
HAL Id: hal-02882913
https://hal.science/hal-02882913

Submitted on 28 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-time Communications in On-Chip Networks
Chawki Benchehida, Mohammed Kamel Benhaoua, Houssam-Eddine Zahaf,

Giuseppe Lipari

To cite this version:
Chawki Benchehida, Mohammed Kamel Benhaoua, Houssam-Eddine Zahaf, Giuseppe Lipari. Real-
time Communications in On-Chip Networks. the 12th Junior Researcher Workshop on Real-Time
Computing, Oct 2018, Poitiers, France. �hal-02882913�

https://hal.science/hal-02882913
https://hal.archives-ouvertes.fr

Real-time Communications in On-Chip Networks

Chawki Benchehida & Mohammed
Kamel Benhaoua

Univ. d’Oran 1 - LAPECI Laboratory
B.P 1524 ,El M’Naouer

Oran, Algeria
benchehida.chawki@edu.univ-oran1.dz

k.benhaoua@univ-mascara.dz

Houssam-Eddine Zahaf & Giuseppe
Lipari

Univ. Lille - CRIStAL
Centrale Lille, UMR 9189

Lille, France
{houssam-eddine.zahaf,

giuseppe.lipari}@univ-lille.fr

ABSTRACT
Networks on-Chip (commonly known as NoC) have emerged
as a promising solution to bus congestion and bus unpre-
dictable share in multi/many processor architectures. Real-
time systems are highly critical and need to be as predictable
as possible to ensure safety. This paper presents an analy-
sis/simulation tool design for the execution of periodic and
sporadic real-time tasks on NoC-based architectures, with a
special focus on real-time communications. We propose an
event-based simulator written in JAVA. The simulator im-
plements different real-time communication protocols and
tracks the different communications at cycle level. The sim-
ulator modularity allows activating and deactivating differ-
ent NoC components and easily extending the implemented
protocols for more customized simulations and analysis.

1. INTRODUCTION
The evolution and development of semiconductor technol-

ogy has made possible the integration of billions of transis-
tors on a single chip. With this technological explosion,
designers are able to develop Integrating Complex (ICs)
functional elements into a single chip, known as a Multi-
Processor System-on-Chip (MPSoC).

An MPSoC contains multiple processing elements (PEs)
and can typically be classified into homogeneous and het-
erogeneous. The first contains identical PEs whereas dif-
ferent types of PEs are integrated in the second. The first-
generation MPSoCs used buses to allow information exchange
between components. With the increase of PEs in a single
chip, the bus is highly contented, which limits the scalabil-
ity and becomes quickly a bottleneck for high performances.
Networks on-Chip (NoC) has been proposed as an alterna-
tive solution for scalable interconnection between PEs and
power efficiency.

On the other hand, real-time systems are usually found
in highly critical systems such as avionics, aeronautics, · · · .
These systems should adapt their behavior onto the evolu-
tion of the environment. Typically, they have to capture
data via several sensors (Cameras, pressure, temperature,
...), process them and finally react to environment state via
actuators. To ensure safety, these steps, called also tasks,
have to finish their execution within a given time window. In
a typical real-time system, several tasks are in concurrence
on different resources and may also share data.

When executing real-time tasks on a NoC-based architec-
ture, the shared data has to be routed between PEs where
communicating tasks are allocated. The needed time to

route data from its source to its destination is called com-
munication latency. Latency has to be bounded to ensure
that each task instance has been executed without violating
the real-time constraints (within its time window).

NoC components (routers and network interfaces, · · ·)
are designed to maximize network utilization without taking
into account predictability and temporal behavior of com-
munications, which make them not suitable to real-time sys-
tems. Routing real-time communications onto classical NoC,
will lead to a loss of the urgency (priority) of tasks and may
lead to large latencies for highly critical tasks. Several works
in real-time community have proposed architectural modi-
fications to reduce worst case of latency bounds. However
these works are not properly compared against each other
from practical perspective, due to a lack of tools (especially
simulation). Currently NoCs research community has devel-
oped several simulators. These simulation tools are not fun-
damentally designed for real-time systems. Therefore they
do not offer support and mechanisms for real-time commu-
nications.

This paper presents an event-based simulation and anal-
ysis tools for periodic and sporadic real-time communica-
tions. The simulator design is detailed, with a special focus
on NoC functionalities and how they can be extended. We
also provide a brief comparison between different NoC com-
munication strategies proposed in the literature of real-time
systems.

2. OVERVIEW OF ROUTING IN NOC
Each communication consists of a message, communica-

tion source and destination. First, each message Mi is de-
composed into a set of packets (Mi = {Pi1,Pi2, · · · }), fur-
ther, packets are forwarded separately from a router to an-
other.

Wormhole switching is the mechanism that describes how
a packet moves forward from a router to another. In the
wormhole switching, each packet P is broken into small
pieces called FLITs1, P = {FP

1 ,FP
2 , · · · FP

n }.
The first flit FP

1 , called the header flit, holds needed in-
formation to packet routing (for example, the destination
address) and sets up the behavior of all other flits associ-
ated within the same packet. Final flit, FP

n is called the tail
flit. Between the header and the tail flit, flits are called body
flits.

In wormhole switching, flits are stored in VCs. Each VCs
is either idle or allocated to only one packet. A header flit

1FLow control unITs

can be forwarded to the next router if at least next router
has one idle VC. The VC allocator decides where each packet
is stored (selects the idle VC for the header flit). When the
VC is selected, the header flit locks the VC. Body and tail
flits can be forwarded to the same VC as the header using
a credit-based flow control. When the tail flit is routed, it
frees the latest VC it occupied.

In a NoC architecture where each router is composed by
one VC per port, if two header flits or more are blocked
in a circular dependency, it may lead to a deadlock. Thus
using multiple virtual channels allows to reduce wormhole
blocking.

Routing is an operation performed in router to determine
which is the next hop of packets. In this paper, we focus only
on XY routing. A packet is routed onto the next routers
on the X axes until reaching the destination Y axes and
then it starts being forward on the Y axes until reaching
destination X axes. XY is a deterministic and predictable
routing algorithm.

3. SYSTEM MODEL
Network on Chips are tightly coupled with computing el-

ements such processors, accelerators, etc. When executing
real-time applications on NoC-based architectures, tasks are
allocated onto cores such that all real-time requirements
are respected. The respect of real-time constraints implies
achieving real-time communications in a bounded time. In
this paper, we are not interested in task allocation, we fo-
cus only on real-time communication. In this section, we
present hardware architecture design and task models used
in the rest of this paper.

3.1 Architecture model

3.1.1 NoC topology and architecture
We model a NoC architecture A as a set of m×m routers.

Routers are connected to each other in a 2D-mesh topology
(see Figure 1). Each Router is connected to its left, right,
top, bottom neighbor except those on the edges.

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Figure 1: 2D-mesh NoC architecture

Rjm denotes the router at row j and column m. For ex-
ample R22 denotes the router in the second line and second
column. It has for neighbor R21 on the left, R23 on the left,
R12 on the top, R32 on the bottom.

3.1.2 Router architecture
A router is the main unit in a network-on-chip. Mainly it

has of k ports, each for a neighbor. In 2D-mesh, each router
has 5 in-ports and 5 out-ports connected to its neighbors.
The fifth port is local port and connected to the local PE.
Figure 2 presents a typical router architecture. Each router
is compound of:

Input 1

Input 5

Input buffers

Input buffers

Output 1

Output 5

Credit InCredit Out

Crossbar Switch

.
.
.

.
.
.

vc

vc

vc

vc

vc

vc

vc

vc

vc

vc

Route

Computation

Arbitrer

VC Allocator

Figure 2: 2D-mesh NoC architecture

• In/Out-ports: are the physical media that links a router
with its neighbor routers.

• Virtual Channels (VC): are message buffers. It con-
tains a flits arriving from a neighbor, stored for a while,
before being sent to its next destinations (routed). the
number of VC per port denoted by |VC| allows a router
to support multiple communications using the same
port at the same time

• VC Allocator: is the entity responsible of selecting for
a given packet, the VC where it is going to be stored.

• Route Computation: is the unit responsible to select
the output port for any given packet. Here is imple-
mented XY routing.

• Crossbar: is the unit able to route the non-conflicting
communications. By conflicting communication, we
denote the packets available at the same time in a given
router and need to be routed using the same output
port

• Arbiter: the unit that schedules outports for conflict-
ing communications. This is one of the main units
that will be modified later to ensure tighter bounds of
latency for real-time communications.

3.2 Communication model
Real-time tasks are recurrent. Liu and Layland are the

first to model recurrence in real-time systems by defining a
real-time task by its deadline, period and offset. The Liu
and Layland model is the most used in real-time community
and industry. We use similar model for real-time commu-
nication analysis. Let T denote a set of n communication
T = {C1, C2, · · · , Cn}. Each communication is sporadic and
can generate an infinite number of message exchanging from
source router to destination router and is characterized by
Ci = (Mi,Di,Ti,Rs,Rd) where:

• Rs,Rd are the communication source, and destination
routers

• Mi is the maximum size of communication between
Rs and Rd for communication i.

• Ti is the communication period. It represents the min-
imum arrival time between two communication. Thus,
the communication j + 1 can not start before at least
Ti time from the arrival of communication j.

• Di is the communication relative deadline. The jth

communication fromRs toRd has to be finished within
the time interval [ai,j , ai,j + Di] where ai,j is the time
where communication Ci is requested from the router.

In our simulator/analysis tool, task parameters are spec-
ified using YAML input file.

Real-time communications need to be analyzed to com-
pute the worst case communication latency and ensure that
each communication finishes within its deadline. Task and
communication allocation are built according to the worst
case latency obtained by analysis(WCLbA). If WCLbA is
hugely greater than average case latency, the platform uti-
lization is drastically degraded. In this paper, we call the dis-
tance between worst case and average case latency-pessimism.
To compare real-time protocols for NoC architectures, it is
sufficient to compare the WCLbA they provide. However,
this comparison is not sufficient since it does not allow you
to have an idea about resource occupation. Here, we need
to refer to simulation.

In the real-time community, several works have proposed
architectural modifications to reduce latency-pessimism, here
we present some of them and how they are implemented in
our simulator. For space constraints, we overview the main
ideas of each.

Giuseppe et al. in [7] compute the worst case latency
without any additional support to router structures. The
authors propose a formulation of an end-to-end communi-
cation latency analysis including latency of network access
(from processor to router) and network latency. The analy-
sis presented in [7] does not need any further modifications
into our simulation and router structure. However theoreti-
cally it provides larger latency-pessimism.

Burns et al. in [11] propose to assign priorities to vir-
tual channels. For a given set of n communications, we
have n virtual channel per each port. The VC allocators
assign each communication into its corresponding VC. This
solution brings some realization problems : the increase of
surface and cost of chip production due to large VC number,
communication preemption overheads and context switch
costs by header and tail flits recreation.

Bandwidth reservation techniques comes as solution in the
middle. They don’t impose a lot of critical structural modi-
fications in the router and can grant a service time for each
communication.

4. REAL-TIME COMMUNICATION SIMU-
LATOR

Simulation tools allow faster exploration of design space
and quick evaluation of the design choices performance. Re-
cently, a lot of simulators [8, 12, 3, 4, 9, 5, 2, 1, 10, 6]
have been proposed to explore design choices in NoC-based
architectures at different abstraction and precision levels.

For example, GPNoCSIM [6] and DynaMapNocSim [2] are
event-based simulators written in JAVA, the first focuses on
communications, whereas the second focuses more on the
task allocation, both at high level of abstraction. Hermes
[10], is low-level simulation tool withen in VHDL. It allows
to emulate design choices on FPGA boards, however it is
time consuming to explore design choices and evaluate their
performances.

However, none of these simulators, cited above, offers a
support for real-time communications, neither periodicity
or recurrence in general. The latter are designed for non-
critical systems and need lot of modifications to make them
support real-time communication protocols. Thus, we pro-
pose a new simulation tool for real-time communication pro-
tocols.

Our simulator is modular, and extensible. A first ver-
sion is available2 and is still under continual upgrading and
development to include extra-features. In this section, we
describe how the simulator has been designed.

4.1 Packages

Architectures Comm. models

Simulation Engine

NoC Engine

Tracer

Comm.

YAML

Archi.

YAML

Figure 3: Package diagram

Our simulation tool is compound of 5 packages, detailed
in the follow :

Architecture : It contains all the classes and structures
to define a NoC. We focus mainly on 2D Mesh topol-
ogy. However, our design can extended to specify other
topologies.

Communication: This package defines the router commu-
nication structures and their parameters. Allowing to
define periodic and aperiodic communications, mes-
sage decomposition, structure and serveral extra-real-
time parameters.

Core engine: Here are implemented all the algorithms that
contributes in NoC functioning. They are mostly im-
plementated by different interfaces (CROSS BAR, VC
allocator, Arbitrer, · · ·).

Simulation : The simulator package contains the simula-
tion core. It is responsible for events and time man-
agement. It is contains discrete event-based simulation
engine. The simulation engine can be re-used for any
other simulation purposes.

2https://github.com/chawki27000/retina-sim

Tracer : Responsible of registering at cycle level, all actions
taken onto each router and the state of each VC at
each time instance are save in a log file. It allows also
to automatically generate formatted results and some
predefined plots using PGF-plots.

4.2 NoC & Simulation Engines
Our simulator handles three types of events :

• MESSAGE ARRIVAL : This event occurs to signal a
communication between two routers. It starts from
message splitting to reach flit granularity until gener-
ate next events.

• SEND HEAD FLIT : This event handles flit header
forwarding, by defining the next hop router, reserving
an idle VC, triggering arbitration (if conflict occurs)
and generate the next events if all is done without
errors.

• SEND BODY TAIL FLIT : Finally, this event handle
body or tail flit. it checks free space in the allocated
VC, blocking flit sending if no space available and re-
leasing VC if the current flit is tail.

Algorithm 1 Simulation

1: noc f: YAML FILE
2: task f: YAML FILE
3: parse noc(noc f)
4: create events(task f)
5: sort events time(task f)
6: while (event list 6= ∅) do
7: e = select next event()
8: update clock()
9: switch e do

10: case MESSAGE ARRIVAL :
11: Process message(e)

12: case SEND HEAD FLIT :
13: send header flit(e)

14: case SEND BODY TAIL FLIT:
15: send body tail flit(e)

16: if (sim time finished) then
17: empty event list()
18: end if
19: end while

Algorithm 1 shows different steps and main function calls
of the simulator. It starts by parsing a NoC settings and
communication scenario by instanciating all periodic or ape-
riodic communications. Further, it sorts all events and loops
on them one by one. The clock is updated when the event
is handled. The simulation ends when simulation time is
reached or event list is empty.

5. CONCLUSION
In this paper, we presented a design of real-time simula-

tor and we provide briefly an overview of techniques to per-
form real-time communication in a NoC architectures. We
present some research threats and how our simulator can
help in achieving architectural modifications without a lot
of programming efforts. Due to space constraints, we did not
present simulation results. For future work, we are planning

to compare the performances of each real-time communica-
tions scheduling techniques in terms of latency and energy
efficiency. Further, we would like to investigate exact solu-
tion for budgeting VCs.

6. REFERENCES
[1] Y. Ben-Itzhak, E. Zahavi, I. Cidon, and A. Kolodny.

Hnocs: modular open-source simulator for
heterogeneous nocs. In Embedded Computer Systems
(SAMOS), 2012 International Conference on, pages
51–57. IEEE, 2012.

[2] M. K. Benhaoua, A. Singh, A. E. H. Benyamina, and
P. Boulet. Dynmapnocsim: A dynamic mapping
simulator for network on chip based mpsoc. Journal of
Digital Information Management, 13(1), 2015.

[3] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower,
T. Krishna, S. Sardashti, et al. The gem5 simulator.
ACM SIGARCH Computer Architecture News,
39(2):1–7, 2011.

[4] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny.
Qnoc: Qos architecture and design process for
network on chip. Journal of systems architecture,
50(2-3):105–128, 2004.

[5] F. Fazzino, M. Palesi, and D. Patti. Noxim:
Network-on-chip simulator. URL: http://sourceforge.
net/projects/noxim, 2008.

[6] H. Hossain, M. Ahmed, A. Al-Nayeem, T. Z. Islam,
and M. M. Akbar. Gpnocsim - a general purpose
simulator for network-on-chip. In 2007 International
Conference on Information and Communication
Technology, pages 254–257, March 2007.

[7] S. Kumar and G. Lipari. Latency analysis of
network-on-chip based many-core processors. In 22nd
Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, PDP
2014, Torino, Italy, February 12-14, 2014, pages
432–439, 2014.

[8] M. Lis, K. S. Shim, M. H. Cho, P. Ren, O. Khan, and
S. Devadas. Darsim: a parallel cycle-level noc
simulator. In MoBS 2010-Sixth Annual Workshop on
Modeling, Benchmarking and Simulation, 2010.

[9] L. Möller, L. S. Indrusiak, and M. Glesner. Nocscope:
A graphical interface to improve networks-on-chip
monitoring and design space exploration. In Design
and Test Workshop (IDT), 2009 4th International,
pages 1–6. IEEE, 2009.

[10] F. Moraes, N. Calazans, A. Mello, L. Möller, and
L. Ost. Hermes: an infrastructure for low area
overhead packet-switching networks on chip.
INTEGRATION, the VLSI journal, 38(1):69–93, 2004.

[11] Z. Shi and A. Burns. Real-time communication
analysis for on-chip networks with wormhole
switching. In Second ACM/IEEE International
Symposium on Networks-on-Chip (nocs 2008), pages
161–170, April 2008.

[12] K. Vyas, N. Choudhary, and D. Singh. Nc-g-sim: A
parameterized generic simulator for 2d-mesh, 3d-mesh
& irregular on-chip networks with table-based routing.
Global Journal of Computer Science and Technology,
2013.

