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The paper puts forward a novel projection function on Special Orthogonal Group, to handle the attitude constraint of the spacecraft. The properties of this projection function are rigorously proved. By virtue of the designed projection function, the boresight vector of the sensitive instrument of the spacecraft is mapped to the corresponding reduced dimensional vector in the Euclidean space. Besides, the attitude constraint is satisfied at all the time, as long as the reduced dimensional vector is uniformly bounded.

I. INTRODUCTION

The attitude control of the spacecraft has attracted a great deal of attention in recent years. However, in many space missions, the spacecraft is equipped with several the sensitive instruments, and the direct exposure of the specific celestial objects toward the sensitive instruments should be prevented. This means that the spacecraft should satisfy the according attitude constraints during the space missions.

In face of this issue, the trajectory planning methods [START_REF] Kjellberg | Discretized constrained attitude pathfinding and control for satellites[END_REF]- [START_REF] Kim | Quadratically constrained attitude control via semidefinite programming[END_REF] and the potential-function-based methods [START_REF] Lee | Feedback control for spacecraft reorientation under attitude constraints via convex potentials[END_REF]- [START_REF] Shen | Velocity-free attitude reorientation of a flexible spacecraft with attitude constraints[END_REF] are introduced to design the constrained attitude control schemes. It should be pointed out that, the constrained attitude controllers based upon the potential functions can guarantee the closed-loop stability, compared with the trajectory planning methods. Hence, Lee and Mesbahi [START_REF] Lee | Feedback control for spacecraft reorientation under attitude constraints via convex potentials[END_REF] propose the potentialfunction-based constrained attitude stabilization controller of the spacecraft, where the attitude constraint is converted into a convex constraint on the quaternion. Thereafter, Shen et al. [START_REF] Shen | Rigidbody attitude stabilization with attitude and angular rate constraints[END_REF] put forward an attitude stabilization scheme of the spacecraft, where both the attitude constraints and the angular velocity constraint are considered. A saturated attitude controller is proposed in [START_REF] Hu | Saturated attitude control for rigid spacecraft under attitude constraints[END_REF] such that both the attitude constraints and the input constraints are satisfied. Nicotra et al. [START_REF] Nicotra | Spacecraft Attitude Control with Nonconvex Constraints: An Explicit Reference Governor Approach[END_REF] propose a novel two-layer control approach to stabilize the spacecraft attitude and to meet the attitude constraints simultaneously. Shen et al. [START_REF] Shen | Velocity-free attitude reorientation of a flexible spacecraft with attitude constraints[END_REF] go further to design a velocity-free constrained attitude control scheme. However, note that the control schemes in Manuscript received ... Xuhui Lu and Yongling Fu are with the School of Mechanical Engineering and Automation, Beihang University (BUAA), Beijing 100191, China (emails: luxuhui2018@163.com; fuyongling@buaa.edu.cn).
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[6]- [START_REF] Shen | Velocity-free attitude reorientation of a flexible spacecraft with attitude constraints[END_REF] is derived on quaternion. Since the time-invariant and continuous attitude controller based on the quaternion will lead to unwinding phenomenon, it is desirable to propose a constrained attitude control scheme directly on SO(3) [START_REF] Bhat | A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon[END_REF].

In this paper, we will put forward a novel projection function such that the borsight vector of the sensitive instrument is mapped to the reduced dimensional vector in the Euclidean space R 2 . Once the obtained reduced dimensional vector is uniformly bounded, the attitude constraint will be satisfied at all the time. The proposed reduced dimensional vector can facilitate the attitude controller design to meet the attitude constraint.

The rest of this paper is organized as follows. Section 2 is the preliminaries of this paper, which contains the notations, the attitude kinematics of the spacecraft and the attitude forbidden zone of the spacecraft. Section 3 presents the design of the projection function and the according properties. Section 4 is the conclusions.

II. PRELIMINARIES

A. Notations

First, the real n-dimensional vector space is denoted by R n , the real (m × n)-dimensional matrix space is denoted by R m×n , 0 n ∈ R n is the zero vector, E n ∈ R n×n is the unit matrix. For z ∈ R n and B ∈ R n×n , ∥z∥ and ∥B∥ denote the 2-norms of the vector z and the matrix B respectively, T r(B) is the trace of the matrix B, det(B) is the determinant of the matrix B, and rank(B) is the rank of the matrix B. For any

vector z = col(z 1 , z 2 , z 3 ) ∈ R 3 , S(z) is defined as S(z) =   0 -z 3 z 2 z 3 0 -z 1 -z 2 z 1 0   . ( 1 
)
Moreover, the Special Orthogonal Group SO(3) is employed to depict the spacecraft attitude and is defined as

SO(3) { Q ∈ R 3×3 | QT Q = E 3 , det( Q) = 1}. (2)
The rotation matrix Q ∈ SO(3) can be parameterized by the quaternion q a = col(q a,0 , q a,v ) ∈ R 4 as [START_REF] Shuster | A survey of attitude representations[END_REF] 

Q = (q 2 a,0 -q T a,v q a,v )E 3 + 2q a,v q T a,v + 2q a,0 S(q a,v ), (3) 
where q a,0 ∈ R, q a,v ∈ R 3 , and ∥q a ∥ = 1. 

B. Attitude Kinematics of the Spacecraft

The attitude kinematics of the spacecraft is [5]

Q = QS(w), ( 4 
)
where Q ∈ SO( 3) is the spacecraft attitude, and w ∈ R 3 is the angular velocity of the spacecraft in the body-attached frame F b . In this paper, the spacecraft is controlled to achieve attitude tracking. The reference attitude and the reference angular velocity are denoted by Q d (t) ∈ SO(3) and w d (t) ∈ R 3 respectively, and obey the following dynamic equation

Qd = Q d S(w d ). (5) 
Besides, denote

Q er Q T d Q ∈ SO(3), ( 6a 
)
wd Q T er w d ∈ R 3 , ( 6b 
)
w er w -wd ∈ R 3 , ( 6c 
)
and it is obtained from (4)and ( 5) that

Qer = Q er S(w er ). (7a) 
In addition, the following lemma is introduced. Lemma 1: Consider a general positive semidefinite matrix P ∈ R 3×3 whose rank is not less than 2. The according eigenvalues are λ P,i , i = 1, 2, 3, with λ P,1 ≥ λ P,2 ≥ λ P,3 ≥ 0. Then for any Q ∈ SO(3), we have

Tr(P -P Q) ≥ λ P,2 + λ P,3 2 Tr(E 3 -Q). (8) 
The proof of Lemma 1 can be seen in Appendix A.

C. Attitude Constraint of the Spacecraft

In this paper, the spacecraft should meet the attitude constraint. As can be seen in Fig. 1, the boresight vector of the sensitive instrument (such as the infrared telescope) in the body-attached frame F b is denoted by v b,1 ∈ R 3 , and

v r,1 Qv b,1 ∈ R 3 , ( 9 
)
is the associated boresight vector in the inertia frame F i . Here ∥v b,1 ∥ = ∥v r,1 ∥ = 1 and v b,1 is constant. Besides, the vector v f ∈ R 3 represents the orientation toward the undesired space object (such as the Sun) in the inertia frame F i , and ∥v f ∥ = 1.

Here, the vectors v f and v r,1 satisfy the following constraint

v T f v r,1 < cos θ f , ( 10 
)
which means that the angle between v f and v r,1 should be larger than θ f ∈ [0, π). Correspondingly, denote

η cos θ f -v T f v r,1 , (11) 
and the constraint ( 10) is satisfied if and only if η(t) > 0.

Moreover, denote

v r,d,1 Q d v b,1 ∈ R 3 , ( 12 
)
Here the desired attitude trajectory Q d (t) satisfies the constraint ( 10) at all the time and w d (t) is uniformly bounded. This means that

η d cos θ f -v T f v r,d,1 > 0, (13) 
at all the time, and there is a constant ∆ w > 0 so that ∥w d (t)∥ < ∆ w .

III. PROJECTION FUNCTION ON THE ATTITUDE CONSTRAINT

A. Structure of Projection Function

It should be noted that since the rotation matrix Q er (t) is located in the nonlinear manifold SO(3), it is difficult to design the rotation-matrix-based attitude tracking control scheme to meet the attitude constraint. In face of this difficulty, the following reduced dimensional vector is constructed

x Pr(v r,1 ), (14) 
where Pr(•) is the projection function defined as

Pr(v r,1 ) cos θ f + 1 η N f v r,1 , (15) 
η is set in [START_REF] Bhat | A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon[END_REF], and the matrix

N f [v T p,1 ; v T p,2 ] ∈ R 2×3 meets ∥v p,1 ∥ = ∥v p,2 ∥ = 1, v T p,1 v p,2 = 0 and S(v p,1 )v p,2 = v f . Similarly, the vector x d ∈ R 2 is defined as x d Pr(v r,d,1 ), (16) 
and correspondingly

x er x -x d , ( 17 
)
is the tracking error of the vector x toward x d . Furthermore, according to ( 4) and ( 14)-(15), it is obtained that

ẋ = - 1 η 2 Gw, ( 18 
)
where 

G (cos θ f + 1)N f (ηE 3 + v r,1 v T f )S(v r,1 )Q ∈ R 2×3 . (19)

B. Description on the Projection Function

The description of the projection function can be seen in Fig. 2, where it is set that v f = col(0, 0, 1), v p,1 = col(1, 0, 0) and v p,2 = col(0, 1, 0). In Fig. 2, the unit sphere with center O = 0 3 is denoted by

S O = {v r,1 ∈ R 3 | ∥v r,1 ∥ = 1}. ( 20 
)
In Fig. 2, the grey surface S a is the set of the allowable orientations of the vector v r,1 and is denoted by 2, the purple region represents the set of the undesirable orientations of the spacecraft. Accordingly, the intersection set of the set of the undesirable orientations and the unit sphere S O is the attitude forbidden zone and is denoted by

S a {v r,1 ∈ R 3 | ∥v r,1 ∥ = 1 and v T r,1 v f < cos θ f }. (21) In Fig.
S f {v r,1 ∈ R 3 | ∥v r,1 ∥ = 1 and v T r,1 v f ≥ cos θ f }. (22)
In Fig. 2, the green plane is denoted by

S p {v ∈ R 3 | v T f v = -1}, ( 23 
)
and denote

O p cos θ f v f = col(0, 0, cos θ f ). (24) 
Besides, in Fig. 2, the points O r,1 and O r,d,1 are located in the set S a , and the coordinates of O r, 1 andO r,d,1 are 

O r,1 = v r,1 , (25a) O r,d,1 = v r,d,1 . ( 25b 
O y = col(Pr(v r,1 ), -1) = (x, -1), (26a) O y,d = col(Pr(v r,d,1 ), -1) = (x d , -1). ( 26b 
)
It can be seen in Fig. 2 , and vise versa. Besides, it can also be seen in Fig. 2 that when the point O r,1 approaches the attitude forbidden zone S f , the point O y will tend to infinity. This means that if O y is bounded (that is, the vector x is bounded), the vector v r,1 will meet the constraint [START_REF] Shen | Velocity-free attitude reorientation of a flexible spacecraft with attitude constraints[END_REF]. Based upon the above analysis, if the proposed attitude control scheme ensures that the point O y is uniformly bounded and can track the point O y,d (that is, the vector x is uniformly bounded and can track the vector x d ), the spacecraft attitude can meet the constraint (10) and the vector v r,1 can track the vector v r,d,1 .

C. Properties of the Projection Function

For the projection function (15), the vectors v r,1 [START_REF] Nicotra | Spacecraft Attitude Control with Nonconvex Constraints: An Explicit Reference Governor Approach[END_REF], v r,d,1 [START_REF] Shuster | A survey of attitude representations[END_REF], x (14), x d (16), and the matrix G (19), the following lemmas hold.

Lemma 2: Once v r,1 meets the constraint (10), then x is bounded.

Proof:

First, denote Nf [N f ; v T f ] ∈ R 3×3 . Since N f N T f = E 2 , N f v f = 0 2 and v T f v f = 1, it is obtained that Nf N T f = E 3 and N T f Nf = Nf N T f = E 3 . Then, in view of N T f Nf = N T f N f + v f v T f , it follows that N T f N f = N T f Nf -v f v T f = E 3 -v f v T f .
Correspondingly, in view of ( 14)-( 15) and

N T f N f = E 3 -v f v T f , it is further obtained that ∥x∥ 2 = 1 η 2 (cos θ f + 1) 2 (1 -(v T f v r,1 ) 2 ). (27) 
Since θ f ∈ [0, π), it is further obtained from (27) that

∥x∥ 2 ≤ 4 η 2 . ( 28 
)
It can be seen in ( 28) that once v r,1 satisfies the constraint (10), the vector x is bounded. Lemma 3: For the vectors v r,1 (t) and x(t), Once v r,1 (0) meets the constraint (10) and x(t) is uniformly bounded in [0, t), where 0 < t ≤ +∞, then it is obtained that the attitude constraint [START_REF] Shen | Velocity-free attitude reorientation of a flexible spacecraft with attitude constraints[END_REF] 

is satisfied in [0, t). Proof: First, denote v T f v r,1 = cos θ 1 with θ 1 ∈ [0, π]. Once v T f v r,1 < cos θ f , it is obtained that θ 1 > θ f .
Notice that since v r,1 (0) meets the constraint [START_REF] Shen | Velocity-free attitude reorientation of a flexible spacecraft with attitude constraints[END_REF], it means that η(0) > 0 and accordingly θ 1 (0) > θ f .

Then this lemma will be proved by contradiction. Suppose that the lemma does not hold. Since η(0) > 0 and θ 1 (0) ≥ θ f , and the variables η(t) and θ 1 (t) are both continuous, it implies that there exists a time instant T v > 0 so that

lim t→T - v η(t) = lim t→T - v (cos θ f -cos θ 1 (t)) = 0, (29a) 
lim t→T - v θ 1 (t) = θ f , ( 29b 
)
and η(t) > 0 and θ 1 (t) > θ f for any t ∈ [0, T v ).

In addition, remind that ∥x(t)∥ is uniformly bounded in [0, t). Therefore, it is further obtained from (27) that there is a positive constant M T > 0 such that

∥x(t)∥ 2 = (cos θ f + 1) 2 (cos θ f -cos(θ 1 (t))) 2 (1 -cos 2 θ 1 (t)) ≤ M T , ( 30 
)
in the time interval [0, T v ]. However, based upon ( 27) and (29a)-(29b), it is obtained that ∥x(t)∥ 2 will tend to positive infinity once t tends to T v , which contradicts with (30). Hence, the above assumption is invalid which completes this proof.

Lemma 4: Once both v r,1 and v r,d,1 meet the attitude constraint [START_REF] Shen | Velocity-free attitude reorientation of a flexible spacecraft with attitude constraints[END_REF], then it is obtained that ∥v

r,1 -v r,d,1 ∥ ≤ ∥x -x d ∥. In addition, ∥v r,1 -v r,d,1 ∥ = ∥x -x d ∥ if and only if v r,1 = v r,d,1 .
Proof: First, notice that x = 0 2 if v r,1 = -v f . Besides once x = 0 2 , it can be seen in ( 15) that N f v r,1 = 0 2 , and since v T f v r,1 < cos θ f ≤ 1, it follows that v r,1 = -v f . Next, to facilitate the proof procedure, the angles

θ 1 ∈ [0, π] and θ 2 ∈ [0, π] are introduced such that v T f v r,1 = cos θ 1 and v T f v r,2 = cos θ 2 . Since v T f v r,1 < cos θ f and v T f v r,d,1 < cos θ f , it is obtained that θ 1 > θ f and θ 2 > θ f . Since v T f v r,1 = cos θ 1 and v T f v r,d,1 = cos θ 2 , it is obtained from (27) that ∥x∥ 2 = (cos θ f + 1) 2 (cos θ f -cos θ 1 ) 2 sin 2 θ 1 , ( 31a 
)
∥x d ∥ 2 = (cos θ f + 1) 2 (cos θ f -cos θ 2 ) 2 sin 2 θ 2 . ( 31b 
)
Then this lemma will be verified in two cases. Case 1: when ∥v r,1

+ v f ∥∥v r,d,1 + v f ∥ = 0. If ∥v r,1 +v f ∥∥v r,d,1 +v f ∥ = 0, it is obtained that v r,1 = -v f or v r,d,1 = -v f . Without loss of generality, denote v r,d,1 = -v f , meaning that θ 2 = π and x d = 0 2 . Correspondingly, it is obtained that ∥v r,1 -v r,d,1 ∥ 2 = 2 + 2 cos θ 1 , (32a) ∥x -x d ∥ 2 = (cos θ f + 1) 2 (cos θ f -cos θ 1 ) 2 (1 -cos 2 θ 1 ). (32b)
Note that for the angles θ f ∈ [0, π) and θ 1 ∈ (θ f , π], the following inequality holds

(cos θ f + 1) 2 (cos θ f -cos θ 1 ) 2 (1 -cos θ 1 ) = (cos θ f + 1) 2 ( 1 -cos θ f (cos θ f -cos θ 1 ) 2 + 1 cos θ f -cos θ 1 ) ≥ (cos θ f + 1) 2 ( 1 -cos θ f (cos θ f + 1) 2 + 1 cos θ f + 1 ) = 2, (33) 
and the equality in (33) holds if and only if θ 1 = π. Hence, it is obtained from (32a)-(32b) and (33) that

∥x -x d ∥ 2 ≥ 2 + 2 cos θ 1 = ∥v r,1 -v r,d,1 ∥ 2 , ( 34 
)
and the equality in (34) holds if and only if θ 1 = π which, together with θ 2 = π, means that θ 1 = θ 2 = π and accordingly v r,1 = v r,d,1 = -v f . Note that the above result is still valid when v r,1 = -v f and accordingly

θ 1 = π. Case 2: When ∥v r,1 + v f ∥∥v r,d,1 + v f ∥ > 0. First, once ∥v r,1 + v f ∥∥v r,d,1 + v f ∥ > 0, it is obtained that v r,1 ̸ = -v f and v r,d,1 ̸ = -v f , and correspondingly θ 1 ∈ (θ f , π) and θ 2 ∈ (θ f , π). Without loss of generality, set θ 1 ≥ θ 2 . Note that the vectors v f , v r,1 and v r,d,1 satisfy ∥v f ∥ = 1, ∥v r,1 ∥ = 1 and ∥v r,d,1 ∥ = 1, meaning that the vectors v f , v r,1 and v r,d,1 are in the set Θ B {z ∈ R 3 | ∥z∥ = 1}.
Therefore based upon the definition of the matrix

N f = [v T p,1 ; v T p,2 ]
, a coordinates frame OXY Z is introduced, where O is located at the center of the unit ball Θ B , and the Xaxis, Y -axis and Z-axis are along the directions of the vectors v p,1 , v p,2 , and v f respectively. Correspondingly, in view of the definition of the frame OXY Z, it is obtained that N f = [1, 0, 0; 0, 1, 0], v f = col(0, 0, 1), and besides the angles θr ∈ [0, 2π) and θd ∈ [0, 2π) are introduced such that v r,1 = col(sin θ 1 cos θr , sin θ 1 sin θr , cos θ 1 ), (35a)

v r,d,1 = col(sin θ 2 cos θd , sin θ 2 sin θd , cos θ 2 ). ( 35b 
)
Denote θ 3 θrθd ∈ (-2π, 2π), and correspondingly it is obtained from (35a)-(35b) that

∥v r,1 -v r,d,1 ∥ 2 =(sin θ 1 cos θr -sin θ 2 cos θd ) 2 + (sin θ 1 sin θr -sin θ 2 sin θd ) 2 + (cos θ 1 -cos θ 2 ) 2 =2 -2 sin θ 1 sin θ 2 cos θ 3 -2 cos θ 1 cos θ 2 . (36) Then denote Υ(θ) sin θ cos θ f + 1 cos θ f -cos θ , ( 37 
)
for θ ∈ (θ f , π). Taking the derivative of Υ(θ) on θ gives

dΥ(θ) dθ =(cos θ f + 1) cos θ cos θ f -1 (cos θ f -cos θ) 2 = - cos θ f + 1 cos θ f -cos θ -(cos θ f + 1) (1 -cos θ f )(1 + cos θ) (cos θ f -cos θ) 2 < -1, (38) 
where θ f ∈ [0, π) and θ ∈ (θ f , π) are used. Since θ 1 ≥ θ 2 , it follows from (31a)-(31b) and ( 37

)-(38) that ∥x∥ -∥x d ∥ = Υ(θ 1 ) -Υ(θ 2 ) ≤ -(θ 1 -θ 2 ) ≤ 0, (39) 
and ∥x∥ = ∥x d ∥ if and only if

θ 1 = θ 2 .
Based upon (15), (35a)-( 35b) and (37), it is obtained that x = col(Υ(θ 1 ) cos θr , Υ(θ 1 ) sin θr ), (40a)

x d = col(Υ(θ 2 ) cos θd , Υ(θ 2 ) sin θd ), (40b) 
and accordingly ∥x -

x d ∥ 2 =(Υ(θ 1 ) cos θr -Υ(θ 2 ) cos θd ) 2 + (Υ(θ 1 ) sin θr -Υ(θ 2 ) sin θd ) 2 =Υ 2 (θ 1 ) + Υ 2 (θ 2 ) -2 cos θ 3 Υ(θ 1 )Υ(θ 2 ). (41) 
Then denote

ζ(θ 1 , θ 2 , ξ) Υ 2 (θ 1 ) + Υ 2 (θ 2 ) -2ξΥ(θ 1 )Υ(θ 2 ) -2 + 2ξ sin θ 1 sin θ 2 + 2 cos θ 1 cos θ 2 , ( 42 
)
where

θ 1 ∈ (θ f , π), θ 2 ∈ (θ f , π), ξ ∈ [-1, 1] and θ 2 ≥ θ 1 . Since θ 1 ∈ (θ f , π) and θ 2 ∈ (θ f , π), it is obtained from (37) that Υ(θ 1 )Υ(θ 2 ) = (cos θ f + 1) 2 sin θ 1 sin θ 2 (cos θ f -cos θ 1 )(cos θ f -cos θ 2 ) > sin θ 1 sin θ 2 . (43) Correspondingly for any ξ ∈ [-1, 1], it is obtained that ζ(θ 1 , θ 2 , ξ) ≥ζ(θ 1 , θ 2 , 1) =Υ 2 (θ 1 ) + Υ 2 (θ 2 ) -2 + 2 cos θ 1 cos θ 2 -2Υ(θ 1 )Υ(θ 2 ) + 2 sin θ 1 sin θ 2 , ( 44 
)
and the equality in (44) holds if and only if ξ = 1.

In addition, based upon (38), (39), θ 1 ≥ θ 2 , and the inequality θ ≥ sin θ for any θ ≥ 0, the derivative of

ζ(θ 1 , θ 2 , 1) (44) on θ 1 is bounded as dζ(θ 1 , θ 2 , 1) dθ 1 =2(Υ(θ 1 ) -Υ(θ 2 )) dΥ(θ 1 ) dθ 1 + 2 sin(θ 2 -θ 1 ) ≥2(Υ(θ 2 ) -Υ(θ 1 )) + 2 sin(θ 2 -θ 1 ) ≥2(θ 1 -θ 2 ) -2 sin(θ 1 -θ 2 ) ≥0. (45) Besides, based upon (45), dζ(θ1,θ2,1) dθ1 = 0 if and only if θ 1 = θ 2 . Then, it is obtained from (45), ζ(θ 2 , θ 2 , 1) = 0 and θ 1 ≥ θ 2 that ζ(θ 1 , θ 2 , 1) ≥ 0, (46) 
and the equality in (46) holds if and only if

θ 1 = θ 2 .
Therefore, in view of (36), (41), (42), ( 44) and (46), it is obtained that

ζ(θ 1 , θ 2 , cos θ 3 ) = ∥x -x d ∥ 2 -∥v r,1 -v r,d,1 ∥ 2 ≥ 0, (47) 
and the equality in (47) holds if and only if θ 1 = θ 2 and θ 3 = 0 which, based upon the definitions of v r,1 (35a) and v r,d,1 (35b), implies that v r,1 = v r,d,1 . Notice that Eq. ( 47) also holds when θ 2 ≥ θ 1 . The proof of Lemma 4 is complete.

Lemma 5:

The matrices G is bounded. Besides, once the constraint (10) is satisfied, the matrix GG T is positive definite. This means that λ G,min E 2 ≤ GG T ≤ λ G,max E 2 , where λ G,min and λ G,max are two positive constants.

Proof: The proof of this lemma are divided into two parts. 1). The proof of the boundedness of G and GG T . First, since ∥v r,1

∥ = ∥v f ∥ = 1, it is obtained that v r,1 v T f v f v T r,1 = v r,1 v T r,1 ≤ E 3 , (48a) v r,1 v T f + v f v T r,1 ≤ v r,1 v T r,1 + v f v T f ≤ 2E 3 , (48b) S(v r,1 )S T (v r,1 ) = E 3 -v r,1 v T r,1 ≤ E 3 . (48c)
Hence, it is obtained from (48a)-(48c) and

N f N T f = E 2 that GG T ≤(cos θ f + 1) 2 N f {(cos θ f -v T f v r,1 ) 2 E 3 + (cos θ f -v T f v r,1 )(v r,1 v T f + v f v T r,1 ) + v r,1 v T f v f v T r,1 }N T f ≤(cos θ f + 1) 2 (cos θ f -v T f v r,1 + 1) 2 N f N T f ≤(cos θ f + 1) 2 (cos θ f + 2) 2 E 2 , ( 49 
)
which means that the matrices GG T and G are both bounded.

2). The proof of positive definiteness of GG T . First, denote

Ǵ ηE 3 + v f v T r,1 , (50) 
and the matrices G and GG T can be rewritten as

G = (cos θ f + 1)N f ǴT S(v r,1 )Q, ( 51a 
)
GG T = (cos θ f + 1) 2 N f ǴT S(v r,1 )S T (v r,1
) ǴN T f . (51b) Then the positive definiteness of the matrix GG T will be verified in two cases.

Case 1:

when v r,1 = -v f . Once v r,1 = -v f , it is obtained that Ǵ = (cos θ f + 1)E 3 - v f v T
f is a symmetric matrix. In this case, the eigenvalues of the matrix Ǵ are cos θ f , cos θ f +1, and cos θ f +1, and besides

ǴN T f = (cos θ f + 1)N T f . (52)
Hence, it is further obtained from

N f v f = 0 2 , N f N T f = E 2 , (51b) and (52) that GG T = (cos θ f + 1) 4 N f (E 3 -v f v T f )N T f = (cos θ f + 1) 4 E 2 > 0. ( 53 
) Case 2: When v r,1 ̸ = -v f . Since v r,1 ̸ = -v f and η = cos θ f -v T f v r,1 > 0, it is obtained that v r,1 ̸ = ±v f .
Then, for any vector z 1 ∈ R 2 satisfying

GG T z 1 = 0 2 , ( 54 
)
it is obtained from (51b) and

θ f ∈ [0, π) that S T (v r,1 ) ǴN T f z 1 = 0 3 . ( 55 
)
From (55), this means that there exist a scalar λ z such that

ǴN T f z 1 = λ z v r,1 . (56) 
Additionally, since

N f v f = 0 2 , it is obtained that v T f N T f z 1 = 0. ( 57 
)
Based upon the definition of the matrix Ǵ (50), it is further obtained that

ǴT S(v f )v r,1 = ((cos θ f -v T f v r,1 )E 3 + v r,1 v T f )S(v f )v r,1 = (cos θ f -v T f v r,1 )S(v f )v r,1 , (58a) ǴT S 2 (v r,1 )v f =(cos θ f -v T f v r,1 )(v r,1 v T r,1 -E 3 )v f + ((v T f v r,1 ) 2 -1)v r,1 = -(cos θ f -v T f v r,1 )v f -(1 -cos θ f v T r,1 v f )v r,1 . (58b) Notice that 1 -cos θ f v T r,1 v f ≥ 1 -|v T r,1 v f | > 0 since v r,1 ̸ = ±v f .
Moreover, left-multiplying (S(v f )v r,1 ) T on both sides of (56), and utilizing (58a), (S(v f )v r,1 ) T v r,1 = 0 and η

= cos θ f -v T f v r,1 > 0, yield (S(v f )v r,1 ) T N T f z 1 = 0. (59) 
Similarly, left multiplying (S 2 (v r,1 )v f ) T on both sides of (56), and utilizing (58b),

(S 2 (v r,1 )v f ) T v r,1 = 0, N f v f = 0 2 and 1 -cos θ f v T r,1 v f > 0 lead to v T r,1 N T f z 1 = 0. (60) 
Remind that v r,1 ̸ = ±v f , which means that the vectors v f , v r,1 and S(v f )v r,1 are noncoplanar. Hence, it is obtained from (57) and ( 59)-(60) that

N T f z 1 = 0 3 . ( 61 
)
Since N f N T f = E 2 , it is obtained from (61) that z 1 = 0 2 . Based upon the generality of the vector z 1 , it is finally obtained that the matrix GG T is positive definite, when v r,1 ̸ = -v f . In all, based upon the proof in the above two cases, it is concluded that the matrix GG T is positive definite, and there exist two constants 0

< λ G,min < λ G,max such that λ G,min E 2 ≤ GG T ≤ λ G,max E 2 .
The proof of this lemma is complete.

D. Further Remarks on the Projection Function

First, based upon Lemma 2, it can be seen that once the initial spacecraft attitude satisfies the attitude constraint (10), the vector x(0) will be bounded. Correspondingly, according to Lemma 3, if it is ensured that the vector x(t) is uniformly bounded, the attitude constraint [START_REF] Shen | Velocity-free attitude reorientation of a flexible spacecraft with attitude constraints[END_REF] will be satisfied at all the time. Similarly, note that the desired attitude trajectory Q d (t) meets the constraint (10) at all the time, it follows from Lemma 2 that x d (t) is uniformly bounded at all the time. This means that we only need to prove the uniform boundedness of x er (t) (17) to ensure that the attitude constraint [START_REF] Shen | Velocity-free attitude reorientation of a flexible spacecraft with attitude constraints[END_REF] holds at all the time.

Besides, according to Lemma 4, once the vector x is close to x d , the vector v r,1 will also approach v r,d,1 . Correspondingly, once x falls into the small neighborhood of x d , v r,1 will also converge into the small neighborhood of v r,d,1 . In addition, once the constraint (10) holds, since the matrix GG T is positive definite, we can obtain the pseudoinverse of the matrix G, that is, G † , which can facilitate the constrained attitude controller design.

IV. CONCLUSIONS

This paper presents a novel projection function on the attitude constraint of the spacecraft. The properties of the projection function is rigorously proved. Once the reduced dimensional vector obtained from the projection function is uniformly bounded, the according attitude constraint is satisfied at all the time. The proposed projection function can facilitate the rotation-matrix-based constrained attitude controller design.

APPENDIX A PROOF OF LEMMA 1

First, in view of the structure of the matrix P , it is obtained that P = λ P,1 vP,1 vT P,1 + λ P,2 vP,2 vT P,2 + λ P,3 vP,3 vT P,3 , (

where λ P,i , i = 1, 2, 3, are the eigenvalues of the matrix P , and vP,1 , i = 1, 2, 3, are the according eigenvectors. Besides, based upon (3), the rotation matrix Q can be parameterized by the corresponding quaternion q a = col(q a,0 , q a,v ) ∈ R 4 . In view of (3) and (62), it is obtained that (64)

Tr(P -P Q) = 2 3 ∑ i=1 λ P,i q T a,v q a,v -2 3 ∑ i=1 λ P,i (v T P,i q a,v ) 2 = 2q T a,v P q a,v , (63) where 
Especially, once P = E 3 , it is obtained from (63)-(64) that

Tr(E 3 -E 3 Q) = 4q T a,v q a,v . (65) 
In addition, based upon (62) and (64), it is obtained that P ≤ λ P,1 E 3 and P ≥ (λ P,2 + λ P,3 )E 3 .

(66)

Hence, it is further obtained from (63) and ( 65)-(66) that

Tr(P -P Q) ≥ 2(λ P,2 + λ P,3 )q T a,v q a,v = λ P,2 + λ P,3 2

Tr(E 3 -

E 3 Q), (67) 
which completes the proof of Lemma 1.
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 1 Fig. 1: Description of the attitude constraint.
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 2 Fig. 2: Description of the projection function.

)

  According to the definition of the points O r,1 and O r,d,1 , it follows that ∥v r,1 ∥ = ∥v r,d,1 ∥ = 1, v r,1 ∈ S a and v r,d,1 ∈ S a . In addition, the intersection point between the extension line of the line O p O r,1 and the plane S p is the point O y , and the intersection point between the extension line of the line O p O r,d,1 and the plane S p is the point O y,d . Note that based on the definition of the points O r,1 , O r,d,1 , O y and O y,d , it follows that the coordinates of the points O y and O y,d are

P 3 ∑ 3 ∑

 33 i=1 λ P,i E 3 -i=1 λ P,i vP,i vT P,i= Tr(P )E 3 -P.