u k (t n , x n ) -w k (t n , y n )) + ρ n ≤ C f i 0 k∈Γ -i 0 (u k (t n , x n ) -w k (t n , y n )) + + ρ n .
Then by taking n → ∞ the inequality yields

λ(u i0 (t * , x * ) -w i0 (t * , x * )) ≤ lim sup n C f i 0 [ k∈Γ -i 0 (u k (t n , x n ) -w k (t n , y n )) + ] ≤ C f i 0 [ k∈Γ -i 0 (lim sup n (u k (t n , x n ) -w k (t n , y n ))) + ] ≤ C f i 0 [ k∈Γ -i 0 (u k (t * , x * ) -w k (t * , x * )) + ]
Next as i 0 ∈ Γ(t * , x * ), we deduce that

λ(u i0 (t * , x * ) -w i0 (t * , x * )) ≤ C f i 0 (p -1)(u i0 (t * , x * ) -w i0 (t * , x * ))
which is contradictory with the definiton of λ given in (6.9). As a consequence for any i ∈ Γ, u i ≤ w i .

Step 2: the general case

For any arbitrary λ ∈ R, let us define ûi (t, x) := e λt u i (t, x) and ŵi (t, x) := e λt w i (t, x).

Note that (û i ) i∈Γ and ( ŵi ) i∈Γ is respectively the subsolution and the supersolution of the following system of PDEs: for any i ∈ Γ and (t,

x) ∈ [0, T ] × R k , min{v i (t, x) -v i+1 (t, x) + e λt g i,i+1 (t, x); max[v i (t, x) -v i+1 (t, x) -e λt g i,i+1 (t, x); -∂ t v i (t, x) -L X v i (t, x) + λv i (t, x) -e λt f i (t, x, (e -λt v l (t, x)) l∈Γ , e -λt σ (t, x)D x v i (t, x)]} = 0
and v i (T, x) = e λT h i (x). For λ large enough, the condition (6.9) holds, then we go back to the result in Step 1 and we obtain, for any i ∈ Γ, ûi ≤ ŵi , which also yields u i ≤ w i . The proof of comparison is now complete.

Existence and uniqueness of viscosity solution of (4.1)

Let us recall (v i ) i∈Γ and (v i,m ) i∈Γ the functions defined in Proposition 4.2. We firstly prove that (v i ) i∈Γ is a subsolution of (4.1), then we show that for a fixed m 0 , (v i,m0 ) i∈Γ is a supersolution of (4.1), finally by Perron's method we show that (v i ) i∈Γ is the unique solution of (4.1).

Proposition 6.3. The family (v i ) i∈Γ is a viscosity subsolution of (4.1).

Proof. We first recall that ∀i ∈ Γ, vi := lim m→∞ vi,m , is usc function since the sequence (v i,m ) m≥0 is decreasing and (v i,m ) i∈Γ is continuous. Then thanks to the definition we have v * = vi , hence when t = T we have vi (T, x) = lim m→∞ vi,m (T, x) = h i (x). Next let us recall Definition 4.1. For any

(t, x) ∈ [0, T ) × R k , i ∈ Γ, (p, q, M ) ∈ J+ vi (t, x), we shall prove either vi (t, x) -L i ( v)(t, x) ≤ 0 (6.21) or max[v i (t, x) -U i ( v)(t, x); -p -b (t, x)q - 1 2 T r(σσ )(t, x)M ) -f i (t, x, (v l (t, x)) l∈Γ , σ (t, x).q)] ≤ 0. (6.22)
To proceed, we first assume that there exists 0 > 0 such that vi (t, x) ≥ vi+1 (t, x) -g i,i+1 (t, x) + 0 then we need to prove (6.22).

As for any i ∈ Γ, (v i,m ) m≥0 decreasingly converges to vi , then there exists m 0 such that for any m ≥ m 0 we have vi,m (t, x) ≥ vi+1,m (t, x) -g i,i+1 (t, x) + 0 2 By the continuity of (v i,m ) i∈Γ and g i,i+1 , we can find a neighbourhood O m of (t, x) such that vi,m (t , x ) ≥ vi+1,m (t , x ) -g i,i+1 (t , x ) + Next by Lemma 6.1 in [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] there exists a subsequence (t k , x k ) k≥0 such that (t k , x k ) → k→∞ (t, x) and lim k→∞ vi,k (t k , x k ) = vi (t, x).

In addition we can also find a sequence which we still denote by (p

k , q k , M k ) ∈ J+ vi,k (t k , x k ) such that lim k→∞ (p k , q k , M k ) = (p, q, M )
As the sequence (t k , x k ) can be chosen in the neighbourhood O k , by applying the fact that (v i,k ) i∈Γ is the unique viscosity solution of the following system: For any i ∈ Γ,

min{v i,m (t, x) -L i ((v l,m ) l∈Γ )(t, x); -∂ t vi,m (t, x) -b (t, x)D x vi,m (t, x) -f i,m (t, x, (v l,m (t, x)) l∈Γ , σ (t, x)D x vi,m (t, x))} = 0 vi,m (T, x) = h i (x), (6.24) 
we obtain

-p k -b (t k , x k ).q k - 1 2 T r(σσ (t k , x k )M k ) -f i,k (t, x, (v l,k (t k , x k )) l∈Γ , σ (t k , x k )q k ) ≤ 0 (6.25) where f i,k (t, x, (v l (t, x)) l∈Γ , z) := f i (t, x, (v l (t, x)) l∈Γ , z) -k(v i (t, x) -U i ( v)(t, x)) + .
Moreover as the sequence (t k , x k , p k , q k , M k ) k is bounded and (v i,m ) i∈Γ is uniformly of polynomial growth, then we deduce from (6.25) that k := (v i,k (t k , x k ) -vi+1,k (t k , x k ) -ḡi,i+1 (t k , x k )) + → k→∞ 0 However for any fixed (t, x) and k 0 , (v i,k (t, x)) k≥k0 is decreasing, then for k ≥ k 0 , vi,k (t k , x k ) ≤ vi+1,k (t k , x k ) + ḡi,i+1 (t k , x k ) + k ≤ vi+1,k0 (t k , x k ) + ḡi,i+1 (t k , x k ) + k

As vi,k0 is continuous, by taking k → ∞ we obtain that lim k→∞ vi,k (t k , x k ) = vi (t, x) ≤ vi+1,k0 (t, x) + ḡi,i+1 (t, x).

We then take k 0 → ∞ yielding vi (t, x) ≤ vi+1 (t, x) + ḡi,i+1 (t, x). (6.26)

In the second place we consider a subsequence (k l ) of (k) such that for any a ∈ Γ, (v a,k l (t k l , x k l )) l converges, then by taking l → ∞ in (6.25) we obtain lim l→∞ {-p k l -b(t k l , x k l )q k l -1 2 T r(σσ (t k l , x k l )M k l )-f i (t k l , x k l , (v a,k l (t k l , x k l )) a∈Γ , σ (t k l , x k l ).q k l )} ≤ 0.

Then we deduce that -p -b (t, x)q -1 2 T r(σσ (t, x)M ) ≤ lim l→∞ f i (t k l , x k l , (v a,k l (t k l , x k l )) a∈Γ , σ (t k l , x k l )q k l ) = f i (t, x, lim l→∞ (v a,k l (t k l , x k l )) a∈Γ , σ (t, x)q)

≤ f i (t, x, (v a (t, x)) a∈Γ , σ (t, x)q).

(6.27)

The last inequality holds true by the monotonicity assumption (H5) of f i and the fact that for any a ∈ Γ, va verifies va (t, x) = v * ,a (t, x) = lim sup Thus (6.27) becomes -p -b (t, x)q -1 2 T r(σσ (t, x)M ) ≤ f i (t, x, (v a (t, x)) a∈Γ , σ (t, x).q). (6.28)

Hence under (6.26) and (6.28), (6.22) is satisfied, then (v i ) i∈Γ is a viscosity subsolution of (4.1).

Proposition 6.4. Let us fix m 0 ∈ N. Then the family (v i,m0 ) i∈Γ is a viscosity supersolution of (4.1).

Proof. We first recall that the triple ( Ȳ i,m0 , Zi,m0 , Ki,m0,+ ) i∈Γ is the unique solution of the system of RBSDEs associated with (f i,m0 , h i , g i,i+1 ) i∈Γ where f i,m0 (s, X t,x s , y, z) := f i (s, X t,x s , y, z) -m 0 (y i -y i+1 -ḡi,i+1 (s, X t,x s )) + .

In addition there exist unique deterministic continuous functions with polynomial growth (v i,m0 ) i∈Γ such that for any i ∈ Γ, s ∈ [t, T ],

Ȳ i,m0 s = vi,m0 (s, X t,x s ) ((t, x) ∈ [0, T ] × R k is fixed). Then ( Ȳ i,m0 , Zi,m0 , Ki,m0,+ , Ki,m0,-) i∈Γ solves the following doubly reflected BSDEs: for any i ∈ Γ, s ∈ [t, T ], Accordingly by the results of [START_REF] Cvitanic | Backward stochastic differential equations with reflection and Dynkin games[END_REF] and [START_REF] Hamadène | Reflected BSDE's and mixed game problem[END_REF], Ȳ i,m0 is also associated with a zero-sum Dynkin game as follow: 

                 Ȳ i,m0 s = h i (X t,x T ) +
             min{w(t, x) -L i ((v l,m0
) l∈Γ )(t, x); max[w(t, x) -Ũ ((v l,m0 ) l∈Γ )(t, x); -∂ t w(t, x) -b (t, x)D x w(t, x) -1 2 T r[(σσ )(t, x)D 2 xx w(t, x)] -f i (t, x, (v l,m0 ) l∈Γ , σ (t, x)D x w(t, x))]} = 0; w(T, x) = h i (X t,x T )

where Ũ ((v l,m0 ) l∈Γ )(t, x) := vi,m0 (t, x) ∨ (v i+1,m0 + ḡi,i+1 )(t, x).

In other words, for any (t, x) ∈ [0, T ) × R k and for any (p, q, M ) ∈ J-(v i,m0 )(t, x), it still holds that vi,m0 (t, x) ≥ L i ((v l,m0 ) l∈Γ )(t, x) (6.29) and max[v i,m0 (t, x) -Ũ i ((v l,m0 ) l∈Γ )(t, x);

-p -b (t, x).q -1 2 T r(σσ (t, x)M ) -f i (t, x, (v l,m0 ) l∈Γ , σ (t, x)q)] ≥ 0.

(6.30)

Next apply the inequality a -a ∨ b ≤ a -b, then (6.30) yields max[v i,m0 (t, x) -(v i+1,m0 + ḡi,i+1 )(t, x);

-p -b (t, x).q -1 2 T r(σσ (t, x)M ) -f i (t, x, (v l,m0 ) l∈Γ , σ (t, x)q)] ≥ 0 Hence, with (6.29), this implies that (v i,m0 ) i∈Γ is a viscosity supersolution of (4.1).

We are now ready to use Perron's method to provide a solution for (4.1). So let us consider the following functions denoted by ( m0 v i ) i∈Γ and defined as: Let U m0 := { u := (u i ) i∈Γ , u is a subsolution of (4.1) and for any i ∈ Γ, vi ≤ u i ≤ vi,m0 } Note that U m0 is not empty since (v i ) i∈Γ ∈ U m0 . Next for i ∈ Γ, (t, x) ∈ [0, T ] × R k we set m0 v i (t, x) := sup{u i (t, x), (u i ) i∈Γ ∈ U m0 }.

We then have: Theorem 6.5. Assume [H2],[H3] and [H5]. Then the functions ( m0 v i ) i∈Γ is the unique viscosity solution of (4.1). Moreover the solution does not depend on m 0 . Finally for any i ∈ Γ, m0 v i = vi . Proof. It is obvious that for any i ∈ Γ, the function m0 v i belongs to class Π g since (v i ) i∈Γ and (v i,m0 ) i∈Γ are functions of Π g . To proceed, we divide the main proof into three steps. On the other hand, to simplify the notation, we replace ( m0 v i ) i∈Γ with (v i ) i∈Γ as there is no possible confusion.

Step 1: (v i ) i∈Γ is a viscosity subsolution of (4.1). For any i ∈ Γ, v i ∈ U m0 and then it satisfies: vi ≤ v i ≤ vi,m0 .

The inequalities still valid for the upper semicontinuous envelops, i.e., vi ≤ v i, * ≤ vi,m0 since vi is usc and vi,m0 is continuous. Therefore we have vi (T, x) = v i, * (T, x) = vi,m0 (T, x) = h i (x). It means that (v i, * ) i∈Γ verify the subsolution property of system (4.13) at time T .

Next let (ṽ k ) k∈Γ be an arbitrary element of U m0 and let i ∈ Γ be fixed. Since (ṽ k ) k∈Γ is a subsolution of (4.1), then for any (t, x) ∈ [0, T ) × R k and (p, q, M ) ∈ J+ ṽi, * (t, x) we have min{ṽ i, * (t, x) -L i ((ṽ l, * ) l∈Γ )(t, x); max[ṽ i, * (t, x) -U i ((ṽ l, * ) l∈Γ )(t, x); -p -b (t, x)q -1 2 T r(σσ (t, x)M ) -f i (t, x, (ṽ l, * (t, x)) l∈Γ , σ (t, x)q)]} ≤ 0. (6.31)

But for any k ∈ Γ, ṽk ≤ v k , then ṽk, * ≤ v k, * . On the other hand, we notice that the operators (w l ) l∈Γ → ṽi, * -L i ((w l ) l∈Γ ) and (w l ) l∈Γ → ṽi, * -U i ((w l ) l∈Γ ) are decreasing, then by the monotonicity of f i ([H5]) and (6.31) we have min{(ṽ i, * -L i ((v l, * ) l∈Γ ))(t, x); max[(ṽ i, * -U i ((v l, * ) l∈Γ ))(t, x);

-p -b (t, x)q -1 2 T r(σσ (t, x)M ) -f i (t, x, [(v l, * (t, x)) l∈Γ -i , ṽi, * ], σ (t, x)q)]} ≤ 0.

(6.32) It means that ṽi is a subsolution of the following PDE:      min{(w -L i ((v l, * ) l∈Γ ))(t, x); max[(w -U i ((v l, * ) l∈Γ ))(t, x); -p -b (t, x)q -1 2 T r(σσ (t, x)M ) -f i (t, x, [(v l, * (t, x)) l∈Γ -i , w], σ (t, x)q)]} = 0 w(T, x) = h i (x). (6.33)

In addition, the following function is lsc:

(t, x, w, p, q, M ) ∈ [0, T ] × R k+1+1+k × S k -→ min{w -L i ((v l, * ) l∈Γ )(t, x); max[w -U i ((v l, * ) l∈Γ )(t, x);

-p -b (t, x)q -f i (t, x, [(v l, * (t, x)) l∈Γ -i , w], σ (t, x).q)]}.

As v i is the supremum of ṽi , thanks to Lemma 4.2 in [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF], v i is a viscosity subsolution of (6.33). But i is arbitrary, then (v i ) i∈Γ is a viscosity subsolution of system (4.1).

Step 2: (v i ) i∈Γ is a viscosity supersolution of (4.1).
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  Now let us define the following processes: ∀i ∈ Γ, s ∈ [t, T ], ḡi,i+1 (s, X t,x s )) + ds.

  For any s ∈ [t, T ], Ȳ i,m0 s = ess sup σ≥s ess infτ ≥s E[f σ∧τ s f i (r, X t,x r , ( Ȳ l,m0 r ) l∈Γ , Zi,m0 r )dr + L i,m0 σ 1 (σ<τ ) + Ũ i,m0 τ 1 (τ ≤σ,τ <T ) + h i (X t,x T )1 (τ =σ=T )|F s ] Next following Theorem 3.7 and Theorem 6.2 in [?], vi,m0 is the unique solution in viscosity sense of the following PDE with obstacle:

Proof. Let us show the result by contradiction, i.e. there exists 0 > 0 and some (t 0 , x 0 ) ∈ [0, T ) × R k such that max i∈Γ (u i (t 0 , x 0 ) -w i (t 0 , x 0 )) ≥ 0 . (6.7)

Next without loss of generality we assume that there exists R > 0 such that for t ∈ [0, T ],

|x| ≥ R we have for any i ∈ Γ, (u i -w i )(t, x) < 0. (6.8)

Actually if (6.8) does not hold, it is enough to consider the following functions w i,θ,µ defined by w i,θ,µ = w i (t, x) + θe -λt (1 + |x| 2γ+2 ), (t, x) ∈ [0, T ] × R k which still a supersolution of (4.1) for any θ > 0 and λ ≥ λ 0 (λ 0 is fixed). Then to show that u i -w i,θ,µ ≤ 0 for any i ∈ Γ and finally to take the limit as θ → 0 to obtain (6.6). But for any i ∈ Γ, u i -w i,θ,µ is negative uniformly in t when |x| is large enough since u i belongs to g with polynomial exponent γ.

To proceed, let (6.7)-(6.8) be fulfilled. Then max

where B(0, R) is the ball centered in the origin with radius R. Note that t * < T since

The proof now will be divided into two steps:

Step 1 : To begin with, we introduce the following auxiliary condition: There exists λ >

and where C f i is the Lipschitz constant of f i w.r.t. y.

So let i 0 be an element of Γ(t * , x * ) such that 

The function Φ i0 n (t, x, y) is usc, then we can find a triple (

From which we deduce that

(C R is a constant which may depend on R) since the sequences (t n ) n , (x n ) n and (y n ) n are bounded and u i0 and w i0 are of polynomial growth. As a result (x n -y n ) n≥0 converges to 0. On the other hand, by boundedness of the sequences, we can find a subsequence, which we still denote by (t n , x n , y n ) n , converging to a point denoted ( t, x, x). By (6.12) it satisfies:

which implies that the sequence (u i0 (t n , x n )) n converges to u i0 (t * , x * ) and then also the sequence (w i0 (t n , y n )) n converges to w i0 (t * , x * ).

Next, we recall the definition of i 0 ∈ Γ(t * , x * ). By (6.10)-(6.11), for n large enough we can find a subsequence (t n , x n ) n such that

Next we apply Crandall-Ishii-Lions's Lemma (see e.g. [START_REF] Fleming | Controlled Markov processes and viscosity solutions[END_REF], pp.216) and then there exist (

where

Next by taking into account that (u i ) i∈Γ and (w i ) i∈Γ are respectively subsolution and supersolution of (4.1) and the inequalities (6.15)-(6.16), we obtain

We first focus on the terminal condition. For any i ∈ Γ, v i * (T, x) = h i (x) from the inequality

= vi,m0 since v i is lsc and vi,m0 is continuous.

Next by contradiction we assume that (v i ) i∈Γ is not a supersolution of (4.1), i.e. there exists at least one i ∈ Γ and for some (t 0 , x 0 ) ∈ (0, T ) × R k and (p, q, M ) ∈ J -(v i * )(t, x) such that we have:

T r(σσ (t 0 , x 0 )M ) -f i (t 0 , x 0 , (v l * (t 0 , x 0 )) l∈Γ , σ (t 0 , x 0 )q)]} < 0. (6.34)

Next for any positive constants δ, γ and r let us define:

By choosing δ and γ small enough, we deduce from (6.34) that

Next let us define the following function:

According to (6.36) we have Θ(t 0 , x 0 ) < 0. On the other hand, Θ is usc since the functions v i * , i ∈ Γ, are lsc, u δ,γ is continuous and f i is continuous and verifies the monotonicity property. Therefore for any > 0, there is some η > 0 such that for any (t, x) ∈ B η we have Θ(t, x) ≤ Θ(t 0 , x 0 ) + Next as Θ(t 0 , x 0 ) < 0, we can choose small enough to obtain Θ(t, x) ≤ 0 for any (t, x) ∈ B η . Thus for any (t, x) ∈ B η , u δ,γ is nothing but a viscosity subsolution of the following PDE (on B η ):

As for any i ∈ Γ, v i * ≤ v i, * , then u δ,γ is also a viscosity subsolution of (6.37) by replacing

On the other hand since (p, q, M ) ∈ J -(v i * (t 0 , x 0 )), by the definition of the subjet ([2]) we have: ∀i ∈ Γ,

Next let us set δ = r 2 8 γ and let us go back to the definition of u δ,γ yielding

when r 2 ≤ |x-x 0 | ≤ r and r small enough. Next let us take r ≤ η and let us define the function ũi by:

Then according to (6.37) and Lemma 1.2 in [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF], ũi is also a subsolution of the following PDE:

Once more by the monotonicity of f i and the fact that ũi ≥ v i , [(v l ) l∈Γ -i , ũi ] is also a subsolution of (4.1) which belongs to Π g . Then by comparison we obtain that [(v l ) l∈Γ -i , ũi ] belongs to U m0 . Next by the definition of v i * , we can find a sequence (t n , x n , v i (t n , x n )) n≥1 which converges to (t 0 , x 0 , v i * (t 0 , x 0 )), then we have lim n→∞

This result implies that we can find some points (t n , x n ) such that ũi (t n , x n ) > v i (t n , x n ), which is contradictory against the fact that [(v l ) l∈Γ -i , ũi ] belongs to U m0 and the definition of (v i ) i∈Γ .

Step 3: Continuity and uniqueness of (v i ) i∈Γ .

Following the definition of usc envelop (v i, * ) i∈Γ (resp. lsc envelop (v i * ) i∈Γ ), (v i, * ) i∈Γ (resp.(v i * ) i∈Γ ) is a usc subsolution (resp. lsc supersolution) of (4.1), then by Proposition 6.2 we obtain ∀i ∈ Γ, v i, * ≤ v i * Meanwhile it holds true that v i * ≤ v i ≤ v i, * then v i * = v i, * , which implies the continuity of v i . Next we assume that there exists another solution (v i ) i∈Γ of (4.1) which belongs to class Π g . As (v i ) i∈Γ and (v i ) i∈Γ are both subsolutions and supersolutions, by the comparison result we obtain both v i ≤ vi and v i ≥ vi with al i ∈ Γ, as a result the solution is unique. The uniqueness of solution leads us directly to the fact that the solution (v i ) i∈Γ does not depend on m 0 . Finally for any i ∈ Γ and m 0 we have vi ≤ v i ≤ v i,m0 .

Just send m 0 to +∞ to obtain that for any i ∈ Γ, vi = v i .