
HAL Id: hal-02882911
https://hal.science/hal-02882911

Submitted on 28 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Task and Communication Allocation for Real-time Tasks
to Networks-on-Chip Multiprocessors

Chawki Benchehida, Mohammed Kamel Benhaoua, Houssam-Eddine Zahaf,
Giuseppe Lipari

To cite this version:
Chawki Benchehida, Mohammed Kamel Benhaoua, Houssam-Eddine Zahaf, Giuseppe Lipari. Task
and Communication Allocation for Real-time Tasks to Networks-on-Chip Multiprocessors. Second
international conference on Embedded & Distributed Systems (EDiS’2020), Apr 2020, Oran, Algeria.
�hal-02882911�

https://hal.science/hal-02882911
https://hal.archives-ouvertes.fr

Task and Communication Allocation for Real-time
Tasks to Networks-on-Chip Multiprocessors

Chawki Benchehida1,2, Mohammed Kamel Benhaoua1,3, Houssam-Eddine Zahaf2, and Giuseppe Lipari2

1Univ. Oran1 - LAPECI Laboratory. Oran, Algeria
2Univ. Lille - CRIStAL, Centrale Lille, UMR 9189. Lille, France

3Univ. Mustapha Stambouli. Mascara, Algeria
Email: {firstname.lastname}@univ-lille.fr, k.benhaoua@univ-mascara.dz

Abstract—In this paper, we address the problem of analyzing
the behavior of a set of real-time tasks on a Network-on-chip-
based (NoC) architecture. Our approach is to transform the
allocation of tasks and communications within a NoC into a
classical real-time allocation problem. It provides an extension
of classical bin-packing heuristics to allocate a set of real-time
applications modeled using a directed acyclic graphs (DAGs) to
a set of processors interconnected through a NoC.

The paper describes the schedulability analysis, including
allocation and communication. It provides also a comparative
study of different allocation and communication algorithms and
presents accordingly a set of promising research insights.

Index Terms—real-time, analysis, Network-on-chip, allocation,
communication, latency

I. INTRODUCTION

Autonomous driving, video monitoring, gaming are exam-
ples of recent soft and hard real-time applications. These
applications process a large amount of data and require high
computational power, that can be satisfied by having numerous
computing elements on the same chip, i.e. massively parallel
architectures. Traditional parallel hardware have been a direct
descendant of single core architectures, that is a single bus
links memory to computing elements. When increasing the
number of processors, concurrency on memory access can
lead to bus contention, therefore downgrades performances.
Recent tends replace the classical interconnections using bus,
by a complex embedded networking infrastructure. That is,
computing elements are directly connected to routers, which
themselves are connected to other routers, leading to the well-
known network-on-chip paradigm.

Real time systems are subjected to timing constraints, i.e.,
system’s correctness depends on the result delivery time. A
real-time workload must complete within a specified time
window, called deadline. A real-time system is defined as
schedulable, if according to certain scheduling policy, all tasks
meet their deadlines. The respect of real-time constraints has to
be ensured prior to runtime. To achieve precise schedulability
analysis, the real-time tasks implementation can be abstracted
through different models. Directed acyclic graphs (DAGs) are
one of the most expressive models. In such model, tasks are
represented by nodes and edges between nodes denote the data
transfer that has to be achieved between tasks.

When executing real-time systems onto a NoC-based archi-
tecture, the schedulability depends on (i) the task allocation,
and (ii) inter-task communication. Each has received a partic-
ular attention in the real-time community. The task allocation
has been widely addressed for bus-based architecture, and
effective algorithms have been proposed to optimize several
goals, such as energy [21], resource utilization, etc. Regarding
the communication, several research works have proposed
NoC architectural modifications to reduce worst case inter-
task communication time. Mainly they can be classified to:
(i) priority-based and TDMA-based. We have reported an ex-
perimental and analytical comparison between communication
protocols for real-time systems onto NoCs in [4].

Few works only have focused on both allocation and
communication issues at the same time for real-time systems.
This problem is NP-hard in the strong sense. It is extremely
time consuming to compute optimal solution as the design
space is very large. Therefore, it is more convenient to design
efficient heuristics to achieve fast and efficient design-space
exploration. One way, to design allocation heuristics, is to
assign intermediate artificial deadlines for every task, therefore
allowing tasks to be analysed independently from each other.

1) Contributions: The artificial offset-and-deadline-
assignment techniques have not been proposed for NoC-based
architectures. In this paper, we propose an new approach to
allocate real-time tasks into NoC architecture by extending
classical deadline assignment heuristics, as well as classical
bin-packing heuristics for real-time DAG tasks. We first,
propose an extension of bin-packing heuristics to the NoC-
based multiprocessors. Further, we propose a new deadline
assignment techniques for NoC based architecture, and
provide analysis for allocating both communications and
tasks. The paper also provides promising research insights
when considering allocation and communication issues at the
same time.

The rest of the paper is organized as follows: In the
next section, we report the related work. System and ar-
chitecture model are presented in Section III. Further, we
present independently real-time approaches for (i) bounding
communication latency within NoCs, and (ii) deadline as-
signment for multiprocessor based architectures. Section IV-C
reports how real-time tasks can be executed within NoC-based

multiprocessors using TDMA for communication and classical
bin-packing heuristics for task allocation. Results of the both
simulation and analysis and their discussions are presented in
Section V. We draw our conclusions in Section VI.

II. RELATED WORK

Network-on-chip interconnection paradigm has many ad-
vantages compared to classical bus-based interconnections,
such as its scaling capacity. However, as hundreds of com-
puting units are embedded on the same chip, the task allo-
cation is a complex issues compared to classical bus-based
architecture compound of few processors. Finding an optimal
task allocation is an NP-complete problem and it has been the
subject of several works. For non-real-time tasks, authors in
[5], [9], [16], [18] have proposed offline (static), as well as
on run-time mapping strategies (on-the-fly) for both task and
communications. However, None of these proposals considers
critical real-time system requirement. Authors in [14], [17],
[21], [20], [8] have considered the task allocation for real-
time tasks within classical bus based architectures. A good
survey on real-time task allocation can be found in [15].

In bus-based real-time systems, communication latency is
analyzed and included in the task worst case execution time
as it do not much depend on the task allocation itself. However,
such techniques can not be used in the context of NoC-based
architecture, communication depends drastically on the task
allocation, therefore it must be considered independently from
the task worst-case execution time. Several techniques have
been proposed that can be classified into two categories. The
first uses TDMA (Time-division multiple access) to regulate
the medium communication access, while the second assign a
priority to each message, and a scheduling policy is applied.
A comparative study of these techniques are reported in [4]
using simulation and analysis. [10], [13] proposed techniques
for TDMA quantum assignment to minimize communication
latency, i.e find a near-optimal VC slot assignment using
heuristics. An exhaustive survey can be found in [11].

However, None of these works above combine task and
communication assignment at the same time. In this paper,
we propose an allocation approach for both tasks and com-
munication using TDMA for communication and classical bin-
packing heuristics for allocations.

III. SYSTEM MODEL

In this section, we present our architecture and our task
models. First, we overview NoC architectures basic concepts.
Further, we model real-time tasks using DAGs.

A. Architecture Model

The NoC is an interconnection paradigm has been intro-
duced in [6] to overcome the bus-based interconnection limi-
tations. It links the processors through an embedded network.
Each processor is connected to a router via a network interface.
Each couple of a router and processor is called a tile. As in
classical networks, tiles can be arranged according to different
topology. 2D-Mesh is the most used topology in NoCs. It

aligns tiles in a square matrix of m×m. Let P denote a set
processor, P = {p1, · · · , pm×m}. Each tile pi is connected
to typically 4 neighbors, except those at the network edge.
For example in Figure 1, we show NoC-based multiprocessor
arranged in 2D mesh 3× 3 NoC.

PE

PE

PE

PE

PE

PE

PE

PE

PE

δ7 δ8 δ9

δ4 δ5 δ6

δ1 δ2 δ3

Fig. 1: 2D-Mesh NoC Architecture

When exchanged between tiles, a message Mi is first split
into several Packets (Mi = {Pi1, · · · , Pij}). In Wormhole
switching, each packet is broken into small data units, called
FLIT (FLow control unIT). Within a tile, incoming FLITs
are stored in local buffers, called virtual channels (VCs).
Further, They are moved forward to their next destination
according to a routing algorithm. In this paper, we consider XY
routing. Flits are first moved to the next router in the X-axis
(horizontal way) until reaching the destination router column,
and then in the Y-axis (vertically) until reaching the target
router. XY routing is simple, deadlock-free and deterministic.
When two or more VCs are routed to the same output, they
must be arbitrated, as the physical links support only one
communication at same time. In this paper, we use a TDMA-
based arbitration mechanism. TDMA assigns for each VC a
given number of slots, where it is served in a round robin
fashion. That is, each VC has a guaranteed service time.
TDMA ensures isolation between communications as well as
a predictable contention free service time.

B. The DAG task model

A DAG task is a Directed Acyclic Graph, characterized
by a tuple τ = {T,D,V, E}, where: T is the task period,
it represents the minimum inter-arrival time between two
consecutive activation of task τ ; D is the relative deadline,
all sub-tasks of τ must complete not later than D time units
from its arrives; V is a set of nodes that represent sub-tasks.
The set E is the set of edges of the graph E : V × V .

A sub-task v ∈ V is the basic computation unit. It represents
the elementary chunk of the task code that be implemented by
a thread and executed by any computing elements within P in
our architecture. Every sub-task v is characterized by its worst-
case execution time C(v). An edge e(ni, nj) ∈ E models a
precedence constraint (and related communication) between
node ni and node nj and it is characterized by the maximum

amount of the data (in FLIT number) exchanged by its source
node ni and destination node nj , denoted by M(ni, nj).

The set of immediate predecessors of a node nj , denoted
by pred(nj), is the set of all nodes ni such that there exists
an edge (ni, nj). The set of predecessors of a node nj is the
set of all nodes for which there exist a path toward nj . If a
node has no predecessor, it is a source node of the graph. In
our model we allow a graph to have several source nodes. In
the same way we define the set of immediate successors of
node nj , denoted by succ(nj), as the set of all nodes nk such
that there exists an edge (nj , nk), and the set of successors of
nj as the set of nodes for which there is a path from nj . If a
node has no successors, it is a sink node of the graph, and we
allow a graph to have several sink nodes.

v1

v2

v3 v4

v5

15F

10F3F

2F20F

Fig. 2: An example of a dag task

Example 1. Let consider τ = {T = 100,D = 80,V, E} be a
task. The dag, V, E , are reported in Figure 2.

The task has only one source node, therefore when the task
arrives, sub-task v1 is activated. Sub-task v2 can not start
its executions before v1 finishes its execution and that v2 has
received completely 15 Flits sent by v1. v1 can not be activated
again before at least 100 time units have elapsed. When v2
finishes it sends 10 flits to v4 (respectively 3 Flits to v3. v5
must finish its execution not later than 80 time units from the
task arrival.

IV. REAL-TIME ALLOCATION AND SCHEDULABILITY

Meeting timing constraints for a set of DAG real-time
tasks requires allocating properly their sub-tasks and commu-
nications to different tiles. As these sub-tasks communicate,
they are forced to respect an execution order dictated by
the precedence constraints imposed by the graph structure.
Therefore, every sub-task must wait for the completion of its
immediate predecessors and their communications before it
can start. Analyzing this behavior is complex, because of the
large number of tiles to consider. The number of solutions is
equal to m ·m · |V C| ·

∑
τ∈T |V(τ)| where |V C| is the number

of VCs per port, thus the design space is extremely large
and cannot be completely explored to find optimal solutions
in a reasonable time. In this paper, we propose an efficient
methodology to allocate sub-tasks to PEs and communications
to VCs to achieve fast design space exploration while meeting
real-time constraints.

Our algorithm starts by allocating sub-tasks using classi-
cal bin-packing heuristics and by doing fast schedulability

checking, as described in the next section. Later, it assigns
to every communication a virtual channel (VC) where it will
be served. Finally, to reduce the complexity of dealing with
precedence constraints directly, we impose intermediate offsets
and deadlines on each sub-task, i.e. for each sub-task, we
compute an artificial activation time and an artificial deadline,
and we ensure by analysis that if every sub-tasks is executed
within its artificial activation time and artificial deadline, the
task where it belongs will respect its deadline. In this way,
precedence constraints are automatically respected. Further,
the schedulability for every tile can be checked independently
using classical single-core analysis, which can be found in
the literature of real-time systems, for both fixed priority and
EDF. We detail every step in our allocation algorithm in the
following sections.

A. Task allocation

This paper uses classical bin-packing heuristics Best-Fit
(BF) and Worst-Fit (WF) as disclosed in Algorithm 1.

It starts by sorting tasks according to order, that is either
by deadline, or utilization (Line 3). Later, it selects the task
on the top of the ordered task list, let it be τ . For every sub-
task v in τ , the algorithm selects a sub-set of tiles where v
is allowed for allocation (Line 6), (according to Definition
2 and Theorem 1). Further, the eligible tile list is sorted
according to the bin-packing allocation heuristics (Line 7),
BF for increasing utilization order and WF for a decreasing
utilization order. A fast schedulability test is achieved to find
the first tile allowing a schedulable allocation. If all eligible
tiles have been investigated without finding an allocation
that satisfies the schedulabilty test, the system aborts on fail.
Otherwise, our algorithm moves to the next sub-task. When
all sub-tasks have been allocated, our algorithm moves to the
next task. When all tasks have been allocated, Algorithm 1
achieves deadline assignment for every task (Lines 20-22),
by subtracting properly the communication latencies from the
available slack time, as described in Section IV-C.

This procedure allows our algorithm to convert a complex
allocation problem to multiple single-processor schedulability
problem, for which well-known techniques can be found in the
literature of real-time systems (Lines 23-27). If schedulability
fails in a tile, the algorithm aborts on fail, otherwise the sub-
task and communication assignment allows respecting timing
constraints.

The function select eligible tiles (Line 6), returns a list of
couples processor-VC where the sub-task and communication
can be feasibility allocated according to the necessary schedu-
lability test in Theorem 1.

B. Communication latency

We adopt for this paper TDMA-based communication.
Therefore, synchronously on all routers, one VC is served
for its quantum. It provides isolation of FLIT forwarding,
therefore prevents miss-behaving communications from mo-
nopolizing the network. However it requires synchronization

Algorithm 1 Bin-packing allocation

1: input: T : set of tasks, alloc : BF or WF, order : D or U
2: output: A list of tuples (sub-task, Processor, VC)
3: sort tasks by(order)
4: for (τ ∈ T) do
5: for (v ∈ τ) do
6: eligible list = select eligible tiles(v)
7: sort tiles(alloc, eligible list)
8: allocated = false
9: for (p ∈ eligible list) do

10: if ((u(v) + U(Tp) ≤ 1) then
11: add sub− task to taskset(v, Tp)
12: allocated = true
13: end if
14: end for
15: if (allocated == false) then
16: return FAIL
17: end if
18: end for
19: end for
20: for (τ ∈ T) do
21: assign deadlines and offsets(τ)
22: end for
23: for (p ∈ P) do
24: if (check schedulability(p) == FAIL) then
25: return FAIL
26: end if
27: end for
28: return success

mechanisms in the routers. Under TDMA, each communica-
tion latency between vertex v and v′ can be computed as
shown in Equation (1).

lat(V C, v, v′) =
Li
nslot

· ∆

ηi
+Hi (1)

Where :
• Li : number of flits in the message.
• nslot : The amount of data sent in one slot (1 Flit by

default) in Virtual channel VC.
• ∆ / ηi : The total number of slots in a TDMA cycle / the

assigned slot number.
• Hi : Hop number between δsource and δdestination.
Once the allocation of every sub-task is achieved, our

algorithm computes all communications costs according to
Equation (1) [12]. Further, schedulability can be checked. We
describe how to isolate the schedulability is checked for each
sub-task by the mean of deadline and offset assignment.

C. Deadlines and offsets assignment

Many authors have proposed techniques to assign intermedi-
ate deadlines and offsets to task graphs. In this paper we report
the two of the most used techniques, proportional share and
fair share, reported in [22].

Most of the deadline assignment techniques are based on
the computation of the execution time of the critical path. A
path πx = {v1, v2, · · · , vl} is a sequence of sub-tasks of task
τ such that:

∀vl, vl+1 ∈ πx,∃e(vl, vl+1) ∈ E .

Let Π(τ) denote the set of all possible paths of task τ . The
critical path πcrit(τ) ∈ Π(τ) is defined as the path with the
largest cumulative execution time of the sub-tasks.

In contrast to classical deadline assignment techniques, We
define the slack Sl(π,D) along path π as a function of the
execution time of its sub-tasks and also of the communications
latency that must be achieved between the sub-tasks of path
π.

Sl(π,D) = D−
∑
vl∈P

C(vl)−
∑
vl∈π
vl+1∈π

lat(VC, vl, vl+1)

where VC is the allocated virtual channel for communication
between vl and vl+1.

The assignment algorithm starts by assigning an interme-
diate relative deadline to every sub-task along a path by
distributing the path’s slack as follows:

D(v) = C(v) + calculate share(v, π)

The calculate share function computes the slack for sub-
task v along the path. This slack can be shared according to
two alternative heuristics:
• Fair distribution: assigns slack as the ratio of the

original slack by the number of sub-tasks in the path:

calculate share(v, π) =
Sl(π,D)

|π|
(2)

• Proportional distribution: assigns slack according to the
contribution of the sub-task WCET in the path:

calculate share(v, π) =
C(v)

C(π)
· Sl(π,D) (3)

Once the relative deadlines of the sub-tasks along the critical
path have been assigned, we select the next path in order of
decreasing cumulative execution time, and assign the dead-
lines to the remaining sub-task by appropriately subtracting
the already assigned deadlines. The complete procedure has
been described in [19], and is not reported here for space
constraints.

Let O(v) be the offset of a sub-task with respect of the
arrival time of the task’s instance. The sum of the offset and
of the intermediate relative deadline of a sub-task is called
local deadline O(v) + D(v), and it is the deadline relative to
the arrival of the task’s instance.

The offset of a sub-task is set equal to 0 if the sub-task has
no predecessors; otherwise, it can be computed recursively as
the maximum among the local deadlines of the predecessor
sub-tasks.

Figure 3 illustrates the relationship between the activation
times, the intermediate offsets, relative deadlines and local

v5v1 v2
PEa

PEb

PEc

v3

v4

v7 Local deadline

v7 relative deadline

O(v6)

Absolute deadline

Activation time

task relative deadline

Fig. 3: Example of offset and local deadline

deadlines of the sub-tasks of the task depicted in Figure 2.
We assume that v1, v2, v5 have been allocated on the same PE
whereas v3 and v4 each on a different engine. The activation
time is the absolute time of the arrival of the sub-task instance.
The activation time of a source sub-task corresponds to the
activation time of the task graph. The offset is the interval
between the activation of the task graph and the activation of
the sub-task. The local deadline is the interval between the
task graph activation and the sub-task absolute deadline.

Definition 1. Sub-task v ∈ Vτ is feasible if for each task
instance arrived at aj , sub-task v executes within the interval
bounded by its arrival time a(v) = aj + O(v) and its absolute
deadline a(v) + D(v).

Lemma 1. A task is feasible if all its sub-tasks are feasible.

Proof. By the definition, the local deadline of the sink sub-
tasks is equal to the deadline of the task D. Moreover, the
offset of a sub-task is never before the local deadline of a
preceding sub-task. Therefore 1) the precedence constraints
are respected, 2) if sink sub-tasks are feasible, then the task
is feasible.

Definition 2. Let p be a processor and v be a sub-task of task
τ .
p is an illegible processor for v if :
∀π ∈ Π(τ) such that v ∈ π =⇒ ∃VC ∈ p that can be

allocated to v and verifying condition Sl(π,D) ≥ 0

Theorem 1. Let p be a processor and v be a sub-task.
if p is not an illegible processor to v, than v can not be

feasibility allocated to p.

Proof. The proof is done by counter example. Let assume that
p is not illegible to v and that the system is schedulable.

By negating Definition 2, it exis ts at least one path where
Sl(π,D) < 0. Therefore, one or more sub-tasks will have an
execution time greater to their deadlines, thus missing their
deadlines and Lemma 1 can not be satisfied.

The slack computation allows us to ensure that all com-
munications will be achieved will not push a sub-task miss
its deadline as they have their own reserved time that is not
included in the distributed slack.

D. Single core schedulability analysis

At this step, we assume that deadlines have been assigned
to every sub-task, and that every sub-task is allocated to a tile,
and communication to VC. The goal of this step is to check
if the real-time tasks will respect their timing constraints.
Schedulability for FP can be checked using the test proposed
in [1]. The latter has a high complexity, therefore we allow
also using the test proposed in [3] which is less compless
but pessimistic. EDF schedulability can be checked using
workload requirement using the schedulability test proposed
in [2]. This test has been extended for tasks presenting offsets,
as follows :

dbf(τ, t) = max
v∈τ

∑
v′∈τ
b t−Θ(v′)−D(v′) + T (τ)

T (τ)
c (4)

where:

Θ(v′) = (O(v′)−O(v)) mod T (τ)

Thus, our approach has converted the task and communica-
tion allocation problem to a single core analysis problem.

V. RESULTS AND DISCUSSIONS

In this section, we evaluate the performances of our pro-
posals on a large set of synthetic experiments. The taskset
generation starts by invoking UUnifast algorithm to generate
the utilization rate of n sub-tasks. Hence, DAG and inter-
sub-tasks communications are generated by TGFF [7]. In the
architecture side, we map these tasks on a 3× 3 2D-Mesh
NoC with routers, containing for each of them 6 V C with
the following TDMA slot configuration : [4, 2, 3, 5, 3, 3]. To
avoid untractable hyper- periods, the period of every task are
randomly generated from a list of values between the interval
of 1000 and 10000. Communications workload are flit-based
quantified, i.e; for each communication, we assign a random
number of flit in the range of 3 and 40.

0 2 4 6 8 10 12

0

20

40

60

80

Total Utilization index

Sc
he

du
la

bi
lit

y
ra

te

BF-Fair
BF-Prop
WF-Fair
WF-Prop

Fig. 4: Heuristics schedulability rate by tasks utilization rate

The code has been executed on a regular laptop with
Intel Core i5-7200U processor (2×2.5 GHz) and 8 GB of

ram. The results are shown in Figure 4 and are presented
as follows. Each experience takes a heuristic allocation and
artificial-deadline assignment method as detailed in IV-C. The
results are reported by a function measuring the evolution
of the schedulability rate by varying the task utilization rate.
Thus, we notice BF heuristic combinations dominate the WF
heuristic. This can be explained by observing that BF tries
to pack the maximum number of sub-tasks into the minimum
of engines, and this allows more flexibility to schedule heavy
tasks on other engines.

VI. CONCLUSION

In this paper, we provide real-time tasks support into NoC-
based multiprocessor. Our approach converts a extremely
complex task and communication allocation problems to a set
of classical scheduling problem, for which efficient algorithms
exist, while preseving allocation problem timing properties.
We used bin-packing heuristics to allocate tasks on cores and
we provided also promising methods for offset and deadline
assignment. As future work, we would like to investigate exact
solutions for budgeting VCs and more sophisticated heuristics
for task allocation.

ACKNOWLEDGMENT

This work was supported in part by MESRS, Algeria
and by PHC Tassili project 19MDU213 and by the PRIMA
WATERMED 4.0 project.

REFERENCES

[1] N. C. Audsley. Optimal priority assignment and feasibility of static
priority tasks with arbitrary start times. Citeseer, 1991.

[2] S. K. Baruah, L. E. Rosier, and R. R. Howell. Algorithms and complexity
concerning the preemptive scheduling of periodic, real-time tasks on one
processor. Real-time systems, 2(4):301–324, 1990.

[3] I. Bate and A. Burns. Schedulability analysis of fixed priority real-time
systems with offsets. In Proceedings Ninth Euromicro Workshop on Real
Time Systems, pages 153–160. IEEE, 1997.

[4] C. Benchehida, M. K. Benhaoua, H. E. Zahaf, and G. Lipari. An analysis
and simulation tool of real-time communications in on-chip networks:
A comparative study. In EWILI’19, 2019.

[5] M. K. Benhaoua, A. Singh, A. Benyamina, A. Kumar, and P. Boulet.
Heuristic for accelerating run-time task mapping in noc-based heteroge-
neous mpsocs. Journal of Digital Information Management, 12(5):293,
2014.

[6] L. Benini and G. De Micheli. Networks on chips: A new soc paradigm.
computer, 35(1):70–78, 2002.

[7] R. P. Dick, D. L. Rhodes, and W. Wolf. Tgff: task graphs for free. In
Proceedings of the Sixth International Workshop on Hardware/Software
Codesign. (CODES/CASHE’98), pages 97–101, March 1998.

[8] P. Dziurzanski, A. K. Singh, and L. S. Indrusiak. Multi-criteria resource
allocation in modal hard real-time systems. EURASIP Journal on
Embedded Systems, 2017(1):30, 2017.

[9] A. Hansson, K. Goossens, and A. Rdulescu. A unified approach to
constrained mapping and routing on network-on-chip architectures. In
Proceedings of the 3rd IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, pages 75–80. ACM,
2005.

[10] T. Harde, M. Freier, G. von der Brüggen, and J.-J. Chen. Configurations
and optimizations of tdma schedules for periodic packet communication
on networks on chip. In RTNS, pages 202–212, 2018.

[11] S. Hesham, J. Rettkowski, D. Goehringer, and M. A. Abd El Ghany.
Survey on Real-Time Networks-on-Chip. IEEE Transactions on Parallel
and Distributed Systems, 28(5):1500–1517, May 2017.

[12] Z. Lu and A. Jantsch. Slot allocation using logical networks for tdm
virtual-circuit configuration for network-on-chip. In Proceedings of the
2007 IEEE/ACM International Conference on Computer-Aided Design,
ICCAD 07, page 1825. IEEE Press, 2007.

[13] B. Nikolic, R. Hofmann, and R. Ernst. Slot-based transmission protocol
for real-time nocs-sbt-noc. In 31st Euromicro Conference on Real-
Time Systems (ECRTS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2019.

[14] Q. Perret, P. Maurere, E. Noulard, C. Pagetti, P. Sainrat, and B. Triquet.
Mapping hard real-time applications on many-core processors. pages
235–244. ACM Press, 2016.

[15] P. K. Sahu and S. Chattopadhyay. A survey on application mapping
strategies for network-on-chip design. Journal of Systems Architecture,
59(1):60–76, 2013.

[16] P. K. Sahu, T. Shah, K. Manna, and S. Chattopadhyay. Application
mapping onto mesh-based network-on-chip using discrete particle swarm
optimization. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 22(2):300–312, 2013.

[17] M. N. S. M. Sayuti and L. S. Indrusiak. Real-time low-power task
mapping in networks-on-chip. In 2013 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), pages 14–19. IEEE, 2013.

[18] K. Srinivasan and K. S. Chatha. A technique for low energy mapping and
routing in network-on-chip architectures. In ISLPED’05. Proceedings
of the 2005 International Symposium on Low Power Electronics and
Design, 2005., pages 387–392. IEEE, 2005.

[19] Y. Wu, Z. Gao, and G. Dai. Deadline and activation time assignment for
partitioned real-time application on multiprocessor reservations. Journal
of Systems Architecture, 60(3):247 – 257, 2014. Real-Time Embedded
Software for Multi-Core Platforms.

[20] H. Zahaf, G. Lipari, M. Bertogna, and P. Boulet. The parallel multi-mode
digraph task model for energy-aware real-time heterogeneous multi-
core systems. IEEE Transactions on Computers, 68(10):1511–1524, Oct
2019.

[21] H.-E. Zahaf, A. E. H. Benyamina, R. Olejnik, and G. Lipari. Energy-
efficient scheduling for moldable real-time tasks on heterogeneous
computing platforms. Journal of Systems Architecture, 74:46 – 60, 2017.

[22] H.-E. Zahaf, N. Capodieci, R. Cavicchioli, M. Bertogna, and G. Lipari.
A c-dag task model for scheduling complex real-time tasks on heteroge-
neous platforms: preemption matters. arXiv preprint arXiv:1901.02450,
2019.

