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Abstract. The Stern-Gerlach [1] experiment is notoriously counter-intuitive. The official explanation has it that

the spin remains always aligned with the magnetic field such that the directions of space would be quantized: A

fermion can only have its spin up or down. But that theory is based on several blatant mathematical errors in the

way it (mis)treats spinors and group theory. We present here a mathematically rigorous theory for a fermion in a

magnetic field, which is all but beyond human intuition. It is based on an understanding of spinors in SU(2) which

as explained in [2] is only Euclidean geometry. Contrary to what Pauli [3] has been reading into the Stern-Gerlach

experiment, the directions of space are not quantized. The new and corrected paradigm, which solves all the con-

ceptual problems, is that the fermions precess around the magnetic-field lines just like Einstein had conjectured.

But surprizingly this leads to only two energy states, which should be qualified as precession-up and precession-

down rather than spin-up and spin down as has been claimed. Indeed, despite the presence of the many different

possible angles θ between the spin axis s and the magnetic field B, the fermions can only have two possible energies

m0c2 ±µB . The values ±µB are at variance with the continuum of values −µ·B Einstein had anticipated. What is

wrong in what Einstein had expected is that the energy term V = −µ·B is a macroscopic quantity. It is a statistical

average over a large ensemble of fermions distributed over the two microscopic energy states ±µB , and as such not

valid for individual fermions. The two fermion states ±µB are not potential-energy states, but they are stable, just

like a precessing spinning top without friction in a gravitational field is stable. We also spell out the mathematically

rigorous meaning of the up and down spinors. They represent left-handed and right-handed reference frames, such

that now everything is intuitively clear and understandable in simple geometrical terms.

PACS. 02.20.-a, 03.65.Ta, 03.65.Ca Group theory, Quantum Mechanics

1 Confusion reigns

1.1 Preamble

In this section1 we want to point out the total lack of intuition and the total lack of theory which prevail in the traditional
presentation of the Stern-Gerlach experiment. We have shown in many examples on many occasions in the past [4] that the
“geometry” that corresponds to the algebra of quantum mechanics, is the group theory of the rotation and Lorentz groups.
We have in this respect often used the analogy of the correspondence between algebra and geometry in algebraic geometry
to explain that the calculus of quantum mechanics, its algebra, is exact but that we do not know what its correct intuitive
interpretation, its “geometry” should be. In this respect Villani uses the qualifiers “analytic” for what we call algebraic and
“synthetic” for what we call “geometric” [5]. Perhaps this terminology is more accurate than ours. In this paper we will prove
once more that the meaning of quantum mechanics is provided by group theory. The group theory permits even to spot and
correct flaws in the traditional theory.

When you know the algebraic part of the spinor formalism and you know that the corresponding synthetic part must be
the group theory of the rotation and Lorentz groups, then you might expect that explaining the Stern-Gerlach experiment
synthetically should not be too difficult. But lo and behold, this is certainly not the case. One reason for this is that the
textbook algebra is very egregiously wrong.

1 In a Stern-Gerlach experiment [1] neutral particles with spin 1/2 are used, e.g. Ag atoms. In our description we will all the time focus

our attention on electrons, even if a Stern-Gerlach experiment on electrons might be extremely difficult to perform. The real problem we

want to discuss is the case of an electron with spin 1/2 in a magnetic field, for which we have learned that the electron spin can be only up

or down, and never tilted as we will assume in the attempt to describe precession, reported in Section 1.3.
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1.2 Total absence of theory

We have pointed out many times before, especially in [2,4,6], that the terms B·σ or B·γ that occur in the equations are not
the scalar product of the magnetic field with the spin vector s. As a matter of fact B·σ or B·γ just express the magnetic field in
the formalism of the Clifford algebra, because σx ,σy ,σz or γx ,γy ,γz just represent the basis vectors ex ,ey ,ez (see [2]). There
is absolutely no elbow room for eluding this death sentence. It is just an undeniable mathematical fact. Furthermore, the
spin vector s is not represented by σ or γ but by s·σ or s·γ, which often remains hidden inside the notation for the spinor ψ.
When s·σ or s·γ do not explicitly occur in the equations, there cannot be any form of algebraic chemistry between s·σ and
B·σ in those equations. Similar remarks apply for s·γ and B·γ in the Dirac formalism, but from now on we will only formulate
things in the SU(2) formalism.

The textbook theory exploits the mathematical errors mentioned to claim that the “spin vector” σ, after multiplication

by
ħq

2m0
defines the magnetic dipole µ=

ħq
2m0

σ. This slight of hand replaces the axial vector
ħq

2m0
B·σ by a scalar B·µ, where µ

is now considered to be a magnetic dipole2, and V =−B·µ becomes a “potential energy”. This balderdash of messing around
with mathematical symbols is not a theory! However, the expression for this “potential energy” corresponds conveniently
to our classical intuition, such that it can be accepted in blissful ignorance. It is then still difficult to understand within this
picture why the spin should select two orientations in order to align with B, rather than just one, viz. the one that would
minimize its energy within the picture of a potential. Can the spin then also maximize its potential energy?

Despite its appeal, the ansatz V =−µ·B is also problematic. We are talking here about the hypothetical potential energy of
a charged spinning object in a field B, but this field B is not a force like the gravitational force mg exerted on a spinning top.
Any analogy with the potential energy of a spinning top in a gravitational field is potentially misleading and conceptually
wanting, as a magnetic field just cannot do any work on a charge. It can exert a force F = q(v∧B), but this force is always
perpendicular to the displacement dr = vd t and therefore the work −F·dr = 0.

1.3 Total absence of intuition

For a top which is precessing in a gravitational field, the energy of the top remains constant (if we assume that the dissipation
of energy due to the friction is negligible, which of course can become wrong in the long run). But if you describe a precessing
top within the spinor formalism of quantum mechanics, then the formalism says the energy is not constant and oscillates
between two extreme values (see e.g. [4], p.307; [7]). We are referring here of course to the description of an electron in a
magnetic field. That the energy could oscillate is really incomprehensible. We could imagine that the electron looses energy
by e.g. radiation, but not how it could regain the energy lost, and what is more, exactly by the same amount.3

If we dare to be heretic and assume that there is something wrong with that calculation, and that the energy is constant
like for a spinning top anyway, we may get a constant-energy term that has not the correct value, because it will contain an
extra factor cosθ, where θ is the tilt of the spin axis with respect to the magnetic field, at least if you follow the common-sense
arguments you have been taught. None of these speculations leads to a calculation that agrees with the startling experimental
result, which seems to indicate that the spin of a fermion can only point up or down.

The cheap way out of these puzzling contradictions, is the textbook dogma that space would be quantized, and that this
would be a quantum mystery. Whereas I fully agree that I do not understand the first world of it, such that calling this a
mystery could be appropriate, I nevertheless think that this is logically and mathematically completely ramshackle. First of
all we should refuse dogmatic mysteries. But there is something far worse at work than just a weird paradox. In fact, there is a
fierce contradiction hidden within that statement.4 The contradiction at stake here is that the formalism is completely based
on SU(2), wherein the allowed axes of rotation explore all directions of R3 while it derives from this that the directions would
be quantized in the sense that quantum mechanics would only allow for two directions, spin-up and spin-down! This brutal
contradiction between the starting point of the reasoning and its final result shows that something must be badly wrong.

Gaslighting destroys the ability to think and in the end its effect is that nobody knows the truth anymore. This is what has
happened here. We have been forcefed with so many wrong images, wrong maths and apparent internal contradictions that
we do not know on which leg to stand anymore. We do no longer know how to winnow the chaff from the wheat. We even do
not have the correct algebra.

The wrong images create even more puzzles in the light of the way we could derive the Dirac equation from the as-
sumption that the electron spins in [4]. In developping the Dirac equation by expressing the rotational motion of a spinning

2 Mutiplying an axial vector B·σ by the constant −
ħq

2m0
can only yield another axial vector, such that identifying the result −

ħq
2m0

B·σ with

a scalar −B·µ is a glaring error.
3 The derivation of the Dirac equation in [4] relies on the assumption that the spin axis remains fixed ( ds

dτ
= 0). Therefore the motion of

a precessing top cannot be studied with the traditional Dirac equation. One should first derive a generalized equation following the same

methods as used for the Dirac equation in [4] and illustrated in Subsection 3.2.
4 What the current theory does is forcefully claiming in an authoritarian way that this contradiction would be correct. To sweeten the

pill it is admitted that this is indeed weird but that quantum mechanics is beyond human undertanding. In reality, there is no theory at all,

and all this is just gaslighting.



G. Coddens: Exact theory of the Stern-Gerlach experiment 3

electron with the aid of spinors, at a certain stage we must put m0c2 =ħω0/2 in order to obtain the Dirac equation. Here the
electron spins with angular frequency ω0 around the spin axis s, and m0 is its rest mas. This is analogous to the equations for
the angular momentum L = Iω and energy E = Iω2/2 of a top spinning at a frequency ω, which lead to E = Lω/2. Here I is the
moment of inertia. This means that the complete rest energy of the electron is rotational energy. Consider now the statement
that in a magnetic field the spin axis aligns with the magnetic field, because the spin can only be up or down. We could e.g.
imagine that the spin axis s is pointing in a given direction and that we turn on the magnetic field in a completely different
direction.5 There must then exist a really fast mechanism for the spin to align. This is puzzling, because the magnetic en-

ergy
ħqB
2m0

is much smaller than the energy m0c2. It is as though you would be able to align the rotation axis of a very heavy

fast-spinning top along a completely different direction with a very small torque. Intuitively, this looks like utter nonsense.
It does not comply with our daily-life experience and the conservation of angular momentum. What you expect on applying
some external torque is precession, not alignement. If you tried to touch a fast-spinning heavy object you would find out that
you cannot bring about such an alignment. With my apologies for the irony, you could rather become more or less aligned
yourself. How is this then possible? Moreover, we do not understand how this alignment process is supposed to work. Is there
some radiation emitted, and if so should this have been observed?

2 Tabula rasa approach based on spinors

In view of all this confusion, we must rebuild a theory from scratch. It will be based on a good understanding of spinors.
This should not disheart the reader. Just remember, dear reader: SU(2) and spinors are only about rotations, i.e. Euclidean
geometry. How could this possibly be difficult? We have shown that it is indeed not difficult in our account of spinors in
[2]. Despite the fact that the author understands spinors quite well, the wrong pictorial arguments that are living on in the
intuitive folk lore about the spin in a magnetic field amount to a formidable conceptual obstacle. They are a smoke screen
of totally misleading hints that kept me in the dark for a very long time and rendered it extremely difficult to find the correct
solution. I am confident that I am not the only one who has been running in circles for years in trying to make sense of this
spin-up and spin-down narrative.6

We must thus warn the reader that he is in for a rough ride whereby a lot of what he has become used to take for granted
will be ripped apart. Such a statement may cause irritation, but I think that if you pick up the basics about spinors from
[2] and then read the present paper, you will feel rewarded for your efforts. We start from something we derived in [4] (see
e.g. [4], p.142) , viz. that you can write a spinning motion in SU(2) in terms of two components. We will interpret this for
the moment as a simultaneous description of left-handed and right-handed frames (see [2], p.33; we have worked this out
in the Appendix). E.g. if some spinning motion were to be described by e−ıω0τ in the right-handed frame, then it would be
described by e+ıω0τ in the left-handed frame. It is just a matter of algebraic frequencies. The decomposition of a rotation into
two components is as follows:

R(τ) =
1

2

[

[1+s·σ ]e−ıω0τ/2 + [1−s·σ ]e+ıω0τ/2
]

. (1)

Eq. 1 is a direct consequence of the Rodrigues formula for a rotation over an angle ϕ around the axis s:

R(s,ϕ) = cos(ϕ/2)1− ı sin(ϕ/2)[s·σ ], (2)

after putting ϕ=ω0τ. Note that this is just Euclidean geometry. And here is then my question: What if these two components
could correspond to a mixture of two beams? In fact, using Ehrenfest’s interpretation of superposition states (see [2], p.10,
complemented by [8], p.2, for a group-theoretical justification), Eq. 1 means that a spinning frame can be left-handed or
right-handed with equal probability.7 Let us now write down Eq. 1 for a rotation with an axis s that is different from the
z-axis:

5 Note that this implies also the temporary presence of an electric field.
6 As we will see it is focusing the attention on the supposed aligning of the spin axis that sends us irrevokably down the rabbit hole. It

is the unshakable belief that the experiment unmistakeably tells us that the spin must be aligned which keeps us in the total impossibility

of breaking away from the conceptual death trap of space quantization. The fact that this problem has remained unsolved for almost a

century illustrates how difficult it was.
7 Due to the negative frequencies, it is costumary to interpret this rather by saying that an electron is a superposition of a particle and

an anti-particle, but the possibility of negative frequencies is a trivial feature in SU(2) whose axioms do not accomodate for the existence of

anti-particles. What you do not put in cannot come out by magic. Also the gauge symmetry from which the idea of anti-particles is derived

absolutely does not play any rôle in the derivation of the Dirac equation. Hence, once again, what does not go in cannot come out. One can

introduce a posterio anti-particles into the theory by adding the gauge symmetry, but in order to avoid ambiguity between the two types

of negative frequencies one should then use the matrix γ5 to define charge coordinates. Hence the hype of the antiparticle interpretation

is just flawed within the present context.
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R(τ) =

[
cos2(θ/2) e−ıφ sin(θ/2)cos(θ/2)

e ıφ sin(θ/2)cos(θ/2) sin2(θ/2)

]

e−ıω0τ/2 +

[
sin2(θ/2) −e−ıφ sin(θ/2)cos(θ/2)

−e ıφ sin(θ/2)cos(θ/2) cos2(θ/2)

]

e ıω0τ/2. (3)

Here (θ,φ) are the spherical coordinates of the spin axis s. Note that we are using φ and ϕ as two different symbols in this
document. Let us now inspect the two components. The e−ıω0τ/2 component is:

[
cos2(θ/2) e−ıφ sin(θ/2)cos(θ/2)

e ıφ sin(θ/2)cos(θ/2) sin2(θ/2)

]

=

[
cos(θ/2)e−ıφ/2

sin(θ/2)e+ıφ/2

]

⊗
[

cos(θ/2)e ıφ/2 sin(θ/2)e−ıφ/2
]

. (4)

We recover here the result 1+s·σ= 2ψ1 ⊗ψ†
1 from [4] (See Eqs. 3.28, 5.25). The e+ıω0τ/2 component is:

[
sin2(θ/2) −e−ıφ sin(θ/2)cos(θ/2)

−e ıφ sin(θ/2)cos(θ/2) cos2(θ/2)

]

=

[
sin(θ/2)e−ıφ/2

−cos(θ/2)e+ıφ/2

]

⊗
[

sin(θ/2)e ıφ/2 −cos(θ/2)e−ıφ/2
]

. (5)

This corresponds to 1− s·σ = 2ψ2 ⊗ψ†
2. Note that ψ1 and ψ2 are orthogonal. Now the idea is that a magnetic field would

make the spin vector precess. We have explained this in earlier work (see [6]). For different radii of the circular motion within
a magnetic field the cyclotron frequency remains the same in the non-relativistic limit. Every local co-traveling frame will
spin at the same frequency, just like your horse on a merry-go-round does not only move along a circle but also spins around
its own axis with repect to the frame of the observers on the ground.8. If you shrink the circular orbit in the magnetic field to
a point the spinning motion with the cyclotron frequency around the axis will remain. Therefore a pointlike charged particle
at rest in a magnetic field will be spinning even if it were initially spinless. But if it initially already spins and its spin axis is
tilted, then this axis will be precessing, which corresponds to the intuitive narrative based on the analogy with a spinning
top. The final test of this merry-go-round scenario will be whether it reproduces the experimental results. We have no a
priori knowledge that would help us in deciding if this is correct or otherwise (except perhaps our remark in Footnote 8).
We encounter this merry-go-round scenario also in Purcell’s explanation of the Thomas precession [9]. We obtain then the
motion:

[
e−ıΩτ/2

e ıΩτ/2

]

R(τ), (6)

where Ω=
qB
m0

is the cyclotron frequency. Let us write the effect of this precession on both components of R(τ):

[
e−ıΩτ/2

e+ıΩτ/2

][
sin2(θ/2) −e−ıφ sin(θ/2)cos(θ/2)

−e ıφ sin(θ/2)cos(θ/2) cos2(θ/2)

]

e+ıω0τ/2 =

[
sin2(θ/2) −e−ıφ sin(θ/2)cos(θ/2)

0 0

]

e ı(ω0−Ω)τ/2 +

[
0 0

−e ıφ sin(θ/2)cos(θ/2) cos2(θ/2)

]

e ı(ω0+Ω)τ/2. (7)

The matrices are here again tensor products. But they are now of a novel type ψ⊗χ†, which no longer provides a familiar link

with some rotation axis as in the equation 1+s·σ= 2ψ1⊗ψ†
1. This is quite normal because a precession has no fixed rotation

axis. We could write actually the first term in the right-hand side of this equation as:

[
sin2(θ/2) −e−ıφ sin(θ/2)cos(θ/2)

0 0

]

e ı(ω0−Ω)τ/2 = e−ıΩτ/2

[
1
0

]

⊗
[

sin2(θ/2) −e−ıφ sin(θ/2)cos(θ/2)
]

e ıω0τ/2, (8)

which interestingly contains traces of the history of what we have done. Actually we can write:

[
e−ıΩτ/2

e ıΩτ/2

]

= e−ıΩτ/2

[
1
0

]

⊗
[

1 0
]

+e+ıΩτ/2

[
0
1

]

⊗
[

0 1
]

. (9)

Therefore the term that goes with e ı(ω0−Ω)τ/2 is:

8 Note that this is different from what happens with a gyroscope in a space ship. There the gyroscope is not subject to gravitational forces

because it is in free fall, such that it cannot precess. It is much harder to erase the electromagnetic field by an acceleration. One can erase

the magnetic field by a rotating frame but then an electric field enters the scene. Note that in the rotating frame, the local co-moving frames

are spinning like the horse in the merry-go-round. A magnetic field is a rotating frame. A good argument for the merry-go-round scenario

is that the Lorentz transformation between the instantaneous boosts in two points along the orbit of a uniform circular motion contains

also a rotation.
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e−ıΩτ

[
1
0

]

⊗
[

1 0
]
[

sin(θ/2)e−ıφ/2

−cos(θ/2)e+ıφ/2

]

︸ ︷︷ ︸

⊗
[

sin(θ/2)e ıφ/2 −cos(θ/2)e−ıφ/2
]

.

sin(θ/2)e−ıφ/2

(10)

We can multiply the underbraced matrices in the middle, which can be shown to be a correct procedure. We obtain then the
scalar sin(θ/2)e−ıφ/2 . And this way we obtain again the same result as in Eq. 8. We are multiplying all the time with matrices
that can be written as tensor products because they have determinant zero. This is a specifity of SU(2) as explained in [2].
The result of multiplying two such matrices will still have a zero determinant, such that it can be written as a tensor product,
but it will no longer have the structure ψ⊗ψ†. We should not worry that the expressions could be meaningless, because this
is just Euclidean geometry. They are definitely not obvious to interpret, but they are exact. This calculus is very handsome
because it reduces the calculations to a minimum. The other component yields:

[
e−ıΩτ/2

e+ıΩτ/2

][
cos2(θ/2) e−ıφ sin(θ/2)cos(θ/2)

e ıφ sin(θ/2)cos(θ/2) sin2(θ/2)

]

e−ıω0τ/2 =

[
cos2(θ/2) e−ıφ sin(θ/2)cos(θ/2)

0 0

]

e−ı(ω0+Ω)τ/2 +

[
0 0 ,

e ıφ sin(θ/2)cos(θ/2) sin2(θ/2)

]

e−ı(ω0−Ω)τ/2. (11)

We can now rearrange the terms according to their energies:

[
cos2(θ/2) e−ıφ sin(θ/2)cos(θ/2)

0 0

]

e−ı(ω0+Ω)τ/2 +

[
0 0

−e ıφ sin(θ/2)cos(θ/2) cos2(θ/2)

]

e+ı(ω0+Ω)τ/2, (12)

where we can factorize out the probability amplitude cos(θ/2), and:

[
0 0

e ıφ sin(θ/2)cos(θ/2) sin2(θ/2)

]

e−ı(ω0−Ω)τ/2 +

[
sin2(θ/2) −e−ıφ sin(θ/2)cos(θ/2)

0 0

]

e+ı(ω0−Ω)τ/2, (13)

where we can factorize out the probability amplitude sin(θ/2). We see thus that there are two possible energies for the

electron within the magnetic field. All the fuss of interpreting the formalism with the energy operator −ħ
ı

∂
∂τ

was thus self-

defeating bogus.9 This is because we apply it to a mixed state with four different frequencies in all. This is the reason why
we found a non-constant oscillating energy with the traditional operator. Now we have found an analysis that yields the
correct energies.10 It also explains the whole Stern-Gerlach experiment, provided we can still explain how these two en-
ergies lead to different trajectories (see below). Let us note that we have presented the effect of the magnetic field on the
charge by Eq. 9. This is not something we find in textbooks, but we have explained this in [6] in terms of vorticity. The alge-
bra does not contain a current loop. It just contains a rotating point charge.11 The whole puzzle why the magnetic moment
would have to align with the field has now disappeared. We find the right energy without having to invoke alignments of
axes with the magnetic field. Such alignments are just no longer part of the story. Furthermore, there is simply no longer
a well-defined single fixed axis as transpires from the weird terms ψ⊗χ† in the formalism. Eq. 12 describes a motion with

energy ħ(ω0 +Ω)/2 = m0c2 +
ħqB
2m0

and which occurs with probability cos2(θ/2), while Eq. 13 describes a motion with energy

ħ(ω0 −Ω)/2 = m0c2 −
ħqB
2m0

and which occurs with probability sin2(θ/2), in agreement with the experimental results. These

are both complex motions that we cannot describe in simple terms like a rotation around some axis. We can safely assume
that these two components just describe precession. The Stern-Gerlach filter separates these two energies into two different
beams. It is one of those two rearranged combinations that in general will be fed into a next Stern-Gerlach apparatus. Note
that the average energy is ħ(ω0 +Ωcosθ)/2, such that V =−µ·B is a macroscopic energy term, but not a potential energy.

Most textbooks calculate the force exerted on the fermion starting from an equation for a potential energy V = −µ·B
and then using F =−∇V . But the physical existence of such a potential energy is doubtful, because a magnetic field cannot
do any work. The equation V = −µ·B suggests that all directions of space are allowed which is actually what, according

9 This operator has been derived by educated guesses from the de Broglie ansatz. It is obviously not universal and cannot be generalized

to more complicated situations with non-scalar wave functions. We will elaborate this in Subsection 3.1. See also Footnote 3 and the

discussion of Eq. 26 .
10 In the matrix for a spinning motion with frequency Ω around the z-axis in Eq. 9, the two frequencies −Ω and +Ω occur neatly in two

different columns. When we work with spinors, i.e. columns of the rotation matrices, we avoid this way getting confronted with multiple

frequencies such that we can use −ħ
ı

∂
∂τ

to obtain a meaningful result. But with four frequencies we can no longer avoid that there will be

more than one frequency projected out of a spinor by −ħ
ı

∂
∂τ

. We end up with more than one frequency within a spinor, which conjures op

the image of a varying energy. But it is the use of the operator −ħ
ı

∂
∂τ

which is then no longer correct, as will be discussed in Subsection 3.2.
11 Let us for a while make the error of thinking that Eq. 9 represents the magnetic field. We see then that the spinning electron is expressed

completely in the same way as the magnetic field. From this we could then conclude that the electron spin represents a magnetic field. See

also our remark in Footnote 8.
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to the traditional theory, the experiment proves to be conceptually wrong. It is therefore better to base the analysis on the
expression for the energy E =ħω/2 and then to use F =−∇E . This will lead then to the same result as in the textbook analysis
of the trajectories. Note that the traditional theory for the trajectories is classical because the aim is to show that our classical
notions are wrong. To fully validate the theory one should also calculate the trajectories quantum mechanically. In the new
theory, classical geometry still prevails and the mysterious quantum effects disappear. Let us finally note that it is not angular
momentum which is quantized in physics but the representations of the three-dimensional rotation group SO(3). This is
analogous to what transpires from Gell-Mann’s theory of SU(3).

3 More traditional formulation in terms of a differential equation

In this Section, we will reformulate everything again in the more familiar differential formalism of standard textbook quan-
tum mechanices. In Subsection 3.1 we will justify in more detail our criticism formulated in Footnote 9 of the way the energy
operator has been used on mixed states. In Subsection 3.2 we will elaborate the remark given in Footnote 3.

3.1 The apparent failure of the energy operator

We must learn the lessons from the errors that have been made in the traditional approach to the Stern-Gerlach experiment.
In the case of precession we have:

R(τ)R(0) =

[
e−ıΩτ/2

e+ıΩτ/2

]

Rω0 (τ)R(0) = RΩ(τ)Rω0 (τ)R(0) = RΩ(τ)Rω0 (τ)R−1
Ω

(τ)
︸ ︷︷ ︸

RΩ(τ)R(0)
︸ ︷︷ ︸

.

part 1 part 2

(14)

where Rω0 (τ) is the matrix in Eq. 3, which is Eq. 2 where we have put ϕ=ω0τ. Note that the unit matrix is invariant under the
similarity transformation in part 1. Therefore, part 1 becomes:

RΩ(τ) {cos(ω0τ/2)1− ı sin(ω0τ/2)[s·σ ]} [RΩ(τ) ]−1, (15)

which is a rotation over the angle ω0τ around the rotated axis RΩ(τ)[s·σ ] [RΩ(τ) ]−1. Part 1 in Eq. 14 is therefore the rotation
with angular frequence ω0 around the spin axis which has been rotated by the precession. Part 2 is this rotation of the spin
axis by the precession. In [4], Eq. 9.34 we have found that the time derivative of Eq. 14 projects out (Ω+ω0(τ))/2.12

Because we have learned that −ħ
ı

∂
∂τ

is the energy operator, we might be inclined to think that ħ(Ω+ω0(τ))/2 is the energy
of the system. But this would imply that the energy is time-dependent, which is incomprehensible as we pointed out in
Subsection 1.3. Furthermore, the time derivative leads to (Ω+ω0(τ))/2 which is a vector, while the energy is not a vector but
a scalar. This shows clearly that there is something wrong. We encountered already this problem in [4] in differentiating the

Rodrigues equation Eq. 2 (after putting ϕ = ω0τ): d
dτ

R = −ı(ω0/2)[s·σ ]R, or d
dτ

χ = −ı(ω0/2)[s·σ ]χ, for the spinor χ which
is the first column of R. This problem was solved by replacing χ by the superposition state ψ = (1+ [s·σ ] )χ, which permits

to recover d
dτψ =−ı(ω0/2)ψ. We have to introduce such a superposition also in the derivation of the Dirac equation. In the

present situation, there is no such simple solution due to the apparent time dependence of the time derivative.
Making the calculation of the temporal derivative seems therefore to be madness because it moves us away from our

goal of calculating the energies, by sidetracking us onto a trail of vector calculations (see Footnote 6). The scalar we want is
certainly not the norm of the vector sum. Indeed, when we have a system with energy ħω0/2 and we add an energy ħΩ/2
then we can only obtain a total energy ħ(ω0+Ω)/2. The vector model makes you think erroneously it would be different, and
that you have to calculate the norm of the vector ħ(Ω+ω0(τ))/2, which, by the way, is constant. We will now show how we
can avoid making these strategic errors and save the energy operator.

12 Imagine a spinning motion represented by the constant axial vector ω1. Consider now a second spinning motion represented by the

constant axial vector ω2. Textbooks explain you then that the combined motion is given by the axial vector ω=ω1 +ω2. And as both ω1

and ω2 are constants, what else could we think than that ω is also a constant. Well, this is wrong, which is the reason why we have noted

Ω+ω0(τ) in the main text. In textbooks one provesω=ω1+ω2 by considering infinitesimal displacements at a “point” R(τ) of the rotation

group. The “point” R(τ) in question is of course a rotation. These displacements in an infinitesimal neighbourhood O of R(τ) add up as

vectors ω j = ω j e j , because e j behave as infinitesimal generators of the Lie algebra. They are small vectors in the tangent plane to the

group manifold. Therefore they are even commuting in O . Of course for larger displacements beyond O this is no longer true because the

rotation group is a curved manifold. By these methods one provesω(τ) =ω1(τ)+ω2(τ), the validity of which is restricted to the infinitesimal

neighbourhood O of R(τ), a snapshot of the motion at the instant τ. But of course, because for τ′ > τ, R(τ′) will move out of O , the identity

should not be written by omitting the time dependence on τ, which is what many textbooks do. They write: ω=ω1+ω2 (see e.g. [10]). This

kind of presentation may fool you by making you think that you can make the algebra just once at time τ and that the result ω will remain

constant with time. This is wrong, as we signal by the correct notation Ω+ω0(τ), which shows that the result is not time-independent as

very clearly illustrated by a precessing top: Ω remains fixed, and ω0(τ) precesses. The vector notation may also make you think that the

operations are commuting, while with the correct notations Ω(τ)+ω0 6=Ω+ω0(τ).
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3.2 Not spin-up and spin-down but precession-up and precession-down

As announced, we will follow up in this Subsection on the remark made in Footnote 3. The motion described by Eq. 12 can
be condensed into the form:

P(τ)=

[
cos(θ/2)e−ı(ω0+Ω)τ/2 e−ıφ sin(θ/2)e−ı(ω0+Ω)τ/2

−e ıφ sin(θ/2)e+ı(ω0+Ω)τ/2 cos(θ/2)e+ı(ω0+Ω)τ/2

]

, with det(P(τ))= 1. (16)

Of course, (∀τ ∈R)(P(τ)∈ SU(2)), such that we could use again a spinor formalism to calculate with these motions. Derivation
with respect to τ yields:

d

dτ
P(τ)=−ı((ω0 +Ω)/2)

[
cos(θ/2)e−ı(ω0+Ω)τ/2 e−ıφ sin(θ/2)e−ı(ω0+Ω)τ/2

+e ıφ sin(θ/2)e+ı(ω0+Ω)τ/2 −cos(θ/2)e+ı(ω0+Ω)τ/2

]

. (17)

The inverse matrix of P(τ) is:

[P(τ) ]−1 =

[
cos(θ/2)e+ı(ω0+Ω)τ/2 −e−ıφ sin(θ/2)e−ı(ω0+Ω)τ/2

e ıφ sin(θ/2)e+ı(ω0+Ω)τ/2 cos(θ/2)e−ı(ω0+Ω)τ/2

]

. (18)

Hence [ d
dτP(τ) ] [P(τ) ]−1 is given by −ı((ω0 +Ω)/2)V(τ) where V(τ) is given by :

[
cos(θ/2)e−ı(ω0+Ω)τ/2 e−ıφ sin(θ/2)e−ı(ω0+Ω)τ/2

+e ıφ sin(θ/2)e+ı(ω0+Ω)τ/2 −cos(θ/2)e+ı(ω0+Ω)τ/2

][
cos(θ/2)e+ı(ω0+Ω)τ/2 −e−ıφ sin(θ/2)e−ı(ω0+Ω)τ/2

e ıφ sin(θ/2)e+ı(ω0+Ω)τ/2 cos(θ/2)e−ı(ω0+Ω)τ/2

]

=

[
1 0
0 −1

]

= [ez ·σ ]. (19)

We have thus:

d

dτ
P(τ)= [

d

dτ
P(τ) ] [P(τ) ]−1 [P(τ) ]=−ı [ (ω0 +Ω)/2]V(τ)P(τ) =−ı [ (ω0 +Ω)/2][ez ·σ ]P(τ). (20)

First of all this shows that if we introduce again a mixed state (ψ instead of χ), then this mixed state will have indeed again

a fixed energy ħ(ω0 +Ω)/2: i.e. d
dτψ=−ı((ω0 +Ω)/2)ψ. This saves the energy operator! The result is rather amazing, because

we have obtained in Eq. 20 the same type of differential equation as d
dτ

R(τ) =−ı(ω0/2)[ez ·σ ]R(τ) for the Rodrigues formula
expressing a simple spinning motion around the z-axis, although the form of P(τ) is different from the form of R(τ) because
it is not a diagonal matrix, whereas the matrix R(τ) that describes a spinning motion around the z-axis is diagonal. With

hindsight we can see that we could have anticipated all this. The equations d
dτ

χ=−ı(ω/2)[ez ·σ ]χ or d
dτ

R =−ı(ω/2)[ez ·σ ]R
describe any type of object that rotates with an angular frequency ω around the z-axis. In the usual approach, the object is a
spinless electron that we rotate with a frequency ω= ω0 around the z-axis to give the electron its spin. In the new situation
the object is an electron which is already spinning with a frequency ω0 around an axis s, and we rotate this object bodily with
a frequency ω = Ω around the z-axis, to describe the precession of the spinning electron within a magnetic field. That the
new object is different from the initial one can be seen from the expression of the intervening matrix which is different from
the diagonal form we had before. This result shows that whatever the level of complication in some hierarchy of precessions,
we will always be able to treat a fixed-energy component this way.

The development for the equation of motion in Eq.13 is analogous. It can be condensed in the form:

M(τ) =

[
sin(θ/2)e+ı(ω0−Ω)τ/2 −e−ıφ cos(θ/2)e+ı(ω0−Ω)τ/2

e ıφ cos(θ/2)e−ı(ω0−Ω)τ/2 sin(θ/2)e−ı(ω0−Ω)τ/2

]

, det(M(τ)) = 1. (21)

d

dτ
M(τ) =−ı((ω0−Ω)/2)

[
−sin(θ/2)e+ı(ω0−Ω)τ/2 e−ıφ cos(θ/2)e+ı(ω0−Ω)τ/2

e ıφ cos(θ/2)e−ı(ω0−Ω)τ/2 sin(θ/2)e−ı(ω0−Ω)τ/2

]

. (22)

The inverse matrix of M(τ) is:

M−1(τ) =

[
sin(θ/2)e−ı(ω0−Ω)τ/2 e−ıφ cos(θ/2)e+ı(ω0−Ω)τ/2

−e ıφ cos(θ/2)e−ı(ω0−Ω)τ/2 sin(θ/2)e+ı(ω0−Ω)τ/2

]

. (23)

We can again construct a matrix W(τ) = [ d
dτ

M(τ) ] [M−1(τ) ], which is now given by:

[
−sin(θ/2)e+ı(ω0−Ω)τ/2 e−ıφ cos(θ/2)e+ı(ω0−Ω)τ/2

e ıφ cos(θ/2)e−ı(ω0−Ω)τ/2 sin(θ/2)e−ı(ω0−Ω)τ/2

] [
sin(θ/2)e−ı(ω0−Ω)τ/2 e−ıφ cos(θ/2)e+ı(ω0−Ω)τ/2

−e ıφ cos(θ/2)e−ı(ω0−Ω)τ/2 sin(θ/2)e+ı(ω0−Ω)τ/2

]

=
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[
−1 0

0 +1

]

. (24)

We have thus:

d

dτ
M(τ) =−ı [ (ω0 −Ω)/2][−ez ·σ ]M(τ). (25)

This is now like the equation for a spinning motion around the negative z–axis.
The situation in the Eqs. 20 and 25 corresponds thus actually exactly to a physical picture of up and down states, but these

states are different from what we have been told. It is no longer the same type of object, viz. the spin, that has its rotation
axis aligned up or down. In the old context we started from a spinless electron and made it spin around an axis, in the new
context we start from an already spinning electron whose axis is not aligned and we make the whole thing bodily spin around
a precession axis. It is this precession axis which can be up or down, not the spin axis. We should therefore have qualified the
states as precession-up and precession-down rather than as spin-up and spin-down. Pauli just introduced pragmatically the
experimental result of the Stern-Gerlach experiment into the theory under the form of an ad hoc postulate, without any true
justification. He replaced explaining by describing. All questions and demands for further explanations were given a first-
class funeral by claiming that the experiment had proved that the theory was correct and that the directions in space were
quantized. In view of the underlying heuristics claiming that the experiment had proved the theory amounts really to arm-
twisting. All this was so highly counter-intuitive that it could only provoke intense bewilderment, as described in Section 1.
After almost a century, we have now the theoretical justification for Pauli’s ad hoc procedure, and we can appreciate that the
directions in space are absolutely not quantized as he had pulled out of a hat.

All the difficulties we encountered before with the term (Ω+ω0(τ))/2 (see Subsections 1.3 and 3.1) are due to the fact that
we were describing a mixed state of two angular frequencies ω1 =ω0 −Ω and ω2 =ω0 +Ω. If we note these two energy states

as ψ1 and ψ2, we have
dψ j

dτ
=−ı

ω j

2
[ez ·σ ]ψ j ,∀ j ∈ {1,2}, but we cannot obtain a constant energy ħω/2 this way:

¬(∃ω ∈R)(ω1ψ1 +ω2ψ2 =ω(ψ1 +ψ2), (26)

because there do not exist constants A, B , C , of any type such that Ae ıω1τ +Be ıω2τ ≡ C (e ıω1τ + e ıω2τ). Therefore using the

energy operator −ħ
ı

∂
∂τ on mixed states containing different energies projects out a meaningless “fluctuating energy”, as we

pointed out in Subsection 1.3. But who will not have concluded in great dismay on the basis of the wrong use of the energy

operator −ħ
ı

∂
∂τ

on such a mixed state that quantum mechanics is beyond human understanding? What this shows is that
working on guessed equations under the motto “shut up and calculate!” cannot be the ultimate goal of true science. Figuring
out subsequently what the successful algebra means is absolutely necessary to free the theory of conceptual deadlocks.

3.3 Quantum mechanics allowing for precession

We cannot apply Lorentz transformations to Eqs. 20 and 25 to describe orbital motion, because the magnetic field will not be
Lorentz transformed while the spinor will. We must thus separate out the magnetic contribution, to prepare the derivation
of a Dirac-like equation to treat precession. We can write:

P(τ) =

[
e−ıΩτ/2

e ıΩτ/2

] [
cos(θ/2)e−ıω0τ/2 e−ıφ sin(θ/2)e−ıω0τ/2

−e ıφ sin(θ/2)e+ıω0τ/2 cos(θ/2)e+ıω0τ/2

]

. (27)

d

dτ
P(τ)=−ı(Ω/2)

[
1

−1

] [
e−ıΩτ/2

e ıΩτ/2

] [
cos(θ/2)e−ıω0τ/2 e−ıφ sin(θ/2)e−ıω0τ/2

−e ıφ sin(θ/2)e+ıω0τ/2 cos(θ/2)e+ıω0τ/2

]

+

[
e−ıΩτ/2

e ıΩτ/2

]

︸ ︷︷ ︸

(−ıω0/2)

[
1

−1

]

︸ ︷︷ ︸

[
cos(θ/2)e−ıω0τ/2 e−ıφ sin(θ/2)e−ıω0τ/2

−e ıφ sin(θ/2)e+ıω0τ/2 cos(θ/2)e+ıω0τ/2

]

term 1 term 2

. (28)

The terms 1 and 2 commute, such that we obtain the same result as beforehand. In absence of a magnetic field B we can thus
write:

limΩ→+0
dP
dτ = d

dτP (τ)=−ı(ω0/2)

[
1

−1

] [
cos(θ/2)e−ıω0τ/2 e−ıφ sin(θ/2)e−ıω0τ/2

−e ıφ sin(θ/2)e+ıω0τ/2 cos(θ/2)e+ıω0τ/2

]

︸ ︷︷ ︸

.

P(τ) (definition)

(29)

We can imagine e.g. that there is a magnetic field along ez that is negligibly small, such that Ω→+0, to justify this writing.
The matrix P (τ) and the corresponding pure and mixed spinors χ and ψ are then just a special expression for the spinning
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motion of the electron around the axis s in a form that prepares for calculations of precession around ez . Isolating the part
depending on Ω prepares a differential equation with a substitution introducing B, that will this time not be the minimal
substitution. When we add a stonger magnetic field along ez , we have then the substitution;

d

dτ
→

d

dτ
+ ı(Ω/2)[ez ·σ ]. (30)

In the SL(2,C) representation this becomes:

[

−
ħ

ı

∂

∂cτ
1−

ħq

2m0c
B·σ

]

χ= m0c χ. (31)

for a description of the state with energy m0c2 +
ħqB

2m0
when the electron is at rest in the observer’s frame. We can then lift

this to the Dirac representation and try to use covariance to generalize this equation. We must note however that in the
traditional Dirac theory this covariance is not correctly formulated, because it only adresses the boost part of the Lorentz
transformation, while a general Lorentz transformation consists of a boost and a rotation. It is a major flaw to think that we
could address accelerated motion by just considering instantaneous boosts, because it neglects the rotations. These rotations
change the clock rates by precession and correspond to transverse accelerations.

Appendix. The missing link: the geometrical meaning of the spin-up and spin-down states

Let us note the up and down spinors as:

χ↑ =

[
1
0

]

, χ↓ =

[
0
1

]

. (32)

The tensor products χ↑⊗χ†
↑
, χ↓⊗χ†

↑
, χ↑⊗χ†

↓
, and χ↓⊗χ†

↓
, are a basis for the vector space M(2,C) of complex 2×2 matrices.

These four basis vectors are matrices which have each only one non-zero entry which is equal to 1. The manifold F (G,G)
of group automorphisms of the rotation group G, which is isomorphic to the rotation group G, is embedded in M(2,C). The
vector space of linear mappings M(2,C) contains thus the representation of the group G by automorphisms. And when we
extend G to larger groups, such as to contain also reflections and reversals, these will be also be embedded in M(2,C). But
M(2,C) can also account for more complicated motions such as precession, nutation, etc... The four basis vectors of M(2,C),

χα⊗χ†
β

, with (α,β) ∈ {↑,↓}2, transform β into α. The matrices 1
2

(1±ez ·σ) are then the basis vectors χ↑⊗χ†
↑

and χ↓⊗χ†
↓
. In fact,

1
2 (1+ez ·σ) =χ↑⊗χ†

↑
transforms then χ↑ into χ↑, while 1

2 (1−ez ·σ) =χ↓⊗χ†
↓

transforms then χ↓ into χ↓. The spinning motion:

[
e−ıΩτ/2

e ıΩτ/2

]

, (33)

has two components in this basis because it transforms simultaneouslyχ↑ into e−ıΩτ/2χ↑ andχ↓ into e+ıΩτ/2χ↓. The reflection
operator [ex ·σ ] transforms simultaneously χ↑ into χ↓ and χ↓ into χ↑. We can identify χ↑ as the representation of the identity
element in a right-handed frame, in conformity with the way we have defined a spinor as the first column of the SU(2) matrix.
But χ↓ can not be identified with the first column of a simple rotation matrix. In fact, the general expression for a rotation by
an angle ϕ=ω0τ around the axis s with spherical coordinates (θ,φ) is according to the Rodrigues formula:

[
cos(ω0τ/2)− ı cosθ sin(ω0τ/2) −ı sin(θ)e−ıφ sin(ω0τ/2)

−ı sin(θ)e ıφ sin(ω0τ/2) cos(ω0τ/2)+ ı cosθ sin(ω0τ/2)

]

. (34)

Therefore obtaining χ↓ as the first column of this rotation matrix would require cos(ω0τ/2) = 0, implying sin(ω0τ/2) = 1.
This would then further require cosθ = 0, such that sinθ = 1. All these conditions are necessary just to make sure that the
first entry of the spinor is zero. Because ω0τ/2 must have the fixed value π/2 we cannot have dynamical spinning motion
associated with χ↓. Let us now check what follows from the condition that the second entry of the spinor must be 1. We must
then have −ıe ıφ = 1, such that φ= π/2. We have thus (θ,φ) = (π/2,π/2) and ϕ/2 = ω0τ/2 = π/2. This spinor cannot be used
to describe spinning motion. An out-of-the-box solution would be φ=ωτ+π/2. We would obtain then the “spinor”:

[
0

e ıωτ

]

. (35)

This pseudo-solution would then represent the rotation of a non-spinning electron whose rotation axis would be in the
Ox y plane and precessing around the z-axis with an angular frequency ω. The net result would be like an electron spinning
around the z-axis. But this is somewhat of a cheat because it transgresses the domain of the original definitions, and we
can represent such a motion already by means of χ↑. Hence the two sets of “spinors” generated by the rotation group by



10 G. Coddens: Exact theory of the Stern-Gerlach experiment

operating on χ↑e−ıω0τ/2 and χ↓e ıω0τ/2 are physically disjoint. The quantity χ↓e ıω0τ/2 is not a spinor that corresponds to a
spinning motion.

We can therefore adopt without ambiguity the convention to rather use χ↓e ıω0τ/2 in order to describe reversals, which are
rotations of left-handed frames. Note that in a left-handed frame a∧b is now defined according to the left-hand rule, such
that ω|−ω if we stick to the right-hand rule. The convention implies that χ↓ represents a reference element with a left-handed
frame, obtained from χ↑ by the reflection operator [ex ·σ ]. We can in our convention consider the reference element χ↓ as the
identity element for the left-handed frames. In fact its triad of basis vectors consists of (−ex ,ey ,ez ), which is a left-handed
triad of basis vectors, when (ex ,ey ,ez ) is a right-handed triad. The reflection operator σx transforms then a right-handed
frame or triad into a left-handed frame or triad and vice versa. We can thus identify χ↑ with a right-handed representation of
the identity element and χ↓ with a left-handed representation of the identity element.

Les us now call Q the rotation around the axis parallel to ez ∧ s that rotates ez to s. Under this rotation vectors are trans-
formed “quadratically” according to: [s·σ ] = Q [ez ·σ ]Q†. This transforms 1

2
(1− ez ·σ) into 1

2
(1− s·σ) and 1

2
(1+ ez ·σ) into

1
2

(1+s·σ). The operators 1
2

(1±s·σ) play thus locally the same rôle for rotations around s as 1
2

(1±ez ·σ) for rotations around

ez . They represent thus really left- and right-handed frames in the spinning motion around s as claimed in the main text.13

We have always worked with the idea that a spinor is the first column of a SU(2) matrix. It is a right-handed formulation and
shows how the spin-up spinor has been rotated. The second column of a SU(2) matrix corresponds to the left-handed for-
mulation and shows how the spin-down spinor has been rotated. This action on the spinors of the two types of handedness
can be clearly seen in the example of the rotation matrix in Eq. 33.
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