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Unicellular maps and filtrations of
the mapping class group

Abdoul Karim SANE

Abstract

This article first answers to questions about connectedness of a new
family of graphs on unicellular maps. Answering these questions goes
through a description of the mapping class group as surgeries on uni-
cellular maps. We also show how unicellular maps encode subgroups of
the mapping group and provide filtrations of the mapping class group.
These facts add a layer on the ubiquitous character of unicellular maps.

Repositioning "old molecules"
to draw subgroups of the mapping class group.

1 Introduction

Throughout this article, Σg denotes a closed oriented surface of genus g
andMCG(Σg) the mapping class group of Σg: the group of isotopy classes
of preserving orientation homeomorphisms.

A unicellular map is a graph G := (V,E) embedded in Σg such
that Σg − G is a topological disk. The degree partition of a unicellular
map G is the ordered list d := (d1, ..., dn) of degrees of the vertices of G. We
denote by Ũd,g the set of isotopy classes of unicellular maps on Σg of degree
partition d. There is a natural action of the mapping class group on Ũd,g:

A :MCG(Σg)× Ũd,g −→ Ũd,g
(φ,G) 7−→ φ(G).

We denote by Ud,g the quotient space under this action. This amounts to
consider unicellular maps up to homeomorphisms.

In [15], we introduced a new operation on unicellular maps called sur-
gery. A unicellular map comes with a natural cyclic order on its oriented
edges. Given a unicellular map G and two oriented edges x and y of G, there
is a unique simple arc λx,y (up to homotopy with end points gliding on x
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and y) leaving x from its right side and entering y into its right side. A sur-
gery on G between x and y consists of a local modification of G along λx,y
as shown in Figure 1.

x y

λx,y −→

G σx,y(G)

Figure 1 – Surgery along λx,y.

In [15] —and we will recall it in Section 2—, we gave a necessary and
sufficient condition (on how x and y appear in the cyclic order on edges) for
a surgery σx,y(G) on G between x and y to be a unicellular map. Since a
surgery operation is between two oriented edges, the degree partition is left
invariant.

To the surgery operation, we associate two graphs:
— the topological surgery graph K̃d,g whose vertices are elements of
Ũd,g, and whose edges are given by surgeries ;

— the combinatorial surgery graph Kd,g whose vertices are elements
of Ud,g with again surgeries as edges.

The action of MCG(Σg) on Ũd,g extends to an action on K̃d,g and the
quotient graph is just Kd,g. Unlike the case of the other complexes (curves
complex, pants complex...), combinatorial surgery graphs are big graphs since
the number of homeomorphism classes of unicellular maps grows exponen-
tially with the genus (see [1], [5], [16]).

In [15], we were interested on the coarse geometry of combinatorial sur-
gery graphs Kd1,g for d1 = (4, 4, ....., 4)︸ ︷︷ ︸

2g−1 times

. Since a regular 4-valent graph is

equivalent to a collection of closed curves in generic position, we call ele-
ments of Ũd1,g unicellular collections. By counting formulas due to Gou-
pil and Schaeffer [5], we deduce that the number of unicellular collections is

equivalent to
(4g − 2)!

22g−1g!
.
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Theorem (S. [15]). For every g ≥ 1, the combinatorial surgery graph Kd1,g

is connected. Moreover, its diameter Dg is zero for g = 1 and satisfies the
following inequality:

2g − 1 ≤ Dg ≤ 3g2 + 9g − 12;

for g ≥ 2.

In this article, we first slightly extend this result toKd0,g ; where d0 = (3, .., 3).

Theorem 1. For every g ≥ 1, the graph Kd0,g is connected.

Theorem 1 will be useful for the proof of:

Main theorem. For every g ≥ 3, the topological surgery graph K̃d0,g is
connected. Moreover, K̃d0,g is quasi-isometric toMCG(Σg).

Let us explain the relation between topological surgery graphs and the
mapping class group.

Let G be an element of Ũd,g:

Definition 1.1. An homeomorphism φ ∈MCG(Σg) is G-surgery compa-
tible if and only if there is a sequence of surgeries from G to φ(G).

We denote byMCGG(Σg) the group of all G-surgery compatible homeo-
morphisms of Σg. If G and G′ are two unicellular maps in the same connected
component of K̃d,g, thenMCGG(Σg) =MCGG′(Σg). When the combinato-
rial surgery graph Kd,g is connected,MCGG(Σg) up to conjugacy, depends
only on the parameters (d, g) and we just denote byMCGd,g(Σg) the group
of surgery compatible homeomorphisms.

If K̃d,g is connected, then Kd,g is also connected and the group of surgery
compatible homeomorphisms is the whole mapping class group ; and it is an
equivalence.

The proof of Main theorem relies on two facts: the connectivity of Kd0,g

and the fact thatMCGd0,g(Σg) =MCG(Σg).

From our main theorem one can read a presentation ofMCG(Σg). Let γ
be closed path on Kd0,g based on G ∈ Kd0,g ; γ is a sequence of surgeries
G0 = G→ G1 → ...→ Gn such that [G] = [Gn]. It defines a unique homeo-
morphism (up to the group Sym(G) of homeomorphisms which fixe G) φγ
such that φγ(Gn) = G. It follows from Main theorem that the map

R : π1(Kd0,g, G) −→MCG(Σg)|Sym(G)

γ 7−→ φγ ;
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is surjective. This map gives a presentation of the mapping class group where
the generating set corresponds to loop of surgeries on cubic unicellular maps
with implicit relations coming from relations between surgeries.

As we will see after the proof of Main theorem, if one just wants to ge-
nerate the mapping class group via surgeries on a unicellular map, it is not
necessary for the map to be cubique. There are other degree partitions d for
which the graph Kd,g is disconnected and such thatMCGG(Σg) =MCG(Σg)

for a map G ∈ Ũd,g. There are also degree partitions for which the com-
binatorial surgery graph is connected but the group of surgery compatible
homeomorphisms is a proper subgroup ofMCG(Σg). Let us see this closely.

Given a unicellular map G and a vertex vi of G of degree di, one can
obtained a new unicellular maps by splitting vi into two vertices vj and vk
of degree dj and dk and the following is satisfied: di = dj + dk − 2.

Definition 1.2. A degree partition d = (d1, ..., dn) of a unicellular map is
even if all the integer di are even.

We show the following:

Theorem 2. Let G be a unicellular map with even degree partition d. Then
MCGG(Σg) is a proper subgroup of the mapping class group.

Theorem 2 above implies that for even degree partitions, the topological
surgery graph K̃d,g is not connected and the graph K̃d1,g is one of them. We
prove it by constructing an invariant of surgery on unicellular maps with
even degree partition.

The splitting vertex operation associated to Main theorem give the fol-
lowing:

Theorem 3. For every g ≥ 2, there is a filtration of the mapping class group
associated to each vertex splitting sequence starting at a one vertex unicellular
map and ending to a cubic unicellular map. Moreover, for a suitable choice
of the initial map G, one can start the filtration with a free group.

Comparaison with others graphs: One way to understand proper-
ties of the mapping class group is by analyzing its shadow in a complex
associated to Σg, on which it acts. The curves complex C(Σg) is one of
those complexes on which the mapping acts. Masur and Minsky ([10],[11])
showed that C(Σg) is infinite diameter, δ-hyperbolic and they use the ac-
tion ofMCG(Σg) on C(Σg) and hyperbolic machineries to study properties
like words problem, conjugacy problem, quasi-isometry rigidity. Masur and
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Minsky also showed that the mapping class group is hierarchically hyper-
bolic ; a weaker version of hyperbolicity. The arcs complex (a generalization
of the curves complex) and the pants graph are other graphs on which the
mapping class group acts naturally.

Previously, Hatcher and Thurston [7] used the graph of cut systems:
collections of disjoint closed curves which cut Σg into a sphere with 2g boun-
dary components, to read off a finite presentation of the mapping class group.

So, finding a complex on which the mapping class acts happens to be use-
ful. Either we deduce from that action properties on the mapping class group
or we deduce from that action properties on the complex. Our construction
follows this philosophy. The graphs we provide are closer to the mapping
class group than the others mention above since they are not quasi-isometric
to the mapping (they are not locally compact).

The flip graph on one-vertex triangulations (see [6] for flips on triangu-
lations) of Σg is somehow closer to K̃d0,g, since their vertices are dual each
other. But, a surgery on a cubic unicellular map corresponds to a sequence
of flips on the triangulation dual to it ; and vice-versa. A surgery needs to
satisfy an intertwining condition on edges while each edge of a triangulation
corresponds to a flip. The degree of vertices in flip graphs are larger than
those in surgery graphs, and connectedness is less expected for the latest
graph. Its known [3] that the flip graph on triangulations with n vertices
is quasi-isometric toMCG(Σg,n): the group of isotopy classes of homeomor-
phism which fixe the marked points (with fixed marked points isotopies). By
Birman exact sequence, MCG(Σg,1) is a π1(Σg)-extension of MCG(Σg). So
our main theorem provides a graph which is quasi-isometric toMCG(Σg).

For other degree partitions, unicellular maps are dual equivalent to one-
vertex cell decompositions of the surface and there are also elementary move
associated to some of them (see [12], [13] for moves on quadrangulations).
When we restrict to one-vertex cell decompositions, surgery (on the dual)
seems to be the most adapted moves since it is defined for all degree parti-
tions.

Outline of the paper: In section 2, we recall some notions about surgery
on unicellular maps and we give the proof of Theorem 1. Section 3 is divided
into three paragraphs. The first one deals with the proof of Main theorem.
In the second paragraph, we construct a surgery invariant for the proof of
Theorem 2. The third paragraph composed with examples in Section 4 can
be taken as a proof of Thereom 3.
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2 Surgery on unicellular maps

In this sections, we recall some notions about surgery on unicellular maps
introduced in [15] by us. It ends by a the proof of Theorem 1.

Let G := (V,E) be a unicellular map on Σg and let d = (d1, ..., dn) be
its degree partition. In this section, we assume that all vertices have degree
greater than two (even though the question of surgery on unicellular maps
makes sense for unicellular maps having degree 1 and degree 2 vertices). In
section 3, it will be more convenient to consider false vertices which are just
degree two vertices on each edges of G. Using the Euler characteristic, one
obtained the following relation between the number of vertices, the number
of edges and the degree partition of G:

|E| − |V | = 2g − 1;
∑

di = 2|E|.

For instance, if G is a cubic unicellular map: |V | = 4g − 2 and E = 6g − 3.
Cubic unicellular maps have largest number of vertices and edges.

Now, if one walk along a unicellular map G in such a way that at each
vertex, we follow the edge just on the right, we obtained a closed walk and
any oriented edges of G is followed exactly once. The closed walk give a
cyclic order on oriented edges of G. If we label each oriented edge of G such
that two orientations of the same edge have the same label with the bar sym-
bole (¯) over one of them, we obtained a wordWG of length 2|E|. Up to cyclic
permutation and relabelling, the word WG determines the homeomorphism
class of G.

Let x and y be two oriented edges of G. There is a unique arc λx,y —up
to homotopy with extremities gliding in x and y— leaving x from its right
and entering y into its left. Let G′ := σx,y(G) be the graph obtained by
modifying G along λx,y like in Figure 1.

Definition 2.1. The oriented edges x and y are intertwined if and only if
the arc λx,y and λx̄,ȳ intersect once. It is equivalent to say that in the cyclic
order on oriented edges we see x < x̄ < y < ȳ or x < ȳ < y < x̄.

In [15], we proved the following:

Lemma 2.1 (Card Shuffling). The graph G′ := σx,y(G) is unicellular if and
only if x and y are intertwined and in this case.
Moreover, if w1xw2x̄w3yw4ȳ is a word associated to G, then w3xw2x̄w1yw4ȳ
is a word associated to G′.
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If x and y are two intertwined edges, so are x̄ and ȳ ; and by Lemma 2.1,
there is an homeomorphism φ such that σx̄,ȳ(G) = φ(σx,y(G)).

Now, we turn to the combinatorial surgery graph on cubic unicellular
maps. Namely we prove Theorem 1, and as we will see, it is a corollary of
Theorem 1 already proved in [15].

Definition 2.2. — An edge of a graph is a bridge if its complement in
the graph is disconnected.

— A perfect matching of a graph is a maximal subset P of edges such
that any vertex of G belong to an edge in P and two different edges
do not share a vertex.

The following theorem gives a sufficient condition for a cubic graph to
admit a perfect matching.

Theorem 4 (Petersen, [14]). A cubic unicellular map with at most two
bridges admits a perfect matching.

Starting from a unicellular collection G, one can get a cubic one G′ by
splitting all his vertices into vertices of degree 3. Thus, G′ admits a perfect
matching which is just the set of new edges obtained after the splitting
process. But, not all cubic unicellular maps are obtained in this way.

Definition 2.3. A cubic graph is a virtual unicellular collection if it
admits a perfect matching.

Virtual unicellular collections a closed to unicellular collection since they
are obtained by a splitting vertex process.

Lemma 2.2. Let G be a cubic unicellular map. Then, there is a sequence
G0 = G→ G1 → ...→ Gn such that Gn is a virtual unicellular collection.

Proof. Let k be the number of bridges in G. Let e be a bridge of G, G1(e)
and G2(e) the two components of G− e.

Let e1 (respectively e2) be one of the two edges of G1(e) (respectively
G2(e)) which has a common vertex with e. Since e is a bridge, there is
an orientation of e1 —let us denote it x— which is intertwined with an
orientation of e2 —which we denote y.

The edge e is no longer a bridge in G1 := σx,y(G) since the surgery
produces another edges with extremities in G1 and G2 (see Figure 2).

The number of bridges in G1 is therefore equal two k − 1. Repeating
this process, we get a cubic unicellular map Gn with no bridge ; and then by
Theorem 4, Gn is a virtual unicellular collection.
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e

G1(e)

G2(e)

−→

Figure 2 – Reduction of the number of bridges by a surgery.

Let us discuss the proof of Theorem 1 in genus 7 ; for the general proof
follows the same idea. Let C7 be the unicellular collection in Σ7 on Figure 3
(on the left), and CV7 the cubic unicellular map obtained from C7 by splitting
all its vertices like on Figure 3 (on the right). The vertices in green are split
in such a way that they give bridge edges.

−→

Figure 3

Lemma 2.3. Let G be a virtual unicellular collection. Then, there is a se-
quence of surgeries transforming G into CV7.

Proof. Let P be a perfect matching of G. By forgetting edges of P , one can
see (G,P ) as a unicellular collection. By Theorem 1, there is a sequence
of surgeries (which does not touch edges in P ) transforming (G,P ) into
(Gn, Pn) such that Gn is obtained from C7 by splitting its vertices. The two
ways on which one can split vertices of C7 in red color lead to the same
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−→

Figure 4 – A surgery which changes an edge into a bridge.

map. Also, the surgery depicted in Figure 4 transforms an edge obtained by
splitting a green vertex to a bridge edge, if it is not one.

Therefore, there is sequence of surgeries from G to CV7 as claimed.

Proof of Theorem 1. Let G be cubic unicellular map on Σ7. By Lemma
2.2, there is sequence of surgeries which transforms G into G1 such that G1

admits a perfect matching. By Lemma 2.2, there is sequence of surgeries
which transforms G1 into CV7. So Kd0,7 is connected.

3 Surgeries and isotopy classes of homeomorphisms

This section start by the construction of explicit Dehn twists obtained
by surgeries. Its ends with the proof of Main theorem.

We recall that in this section, we assume that all unicellular maps have
false vertices: 2-valent vertices in each edges.

Let Homeo+(Σg) be the group of preserving orientation homeomorphism
and Homeo+

0 (Σg) the subgroup of homeomorphism isotopic to identity. The
mapping class group MCG(Σg) := Homeo+(Σg)/Homeo0(Σg) is the group
of isotopy classes of preserving orientation homeomorphisms. Its well known
([2], [9]) that the mapping class group of Σg is finitely generated by Dehn
twist. Humphries [8] showed that 2g+ 1 Dehn twists generated the mapping
class group and 2g + 1 is the minimal number.

Let K̃d,g be a the topological surgery graph on Ũd,g and Kd,g the com-
binatorial surgery graph. Let G a fixed point in Kd,g, Sym(G) the group of
homeomorphisms that fixe G, and γ a closed path in Kd,g based in G. A
lift γ̃ of γ in K̃d,g gives a path from γ(0) to γ(1). There is a unique homeo-
morphism φγ (Up to Sym(G)) such that γ(1) = φγ(γ(0)). Therefore, the
map

R : π1(Kd0,g, G) −→MCG(Σg)|Sym(G)

γ 7−→ φγ ,
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is well defined.

Definition 3.1. An homeomorphism φ isG-surgery compatible if φ = R(γ)
for γ ∈ π1(Kd0,g, G). It is equivalent to say that G and φ(G) are connected
in the graph K̃d,g.

The subgroup of G-surgery compatible homeomorphisms MCGG(Σg) is
then generated by π1(Kd0,g, G) and those generators come with relations
between them.

Dehn twists as surgery compatible homeomorphisms: Now, we show
how we can obtained Dehn twists as G-surgery compatible homeomorphisms.
Let x and y be two intertwined edges in G. Then, if we take the arcs λx,y
(from x to y) and λx̄,ȳ (from x to y) such that they end points are the same,
we obtain an essential curve ν with one self-intersection. Let P(x, y) be the
pair of pants generated by ν ; γ the boundary component of P(x, y) which
intersects x and y both, α the boundary component which intersects x, and
β the one which intersects y (see Figure 5).

λx,y

λx̄,ȳα

β

γ

Figure 5 – Pair of pants generated by two intertwined edges x and y.

If G′ := σx,y(G) is the unicellular map obtained after a surgery on G
between x and y, the oriented edges get transformed to two new oriented
edges —let us call them x and y too. By Lemma 2.1, x and y remain inter-
twined in G′. Moreover, if w1xw2x̄w3yw4ȳ is a word associated to G, then
w3xw2x̄w1yw4ȳ is a word associated to G′ and w3xw4x̄w1yw2ȳ is a word
associated to σx̄,ȳ(G′). The first and latest words are the same up to cyclic
permutation and relabeling. Therefore σx̄,ȳ(σx,y(G)) defines a closed path
based on G in Kd,g (See Figure 6 for the different steps of the path).

Let us denote by ix,y this path and φix,y the homeomorphism defined
by ix,y.

10
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→ →

Figure 6

Lemma 3.1. Let ix,y be the closed path in Kd,g described above. Then,

φix,y = τ2
α.τγ .τ

2
β ;

where τγ, τα and τβ are Dehn twists along γ, α and β ; respectively.
If ω is a simple curve in Σg which intersects G once, then τ2

ω is a G-
surgery compatible homeomorphism.

Proof. If x and y are intertwined, they defined a pair of pants and the se-
quence G −→ σx,y(G) −→ σx̄,ȳ(σx,y(G)) is depicted in Figure 7 and the
homeomorphism follows.

→ →

Figure 7

Let α be a simple curve that intersects G once at x. If we consider the
false vertex in x, the oriented edges x breaks into two edges x1 and x2. The
edges x1 and x̄2 are intertwined and λx1,x̄2 follows α. The surgery on G
between x1 and x̄2 gives the map τ2

α (See Figure 8).

→x1

x̄1

x2

x̄2

λx,x̄2

Figure 8
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Corollary 1. Let x and y be two intertwined edges of G and γ the unique
simple closed curve which intersects G twice, at x and y. Then, τγ is a G-
surgery compatible homeomorphism.

Proof. By Lemma 3.1, τ2
α.τγ .τ

2
β is G-surgery compatible. Since α and β inter-

sect G once, τ2
α and τ2

β are also G-surgery compatible. We obtained τγ as a G-
surgery compatible homeomorphism by composition with τ−2

α and τ−2
β .

Corollary 2. For d0 := (3, 3, ..., 3) and g ≥ 2, MCGd0,g(Σg) = MCG(Σg).
In other words, the whole mapping class group is (d0, g)-surgery compatible
for all g ≥ 2.

Proof. By Corollary 1, it is sufficient to find a set of simple closed curve γx,y
generated by intertwined edges, which is homeomorphic to Lickorish’s gene-
rating set. The graph in dark in Figure 9 is a cubic unicellular map in Σ3,
and it has three bridges.

Figure 9 – Lickorish’s generators obtained by the simple curves generated
by intertwined edges.

A bridge edge is intertwined to all edges and two edges separate by a
bridge are intertwined. The collection of curve in red is such that each curve
intersects G twice, at two intertwined edges. The right Dehn twists along
these curves are (d0, 3)- surgery compatible and the collection is homeomor-
phic to the standard Lickorish’s generators. So, MCGd0,3(Σ3) = MCG(Σ3)
and the proof is the same for all g ≥ 2.

Here is the proof of Main theorem.

Proof of Main theorem. Let G1 and G2 be two points in Ũd0,g (g ≥ 2).
Since Kd0,g is connected (Theorem 1), there is a path from G1 to φ(G2).
Since all homeomorphisms are (d0, g)-surgery compatible, there is a path
from φ(G2) to G2. So, K̃d0,g is connected.

For the quasi-isometry between MCG(Σg) and K̃d0,g, we check Švarc-
Milnor lemma’s conditions.

12
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The graph K̃d0,g is a proper length space (edges have length equal to one).
The action ofMCG(Σg) is co-compact since the graph Kd0,g is compact. For
every G ∈ K̃d0,g, |Fix(G) ≤ ∞| since G as finite number of edges. There-
fore, the action is properly discontinuous. So, MCG(Σg) is quasi-isometric
to K̃d0,g.

Remark 3.1. In general, MCGG(Σg) is quasi-isometric to C(G), where
C(G) is the connected component of K̃d,g containing G.

One could think that the equality MCGd0,g(Σg) = MCG(Σg) for g ≥ 2
is due to the fact that cubic unicellular maps have the maximal number of
edges. The unicellular map G in Figure 10 is of degree partition d = (5, 5)
and we obtained the Lickorish’s generators with the simple closed curves
generated by intertwined edges in G. It implies that each connected com-
ponent of K̃d,2 is stable under the action of the mapping class group. But,
by tracking the Humphries generators, one can generate the whole mapping
class group with G ∈ Ũd,g for d = (5, 5, 6, 6..., 6). To see this, we start with
the analogue of the map G depicted in Figure 9. It gives us the 3g−1 Licko-
rish’s generators. We remove g − 2 curves form that generating set so that
we obtained the Humphries generators. We then collapse all edges which are
disjoint from the remaining generating set.

Figure 10 – Lickorish’s generators obtained form intertwined edges.

Surgery invariant: Now, we define a surgery invariant for the proof of
Theorem 2.
Let G be a unicellular map, Sg the set of all simple closed curves in Σg

and IG the map associated to G defined by:

IG : Sg −→ Z/2Z
α 7−→ i(G,α) mod 2;

where i(G,α) is the geometric intersection number: the minimal number
of time α intersects G in its isotopy class.
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Proposition 3.1 (Invariant). Let G be a unicellular map whose vertices
have even degree. If G′ is obtained by a surgery on G, then

IG′ = IG.

Proof. Let α be a simple curve in Σg and i(G,α) := k. Let x and y be two
intertwined edges of G and λx,y the arc from x to y. It follows that after the
surgery,

|G′ ∩ α| = k + 2n;

where n is the number of time λx,y intersects α. Since G′ has even degree
partition, i(G′, α) and k + 2n have the same party.

So, i(G,α) = i(G′, α) mod 2.

With the proposition above, we provide many Dehn twists which are not
G-surgery compatible for even degree partitions.

Corollary 3. Let G be a unicellular map with even degree partition and α
be a simple curve such that i(G,α) is odd. Then, the Dehn twist τα is not
G-surgery compatible ; that isMCGG(Σg) is a proper subgroup ofMCG(Σg).

Proof. Since i(G,α) is odd, then α is non separating. Therefore, there is a a
simple curve β which intersects α once. But, i(τα(G), β) = i(G, β) + i(G,α).
It follows that i(G, β) and i(τα(G), β) have different parity. Hence, τα is not
G-surgery compatible.

Given a unicellular map G with even degree partition, The map IG is
completely determined by its valued on a (symplectic) basis of the first ho-
mology group of Σg. Therefore, IG is determined by a vector of size 2g with
coordinates 0 or 1. The invariant I defines 3g different classes.

Figure 11 shows two different unicellular collections G1 and G2 with
different associated maps: IG1 = (1, 1, 1, 1) and IG2 = (1, 0, 1, 1). So, they
are in different connected components of K̃(4,4,4),2.

Figure 11 – Two unicellular collections in different connected components
of K̃(4,4,4),2.
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There is another interesting subgroup associated to a unicellular map of
even degree partition G:

MCGIG(Σg) = {φ ∈MCG(Σg), IG = Iφ(G)}.

The groupMCGG(Σg) is a subgroup ofMCGIG(Σg).
Now we give the proof of Theorem 2.

Proof of theorem 3. By Corollary 3, Dehn twist along simple curve which
intersects G —with even degree partion—, are not G-surgery compatible. It
follows thatMCGG(Σg) is a proper subgroup.

The graph Kd1,g is disconnected but each connected component contains
a MCGd1,g(Σg) orbit of any combinatorial map [G] ∈ Kd1,g since Kd1,g is
connected. Theorem 2 implies that the question of connectedness of combi-
natoric surgery graphs on unicellular maps of even partition is purely com-
binatoric.

−→

Figure 12 – Splitting a vertex of degree five into two vertices.

Filtration ofMCG(Σg) by splitting vertex sequence: We added more
to the ubiquity of unicellular maps by showing that a unicellular map G
parametrizes a subgroup of mapping class group: the subgroupMCGG(Σg).
The splitting operation on vertices (see Figure 12) gives a natural inclusion
map. In fact, if v is a vertex of a unicellular map G with degree greater
than 3, one can split v into two to obtained a new map G′. A surgery on G
has an equivalent in G′ by just forgetting new edges created by the splitting
operation. This shows that G-surgery compatible homeomorphism, defined
by a loop of surgeries in G, is also a G′-surgery compatible homeomorphism:

G
split−→ G′ =⇒ MCGG(Σg) ↪→MCGG′(Σg).

We then defined a filtration ofMCG(Σg) as follow: we start with a uni-
cellular map G with only one vertex and we split step by step vertices till
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we obtained a cubic unicellular map. To this sequence G0 = G → ... → Gn
follows a filtration:

MCGG(Σg) ↪→ ... ↪→MCGGn−1(Σg) ↪→MCG(Σg)

4 Two examples

The case of torus: Let us consider Ũ(4),1: the set of unicellular maps on T2

with one vertex of degree 4. The geometric intersection between G ∈ Ũ(4),1

and the two curves of the symplectic basis can not be even at the same time.
Therefore, the invariant I defines three different classes:

(0, 1); (1, 0); (1, 1).

Let G0 be the unicellular maps on T2 made by the meridian curve α and the
longitude β. Let φ0 be the homeomorphism of T2 which maps α to β and
vice versa ; φ2

0 = Id. To G ∈ Ũ(4),1, we associate the following word:

x1x2y1y2x̄2x̄1ȳ2ȳ1.

Then, oriented edges which are not in the same curve are not intertwi-
ned. Therefore, MCGG(T2) = 〈τ2

α, τ
2
β〉. So, φ0 is not G-surgery compatible

since MCGG(T2) is free ; even though φ0 ∈ MCGIG0
(T2). It means that in

this caseMCGd0,1(T2) is a proper subgroup ofMCGIG0
(T2), but up to φ0,

MCGIG0
(T2) is equal toMCGd0,1(T2).

The partition d = (4g) and d = (2g + 1, 2g + 1): We chose these two
partition because they are examples for which the combinatorial surgery
graph is not connected. Let [G] be combinatorial map on Σg defined by
WG = x1x2...xgx̄1x̄2...x̄g. The map G has one vertex and there are not pair
of intertwined edges. So the only elementary G-surgery compatible homeo-
morphism are square of Dehn twists along simple curves αxi supported by
the edges, and [G] is an isolated point in K(4g),g. Moreover, a reduced se-
quence of surgeries (two consecutive surgeries do not cancel each other) acts
non trivially on G. In fact, at the k-th step of the sequence of surgeries,
the arc along which the surgery is performed follows the meanders of the
previous one since xi < xj < x̄i < x̄j for all i < j ; that is the map G gets
more complicated. So,

MCGG(Σg) = 〈τ2
αx1

, ..., τ2
αxg
〉 ' Fg.
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Let [G′] be the map defined by the wordWG′ = x1x2x̄1x̄2...xg−1xgx̄g−1x̄g.
The map [G′] has also one vertex with many intertwined oriented edges. The
simple curves α1 and α2 generated by the intertwined pairs {x1, x4} and
{x2, x3} are disjoint. So, 〈τα1 , τα2〉 is a subgroup ofMCGG′(Σg) isomorphic
to Z2. Therefore, G and G′ parametrize different subgroups ofMCG(Σg).

For d = (2g + 1, 2g + 1), the same thing happens. The graph Kd,g is not
connected —the combinatorial map [G] defined by x1x2...xg+1x̄1x̄2...x̄g+1

has two vertices and is isolated in Kd,g. Moreover,

MCGG(Σg) = 〈τ2
αx1

, ..., τ2
αxg+1

〉 = Fg+1.

The map G′ defined by x1x2x̄1x̄2...xg−1xgx̄g−1x̄g defines a proper sub-
group different to MCGG(Σg) except that for g = 2, MCGG′ = MCG(Σg)
—the simple curves generated by intertwined edge gives Lickorish’s genere-
tors.
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