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Abstract The complete lattice Π(E) of partitions of a space E has been
extended into Π∗(E), the one of partial partitions of E (where the space cov-
ering axiom is removed). We recall the main properties of Π∗(E), and exhibit
two adjunctions (residuations) between Π(E) and Π∗(E). Given two spaces
E1 and E2 (distinct or equal), we analyse adjunctions between Π∗(E1) and
Π∗(E2), in particular those where the lower adjoint applies a set operator to
each block of the partial partition; we also show how to build such adjunctions
from adjunctions between P(E1) and P(E2) (the complete lattices of subsets
of E1 and E2). They are then extended to adjunctions between Π(E1) and
Π(E2). We obtain as particular case the adjunction on Π(E) that was defined
by Serra (for the upper adjoint) and Ronse (for the lower adjoint). We also
study dilations from Π∗(E1) to an arbitrary complete lattice L; a particular
case is given, for L ⊆ [0,+∞], by ultrametrics; then the adjoint erosion pro-
vides the corresponding hierarchy. We briefly discuss possible applications in
image processing and in data clustering.
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1 Introduction

The notion of adjunction (also called residuation) plays an important role in
lattice theory [5,8,13], and also in its applications to mathematical morphology
[16,22,33,34], a branch of image processing. Let us recall it here.

Given two sets A and B, we will write (α, β) : A ⇀↽ B, or say that (α, β)
is A ⇀↽ B, if α is a map A → B and β is a map B → A. Note that given a
map ψ, we write ψ(x) for the image of x by ψ (for example [14] writes xψ).
Following [16], the composition of a map ψ followed by a map ξ is written ξψ
rather than ξ ◦ψ (because the symbol ◦ is used for the opening X ◦B of X by
B), thus we have ξψ : x 7→ ξ(ψ(x)) (note that the composition must be read
from right to left).

Let L and M be two posets (partially ordered sets), and consider (ε, δ) :
M ⇀↽ L. We say that (ε, δ) is an adjunction [13] (or a residuation [5]) if

∀x ∈ L, ∀y ∈M, δ(x) ≤ y ⇐⇒ x ≤ ε(y) . (1)

Equivalently (ε, δ) is an adjunction if and only if δ and ε are isotone (∀x, x′ ∈ L,
x ≤ x′ ⇒ δ(x) ≤ δ(x′), ∀y, y′ ∈ M , y ≤ y′ ⇒ ε(y) ≤ ε(y′)), δε is anti-
extensive (∀y ∈ M , δε(y) ≤ y) and εδ is extensive (∀x ∈ L, εδ(x) ≥ x). Then
δ is called the lower adjoint of ε and ε is called the upper adjoint of δ [13] ([5]
says: δ is residuated by ε and ε is the residual of δ).

A close concept is that of a Galois connection, that is a pair (β, α) : M ⇀↽ L
such that for x ∈ L and y ∈ M , y ≤ α(x) ⇔ x ≤ β(y); equivalently,
α and β are antitone (∀x, x′ ∈ L, x ≤ x′ ⇒ α(x) ≥ α(x′), ∀y, y′ ∈ M ,
y ≤ y′ ⇒ β(y) ≥ β(y′)), and αβ and βα are extensive. It has been used
widely in various theoretical and practical contexts [8,14].

Suppose now that L and M are complete lattices with universal bounds
0,1. In the evocative terminology of mathematical morphology [16,34], a map
which commutes with the supremum operation (resp., with the infimum op-
eration) is called a dilation (resp., an erosion). Thus a dilation δ : L → M
satisfies

∀xi ∈ L (i ∈ I), δ
(∨

i∈I

xi

)
=

∨

i∈I

δ(xi) , (2)

in particular for I = ∅, δ(0) = 0; on the other hand an erosion ε : M → L
satisfies

∀yi ∈M (i ∈ I), ε
(∧

i∈I

yi

)
=

∧

i∈I

ε(yi) , (3)

in particular for I = ∅, ε(1) = 1. In the more precise, but less intuitive
terminology of lattice theory, one says that δ is a complete join-morphism and
ε is a complete meet-morphism. It is well-known [13,16] that in an adjunction
(ε, δ), ε is an erosion and δ is a dilation, δεδ = δ, εδε = ε. Conversely, given
a dilation δ : L → M , there is a unique erosion ε : M → L such that (ε, δ)
is an adjunction, and given an erosion ε : M → L, there is a unique dilation
δ : L→M such that (ε, δ) is an adjunction.



3

In the Euclidean space E = Rn or its digital counterpart E = Zn, ad-
junctions can be built from the Minkowski operations. For every p ∈ E, the
translation by p is the map E → E : x 7→ x + p; it transforms any subset
X of E into its translate by p, Xp = {x + p | x ∈ X}. Then the Minkowski
addition ⊕ [25] and Minkowski subtraction ⊖ [15] are defined as follows: for
any X,B ∈ P(E) we set

X ⊕B =
⋃

b∈B

Xb =
⋃

x∈X

Bx = {x+ b | x ∈ X, b ∈ B} ;

X ⊖B =
⋂

b∈B

X−b = {p ∈ E | Bp ⊆ X} .
(4)

We define then the dilation by B, δB : P(E) → P(E) : X 7→ X ⊕ B, and the
erosion by B, εB : P(E) → P(E) : X 7→ X ⊖ B [16], see Figure 1. The set
B is called the structuring element [22,33,34]. It is well-known that for the
complete lattice P(E) (ordered by inclusion ⊆), (εB, δB) is an adjunction, δB
is a dilation (complete join-morphism) and εB is an erosion (complete meet-
morphism).

����
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B

Fig. 1 From left to right: the set X, the structuring element B (the posision of the origin
in E is indicated by a black dot), the dilation X ⊕B of X by B, and the erosion X ⊖B of
X by B.

Note that this terminology follows the official standard introduced by
Sternberg and confirmed by Heijmans and Ronse [4,16]; in the older books by
Matheron [22] and Serra [33,34], the definitions given for the Minkowski oper-
ations, the dilation and erosion were slightly different, in that for some of them
the structuring element has to be replaced by its transpose B̌ = {−b | b ∈ B};
there are similar differences in the works of Soille [39]. See [17,38] for a dis-
cussion of these differences.

Adjunctions have been built for various types of spatial objects: in the
complete lattice of numerical functions [16,33,34], for fuzzy sets and modal
logic [4], etc.

Another complete lattice is the set Π(E) of partitions of a set E, ordered
by refinement (π ≤ π′ if and only if every block of π is included in a block of
π′). Since the seminal works of Dubreil [11] and Ore [28], many authors have
studied it, notably analysing conditions for some identities to hold (such as
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the modular one), or investigating geometrical and combinatorial properties
of Π(E) when E is finite. However almost nothing has been done towards the
analysis of basic lattice-theoretical operations on partitions (closures, open-
ings, adjunctions). Let us note in this respect the study by Jordens and Sturm
[19,20] of a relation between closure operators on partitions and closure oper-
ators on sets (in fact, a relation between their respective closure systems, that
is, families of invariants). Recently, the topic has been revived by Serra and
the author [29,31,37] in relation with image segmentation.

This paper is devoted to the construction and analysis of adjunctions on
partitions. In [36], Serra introduced an erosion on partitions. Let ε be an
erosion on P(E) such that ε(∅) = ∅ (for example, when E = Rn or Zn, the
erosion by a non-empty structuring element B). Then one derives from ε an
erosion ε̂ on Π(E); for a partition π, ε̂(π) is obtained as follows:

1. Erode by ε all blocks of π, and discard all empty eroded blocks;
2. all points p ∈ E which do not belong to an eroded block are constituted

into singleton blocks {p}.

In other words,

ε̂(π) =
{
ε(C)

∣∣ C ∈ π, ε(C) 6= ∅
}
∪

{
{p}

∣∣∣ p ∈ E \
( ⋃

C∈π

ε(C)
)}

.

Serra [36] expressed ε̂ in terms of the class associated to a point (the unique
block containing it); write Clπ(p) for the class of point p in the partition π; then
Serra stated that Cl

ε̂(π)
(p) = ε(Clπ(p)) if p ∈ ε(Clπ(p)), and Cl

ε̂(π)
(p) = {p}

if p /∈ ε(Clπ(p)), but this formulation is valid only if ε is anti-extensive (i.e.,
ε(X) ⊆ X for all X ∈ P(E)). Indeed, if ε is not anti-extensive, we may have
p /∈ ε(Clπ(p)) but p ∈ ε(Clπ(q)) for some Clπ(q) 6= Clπ(p), and in this case we
have Cl

ε̂(π)
(p) = ε(Clπ(q)).

Then [30] described the lower adjoint. Let δ be the dilation on P(E) that
is the lower adjoint of ε; the fact that ε(∅) = ∅ is equivalent to ∀X ∈ P(E),

X 6= ∅ ⇒ δ(X) 6= ∅. Then we can derive from δ a dilation δ̂ on Π(E); for a

partition π, δ̂(π) is obtained as follows:

1. Remove all singleton blocks in π;
2. dilate by δ the remaining blocks;
3. recursively fuse all overlapping dilated blocks, until only disjoint blocks

remain;
4. all points p ∈ E which do not belong to a block are constituted into

singleton blocks {p}.

In other words, δ̂(π) is the least partition π∗ such that for every non-singleton
block C of π, δ(C) is included in one block of π∗. Furthermore, given that

(ε, δ) is an adjunction on P(E), [30] stated (without proof) that (ε̂, δ̂) will be
an adjunction on Π(E).

We see that the operators ε̂ and δ̂ involve respectively addition and removal
of singleton blocks. The underlying reason will be understood later, let us say
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now that these operators combine several operators on partial partitions. A
partial partition of E is a family π of non-empty and mutually disjoint subsets
of E, called blocks ; equivalently, it is a partition of a subset of E.

LetΠ∗(E) be the set of all partial partitions of E; in other words,Π∗(E) =⋃
A∈P(E)Π(A). Now Π∗(E), with the same refinement order as Π(E), is a

complete lattice; in fact, the non-void infimum and supremum operations are
the same in Π∗(E) and Π(E). The lattice Π∗(E) was studied more than 30
years ago by Czekoslovak mathematicians: Dras̆kovic̆ová [9,10], and to a lesser
extent Sturm [43].

In the context of image processing, the lattice Π∗(E) and its main prop-
erties were “rediscovered” by the author [29]. Indeed, it was understood that
the framework of partial partitions is more flexible than the one of partitions,
many operations on partitions require the use of partial partitions. More fun-
damentally, it was noticed that several image segmentation algorithms produce
a partial partition instead of a partition.

Therefore there is a practical interest for the study of the lattice-theoretical
operators on partitions or partial partitions of a space E, constructed from
similar operators on subsets of E. In this paper, we study adjunctions on
partitions and partial partitions, in particular we describe the general form of
dilations Π∗(E1) → Π∗(E2) and Π(E1) → Π(E2), in particular those that
apply a set operator to each block, then we show how to build adjunctions
Π∗(E2) ⇀↽ Π∗(E1) and Π(E2) ⇀↽ Π(E1) from adjunctions P(E2) ⇀↽ P(E1).
We also describe some possible applications of dilations and erosions on partial
partitions to image segmentation and data clustering.

1.1 Paper organization

Subsection 1.2 summarizes our terminology and notation, mostly based on
that of mathematical morphology [16,22,33,34], see Table 1. We follow it with
Table 2 listing the notation introduced in this paper (in the order of first ap-
pearance). In Section 2 we recall the basic facts about partial partitions and
the complete lattice that they make [9,10,29]; then we exhibit adjunctions
Π∗(E) ⇀↽ Π(E), Π(E) ⇀↽ Π∗(E) and Π∗(E) ⇀↽ Π∗(E) (Theorem 9). Next
in Section 3, given two spaces E1 and E2 (equal or distinct), we relate ad-
junctions Π(E2) ⇀↽ Π(E1) to those Π∗(E2) ⇀↽ Π∗(E1) (Theorem 12), and we
characterize dilations Π∗(E1) → L and Π(E1) → L for an arbitrary complete
lattice L (Theorem 13); then we analyse in detail dilations Π∗(E1) → Π∗(E2)
that apply a set operator to each block (Theorem 17), and finally we show
how to construct adjunctions Π∗(E2) ⇀↽ Π∗(E1) and Π(E2) ⇀↽ Π(E1) from
adjunctions P(E2) ⇀↽ P(E1) (Theorem 23); for E1 = E2 = E, we obtain the

adjunction (ε̂, δ̂) from [30,36] described above. Section 4 characterizes dila-
tions Π∗(E1) → L and Π(E1) → L in terms of triangular maps ; a particular
case will be given by ultrametric distances, with the corresponding hierarchy
being given by the adjoint erosion L→ Π(E1). Possible applications in image
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processing and segmentation, or in clustering, are discussed in Section 5. The
conclusion summarizes our results.

1.2 Terminology and notation

Mathematical morphology has developed an exhaustive terminology for the
theory of operators on complete lattices [16,22,33,34]; we follow it generally,
except when it leads to a confusion with the usual terminology in lattice theory,
see Table 1 below. The two algebraic structures considered are the poset and
the complete lattice; in other words, whenever we mention “the lattice X”, this
means implicitly “the complete lattice X”.

Throughout this paper, we consider a “space” E, whose elements are called
“points”; in fact E is an arbitrary set of size at least 2, although in practice E
will be the Euclidean space Rn, the digital space Zn, or a bounded interval in
such spaces; sometimes we consider two spaces E1 and E2, that can be either
distinct or equal (for example, E1 = Rm and E2 = Rn, or E1 = Rn and
E2 = Zn). Points of a space E (or of E1, E2) will be written p, q, r, . . ., while
subsets of E will be designated by A,B, . . . , Y, Z (except the empty set ∅).
Partial partitions of E will be written π, π′, π1, π

1, . . ..
An abstract complete lattice will be written L,M, . . ., and its elements will

be denoted with lower-case letters a, b, . . . , y, z, except the least and greatest
elements written 0 and 1 respectively; subsets of L will be designated by
upper-case letters A,B, . . . , Y, Z. Write ≤ for the order, and ≺ / ≻ for the
predecessor / successor relation: x ≺ y, or equivalently y ≻ x, means that
x < y but there is no z with x < z < y; we say then that y covers x. Every
complete lattice will be supposed to have at least 2 elements, in other words,
0 < 1.

Recall that given two sets A and B, we will write (α, β) : A ⇀↽ B, or say
that (α, β) is A ⇀↽ B, if α is a map A→ B and β is a map B → A.

Morphological and standard terminology for lattice-theoretical concepts is
summarized in Table 1; in italic we show our choice, it follows the morphologi-
cal terminology, except when the term designates another concept in standard
lattice-theoretical usage. For instance, morphology follows [3] in calling atomic
a lattice where each non-zero element is a supremum of atoms; however [14]
calls such a lattice atomistic, while in [5,13,14], the word “atomic” designates
a lattice where each non-zero element majorates an atom, a weaker property;
here we will abide by the traditional terminology, since we need both concepts:
the lattice Π∗(E) is atomic but not atomistic !

Note the many existing denominations for a subset of a complete lattice
that is closed under arbitrary infima (in particular for the empty infimum,
it contains 1), we choose Moore family; dually we call a dual Moore family
a subset closed under arbitrary suprema (in particular, it contains 0) [4]. A
Moore family or dual Moore family is itself a complete lattice for the order ≤.
A subset of a complete lattice that is both a Moore family and a dual Moore
family is a complete sublattice of that lattice.
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Table 1 Morphological and traditional terminology for lattice-theoretical notions (in ital-
ics, the terminology used in this paper)

Morphological Traditional Meaning
sup-generating family sup-basis S : ∀x,

x =
∨

{s ∈ S | s ≤ x}

inf-generating family inf-basis S : ∀x,
x =

∧
{s ∈ S | s ≥ x}

atom a : 0 ≺ a

atomic [3] atomistic [14] L: ∀x,
x =

∨
{a | 0 ≺ a ≤ x}

atomic [5,13,14] L: ∀x ∃ a, 0 ≺ a ≤ x

dual atom a : a ≺ 1

dually atomic dually atomistic L: ∀x,
x =

∧
{a | x ≤ a ≺ 1}

dually atomic L: ∀x ∃ a, x ≤ a ≺ 1

co-prime join-prime x : x ≤ y ∨ z ⇒
x ≤ y or x ≤ z

strong co-prime complete join-prime x : x ≤
∨
i∈I

yi ⇒

∃ i ∈ I, x ≤ yi

inf-closed family, closure system [13], F : X ⊆ F ⇒
∧
X ∈ F

Moore family [4] closure subset [5],
closure range

sup-closed family, kernel system, F : X ⊆ F ⇒
∨
X ∈ F

dual Moore family [4] dual closure subset [5]

directed subset [13] D : p, q ∈ D ⇒
∃ r ∈ D, p, q ≤ r

operator [16] map [7], mapping [5], ψ : L →M

function [13]

increasing [22,33] isotone [5] ψ : x ≤ y ⇒ ψ(x) ≤ ψ(y)

decreasing [16] antitone [5] ψ : x ≤ y ⇒ ψ(x) ≥ ψ(y)

dilation [34] complete join-morphism δ : δ
(∨

i∈I
xi

)
=

∨
i∈I

δ(xi)

erosion [34] complete meet-morphism ε : ε
(∧

i∈I
xi

)
=

∧
i∈I

ε(xi)

complete morphism both dilation and erosion

adjunction [13] residuation [5] (ε, δ) : δ(x) ≤ y ⇔ x ≤ ε(y)

lower adjoint [13] residuated [5] δ : (ε, δ) adjunction

upper adjoint [13] residual [5] ε : (ε, δ) adjunction

extensive [3,22] increasing [7] ψ : ψ(x) ≥ x

anti-extensive [22] intensive, contracting, ψ : ψ(x) ≤ x

decreasing

idempotent ψ : ψ(ψ(x)) = ψ(x)

closing [22] closure [5] ϕ : x ≤ ϕ(y) ⇔ ϕ(x) ≤ ϕ(y)

opening [22] dual closure [5], γ : x ≥ γ(y) ⇔ γ(x) ≥ γ(y)
kernel operator [13]

identity identity operator id : x 7→ x

monoid M : id ∈ M,
ψ, ξ ∈ M ⇒ ψξ ∈ M
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Recall that for a poset P , a directed subset [13] of P is a non-empty D ⊆ P
such that every finite subset X of D has an upper bound (is majorated) in D.

Given two complete lattices L and M (equal or different), a map L → M
is called an operator. Operators will be designated by lower-case Greek letters
α, . . . , ω (except π, reserved for partial partitions). We write ψ(x) for the image
of x by ψ (for example [14] writes xψ); thus the composition of operators is
read from right to left: given ψ : L → M and ξ : M → N , the composition of
ψ followed by ξ is ξψ : L → N : x 7→ ξ(ψ(x)); when needed for typographical
clarity, we will write ξ ·ψ for ξψ (we avoid the traditional notation ξ ◦ψ, since
◦ is used for the opening X ◦ B = (X ⊖ B) ⊕ B). The set ML of operators
L → M , with componentwise order: ψ ≤ ξ if and only if ψ(x) ≤ ξ(x) for
all x ∈ L, is a complete lattice with componentwise supremum and infimum:[∨

i∈I ψi
]
(x) =

[∨
i∈I ψi(x)

]
, and similarly for

∧
.

We follow the algebraists’ tradition of calling isotone (resp., antitone) an
operator that preserves (resp., inverts) order; on the other hand morphol-
ogy uses the analysts’ denominations increasing (resp., decreasing), but this
leads to confusion, as some textbooks (for instance [7]) use these terms to
mean extensive and anti-extensive. Note that the isotone operators constitute
a complete sublattice of the lattice of operators.

Recall from the introduction the notions of adjunction (residuation), di-
lation (complete join-morphism) and erosion (complete meet-morphism), see
(1,2,3). Note that dilations form a dual Moore family while erosions form a
Moore family, thus both families constitute complete lattices, and that the
set of adjunctions constitutes a dual isomorphism between these two complete
lattices. Recall also the composition rule for adjunctions [16]: given adjunc-
tions (εi, δi) : Li ⇀↽ Li−1 (i = 1, . . . , n), (ε1 · · · εn, δn · · · δ1) is an adjunction
Ln ⇀↽ L0. In the sequel, we will use the following result, whose proof is left to
the reader:

Lemma 1 Let L be a complete lattice and let M be a complete sublattice of
L. Define δ, ε : L→ L as follows:

∀x ∈ L, δ(x) =
∧

{m ∈M | m ≥ x} and ε(x) =
∨

{m ∈M | m ≤ x} .

Then δ is a closure, ε is an opening, and (ε, δ) is an adjunction on L.

A complete morphism is an operator that is both a dilation and an ero-
sion, in other words, that is compatible with arbitrary suprema and infima, in
particular with the zero and one.

When an operator is L→ L, we say that it is “on L”. The identity operator
on L is id : L → L : x 7→ x. The set of operators on L, with the law of
composition, is thus a monoid (i.e., composition is associative and admits the
identity as neutral element), and the set of isotone operators is a sub-monoid
of it. The power ψn of an operator ψ on L is defined by induction: ψ0 = id,
ψn+1 = ψψn.

An operator ψ on a complete lattice is idempotent if ψ2 = ψ. A closure is
an isotone, extensive and idempotent operator; equivalently, it is an operator
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ϕ such that for all x, y ∈ L, x ≤ ϕ(y) ⇔ ϕ(x) ≤ ϕ(y). An opening is an
isotone, anti-extensive and idempotent operator; equivalently, it is an operator
γ such that for all x, y ∈ L, x ≥ γ(y) ⇔ γ(x) ≥ γ(y). For example, in an
adjunction (ε, δ) : M ⇀↽ L, δε is an opening on M and εδ is a closure on L.

Finally, we introduce some new terminology:

Definition 2 Given two complete lattices L and M (equal or distinct) and
an operator ψ : L→M , we say that:

– ψ is upper-regular if ψ(0) = 0;
– ψ is lower-regular if for all x ∈ L, ψ(x) = 0 ⇒ x = 0;
– ψ is connective, if ψ is upper-regular (ψ(0) = 0) and

∀B ⊆ L,
(
B 6= ∅,

∧
B 6= 0

)
=⇒ ψ

(∨
B

)
=

∨

b∈B

ψ(b) ; (5)

– ψ preserves separation if ψ is upper-regular and

∀x, y ∈ L \ {0}, x ∧ y = 0 =⇒ ψ(x) ∧ ψ(y) = 0 .

An adjunction (ε, δ) : M ⇀↽ L is called regular if ε is upper-regular, equiva-
lently, if δ is lower-regular.

When L is atomic, an isotone operator ψ : L → M is lower-regular if and
only if for every atom a of L, ψ(a) > 0. Any upper-regular erosion preserves
separation: for x ∧ y = 0, ε(x) ∧ ε(y) = ε(x ∧ y) = ε(0) = 0. A composition
of lower-regular (resp., upper-regular) operators is lower-regular (resp., upper-
regular).

The denomination “connective” was suggested to us by Jean Serra; the
meaning behind this wording will be explained in Section 5. Note that

∧
∅ = 1

while ψ
(∨

∅
)

= ψ(0) and
∨
b∈∅ ψ(b) = 0, thus the extension of (5) to the case

where B = ∅ is precisely the upper-regularity condition ψ(0) = 0. Connective
operators will play a central role in this paper.

Lemma 3 Let L, M and N be three complete lattices (equal or distinct).

1. A connective operator L→M is isotone.
2. A dilation L→M is connective.
3. If ψ : L→M is connective, and δ : M → N is a dilation, then δψ : L→ N

is connective.
4. If ψ : L→M and ξ : M → N are connective, and ψ is lower-regular, then

ξψ : L→ N is connective.
5. The set of connective operators L→M is a dual Moore family of the lattice

of all operators L→M .

Proof 1. Let ψ : L → M be connective, and let a, b ∈ L such that a ≤ b.
Since ψ is upper-regular, for a = 0 we have ψ(a) = 0 ≤ ψ(b). For a > 0 we
have a ∧ b = a 6= 0 and a ∨ b = b, so ψ(b) = ψ(a ∨ b) = ψ(a) ∨ ψ(b), which
means that ψ(a) ≤ ψ(b).
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2. A dilation δ satisfies δ(0) = 0, and for B ⊆ L with B 6= ∅, δ
(∨

B
)

=∨
b∈B δ(b). Thus δ is connective.

3. We have ψ(0) = 0 and δ(0) = 0, so δψ(0) = 0. Take B ⊆ L with
B 6= ∅ and

∧
B 6= 0; since ψ is connective, we have ψ

(∨
B

)
=

∨
b∈B ψ(b);

since δ is a dilation, we get

δψ
(∨

B
)

= δ
(
ψ

(∨
B

))
= δ

( ∨

b∈B

ψ(b)
)

=
∨

b∈B

δ(ψ(b)) =
∨

b∈B

δψ(b) .

4. Since ψ and ξ are upper-regular, we have ξψ(0) = ξ(ψ(0)) = ξ(0) = 0.
Let B ⊆ L such that

∧
B 6= 0; since ψ is lower-regular, ψ

(∧
B

)
6= 0, and as ψ

is isotone, ψ
(∧

B
)
≤

∧
b∈B ψ(b); thus

∧
b∈B ψ(b) 6= 0, and as ξ is connective,

ξ
(∨

b∈B ψ(b)
)

=
∨
b∈B ξ(ψ(b)); but ψ is connective, so ψ

(∨
B

)
=

∨
b∈B ψ(b),

and we conclude that ξ
(
ψ

(∨
B

))
=

∨
b∈B ξψ(b). Therefore ξψ is connective.

5. Clearly the empty supremum of maps L → M , namely the constant
map x 7→ 0 is a dilation, so it is connective. Given a non-void family of
connective maps ψi : L → M , i ∈ I 6= ∅, let ψ =

∨
i∈I ψi; we have ψ(0) =∨

i∈I ψi(0) = 0; taking B ⊆ L with B 6= ∅ and
∧
B 6= 0, for each i ∈ I we

have ψi
(∨

B
)

=
∨
b∈B ψi(b), so

ψ
(∨

B
)

=
∨

i∈I

ψi

(∨
B

)
=

∨

i∈I

( ∨

b∈B

ψi(b)
)

=
∨

b∈B

(∨

i∈I

ψi(b)
)

=
∨

b∈B

ψ(b) ,

hence ψ is connective. ⊓⊔

2 The lattice of partial partitions

We recall the essential facts about partial partitions and the complete lattice
that they make. We adopt the terminology of [29]; some results proved there
had previously been given in another form in [9,10]. Then we see that singleton
blocks play a special role for the supremum operation on partial partitions, and
show how they intervene in three adjunctions, respectively Π∗(E) ⇀↽ Π(E),
Π(E) ⇀↽ Π∗(E) and on Π∗(E)

We consider an arbitrary space E having several elements called points.
Every binary relation R on E can be identified with the set of ordered pairs
(x, y) ∈ E2 such that x R y; the support of R is the subset supp(R) of E
comprising all p ∈ E such that there is some q ∈ E with p R q or q R p. The
support of a family B of subsets of E is the subset supp(B) of E comprising
all points covered by at least one element of B, in other words supp(B) =

⋃
B.

A partial equivalence on E is a binary relation on E that is symmetric
and transitive. Equivalently, it is a relation that forms an equivalence on its
support. A partial equivalence is an equivalence relation iff it is reflexive, iff
its support is E. A partial partition of E is a family π of subsets of E that
are non-empty and mutually disjoint, in other words, such that every point of
E belongs to at most one member of π. Equivalently, π is a partition of its
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Table 2 Notation introduced in this paper

(α, β) : A ⇀↽ B α : A → B and β : B → A

0 and 1 least and greatest elements of a complete lattice

supp(R) support of the binary relation R on E

supp(B) support of the family B of subsets of E

π a partial partition

PE(π) partial equivalence corresponding to π

Clπ partial partition class map associated to π

cl a partial partition class map

PP(cl) partial partition associated to cl

Π(E) set of all partitions of E

Π∗(E) set of all partial partitions of E

Ø empty partial partition

0A identity partition of A into its singletons

1A universal partition of A into a single block

X )( Y X ∩ Y 6= ∅

1• A 7→ 1A

0• A 7→ 0A

grind block grinding π 7→ 0supp(π)

blend block blending π 7→ 1supp(π)

IN inclusion map Π(E) → Π∗(E) : π 7→ π

FS Π∗(E) → Π(E) : π 7→ π ∪ 0E\supp(π)

RS Π∗(E) → Π∗(E) : π 7→ π \ 0E

RSIN RS · IN : Π(E) → Π∗(E) : π 7→ RS(π)

INFS IN · FS : Π∗(E) → Π∗(E) : π 7→ FS(π)

Π0(E) set of partial partitions of E without singleton blocks

B(ψ) π 7→
∨
B∈π

1ψ(B) (ψ : P(E1) → P(E2))

D(η) π 7→
⋃
B∈π

η(B) (η : P(E2) → Π∗(E1) preserving separation)

π• E2 → Π∗(E1) : x 7→ πx

P2(X) set of unordered pairs of distinct elements of X

θ triangular map

θ♯ strongly triangular map

X
δ
∼ Y δ(X) ∩ δ(Y ) 6= ∅

support supp(π). Every member of a partial partition is called a block [28]. A
partial partition is a partition of E if and only if its support is E. There is a
natural one-to-one correspondence between partial partitions of E and partial
equivalences on E; write PE(π) for the partial equivalence on E corresponding
to a partial partition π of E; then we have supp(PE(π)) = supp(π).

Partial equivalences have been used (cf. PER models, equilogical spaces)
in programming semantics [1,26,32].

We now turn to the third formalism for a partial partition, in terms of the
map associating to each point its class. Consider a map cl : E → P(E), and
the following properties that it can satisfy:
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(P1a) For any p ∈ E, p ∈ cl(p).
(P1b) For any p ∈ E, cl(p) = ∅ or p ∈ cl(p).
(P2a) For any p, q ∈ E, q ∈ cl(p) ⇒ cl(p) = cl(q).

A map cl : E → P(E) is called

1. a partial partition class map on E if it satisfies (P1b) and (P2a);
2. a partition class map on E if it satisfies (P1a) and (P2a).

Note that in a partition class map, (P2a) can be replaced by the well-known:

(P2b) For any p, q ∈ E, cl(p) ∩ cl(q) 6= ∅ ⇒ cl(p) = cl(q).

Indeed, (P1a) implies the equivalence between (P2a) and (P2b). However, for a
partial partition class map, we cannot replace (P2a) by (P2b), since in general
(P2b) is weaker than (P2a).

Proposition 4 [29] There is a one-to-one correspondence between partial par-
titions on E and partial partition class maps on E, under which:

– To every partial partition π is associated the partial partition class map
Clπ given by

∀ p ∈ E, Clπ(p) =

{
∅ if p /∈ supp(π) ;
C for p ∈ C ∈ π, if p ∈ supp(π) ;

(6)

this C being unique.
– To every partial partition class map cl is associated the partial partition

PP(cl) = {cl(p) | p ∈ E, cl(p) 6= ∅} . (7)

Furthermore, π is a partition if and only if Clπ is a partition class map.

Then Clπ(p) is called the class of p in π, it is either empty, or the unique
block of π to which p belongs. Now the partial equivalence relation PE(π)
corresponding to π satisfies:

∀ p, q ∈ E, p PE(π) q ⇐⇒ q ∈ Clπ(p) . (8)

Write Π(E) for the set of all partitions of E, and Π∗(E) for the set of all
partial partitions of E. We have Π∗(E) =

⋃
A∈P(E)Π(A). Now Π(∅) = Π∗(∅)

has a unique element, the empty partition having no block, we write it Ø.
Then Ø ∈ Π∗(E), and for every p ∈ E we have Clø(p) = ∅. Formally, Ø is
identical to the empty set ∅, but we use a slightly modified notation in order
to distinguish the two roles of the empty set, as least element ∅ of the lattice
P(E), and as least element Ø of the lattice Π∗(E). For A ∈ P(E), let 0A be
the partition of A into its singletons, and 1A the partition of A into a single
block (or no block if A = ∅):

0A =
{
{p} | p ∈ A

}
and 1A = {A} \ {∅} =

{
{A} if A 6= ∅ ,
Ø if A = ∅ .

(9)
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Following [28], we call 0A the identity partition of A and 1A the universal
partition of A. Note that 0∅ = 1∅ = Ø.

The well-known refinement ordering on partitions [28] extends to partial
partitions. Given π1, π2 ∈ Π∗(E), we say that π1 is finer than π2, or that π2

is coarser than π1, and write π1 ≤ π2 (or π2 ≥ π1), if and only if every block
of π1 is included in a block of π2:

π1 ≤ π2 ⇐⇒ ∀C1 ∈ π1 ∃C2 ∈ π2, C1 ⊆ C2 .

The set of partial equivalences on E, ordered by inclusion, is a complete
lattice where the infimum and supremum of a family of partial equivalences
is given respectively by their intersection and the transitive closure of their
union. Then partial partitions constitute, under refinement ordering, a com-
plete lattice that is isomorphic to the one of partial equivalences:

Proposition 5 [29] By the bijection between partial partitions and partial
equivalences, the refinement relation on partial partitions corresponds to the
inclusion order on partial equivalences:

∀π1, π2 ∈ Π∗(E), π1 ≤ π2 ⇐⇒ PE(π1) ⊆ PE(π2) . (10)

Therefore
(
Π∗(E),≤

)
is a complete lattice, isomorphic to the lattice of partial

equivalences. The refinement order corresponds to the inclusion of class maps:

∀π1, π2 ∈ Π∗(E), π1 ≤ π2 ⇐⇒ ∀ p ∈ E, Clπ1(p) ⊆ Clπ2(p) . (11)

Given a family {πi | i ∈ I} of partial partitions, the class map of their infimum∧
i∈I πi is given by intersection of the respective class maps:

∀ p ∈ E, Cl∧
i∈I

πi
(p) =

⋂

i∈I

Clπi(p) . (12)

The class map of their supremum
∨
i∈I πi is given by chaining [28] class maps:

for p, q ∈ E, q ∈ Cl∨
i∈I

πi
(p) if and only if there is some integer n ≥ 1

and a sequence x0, . . . , xn in E with x0 = p and xn = q, such that for each
t = 1, . . . , n there is some i(t) ∈ I with xt ∈ Clπi(t)(xt−1). The least and
greatest partial partitions are Ø and 1E. Furthermore, the support map supp :
Π∗(E) → P(E) : π 7→ supp(π) is a complete morphism.

Note that (12) and the chaining construction for Cl∨
i∈I

πi
(p) are also valid

for I empty: the empty infimum gives as point class the empty intersection,
that is, Cl1E (p) = E, while chaining in an empty family of partitions does not
give any point, and we get Clø(p) = ∅.

Following [28], let us define the binary relation )( on P(E) by X )( Y ⇔
X ∩ Y 6= ∅. Given a family B of non-empty subsets of E, the partial partition
spanned by B is

∨
B∈B 1B; for any two points p, q ∈ E, we say that p and q are

chained by B if p and q belong both to one block of
∨
B∈B 1B, in other words

if there are B1, . . . , Bn ∈ B (n ≥ 1) such that p ∈ B1 )( · · · )( Bn ∋ q. Then in
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p

q

Fig. 2 A block (shown as a rounded rectangle)
of the supremum of a family of partial parti-
tion is obtained by chaining blocks (shown as
ellipses) of these partitions.

a supremum
∨
i∈I πi of partial partitions, two points p, q ∈ E belong to the

same block if and only if they are chained by
⋃
i∈I πi, see Figure 2.

Note that given partial partitions having pairwise disjoint supports (i 6=
j ⇒ supp(πi) ∩ supp(πj) = ∅), their supremum is their union:

∨
i∈I πi =⋃

i∈I πi. In particular, for any π ∈ Π∗(E) we have π =
⋃
C∈π 1C =

∨
C∈π 1C .

Given a family B of non-empty subsets of E, the least partial partition
π such that every B ∈ B is included in one block of π, is

∨
B∈B 1B, it is a

partition of supp(B); two points p, q ∈ E belong to the same block of
∨
B∈B 1B

if and only if they are chained by B.
For A ∈ P(E), the non-empty supremum and infimum operations inΠ∗(A)

are inherited from Π∗(E); in other words for a non-void {πi | i ∈ I} ⊆ Π∗(A),∨
i∈I πi and

∧
i∈I πi are the same in Π∗(A) and in Π∗(E).

A partial partition on E is a partition if and only if it majorates 0E . Then(
Π(E),≤

)
is a complete lattice whose non-empty supremum and infimum

operations are inherited fromΠ∗(E). For A ∈ P(E), the non-empty supremum
and infimum operations inΠ(A) are inherited fromΠ∗(A), hence fromΠ∗(E);
in other words a non-void supremum or infimum of partitions of A is the same
in Π(A), in Π∗(A) or in Π∗(E).

Let us now consider some properties of the lattice Π∗(E). Many of them
generalize known properties of Π(E).

Proposition 6 Let {πi | i ∈ I} be a non-empty family of partial partitions of
E such that for every p ∈ E, the set {Clπi(p) | i ∈ I} is directed. Then:

1. [29] The class map of the supremum of the πi is the union of their respective
class maps:

∀ p ∈ E, Cl∨
i∈I

πi
(p) =

⋃

i∈I

Clπi(p) .

2. For any π ∈ Π∗(E),

π ∧
(∨

i∈I

πi

)
=

∨

i∈I

(π ∧ πi) .

These two results hold in particular in the following two situations:

A. The set {πi | i ∈ I} is directed.
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B. For any two distinct i, j ∈ I, every non-singleton block of πi is disjoint
from every non-singleton block of πj .

Proof Item 1 was shown in [29]. We prove item 2. Clearly, for every p ∈ E,
the set {Clπ∧πi(p) | i ∈ I} = {Clπ(p) ∩ Clπi(p) | i ∈ I} is directed. Combining
this with item 1 and (12): for p ∈ E,

Cl
π∧

(∨
i∈I

πi

)(p) = Clπ(p) ∩ Cl∨
i∈I

πi
= Clπ(p) ∩

(⋃

i∈I

Clπi(p)
)

=
⋃

i∈I

(
Clπ(p) ∩ Clπi(p)

)
=

⋃

i∈I

Clπ∧πi(p) = Cl∨
i∈I

(π∧πi)
(p) .

As explained in [29], if {πi | i ∈ I} is directed, then {Clπi(p) | i ∈ I} is
directed for each p ∈ E, so item A holds. Now in item B: for every p ∈ E, the
set {Clπi(p) | i ∈ I} contains at most one class of size > 1, all others being the
singleton {p} or the empty set; hence it is directed. ⊓⊔

A particular instance of situation A is when {πi | i ∈ I} is a chain; for this
case [43] gave the translation of result 1 in terms of partial equivalences, and
result 2 was shown in [9]; but then the argument in [6] allows to extend such
results from the particular case of a chain to the general situation of a directed
set. Also result 2 for situation B was shown in [12] in the case of partitions.
An example where result 1 is applied in situation B is that for B ∈ P(E) and
π ∈ Π∗(E), we have π ∨ 0B = π ∪ 0B\supp(π). An example applying result 2 in
situation B is that for π, π′ ∈ Π∗(E), we have π ∧ π′ =

∨
B∈π′(π ∧ 1B).

Note that the dual of result 2 does not hold. For E = Rn, take p, q ∈ E with
distance 2 between p and q, let A be the open ball of radius 1 centered about
p, let B be the closed ball of radius 1 centered about q, and for n ∈ N∗, let Bn
be the open ball of radius 1 + 1/n centered about q; thus the Bn constitute a
chain. We have B =

⋂
n∈N∗ Bn, A ∩ B = ∅, and for all n ∈ N∗, A ∩ Bn 6= ∅.

Thus the partial partitions 1Bn form a decreasing sequence, but

∧

n∈N∗

(1A ∨ 1Bn) =
∧

n∈N∗

(1A∪Bn) = 1A∪B

> {A,B} = 1A ∨ 1B = 1A ∨
( ∧

n∈N∗

1Bn

)
.

Another counterexample for E = Z was given in [9].
Now we characterize the covering relation on Π∗(E). The following result

is easy to prove:

Proposition 7 For π, π′ ∈ Π∗(E), we have π ≺ π′ if and only if one of the
following holds:

1. π′ is obtained by merging two blocks of π:

|π| ≥ 2, ∃C1, C2 ∈ π, C1 6= C2, π′ =
(
π \ {C1, C2}

)
∪ {C1 ∪ C2} .
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2. π′ is obtained by adding a singleton to π:

supp(π) ⊂ E, ∃ p ∈ E \ supp(π), π′ = π ∪ {{p}} .

When π, π′ ∈ Π(E), only case 1 is possible.

Next, recall the definition of an upper semi-modular lattice: x ≻ x ∧ y ⇒
x ∨ y ≻ y, or equivalently, (x ≻ z, y > z) ⇒ (x ≤ y or x ∨ y ≻ y) (other
equivalent forms are given in [3,14]). It is known [3,14] that Π(E) is upper
semi-modular. Similarly, the lattice Π∗(E) is upper semi-modular [9] (this is
an easy consequence of Proposition 7). We have then a height function for
partial partitions with finite support; we set

h(π) = 2|supp(π)| − |π| . (13)

Indeed, we check that h(Ø) = 0 and that both cases of Proposition 7 give
h(π′) = h(π)+1. For E = n, the total height is h(1E) = 2n−1; for a partition
π, h(π) = 2n− |π| (but the height of π in the lattice Π(E) is n− |π|).

It is known that the lattice Π(E) is complemented [28]. It is easily seen
that Π∗(E) is not complemented, any π ∈ Π∗(E) such that ∅ 6= supp(π) 6= E
has no complement; indeed π ∧ π′ = Ø implies that supp(π) ∩ supp(π′) = ∅,
from which we deduce that π ∨ π′ ≤ 1supp(π) ∨ 1E\supp(π) < 1E .

The atoms of Π∗(E) are the 1{p} (p ∈ E); they are complete join-primes,
and when |E| ≥ 3 no other element of Π∗(E) is a join-prime. Given a partial
partition π, the supremum of all atoms 1{p} ≤ π is 0supp(π). Thus Π∗(E)
is atomic, but not atomistic. A sup-generating family of Π∗(E) is given by
these atoms 1{p} (p ∈ E) and the join-irreducible non-atoms 1{p,q} (p, q ∈ E,
p 6= q); in fact it is the least sup-generating family, any other one must contain
it. The 1{p,q} are necessary to build the non-singleton blocks, while the 1{p}

are used only to give the singleton blocks; indeed, in chaining, a singleton block
is always redundant in the chain, except when the chain is reduced to that
singleton. To be more precise, a partial partition π is the supremum of the
1{p} for all singleton blocks {p} ∈ π, and of the 1{p,q} for all pairs {p, q} ⊆ B
for all non-singleton blocks B ∈ π. Note that a partial partition π is compact
(that is, π ≤

∨
i∈I πi implies π ≤

∨
i∈J πi for some finite J ⊆ I) if and only if

it has finite support. Hence Π∗(E) is compactly sup-generated (i.e., algebraic
[14]).

On the other hand, it is well-known that Π(E) is sup-generated by the
compact atoms 1{p,q} ∪ 0E\{p,q}, and a partition is compact if and only if it
is a supremum of a finite number of atoms; hence Π(E) is a geometric lattice
[3,14].

The dual atoms of Π∗(E) are those of of Π(E), namely the partitions
1A ∪ 1E\A for A ∈ P(E) \ {∅, E}. Now Π(E) is inf-generated by these dual
atoms, so it is dually atomistic. On the other hand, for a partial partition π,
the infimum of all dual atoms ≥ π is π∪0E\supp(π), the least partition ≥ π (see
FS(π) below). Thus Π∗(E) is dually atomic, but not dually atomistic. The
least inf-generating family of Π∗(E) is given by these dual atoms 1A ∪ 1E\A,
A ∈ P(E)\{∅, E}, and the meet-irreducible dual non-atoms 1E\{p} for p ∈ E.



17

Let us now consider two adjunctions between Π∗(E) and P(E). Since the
support map supp : Π∗(E) → P(E) : π 7→ supp(π) is a complete morphism, it
has both an upper and a lower adjoint. Its upper adjoint is the erosion

1• : P(E) → Π∗(E) : A 7→ 1A ,

while its lower adjoint is the dilation

0• : P(E) → Π∗(E) : A 7→ 0A ,

in other words, for π ∈ Π∗(E) and A ∈ P(E),

supp(π) ⊆ A ⇐⇒ π ≤ 1A and A ⊆ supp(π) ⇐⇒ 0A ≤ π .

Thus 1• is an erosion and 0• is a dilation:

∀,B ⊆ P(E), 0⋃
B =

∨

B∈B

0B and 1⋂
B =

∧

B∈B

1B . (14)

Furthermore, the map supp is surjective, while the maps 1• and 0• are injec-
tive. Thus 1• and 0• are order-embeddings of the poset P(E) into the poset
Π∗(E): for A,B ∈ P(E), A ⊆ B ⇔ 0A ≤ 0B ⇔ 1A ≤ 1B; in particular,
1A = Ø ⇔ 0A = Ø ⇔ A = ∅, i.e., 1• and 0• are are both upper- and
lower-regular. Let us also note the following:

∀B ⊆ P(E),
(
B 6= ∅,

⋂
B 6= ∅

)
=⇒ 1⋃

B =
∨

B∈B

1B . (15)

Hence 1• is connective and lower-regular.
From the two adjunctions (1•, supp) and (supp,0•), we deduce two opera-

tors on Π∗(E):

– the block blending closure blend : π 7→ 1supp(π), where all blocks of π are
merged;

– the block grinding opening grind : π 7→ 0supp(π), where each block of π is
pulverized into its singletons.

Furthermore, (blend,grind) is an adjunction on Π∗(E), since for π, π′ ∈
Π∗(E),

0supp(π) ≤ π′ ⇐⇒ supp(π) ⊆ supp(π′) ⇐⇒ π ≤ 1supp(π′) .

We will now describe two adjunctions between Π(E) and Π∗(E), and a
related adjunction on Π∗(E). We define 3 operators:

– The inclusion map:

IN : Π(E) → Π∗(E) : π 7→ π .

– The filling of a partial partition by singleton blocks outside its support:

FS : Π∗(E) → Π(E) : π 7→ π ∪ 0E\supp(π) = π ∨ 0E .
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– The removal of singleton blocks:

RS : Π∗(E) → Π∗(E) : π 7→ {C ∈ π | |C| > 1} = π \ 0E .

Obviously, for π ∈ Π∗(E),

FS(π) = π ⇐⇒ π ∨ 0E = π ⇐⇒ 0E ≤ π ⇐⇒ π ∈ Π(E) .

We derive then by composition the two maps:

RSIN = RS · IN : Π(E) → Π∗(E) : π 7→ RS(IN(π)) = RS(π) ;

INFS = IN · FS : Π∗(E) → Π∗(E) : π 7→ IN(FS(π)) = FS(π) .

Lemma 8 1. For any π, π′ ∈ Π∗(E), RS(π) ≤ π′ ⇔ π ≤ FS(π′).
2. For any π ∈ Π∗(E) and π′ ∈ Π(E), FS(π) ≤ π′ ⇔ π ≤ π′.

Proof 1. The two inequalitiesRS(π) ≤ π′ and π ≤ FS(π′) mean respectively:

(a) Every non-singleton block of π is included in a block of π′.
(b) Every block of π is included in a block of π′ or in a singleton outside

supp(π′).

If (a) holds, then every block of π either is included in a block of π′, or is a
singleton; if it is a singleton, either it is in supp(π′) hence included in a block
of π′, or it is outside supp(π′) and included in itself; then (b) holds. If (b)
holds, any non-singleton block of π may not be included in a singleton, hence
it must be included in a block of π′, so (a) holds.

2. We have π ≤ π ∨ 0E = FS(π), so FS(π) ≤ π′ ⇒ π ≤ π′; as
π′ ∈ Π(E), 0E ≤ π′, hence π ≤ π′ ⇒ FS(π) = π ∨ 0E ≤ π′. ⊓⊔

Theorem 9 1. (FS,RSIN) is an adjunction Π∗(E) ⇀↽ Π(E).
2. (IN, FS) is an adjunction Π(E) ⇀↽ Π∗(E).
3. FS is surjective, while IN and RSIN are injective; FS ·IN and FS ·RSIN

are the identity on Π(E).
4. FS is a complete morphism.
5. (INFS,RS) is an adjunction on Π∗(E).
6. INFS is a closure and RS is an opening.
7. For any π ∈ Π∗(E), RS(π) = RS(FS(π)) and FS(π) = FS(RS(π)).

Proof 1. FS is Π∗(E) → Π(E) while RSIN is Π(E) → Π∗(E); for π ∈
Π(E) and π′ ∈ Π∗(E), RSIN(π) = RS(π), so by item 1 of Lemma 8,
RSIN(π) ≤ π′ ⇔ RS(π) ≤ π′ ⇔ π ≤ FS(π′).

2. IN is Π(E) → Π∗(E) while FS is Π∗(E) → Π(E); for π ∈ Π∗(E)
and π′ ∈ Π(E), IN(π′) = π′, so by item 2 of Lemma 8, FS(π) ≤ π′ ⇔ π ≤
π′ ⇔ π ≤ IN(π′).

3. For π ∈ Π(E), π = FS(π), hence FS is surjective. It is known [8,
13] that in an adjunction, one adjoint is surjective if and only if the other
adjoint is injective, and that the composition of the injective adjoint followed
by the surjective one is the identity. From the two adjunctions (FS,RSIN)
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and (IN, FS), IN and RSIN are injective, while FS ·IN and FS ·RSIN are
the identity on Π(E).

4. Since FS has upper adjoint IN and lower adjoint RSIN , it is both a
dilation and an erosion, hence a complete morphism.

5. INFS is Π∗(E) → Π∗(E) while RS is Π∗(E) → Π∗(E); for π, π′ ∈
Π∗(E), INFS(π′) = FS(π′), so by item 1 of Lemma 8, RS(π) ≤ π′ ⇔ π ≤
FS(π′) ⇔ π ≤ INFS(π′).

6. From the adjunction (IN, FS), INFS is a closure; as RS is the lower
adjoint of that closure, it must be an opening [4,31].

7. Let π ∈ Π∗(E); set A = supp(π) \ supp(RS(π)) and B = E \ supp(π).
Then π = RS(π) ∪ 0A and FS(π) = RS(π) ∪ 0A ∪ 0B = RS(π) ∪ 0A∪B,
where RS(π) has no singleton block. The equalities RS(π) = RS(FS(π)) and
FS(π) = FS(RS(π)) follow then. ⊓⊔

Π (E) Π*(E)

Π*(E)

FS

RSIN

IN

INFS

RS

Fig. 3 The three adjunctions
(FS,RSIN) : Π∗(E) ⇀↽ Π(E),
(IN, FS) : Π(E) ⇀↽ Π∗(E) and
(INFS,RS) : Π∗(E) ⇀↽ Π∗(E)
shown as pairs of arrows in oppo-
site orientations, where the top ar-
row is the upper adjoint and the
bottom arrow is the lower adjoint.

The three adjunctions (FS,RSIN), (IN, FS) and (INFS,RS) are illus-
trated by the diagrams of Figure 3. From the adjunction (IN, FS), it follows
that for any π ∈ Π∗(E), FS(π) is the least π′ ∈ Π(E) such that π ≤ π′. By
item 7,

∀π, π′ ∈ Π∗(E), FS(π) = FS(π′) ⇐⇒ RS(π) = RS(π′) . (16)

Note that RS and grind are both at the same time dilations and openings
on Π∗(E), while their upper adjoints INFS and blend are both at the same
time erosions and closures on Π∗(E); furthermore, for every π ∈ Π∗(E),

π = RS(π) ∨ grind(π) = INFS(π) ∧ blend(π) . (17)

Corollary 10 Let Π0(E) = {RS(π) | π ∈ Π∗(E)}. Then Π0(E) is a dual
Moore family of Π∗(E). As a complete lattice, Π0(E) is isomorphic to Π(E),
the two maps RSIN and FS provide the isomorphism Π(E) → Π0(E) and
the inverse isomorphism Π0(E) → Π(E).

Proof By item 1 of Theorem 9, RSIN is a dilation, hence its image Π0(E)
is closed under suprema. By item 7 of Theorem 9, RSIN : Π(E) → Π0(E)
and FS : Π0(E) → Π(E) (in fact, the restrictions of RSIN to range Π0(E),
and of FS to domain Π0(E)) are the inverses of each other. As (FS,RSIN)
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is an adjunction (item 1 of Theorem 9), RSIN and FS are isotone, thus they
constitute an isomorphism Π(E) → Π0(E) and its inverse. ⊓⊔

Note that the least sup-generating family of Π0(E) is given by the 1{p,q}

(p, q ∈ E, p 6= q).
Corollary 10 can be used to match properties related to the supremum

operations between Π∗(E) and Π(E). For example a partition π is compact
in Π(E) if and only if RS(π) is compact in Π0(E); then we easily get that this
is equivalent to RS(π) being compact in Π∗(E), in other words supp(RS(π))
being finite.

Theorem 9 and Corollary 10 illuminate the role of singleton blocks in partial
partitions, in particular the remark made above that when chaining blocks,
a singleton block is always redundant in the chain, except when the chain is
reduced to that singleton: this is because RS is a dilation. Thus a family F ⊆
Π(E) is sup-generated by a family G ⊆ Π(E) if and only if {RS(π) | π ∈ F}
is sup-generated by {RS(π) | π ∈ G}.

Recall that a congruence (resp., complete congruence) on a lattice (resp.,
complete lattice) is an equivalence relation compatible with binary joins and
meets (resp., with arbitrary suprema and infima). It was shown in [28] that
Π(E) has only trivial congruences (the identity and the universal relation
E × E). This is no more the case in Π∗(E):

Proposition 11 [10] The relation on Π∗(E) given by FS(π) = FS(π′), cf.
(16), and the one given by supp(π) = supp(π′), are complete congruences.
They are complements in the lattice of congruences on Π∗(E). Furthermore,
any congruence ≡ on Π∗(E) either is included in the first one,

π ≡ π′ =⇒ FS(π) = FS(π′) ,

or contains the second one,

supp(π) = supp(π′) =⇒ π ≡ π′ .

Finally, the two adjunctions (FS,RSIN) and (IN, FS) allows us to derive
from operators onΠ∗(E) similar operators onΠ(E). For a closure ϕ onΠ∗(E),
FS · ϕ · RSIN will be a closure on Π(E) (but the restriction of ϕ to Π(E)
will also be a closure), while for an opening γ on Π∗(E), FS · γ · IN will
be an opening on Π(E), see Figure 4. In the next section, we will see how
adjunctions on Π(E) can be obtained from adjunctions on Π∗(E).

Π (E) Π*(E) Π (E)

INFS

RSIN FS

closure opening
Fig. 4 Openings and closures on Π∗(E)
can be transformed into similar opera-
tors on Π(E), by using the two adjunc-
tions (FS,RSIN) and (IN, FS) between
Π∗(E) and Π(E).
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3 Adjunctions on partial partitions

Throughout this section we consider two spacesE1 and E2 that may be distinct
or equal; sometimes we even consider a third one, E3. When E1 = E2, we
will write E for E1. We will analyse adjunctions Π∗(E2) ⇀↽ Π∗(E1) and
Π(E2) ⇀↽ Π(E1). Dilations and erosions on (partial) partitions will be written
δ, ε, while δ, ε will denote dilations and erosions on sets.

In Subsection 3.1 we show how every adjunction Π(E2) ⇀↽ Π(E1) arises by
combining an adjunction Π∗(E2) ⇀↽ Π∗(E1) with the operators FS, IN and
RSIN ; then we give a direct characterization of dilations Π∗(E1) → L and
Π(E1) → L (where L is any complete lattice, for instance Π∗(E2) or Π(E2))
in terms of connective maps P(E1) → L. Subsection 3.2 analyses lower-regular
dilations Π∗(E1) → Π∗(E2) that apply a set operator to each block. Subsec-
tion 3.3 shows how to build a regular adjunction Π∗(E2) ⇀↽ Π∗(E1) from a
regular adjunction P(E2) ⇀↽ P(E1); in particular, we obtain the adjunction

(ε̂, δ̂) from [30,36] described in the Introduction. Finally, Subsection 3.4 char-
acterizes connective maps P(E1) → P(E2) in terms of maps E2 → Π∗(E1).
Section 4 will give an alternate characterization of dilations Π∗(E1) → L and
Π(E1) → L (in particular, Π∗(E1) → Π∗(E2) and Π(E1) → Π(E2)) in terms
of triangular maps.

3.1 General results

We first show how the case of partitions reduces to that of partial partitions.
For i = 1, 2, write FSi, INi, RSINi to mean that the operators FS, IN,RSIN
for Π∗(Ei) and Π(Ei).

Theorem 12 (ε, δ) : Π(E2) ⇀↽ Π(E1) is an adjunction if and only if there

is an adjunction (ε∗, δ
∗
) : Π∗(E2) ⇀↽ Π∗(E1) such that (ε, δ) = (FS1 · ε∗ ·

IN2, FS2 · δ
∗
·RSIN1).

Proof For i = 1, 2: by Theorem 9, (FSi, RSINi) is an adjunction Π∗(Ei) ⇀↽
Π(Ei), (INi, FSi) is an adjunction Π(Ei) ⇀↽ Π∗(Ei), while FSi · INi and
FSi ·RSINi are the identity on Π(Ei).

Given an adjunction (ε∗, δ
∗
) : Π∗(E2) ⇀↽ Π∗(E1), by the composition

rule for adjunctions, (FS1 · ε∗ · IN2, FS2 · δ
∗
· RSIN1) will be an adjunction

Π(E2) ⇀↽ Π(E1). See Figure 5 (top).

Conversely, given an adjunction (ε, δ) : Π(E2) ⇀↽ Π(E1), set (ε∗, δ
∗
) =

(IN1 · ε ·FS2, RSIN2 · δ ·FS1); by the composition rule for adjunctions, it will

be an adjunction Π∗(E2) ⇀↽ Π∗(E1); then (FS1 · ε
∗ · IN2, FS2 · δ

∗
·RSIN1) =

(FS1 · IN1 · ε ·FS2 · IN2, FS2 ·RSIN2 · δ ·FS1 ·RSIN1) = (ε, δ). See Figure 5
(bottom). ⊓⊔

Let us now give a general form for dilations Π∗(E1) → L and Π(E1) → L
for an arbitrary complete lattice L; this will apply in particular to dilations
Π∗(E1) → Π∗(E2) and Π(E1) → Π(E2).
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(E )Π 1 Π*(E )1 Π*(E )2 Π (E )2

IN

FSRSIN 1

FS 2

2

1 *

*δ

ε

(E )Π 1 Π*(E )1 (E )Π 1 Π (E )2 Π*(E )2 Π (E )2

IN INFSFS

RSIN FS RSIN FS

ε

ε
*
*

1 1

1 1

2 2

22

δ

δ

Fig. 5 Top: from an adjunction (ε∗, δ
∗
) : Π∗(E2) ⇀↽ Π∗(E1), we derive the adjunction

(FS1 · ε∗ · IN2, FS2 · δ
∗
· RSIN1) : Π(E2) ⇀↽ Π(E1). Bottom: from an adjunction (ε, δ) :

Π(E2) ⇀↽ Π(E1), we derive the adjunction (ε∗, δ
∗
) = (IN1 · ε · FS2, RSIN2 · δ · FS1) :

Π∗(E2) ⇀↽ Π∗(E1), then (FS1 · ε∗ · IN2, FS2 · δ
∗
·RSIN1) = (FS1 · IN1 · ε ·FS2 · IN2, FS2 ·

RSIN2 · δ · FS1 ·RSIN1) = (ε, δ).

Theorem 13 Let L be a complete lattice.

1. A map δ : Π∗(E1) → L is a dilation if and only if there is a connective
map ξ : P(E1) → L such that

∀π ∈ Π∗(E1), δ(π) =
∨

B∈π

ξ(B) . (18)

Furthermore, δ uniquely determines ξ by ξ(∅) = 0 and

∀A ∈ P(E1) \ {∅}, ξ(A) = δ(1A) .

2. A map δ : Π(E1) → L is a dilation if and only if there is a dilation

δ
∗

: Π∗(E1) → L such that δ = δ
∗
· RSIN1; this holds if and only if there

is a connective map ξ : P(E1) → L such that

∀π ∈ Π(E1), δ(π) =
∨

B∈RS1(π)

ξ(B) . (19)

Furthermore, δ uniquely determines the restriction of ξ to non-singletons,
by ξ(∅) = 0 and

∀A ∈ P(E1), |A| ≥ 2, ξ(A) = δ(1A ∪ 0E\A) .

Proof 1. Let δ : Π∗(E1) → L be a dilation. Define ξ : P(E1) → L by
ξ(∅) = 0, and for A ∈ P(E1) \ {∅}, ξ(A) = δ(1A). Let B ⊆ P(E1) such that
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B 6= ∅ and
⋂
B 6= ∅; by (15), 1⋃

B =
∨
B∈B 1B. Applying the dilation δ, we

get

ξ
(⋃

B
)

= δ
(
1⋃

B

)
= δ

( ∨

B∈B

1B

)
=

∨

B∈B

δ(1B) =
∨

B∈B

ξ(B) .

Thus ξ is connective. Now for π ∈ Π∗(E1), as π =
∨
B∈π 1B and δ is a dilation,

we get

δ(π) = δ
( ∨

B∈π

1B

)
=

∨

B∈π

δ(1B) =
∨

B∈π

ξ(B) ,

hence (18) holds.
Conversely, let ξ : P(E1) → L be connective, and define δ by (18). By

Lemma 3, ξ is isotone. Given π, π′ ∈ Π∗(E1) such that π ≤ π′, for every
B ∈ π there is C ∈ π′ with B ⊆ C, hence ξ(B) ≤ ξ(C); thus by (18) we
get δ(π) ≤ δ(π′). Hence δ is isotone. By definition, δ(Ø) = 0. Consider now
a non-void family πi ∈ Π∗(E1), i ∈ I 6= ∅, and let π =

∨
i∈I πi and z =∨

i∈I δ(πi). For each i ∈ I we have πi ≤ π; as δ is isotone, δ(πi) ≤ δ(π); hence

z =
∨
i∈I δ(πi) ≤ δ(π). Take any C ∈ π; as C is chained by blocks in

⋃
i∈I πi,

for some i ∈ I there is B ∈ πi such that B ⊆ C. By (18), ξ(B) ≤ δ(πi), and
by definition δ(πi) ≤ z, so ξ(B) ≤ z. Let

B =
{
X | B ⊆ X ⊆ C, ξ(X) ≤ z

}
.

Then B ∈ B, so B 6= ∅ and
⋂
B = B 6= ∅. Let Y =

⋃
B. Then B ⊆ Y ⊆ C,

and since ξ is connective,

ξ(Y ) =
∨{

ξ(X) | B ⊆ X ⊆ C, ξ(X) ≤ z
}
≤ z .

Thus Y is the greatest element of B. Suppose that Y ⊂ C. Now points of Y
and C \ Y must be chained by blocks in

⋃
i∈I πi; hence for some j ∈ I there

is A ∈ πj such that A ⊆ C, A )( Y and A 6⊆ Y . In the same way as ξ(B),
ξ(A) ≤ z. Since ξ is connective and A ∩ Y 6= ∅, ξ(A ∪ Y ) = ξ(A) ∪ ξ(Y ) ≤ z,
with B ⊆ A ∪ Y ⊆ C, contradicting the fact that Y is the greatest element
of B. Therefore Y = C, so ξ(C) ≤ z; as this holds for any C ∈ π, we get
δ(π) =

∨
C∈π ξ(C) ≤ z. From the double inequality follows the equality

δ
(∨

i∈I

πi

)
= δ(π) = z =

∨

i∈I

δ(πi) ,

thus δ is a dilation. Since ξ is connective, it is upper-regular, so ξ(∅) = 0; now
for A ∈ P(E1) \ {∅}, (18) gives δ(1A) = ξ(A).

2. Given a dilation δ
∗

: Π∗(E1) → L, then δ = δ
∗
· RSIN1 is a dilation

Π(E1) → L; conversely, given a dilation δ : Π(E1) → L, set δ
∗

= δ · FS1,

then δ
∗

is a dilation Π∗(E1) → L, and δ
∗
· RSIN1 = δ · FS1 · RSIN1 = δ.

Now each such δ
∗

corresponds to a connective map ξ : P(E1) → L for which

(18) holds, and then δ = δ
∗
· RSIN1 will satisfy (19); conversely, from any
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connective map ξ we can construct the dilation δ
∗

by (18), and then δ built

by (19) will coincide with δ
∗
· RSIN1.

Here we have for A ∈ P(E1) such that |A| > 1:

ξ(A) = δ
∗
(1A) = δ(FS1(1A)) = δ(1A ∪ 0E\A) ;

however for p ∈ E1, the specific value of ξ({p}) does not matter, i.e., ξ is
undetermined on singletons. ⊓⊔

From Lemma 3, it is easily seen that the correspondence ξ ↔ δ between
connective maps ξ : P(E1) → L and dilations δ : Π∗(E1) → L satisfies the
following properties:

– If ξi ↔ δi for all i ∈ I, then
∨
i∈I ξi ↔

∨
i∈I δi.

– Given a dilation δ : L→M (where M is a complete lattice), if ξ ↔ δ, then
δξ ↔ δδ.

We see no simple characterization of connective maps P(E1) → Π∗(E2).
Note that for a dilation δ : Π∗(E1) → Π∗(E2) corresponding to a con-
nective map ξ : P(E1) → Π∗(E2), since RS2 and FS2 are dilations, the
two dilations RS2 · δ and FS2 · δ will correspond to the connective maps
RS2 · ξ and FS2 · ξ (cf. Lemma 3). Since supp is a dilation, the two maps
supp · ξ : P(E1) → P(E2) : P 7→ supp(ξ(P )) and supp · RS2 · ξ : P(E1) →
P(E2) : P 7→ supp(RS2(ψ(P ))) will also be connective. In the next subsection,
we will consider the particular case of dilations that can be characterized by
connective maps P(E1) → P(E2).

3.2 Lower-regular one-block-preserving dilations

Recall from Definition 2 that a lattice operator ψ is lower-regular if and only
if it satisfies x > 0 ⇒ ψ(x) > 0. We will also require the following concept:

Definition 14 An operator ξ : Π∗(E1) → Π∗(E2) is one-block-preserving if it
transforms every one-block partial partition into a one-block partial partition
(or Ø): for every A ∈ P(E1)\{∅} there is some A′ ∈ P(E2) with ξ(1A) = 1A′ .

Now a lower-regular one-block-preserving dilation can be characterized in
terms of the operator A 7→ A′ for δ(1A) = 1A′ . We will thus consider operators
on partial partitions applying a set operator to each block separately.

Definition 15 Given an operator ψ : P(E1) → P(E2), the blockwise exten-
sion of ψ is the operator

B(ψ) : Π∗(E1) → Π∗(E2) : π 7→
∨

B∈π

1ψ(B) . (20)
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Note that ψ needs not to be defined on ∅, so one can consider that it is
P(E1) \ {∅} → P(E2); here we will rather assume ψ(∅) = ∅, in other words
consider upper-regular operators. Also,

∀A ∈ P(E1) \ {∅}, B(ψ)(1A) = 1ψ(A) (21)

and
∀π ∈ Π∗(E1), supp

(
B(ψ)(π)

)
=

⋃

B∈π

ψ(B) . (22)

The following will be useful in the rest of this section.

Lemma 16 Consider an operator ψ : P(E1) → P(E2).

1. If ψ is isotone on P(E1) \ {∅}, then ψ is lower-regular if and only if ∀ p ∈
E1, ψ({p}) 6= ∅.

2. Assuming E1 = E2 = E: If ψ is isotone on P(E)\ {∅}, then ψ is extensive
if and only if ∀ p ∈ E, p ∈ ψ({p}).

3. If ψ is isotone on P(E1) \ {∅}, then B(ψ) is isotone.
4. If ψ is lower-regular, then B(ψ) is lower-regular.
5. B(ψ) is upper-regular.
6. Assuming E1 = E2 = E: If ψ is extensive, then B(ψ) is extensive.

Proof 1. Obviously, if ψ is lower-regular, then ∀ p ∈ E1, ψ({p}) 6= ∅. Con-
versely, suppose that ∀ p ∈ E1, ψ({p}) 6= ∅. For any X ∈ P(E1) such that
X 6= ∅, taking p ∈ X we have X ⊇ {p}; as ψ is isotone on P(E1) \ {∅}, we get
ψ(X) ⊇ ψ({p}) 6= ∅, so ψ is lower-regular.

2. Obviously, if ψ is extensive, then ∀ p ∈ E1, {p} ⊆ ψ({p}), that is,
p ∈ ψ({p}). Conversely, suppose that ∀ p ∈ E1, p ∈ ψ({p}). For anyX ∈ P(E1)
such that X 6= ∅, for all p ∈ X we have {p} ⊆ X ; as ψ is isotone on P(E1)\{∅},
we get p ∈ ψ({p}) ⊆ ψ(X); thus X ⊆ ψ(X). Now obviously ∅ ⊆ ψ(∅). Hence
ψ is extensive.

3. Given π, π′ ∈ Π∗(E1) such that π ≤ π′, for every B ∈ π there is C ∈ π′

with B ⊆ C, hence ψ(B) ⊆ ψ(C) and so 1ψ(B) ≤ 1ψ(C); by (20) we deduce
that B(ψ)(π) ≤ B(ψ)(π′).

4. For π 6= Ø, there is some B ∈ π, with B 6= ∅; since ψ is lower-regular,
ψ(B) 6= ∅, so by (20), B(ψ)(π) ≥ 1ψ(B) > Ø.

5. By (20), B(ψ)(Ø) = Ø.
6. This follows from (20) and the fact that B ⊆ ψ(B), so 1B ≤ 1ψ(B). ⊓⊔

For sets, Definition 2 takes the following form: an operator ψ : P(E1) →
P(E2) is connective if ψ(∅) = ∅ and for any B ⊆ P(E1) such that B 6= ∅ and⋂
B 6= ∅, we must have ψ

(⋃
B

)
=

⋃
B∈B ψ(B). Recall also Lemma 3. Thus,

given a connective map ψ, Lemmas 3 and 16 give: (a) ψ and B(ψ) are isotone;
(b) ψ is lower-regular if and only if ∀ p ∈ E1, ψ({p}) 6= ∅, implying that B(ψ)
is lower-regular; (c) (for E1 = E2 = E) ψ is extensive if and only if ∀ p ∈ E,
p ∈ ψ({p}), implying that B(ψ) is extensive.

We now give our characterization of lower-regular one-block-preserving di-
lations.
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Theorem 17 A map δ : Π∗(E1) → Π∗(E2) is a lower-regular one-block-pre-
serving dilation if and only if δ = B(ψ) for a lower-regular connective operator
ψ : P(E1) → P(E2).

Proof Let δ : Π∗(E1) → Π∗(E2) be a lower-regular one-block-preserving di-
lation. Thus for every A ∈ P(E1) \ {∅} there is some A′ ∈ P(E2) \ {∅} with
δ(1A) = 1A′ ; we define then ψ : P(E1) → P(E2) by ψ(A) = A′, and we
arbitrarily set ψ(∅) = ∅. Clearly A 6= ∅ ⇒ ψ(A) 6= ∅, i.e., ψ is lower-regular.
Let ξ : P(E1) → Π∗(E2) be given by ξ(A) = 1ψ(A) for all A ∈ P(E1). Then

for all A ∈ P(E1), ψ(A) = supp
(
1ψ(A)

)
= supp(ξ(A)), that is, ψ = supp · ξ.

Now ξ(∅) = 1ψ(∅) = 1∅ = Ø, and for A ∈ P(E1) \ {∅}, ξ(A) = δ(1A), hence
by Theorem 13, ξ is connective. But supp is a dilation; hence ψ = supp · ξ is
connective by Lemma 3. By Theorem 13, δ satisfies (18). Replacing ξ(B) by
1ψ(B) in (18), we get δ = B(ψ) according to (20).

Conversely, let ψ : P(E1) → P(E2) be lower-regular and connective. Let
ξ : P(E1) → L be given by ξ(A) = 1ψ(A) for all A ∈ P(E1), in other words
ξ = 1• · ψ. We saw in (15) that 1• is connective; since ψ is lower-regular and
connective, their composition ξ = 1• · ψ will be connective by Lemma 3. Now
by (20), δ = B(ψ) satisfies (18), so by Theorem 13, B(ψ) is a dilation. Since ψ
is lower-regular, B(ψ) is lower-regular by Lemma 16. ⊓⊔

It is easily seen that this bijection ψ ↔ B(ψ) is an isomorphism between
the poset of lower-regular connective operators P(E1) → P(E2), and the one
of lower-regular one-block-preserving dilations Π∗(E1) → Π∗(E2). Note that
the poset of lower-regular connective operators P(E1) → P(E2) is closed un-
der non-void joins, but that the poset of lower-regular one-block-preserving
dilations Π∗(E1) → Π∗(E2) is not closed under non-void joins in the com-
plete lattice of operators Π∗(E1) → Π∗(E2); indeed, the join of two or more
one-block-preserving dilations is not necessarily one-block-preserving. More
precisely, given a non-void family of lower-regular one-block-preserving dila-
tions B(ψi), i ∈ I 6= ∅, the least one-block-preserving dilation above them is
not

∨
i∈I B(ψi), but B

(∨
i∈I ψi

)
. Now this bijection is also compatible with

composition:

Corollary 18 Let ψ : P(E1) → P(E2) and ξ : P(E2) → P(E3) be lower-
regular and connective. Then B(ξψ) = B(ξ)B(ψ).

Proof By Lemma 3, ξψ is connective, and obviously it will be lower-regular.
Hence B(ξψ) is a dilation. Now B(ξ)B(ψ) is a composition of dilations, hence
a dilation. For every A ∈ P(E1) \ {∅}, (21) gives B(ξψ)(1A) = 1ξψ(A) =
B(ξ)(1ψ(A)) = B(ξ)B(ψ)(1A). Now for any π ∈ Π∗(E1), π =

∨
B∈π 1B, hence

the two dilations B(ξψ) and B(ξ)B(ψ) give

B(ξψ)(π) =
∨

B∈π

B(ξψ)(1B) =
∨

B∈π

B(ξ)B(ψ)(1B) = B(ξ)B(ψ)(π) .

⊓⊔
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Note that the assumption that ψ is lower-regular (X 6= ∅ ⇒ ψ(X) 6= ∅)
is crucial, as shows the following counterexample. Take E1 = E2 = E and let
A ⊂ E such that A 6= ∅ and |E\A| ≥ 2. Define the operator ζ : P(E) → P(E) :
X 7→ X \ A. Then ζ is a dilation, and it is not lower-regular, as ζ(A) = ∅.
Then B(ζ) is not a dilation on Π∗(E). Indeed, for Y ⊆ E \A such that Y 6= ∅,
(21) gives B(ζ)(1A∪Y ) = 1ζ(A∪Y ) = 1Y , so for two distinct p, q ∈ E \ A we
have 1A∪{p} ∨ 1A∪{q} = 1A∪{p,q} and

B(ζ)(1A∪{p,q}) = 1{p,q} > 1{p} ∨ 1{q} = B(ζ)(1A∪{p}) ∨ B(ζ)(1A∪{q}) .

Consider now the map δ : P(E) → P(E) defined by δ(∅) = ∅ and δ(X) = X∪A
for X 6= ∅. It is a lower-regular dilation; however B(ζδ) 6= B(ζ)B(δ). Indeed,
for two distinct p, q ∈ E \A we have

B(δ)(1{p} ∨ 1{q}) = 1δ({p}) ∨ 1δ({q}) = 1A∪{p} ∨ 1A∪{q} = 1A∪{p,q} ,

and from above we get B(ζ)B(δ)(1{p} ∨ 1{q}) = B(ζ)(1A∪{p,q}) = 1{p,q}; on
the other hand ζδ({p}) = ζ(A ∪ {p}) = {p} and similarly ζδ({q}) = {q}, so

B(ζδ)(1{p} ∨ 1{q}) = 1ζδ({p}) ∨ 1ζδ({q}) = 1{p} ∨ 1{q}

< 1{p,q} = B(ζ)B(δ)(1{p} ∨ 1{q}) .

The same happens for δ′ : P(E) → P(E) defined by δ′(X) = X if X ⊆ A, and
δ′(X) = X∪A if X 6⊆ A: it is a lower-regular dilation, but B(ζδ′) 6= B(ζ)B(δ′).

Let us now characterize lower-regular one-block-preserving dilations by
their upper adjoints; this will lead in Subsection 3.4 to their representation
by a map E2 → Π∗(E1).

Definition 19 Let the operator η : P(E2) → Π∗(E1) preserve separation.
The disjoint application of η is the operator

D(η) : Π∗(E2) → Π∗(E1) : π 7→
⋃

B∈π

η(B) . (23)

The fact that η preserves separation guarantees that the η(B) for B ∈ π have
mutually disjoint supports, hence that

⋃
B∈π η(B) is indeed a partial partition.

Proposition 20 A map ε : Π∗(E2) → Π∗(E1) is the upper adjoint of a
lower-regular one-block-preserving dilation δ : Π∗(E1) → Π∗(E2) if and only
if there is an upper-regular erosion η : P(E2) → Π∗(E1) such that ε = D(η).

Proof Note that since η is an upper-regular erosion, it preserves separation,
cf. the paragraph after Definition 2.

Suppose first that (ε, δ) is an adjunction where δ : Π∗(E1) → Π∗(E2)
is lower-regular and one-block-preserving. Define η : P(E2) → Π∗(E1) by
η(X) = ε(1X), in particular η(∅) = ε(Ø). As ε is an erosion, η(E2) = ε(1E2) =
1E1 , and for a non-void family Xi ∈ P(E2), i ∈ I, we have

η
(⋂

i∈I

Xi

)
= ε

(
1⋂

i∈I
Xi

)
= ε

(∧

i∈I

1Xi

)
=

∧

i∈I

ε(1Xi) =
∧

i∈I

η(Xi) ;
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hence η is an erosion. Since δ is lower-regular, ε is upper-regular, so η(∅) =
ε(Ø) = Ø and η is upper-regular. Take any π ∈ Π∗(E2) and A ∈ P(E1) \ {∅};
then δ(1A) = 1A′ for some A′ ∈ P(E2) \ {∅}. Now A is included in a block of
ε(π) if and only if 1A ≤ ε(π), and by the adjunction (ε, δ), this is equivalent to
δ(1A) ≤ π, that is, 1A′ ≤ π; this means that A′ is included in a block B ∈ π,
that is, δ(1A) = 1A′ ≤ 1B; by the adjunction (ε, δ) again, this is equivalent
to 1A ≤ ε(1B) = η(B), that is, A is included in a block of η(B). Hence A is
included in a block of ε(π) if and only if it is included in a block of η(B) for
some B ∈ π, in other words in a block of

⋃
B∈π η(B) (indeed, since η preserves

separation,
⋃
B∈π η(B) is a partial partition). By (23), this necessarily means

that ε(π) = D(η)(π).
Conversely, let ε = D(η) for an upper-regular erosion η : P(E2) → Π∗(E1).

Let ζ : Π∗(E1) → P(E2) be the lower adjoint of η, and define ψ : P(E1) →
P(E2) by ψ(A) = ζ(1A). For any π ∈ Π∗(E1) and π′ ∈ Π∗(E2), we have the
following equivalences:

B(ψ)(π) ≤ π′ ⇐⇒
∨

B∈π

1ψ(B) ≤ π′ ⇐⇒ ∀B ∈ π, 1ψ(B) ≤ π′

⇐⇒ ∀B ∈ π, ∃C ∈ π′, ψ(B) ⊆ C ⇐⇒ ∀B ∈ π, ∃C ∈ π′, ζ(1B) ⊆ C

⇐⇒ ∀B ∈ π, ∃C ∈ π′, 1B ≤ η(C)

⇐⇒ ∀B ∈ π, ∃C ∈ π′, ∃D ∈ η(C), B ⊆ D

⇐⇒ ∀B ∈ π, ∃D ∈
⋃

C∈π′

η(C), B ⊆ D ⇐⇒ π ≤
⋃

C∈π′

η(C) = ε(π′) .

Here we used successively (20), the meaning (9) of 1ψ(B), the adjunction (η, ζ),
and (23). Thus (ε,B(ψ)) is an adjunction, and the dilation B(ψ) will be one-
block-preserving by (21). By (23), ε(Ø) = Ø, so ε is upper-regular, hence its
lower adjoint B(ψ) is lower-regular. ⊓⊔

Example 21 Let E1 = E2 = E. For an integer n ≥ 0, consider a strict chain
π0 < · · · < πn = 1E in Π∗(E). Let Ω = Π∗(E) ∩ P

(⋃n
i=0 πi

)
, the set of all

partial partitions of E having each block belonging to some πi, i = 0, . . . , n;
thus for π ∈ Π∗(E), we have

π ∈ Ω ⇐⇒ ∀ p ∈ E, Clπ(p) ∈ {∅} ∪ {Clπi(p) | i = 0, . . . , n} .

Given Υ ⊆ Ω, for any p ∈ E, {Clπ(p) | π ∈ Υ} ⊆ {∅}∪{Clπi(p) | i = 0, . . . , n},
hence it is a chain; by (12) and Proposition 6, Cl∧Υ (p) and Cl∨Υ (p) are the

least and greatest among all Clπ(p), π ∈ Υ , so
∧
Υ,

∨
Υ ∈ Ω: Ω is a complete

sublattice of Π∗(E).
Define ψ : P(E) → P(E) by ψ(∅) = ∅, and for X ∈ P(E)\{∅}, ψ(X) is the

least B ∈
⋃n
i=0 πi such that X ⊆ B. Alternately, let t be the least i = 0, . . . , n

such that X is included in a block of πi, and then let ψ(X) be that block of
πt containing X :

∀X ∈ P(E) \ {∅}, ψ(X) = Clπt(p) for any p ∈ X ,

where t = min
{
i = 0, . . . , n | X ⊆ Clπi(p)

}
.
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For any π ∈ Π∗(E), B(ψ)(π) is the least π′ ∈ Ω such that π′ ≥ π. By Lemma 1,
B(ψ) is both a closure and a dilation, and its upper adjoint ε is the opening
given by: for any π ∈ Π∗(E), ε(π) is the greatest π′ ∈ Ω such that π′ ≤ π.
Here ε = D(η) for the erosion η : P(E2) → Π∗(E) given by η(∅) = Ø, and
for Y ∈ P(E) \ {∅}, η(Y ) is the greatest π′ ∈ Ω such that supp(π′) ⊆ Y .
Alternately,

∀Y ∈ P(E) \ {∅}, ∀ p ∈ E, Sp =
{
i = 0, . . . , n | Clπi(p) ⊆ Y

}
,

Clη(Y )(p) = Clπt(p) for t = maxSp if Sp 6= ∅, Clη(Y )(p) = ∅ otherwise .

For instance, let E = {0, . . . , 2n− 1}2, a digital square of size 2n× 2n, and
for i = 0, . . . , n, let πi be the partition of E into the 2i × 2i-squares

{(a2i + x, b2i + y) | 0 ≤ x, y ≤ 2i − 1}, 0 ≤ a, b ≤ 2n−i − 1 . (24)

Here for X ∈ P(E) \ {∅}, ψ(X) is the least square of the form (24) enclosing
X , while η(X) will be the quad-tree partition of X . See Figure 6 for n = 3.

Fig. 6 Left: let E1 = E2 = E be the 8 × 8 square {0, . . . , 7}2 (points of E are shown as
filled dots); for i = 0, . . . , 3, πi is the partition of E into 2i × 2i-squares, cf. (24). Middle:
the set X (filled dots) and the least enclosing square ψ(X). Right: the set Y (filled dots)
and its quad-tree partition η(Y ) into maximal squares.

3.3 Regular adjunctions derived from set adjunctions

We will now study the construction, from set adjunctions (ε, δ), of adjunctions(
B(ε),B(δ)

)
on partial partitions.

Recall from Definition 2 that an operator ψ : P(E1) → P(E2) preserves
separation if ψ(∅) = ∅ and for any X,Y ∈ P(E1)\{∅} such that X∩Y = ∅, we
must have ψ(X)∩ψ(Y ) = ∅. For example, when E1 = E2, every anti-extensive
operator preserves separation.

Proposition 22 1. Let ψ : P(E1) → P(E2) preserve separation. Then for
any π ∈ Π∗(E1) we have

B(ψ)(π) = {ψ(B) | B ∈ π, ψ(B) 6= ∅} . (25)
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2. Let ψ : P(E1) → P(E2) and ξ : P(E2) → P(E3) preserve separation. Then
ξψ : P(E1) → P(E3) preserves separation and B(ξ)B(ψ) = B(ξψ).

Proof 1. By defininition, 1ψ(B) = {ψ(B)} if ψ(B) 6= ∅, and is void otherwise
(9). Since ψ preserves separation, the non-void ψ(B), B ∈ π, will be disjoint.
Hence

∨

B∈π

1ψ(B) =
∨

B∈π
ψ(B)6=∅

{ψ(B)} = {ψ(B) | B ∈ π, ψ(B) 6= ∅} .

2. We have ξψ(∅) = ξ(ψ(∅)) = ξ(∅) = ∅. Let X,Y ∈ P(E1) \ {∅}. If
ψ(X) = ∅, as ξ(∅) = ∅, we get ξψ(X) = ∅, so ξψ(X) ∩ ξψ(Y ) = ∅; similarly
ψ(Y ) = ∅ gives ξψ(X) ∩ ξψ(Y ) = ∅. If ψ(X) 6= ∅ 6= ψ(Y ), as ψ preserves
separation, ψ(X)∩ψ(Y ) = ∅, and as ξ preserves separation, ξψ(X)∩ξψ(Y ) =
∅. Therefore ξψ preserves separation.

For any π ∈ Π∗(E), applying (25) successively for ψ and for ξ, we get (cf.
Figure 7):

B(ξ)B(ψ)(π) = B(ξ)
(
{ψ(B) | B ∈ π, ψ(B) 6= ∅}

)

= {ξψ(B) | B ∈ π, ψ(B) 6= ∅, ξψ(B) 6= ∅}

= {ξψ(B) | B ∈ π, ξψ(B) 6= ∅} = B(ξψ)(π) .

Here we used the fact that, since ξ(∅) = ∅, ξψ(B)) 6= ∅ ⇒ ψ(B) 6= ∅. ⊓⊔

ψ ξ

π B (ψ)(π) (ξψ)(π) =B

B (ξ) B (ψ)(π)

Fig. 7 Let E1 = E2 = Z2. Here ψ, ξ :
P(Z2) → P(Z2) are erosions respectively
by a horizontal segment and a vertical seg-
ment. We have B(ξψ)(π) = B(ξ)B(ψ)(π).

Recall from Definition 2 that an adjunction (ε, δ) : P(E2) ⇀↽ P(E1) is
regular if and only if ε is upper-regular (that is, ε(∅) = ∅), if and only if δ is
lower-regular (that is, ∀X ∈ P(E1), X 6= ∅ ⇒ δ(X) 6= ∅); a necessary and
sufficient condition is that ∀ p ∈ E1, δ({p}) 6= ∅. Given a regular adjunction
(ε, δ), every adjunction (ε′, δ′) such that ε′ ≤ ε (equivalently, δ′ ≥ δ) will
be regular. For instance, an anti-extensive erosion is upper-regular and an
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extensive dilation is lower-regular. Now every upper-regular erosion preserves
separation:

X ∩ Y = ∅ ⇒ ε(X) ∩ ε(Y ) = ε(X ∩ Y ) = ε(∅) = ∅.

The following result is a specialization of Theorem 17 and Corollary 18; indeed
a dilation δ is connective (Lemma 3).

Theorem 23 1. For any regular adjunction (ε, δ) : P(E2) ⇀↽ P(E1), B(ε)
satisfies (25) and

(
B(ε),B(δ)

)
is an adjunction Π∗(E2) ⇀↽ Π∗(E1).

2. Given two regular adjunctions (ε1, δ1) : P(E2) ⇀↽ P(E1) and (ε2, δ2) :
P(E3) ⇀↽ P(E2), the adjunction (ε1ε2, δ2δ1) : P(E3) ⇀↽ P(E1) is regular,
B(ε1ε2) = B(ε1)B(ε2) and B(δ2δ1) = B(δ2)B(δ1).

Proof 1. Since ε is upper-regular, it preserves separation and (25) follows
from Proposition 22. Let π ∈ Π∗(E1) and π′ ∈ Π∗(E2). We have:

B(δ)(π) ≤ π′ ⇐⇒
∨

B∈π

1δ(B) ≤ π′ ⇐⇒ ∀B ∈ π, 1δ(B) ≤ π′

⇐⇒ ∀B ∈ π, ∃C ∈ π′, δ(B) ⊆ C ⇐⇒ ∀B ∈ π, ∃C ∈ π′, B ⊆ ε(C)

⇐⇒ ∀B ∈ π, ∃C ∈ π′, B ⊆ ε(C), ε(C) 6= ∅

⇐⇒ π ≤ {ε(C) | C ∈ π′, ε(C) 6= ∅} ⇐⇒ π ≤ B(ε)(π′) .

Here we used successively (20), the meaning (9) of 1δ(B), the adjunction (ε, δ),
the fact that B 6= ∅, and (25).

2. By the composition rule for adjunctions, (ε1ε2, δ2δ1) is an adjunction
P(E3) ⇀↽ P(E1). Clearly ε1ε2(∅) = ε1(∅) = ∅, thus (ε1ε2, δ2δ1) is regu-
lar. Since ε1 and ε2 satisfy the requirements of item 2 of Proposition 22,
B(ε1ε2) = B(ε1)B(ε2). Now B(δ2δ1) = B(δ2)B(δ1) by Corollary 18. Alter-
nately,

(
B(ε1ε2),B(δ2δ1)

)
and

(
B(ε1)B(ε2),B(δ2)B(δ1)

)
are two adjunctions

Π∗(E3) ⇀↽ Π∗(E1), then the upper adjoints are equal, B(ε1ε2) = B(ε1)B(ε2),
if and only if the lower adjoints are equal, B(δ2δ1) = B(δ2)B(δ1). ⊓⊔

Note that the regularity assumption is crucial, as shows the following
counterexample. Take again E1 = E2 = E and A ⊂ E such that A 6= ∅
and |E \ A| ≥ 2. We saw after the proof of Theorem 17 that the dilation
ζ : P(E) → P(E) : X 7→ X \ A is not lower-regular, and that B(ζ) is not a
dilation on Π∗(E). The upper adjoint of ζ is the erosion η : P(E) → P(E) :
X 7→ X ∪ A, it is not upper-regular. Not only B(η) does not satisfy (25),
but it is not an erosion. Indeed, for Y ⊆ E \ A such that Y 6= ∅, (21) gives
B(η)(1Y ) = 1η(Y ) = 1A∪Y , so for two distinct p, q ∈ E \A we have

B(η)(1{p}) ∧ B(η)(1{q}) = 1A∪{p} ∧ 1A∪{q} = 1A ,

but B(η)(1{p} ∧ 1{q}) = B(η)(Ø) = Ø .

Combining Theorems 12 and 23, from a regular adjunction (ε, δ) : P(E2) ⇀↽
P(E1) we derive the adjunction

(
FS1·B(ε)·IN2, FS2·B(δ)·RSIN1

)
: Π(E2) ⇀↽
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Π(E1). For E1 = E2 = E, this is indeed the adjunction (ε̂, δ̂) from [30,36] that
we described in the Introduction.

Similarly, dilations (resp., erosions) on partial partitions can be obtained
by composition or join (resp., meet) of dilations B(δ), RS and grind (resp.,
erosions B(ε), INFS and blend) for a regular adjunction (ε, δ). For example,
given two regular adjunctions (ε1, δ1) and (ε2, δ2), we obtain the adjunction

(
INFS B(ε2) ∧ blendB(ε1),B(δ2)RS ∨ B(δ1)grind

)
.

If δ1 = δ2 (equivalently, ε1 = ε2), then by (17) this adjunction reduces to(
B(ε1),B(δ1)

)
. Suppose that δ1 < δ2 (equivalently, ε1 > ε2); by (17) the

adjunction becomes:
(
INFS B(ε2) ∧ B(ε1),B(δ2)RS ∨ B(δ1)

)
.

Now B(δ2)RS ∨B(δ1)grind = B(δ2)RS ∨B(δ1) is one-block-preserving. Here
according to Theorem 17 we have ψ({p}) = δ1({p}) and ψ(X) = δ2(X) for
|X | ≥ 2. We illustrate such a dilation in Figure 8.

A B

Fig. 8 Let E1 = E2 = Z2. Pixels are shown as small squares. Left: the two structuring
elements A and B (centered about the origin, shown in black). Middle: a partition π with 3
singleton blocks and 2 non-singleton blocks (each block is surrounded by a closed line). We
apply on singleton blocks the dilation δ1 by A, and on non-singleton blocks the dilation δ2
by B, and merge overlapping dilated blocks (the two rightmost ones). Right: the resulting

partition
(
B(δ2)RS∨B(δ1)

)
(π) has 4 blocks (each one is shown with a distinctive grey-level).

3.4 Dual characterization

We will characterize lower-regular connective operators ψ : P(E1) → P(E2)
by maps E2 → Π∗(E1). We will also specialize this characterization to the case
where ψ is a dilation. Application-minded readers can skip this subsection and
go directly to Section 5.

Lemma 24 There is a one-to-one correspondence between erosions η : P(E2)
→ Π∗(E1) and maps π• : E2 → Π∗(E1) : x 7→ πx, given by:

– for every Y ∈ P(E2), η(Y ) =
∧
x∈E2\Y

πx;

– for every x ∈ E2, πx = η(E2 \ {x}).

Furthermore, η is upper-regular if and only if
∧
x∈E2

πx = Ø, if and only if
∀ p ∈ E1, ∃x ∈ E2, p /∈ supp(πx).
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Proof If η is an erosion, for every x ∈ E2 set πx = η(E2 \ {x}). Then for any
Y ∈ P(E2) we have Y =

⋂
x∈E2\Y

(E2 \ {x}), so

η(Y ) = η
( ⋂

x∈E2\Y

(E2 \ {x})
)

=
∧

x∈E2\Y

η(E2 \ {x}) =
∧

x∈E2\Y

πx .

Conversely, given a map π• : E2 → Π∗(E1) : x 7→ πx, the operator η :
P(E2) → Π∗(E1) : Y 7→

∧
x∈E2\Y

πx is an erosion. Indeed, η(E2) is the

empty infimum in Π∗(E1), that is η(E2) = 1E1 , while for a non-void family
Yi ∈ P(E2), i ∈ I 6= ∅, we have

η
(⋂

i∈I

Yi

)
=

∧

x∈E2\
⋂
i∈I

Yi

πx =
∧

x∈
⋃
i∈I

(E2\Yi)

πx

=
∧

i∈I

( ∧

x∈E2\Yi

πx

)
=

∧

i∈I

η(Yi) .

Then for Y = E2 \ {x}, x is the only element of E2 \Y , thus η(E2 \ {x}) = πx.
Now η is upper-regular if and only if η(∅) = Ø; but η(∅) =

∧
x∈E2\∅

πx, so

the condition is
∧
x∈E2

πx = Ø. Since Ø is the unique partition with empty

support, this is equivalent to ∅ = supp
(∧

x∈E2
πx

)
=

⋂
x∈E2

supp(πx), in other
words every p ∈ E1 satisfies p /∈

⋂
x∈E2

supp(πx), that is, for some x ∈ E2, we
have p /∈ supp(πx) ⊓⊔

Theorem 25 There is a dual isomorphism between the poset of lower-regular
connective operators ψ : P(E1) → P(E2) and the poset of maps π• : E2 →
Π∗(E1) : x 7→ πx such that

∧
x∈E2

πx = Ø, where π• corresponds to ψ in two
ways:

– The upper adjoint of B(ψ) is the erosion ε : Π∗(E2) → Π∗(E1) given by

∀π ∈ Π∗(E2), ε(π) =
⋃

B∈π

∧

x∈E2\B

πx . (26)

–
∀X ∈ P(E1), ∀x ∈ E2, x /∈ ψ(X) ⇐⇒ 1X ≤ πx , (27)

in other words if and only if X is included in a block of πx.

Given a non-void family ψi, i ∈ I 6= ∅ of lower-regular connective opera-
tors, corresponding each to πi•,

∨
i∈I ψi : X 7→

⋃
i∈I ψi(X) will correspond to∧

i∈I π
i
• : x 7→

∧
i∈I π

i
x.

Proof By Theorem 17, we have a bijection ψ ↔ B(ψ) between lower-regular
connective operators P(E1) → P(E2), and lower-regular one-block-preserving
dilations Π∗(E1) → Π∗(E2). By Proposition 20, the latter are in a bijection
with their upper adjoints ε : Π∗(E2) → Π∗(E1) that take the form D(η), cf.
(23), for an upper-regular erosion η : P(E2) → Π∗(E1); the relation ε ↔ η
is obviously a bijection. By Lemma 24, these η are in bijection with maps
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π• : E2 → Π∗(E1) such that
∧
x∈E2

πx = Ø. Then (23) combined with the
first item in Lemma 24 gives for every π ∈ Π∗(E2):

ε(π) =
⋃

B∈π

η(B) =
⋃

B∈π

∧

x∈E2\B

πx ,

that is (26). Note that for since η is upper-regular, in other words
∧
x∈E2

πx =
Ø, the η(B) =

∧
x∈E2\B

πx for B ∈ π have mutually disjoint supports, so that⋃
B∈π η(B) is indeed a partial partition.

Let X ∈ P(E1) and x ∈ E2. Then by (21), the adjunction (ε,B(ψ)) and
(26), we obtain the following equivalences:

x /∈ ψ(X) ⇐⇒ ψ(X) ⊆ E2 \ {x} ⇐⇒ 1ψ(X) ≤ 1E2\{x}

⇐⇒ B(ψ)(1X) ≤ 1E2\{x} ⇐⇒ 1X ≤ ε(1E2\{x}) ⇐⇒ 1X ≤ πx ,

that is (27).
Let ψi, i ∈ I 6= ∅ be lower-regular connective operators, corresponding

each to πi•. Clearly
∨
i∈I ψi : X 7→

⋃
i∈I ψi(X) is lower-regular and connective,

while
∧
i∈I π

i
• : x 7→

∧
i∈I π

i
x satisfies

∧

x∈E2

∧

i∈I

πx =
∧

i∈I

∧

x∈E2

πx =
∧

i∈I

Ø = Ø .

By (27), for X ∈ P(E1) and x ∈ E2 we have

x /∈
(∨

i∈I

ψi

)
(X) =

⋃

i∈I

ψi(X) ⇐⇒ ∀ i ∈ I, x /∈ ψi(X)

⇐⇒ ∀ i ∈ I, 1X ≤ πix ⇐⇒ 1X ≤
∧

i∈I

πix =
(∧

i∈I

πi•

)
(x) ,

so by (27)
∨
i∈I ψi will correspond to

∧
i∈I π

i
•. Thus the bijection ψ ↔ π•

reverses the order, it is a dual isomorphism between the two posets. ⊓⊔

If we do not assume that ψ is lower-regular, applying Theorem 13 to
the case where L = P(E2), we obtain a bijection between connective maps
ψ : P(E1) → P(E2) and dilations ζ : Π∗(E1) → P(E2), given by ζ(π) =⋃
B∈π ψ(B) = supp

(
B(ψ)(π)

)
for all π ∈ Π∗(E1). Then (27) gives a bijection

between connective maps ψ and maps π• : E2 → Π∗(E1) : x 7→ πx, without
the assumption and that

∧
x∈E2

πx = Ø. The erosion η : P(E2) → Π∗(E1) :
B 7→

∧
x∈E2\B

πx will be the upper adjoint of the dilation ζ. The correspon-
dence ψ ↔ ζ is an isomorphism of dual Moore families, the one η ↔ π• is an
isomorphism of Moore families, and ψ ↔ π• is a dual isomorphism.

Proposition 26 Suppose that E1 = E2 = E. Let ψ : P(E) → P(E) be a
lower-regular connective operator, corresponding to π• : E → Π∗(E) : x 7→ πx.
Then ψ is extensive if and only if ∀ p ∈ E, p /∈ supp(πp), and this implies that
B(ψ) is extensive.
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Proof By Lemma 3, ψ is isotone, and by Lemma 16, ψ is extensive if and only
if ∀ p ∈ E, p ∈ ψ({p}). By (27), this is equivalent to ∀ p ∈ E2, 1{p} 6≤ πp,
that is, p /∈ supp(πp). By Lemma 16 again, the extensivity of ψ implies that
of B(ψ). ⊓⊔

Example 27 Let E = R or Z. For p, q ∈ E such that p ≤ q, let [p, q] = {x ∈
E | p ≤ x ≤ q}; a subset X of E is convex if and only if for all p, q ∈ X such
that p ≤ q, [p, q] ⊆ X . Otherwise, the convex hull of X is the least convex
subset of E containing X . Note that X is convex if and only if it is connected
(in R: for the usual topological connectivity; in Z: in the graph-theoretical
sense, if we put an edge between z and z + 1 for all z ∈ Z). Let Π∗

conv(E)
be the set of all partial partitions of E whose blocks are all convex. It can be
checked that chaining or intersecting convex blocks leads to convex blocks, so
Π∗
conv(E) is a complete sublattice of Π∗(E).

For every x ∈ E, let

πx =
{
{y ∈ E | y < x} , {y ∈ E | y > x}

}
.

Then we obtain by (27): for any X ∈ P(E), ψ(X) = {x ∈ E | ∃ p, q ∈ X, p ≤
x ≤ q}; thus for p ∈ E, ψ({p}) = {p}, while for |X | ≥ 2, ψ(X) =

⋃
{[p, q] |

p, q ∈ X, p < q}. In other words, ψ is the convex hull operator. We note that
for all x ∈ E, x /∈ supp(πx), and indeed ψ is extensive. The extensive dilation
B(ψ) transforms π ∈ Π∗(E) into the least π′ ∈ Π∗

conv(E) with π′ ≥ π. By
Lemma 1, B(ψ) is a closure, and its upper adjoint ε is the opening such that
for π ∈ Π∗(E), ε(π) is the greatest π′ ∈ Π∗

conv(E) with π′ ≤ π. The erosion
η : P(E2) → Π∗(E) of (23) will split a set into the partial partition of its
maximal convex subsets, in other words, of its connected components.

Let us return to the example of Figure 8, namely the one-block-preserving
dilation B(δ2)RS ∨ B(δ1)grind = B(δ2)RS ∨ B(δ1) for δ1 < δ2. For every
x ∈ E2, define Bx, Cx ∈ P(E1) by p ∈ Bx ⇔ x ∈ δ1({p}) and p ∈ Cx ⇔
x ∈ δ2({p}); since δ1 < δ2, we have Bx ⊆ Cx; now the blocks of πx are E1 \Cx
and the singletons in Cx \Bx.

Proposition 28 Let ψ : P(E1) → P(E2) be a lower-regular connective oper-
ator, corresponding to π• : E2 → Π∗(E1) : x 7→ πx. Then the following are
equivalent:

1. ψ is a dilation.
2. For any two distinct p, q ∈ E1, ψ({p, q}) = ψ({p}) ∪ ψ({q}).
3. ∀x ∈ E2, πx has at most one block.
4. The upper adjoint of B(ψ) is one-block-preserving.

Proof Obviously 1 ⇒ 2.
2 ⇒ 3. By 2 we have for any two distinct p, q ∈ E1 and for any x ∈ E2:

x /∈ ψ({p, q}) ⇔ x /∈ ψ({p}) ∪ ψ({q}) ⇔ x /∈ ψ({p}) and x /∈ ψ({q}); by
(27), this means that 1{p,q} ≤ πx ⇔ 1{p} ≤ πx and 1{q} ≤ πx, in other
words, 1{p,q} ≤ πx ⇔ {p, q} ⊆ supp(πx). This is equivalent to πx having at
most one block.
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3 ⇒ 4. By 3, for every x ∈ E2 there is some B(x) ∈ P(E1) such that
πx = 1B(x). Let ε be the upper adjoint of B(ψ). By (26) and (14), for every
A ∈ P(E2) \ {∅} we have

ε(1A) =
∧

x∈E2\A

πx =
∧

x∈E2\A

1B(x) = 1⋂
x∈E2\A

B(x) ,

so ε is one-block-preserving.
4 ⇒ 1. Let ε be the upper adjoint of B(ψ). By 4, there is ξ : P(E2) →

P(E1) such that for everyB ∈ P(E2)\{∅}, ε(1B) = 1ξ(B); we set also ξ(∅) = ∅;
as ε is upper-regular, we have ε(1∅) = ε(Ø) = Ø = 1∅ = 1ξ(∅). For any
A ∈ P(E1) \ {∅}, (21) gives B(ψ)(1A) = 1ψ(A); now ψ(∅) = ∅, so B(ψ)(1∅) =
B(ψ)(Ø) = Ø = 1∅ = 1ψ(∅). Thus for A ∈ P(E1) and B ∈ P(E2), B(ψ)(1A) =
1ψ(A) and ε(1B) = 1ξ(B). Then by the adjunction (ε,B(ψ)) and the fact that
X 7→ 1X is an order-embedding, we get

ψ(A) ⊆ B ⇐⇒ 1ψ(A) ≤ 1B ⇐⇒ B(ψ)(1A) ≤ 1B

⇐⇒ 1A ≤ ε(1B) ⇐⇒ 1A ≤ 1ξ(B) ⇐⇒ A ⊆ ξ(B) .

Hence (ξ, ψ) is an adjunction, so ψ is a dilation. ⊓⊔

In Example 27 (here E1 = E2 = E), ψ is not a dilation, and we see indeed
that πx has two blocks.

Example 29 Let us give some instances of regular adjunctions, and character-
ize the map π• corresponding to each lower adjoint.

1. In the Euclidean space E = Rn or the digital space E = Zn, the adjunction
(εB, δB), with δB : X 7→ X ⊕ B and εB : X 7→ X ⊖ B, is regular if
and only if B 6= ∅. For x ∈ E, the unique block of πx is E \ B̌x, where
B̌x = {x− b | b ∈ B}.

2. If E1 ⊆ E2, the restriction and inclusion pair (res, inc) : P(E2) ⇀↽ P(E1),
given by inc(X) = X (X ∈ P(E1)) and res(Y ) = Y ∩ E1 (Y ∈ P(E2)),
is a regular adjunction. Then the adjunction

(
B(res),B(inc)

)
: Π∗(E2) ⇀↽

Π∗(E1) is given by B(inc)(π) = π for π ∈ Π∗(E1), and

B(res)(π) = π ∧ 1E1 = {B ∩ E1 | B ∈ π, B ∩ E1 6= ∅}

for π ∈ Π∗(E2). For x ∈ E2, the unique block of πx is E1 \ {x} if x ∈ E1,
and E1 if x ∈ E2 \ E1.

3. For any two spaces E1 and E2, the retro-projection and projection pair
(retr, proj) : P(E1) ⇀↽ P(E1 × E2), given by retr(Y ) = Y × E2 for Y ∈
P(E1) and proj(X) = {p ∈ E1 | ∃ q ∈ E2, (p, q) ∈ X} for X ∈ P(E1×E2),
is a regular adjunction. For x ∈ E1, the unique block of πx is (E1\{x})×E2.

We see that each of the 3 examples, for every x, πx will have at most one
block.
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Given a lower-regular connective operator ψ : P(E1) → P(E2), it is possi-
ble to design other ones by modifying the associated πx. Let ζ be an operator on
Π∗(E1) that reduces the support : for any π ∈ Π∗(E1), supp(ζ(π)) ⊆ supp(π),
equivalently, ζ(π) ≤ 1supp(π), in other words: ζ ≤ blend. Then for any π• :
E2 → Π∗(E1) such that

∧
x∈E2

πx = Ø we get

∧

x∈E2

ζ(πx) ≤
∧

x∈E2

blend(πx) = blend
( ∧

x∈E2

πx
)

= blend(Ø) = Ø ,

hence
∧
x∈E2

ζ(πx) = Ø. Thus by Theorem 25: if π• corresponds to the lower-

regular connective operator ψ : P(E1) → P(E2), then πζ• : E2 → Π∗(E1) :
x 7→ πζ(x) = ζ(πx) will correspond to a lower-regular connective operator
ψζ : P(E1) → P(E2); it is in general possible to derive the expression of ψζ

from that of ψ, with the help of (27). Note that if ζ does not increase the
number of blocks of a partial partition, then by Proposition 28, for any lower-
regular dilation δ : P(E1) → P(E2), δ

ζ will be a dilation: indeed, δ corresponds
to π•, where each πx has at most one block, so each πζ(x) = ζ(πx) will have
at most one block.

Example 30 Let the lower-regular connective operator ψ : P(E1) → P(E2)
correspond to π• : E2 → Π∗(E1). We give three simple instances of ζ ≤ blend,
with the corresponding expression for ψζ .

– ζ = blend. Here πblend

x = blend(πx) has at most one block, which is the
union of all blocks of πx. By Proposition 28, ψblend is a lower-regular di-
lation; in fact, for all X ∈ P(E1), ψ

blend(X) =
⋃
p∈X ψ({p}). Alternately,

we see that for every x ∈ E2, π
blend

x is the least partial partition ≥ πx
having at most one block, so by the dual isomorphism ψ ↔ π•, ψ

blend is
the greatest dilation ≤ ψ.

– ζ = RS. Then ψRS satisfies: for p ∈ E1, ψ
RS({p}) =

⋂
q∈E1\{p}

ψ({p, q})

(thus ψRS({p}) ⊇ ψ({p})), and ψRS(X) = ψ(X) for |X | ≥ 2. As RS does
not increase the number of blocks of a partial partition, for a lower-regular
dilation δ : P(E1) → P(E2), δ

RS will be a dilation.
– Take π0 ∈ Π∗(E1), and set ζ : π 7→ π ∧ π0. For any X ∈ P(E1), ψ

ζ(X) =
ψ(X) if 1X ≤ π0 (i.e., X is included in a block of π0), and ψζ(X) = E2

otherwise.

4 Triangular maps and hierarchies

In Theorem 13, we characterized a dilation δ : Π∗(E1) → L by its behaviour
on blocks, which is given by a connective map P(E1) → L. As we said after
its proof, we see no simple characterization of connective maps P(E1) →
Π∗(E2). In the case where δ is Π∗(E1) → Π∗(E2), lower-regular and one-
block-preserving, the corresponding connective map simplifies to one P(E1) →
P(E2), that is characterized by a map E2 → Π∗(E1).
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Recall that we write X2 for the set of ordered pairs (x, y) of elements of
a set X . In this section, we will characterize connective maps P(E1) → L
by maps E2

1 → L satisfying some conditions. This is somewhat analogous to
the characterization of (partial) partitions by (partial) equivalence relations,
which are defined as subsets of E2

1 . When L is a complete chain of non-negative
real numbers, a particular case of this map E2

1 → L is given by ultrametric
distances [21], and then the upper adjoint erosion of the dilation Π∗(E1) → L
gives the corresponding hierarchy [2,18].

Our starting point is the possibility to characterize a dilation by its be-
haviour on a sup-generating family of the lattice. Now the least sup-generating
family of Π∗(E1) is given by all 1{p} (p ∈ E1) and 1{p,q} (p, q ∈ E1, p 6= q);
they are linked by the following relations: for any two distinct p, q ∈ E1,
1{p} ∨ 1{q} ≤ 1{p,q}, and for any three mutually distinct p, q, r ∈ E1, 1{p,r} ≤

1{p,q} ∨ 1{q,r}; thus any dilation δ : Π∗(E1) → Π∗(E2) will satisfy

δ(1{p}) ∨ δ(1{q}) ≤ δ(1{p,q}) and δ(1{p,r}) ≤ δ(1{p,q}) ∨ δ(1{q,r}) .

These inequalities suggest the following definition:

Definition 31 Let X be a set, L be a complete lattice, and let θ : X2 → L.
We say that θ is triangular if θ is symmetric,

∀x, y ∈ X, θ(x, y) = θ(y, x) ,

and satisfies

∀x, y, z ∈ X, x 6= y 6= z 6= x =⇒ θ(x, z) ≤ θ(x, y) ∨ θ(y, z) . (28)

We say that θ is strongly triangular if θ is triangular and satisfies

∀x, y ∈ X, x 6= y =⇒ θ(x, x) ≤ θ(x, y) . (29)

For any set X , let P2(X) be the set of unordered pairs {x, y} of distinct
elements of X .

Lemma 32 Let X be a set, L be a complete lattice, and let θ : X2 → L.

1. θ is strongly triangular if and only if θ is symmetric and satisfies

∀x, y, z ∈ X, θ(x, z) ≤ θ(x, y) ∨ θ(y, z) , (30)

whether x, y, z are distinct or not.
2. If θ is triangular, then the least strongly triangular map ≥ θ is θ♯ given by

∀x, y ∈ X, θ♯(x, y) = θ(x, x) ∨ θ(x, y) ∨ θ(y, y) , (31)

in particular θ♯(x, x) = θ(x, x) for all x ∈ X. Furthermore, for any B ⊆ X,

∨

(x,y)∈B2

θ♯(x, y) =
∨

(x,y)∈B2

θ(x, y) . (32)
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3. If θ is strongly triangular, then for any B ⊆ X,

|B| ≥ 2 =⇒
∨

(x,y)∈B2

θ(x, y) =
∨

{x,y}∈P2(B)

θ(x, y) . (33)

Proof 1. Let θ be symmetric. For any x, y, z ∈ X (distinct or not), the in-
equality θ(x, z) ≤ θ(x, y) ∨ θ(y, z) has three cases: (a) for x, y, z pairwise
distinct, it corresponds to (28); (b) for x = z 6= y, it means θ(x, x) ≤
θ(x, y) ∨ θ(y, x) = θ(x, y), that is (29); (c) for x = y or y = z we get the
trivial inequalities θ(x, z) ≤ θ(x, x) ∨ θ(x, z) and θ(x, y) ≤ θ(x, y) ∨ θ(y, y)
respectively. Now (28) and (29) together mean that θ is strongly triangular.

2. Clearly θ♯ given by (31) is ≥ θ and satisfies θ♯(x, x) = θ(x, x)∨θ(x, x)∨
θ(x, x) = θ(x, x). By (31) again, θ♯(x, x) = θ(x, x) ≤ θ♯(x, y). Now

θ♯(x, z) = θ(x, x) ∨ θ(x, z) ∨ θ(z, z) and
θ♯(x, y) ∨ θ♯(y, z) = θ(x, x) ∨ θ(x, y) ∨ θ(y, y) ∨ θ(y, z) ∨ θ(y, z) ;

since θ is triangular, θ(x, z) ≤ θ(x, y)∨ θ(y, z), so θ♯(x, z) ≤ θ♯(x, y)∨ θ♯(y, z).
Hence θ♯ is strongly triangular. Now given a strongly triangular θ′ : X2 → L
such that θ′ ≥ θ, we have θ(x, x) ≤ θ′(x, x) ≤ θ′(x, y), θ(y, y) ≤ θ′(y, y) ≤
θ′(y, x) = θ′(x, y) and θ(x, y) ≤ θ′(x, y), so by (31), θ♯(x, y) ≤ θ′(x, y). There-
fore θ♯ is the least strongly triangular map ≥ θ. Finally (31) gives

∨

(x,y)∈B2

θ♯(x, y) =
( ∨

x∈B

θ(x, x)
)
∨

( ∨

(x,y)∈B2

θ(x, y)
)
∨

( ∨

y∈B

θ(y, y)
)
,

and since
∨
x∈B θ(x, x) =

∨
y∈B θ(y, y) ≤

∨
(x,y)∈B2 θ(x, y) (the supremum of

a smaller set is smaller), this gives
∨

(x,y)∈B2 θ(x, y). Therefore (32) holds.

3. Let |B| ≥ 2. The ordered pairs in B2 are the (x, x) for x ∈ B, and the
(x, y) and (y, x) for {x, y} ∈ P2(B). Thus

∨

(x,y)∈B2

θ(x, y) =
( ∨

x∈B

θ(x, x)
)
∨

( ∨

{x,y}∈P2(B)

[
θ(x, y) ∨ θ(y, x)

])
.

Since θ is strongly triangular, θ(x, x) ≤ θ(x, y) = θ(y, x), so we get (33). ⊓⊔

We easily see by induction that for all n ≥ 2, for every mutually distinct
p0, . . . , pn ∈ X , a triangular map θ satisfies

θ(p0, pn) ≤ θ(p0, p1) ∨ · · · ∨ θ(pn−1, pn) =

n∨

i=1

θ(pi−1, pi) ;

when θ is strongly triangular, the inequality holds also if p0, . . . , pn are not
necessarily mutually distinct.

Clearly, the two sets of triangular maps and of strongly triangular maps
X2 → L are dual Moore families of the complete lattice L(X2) of all maps
X2 → L. We have the following link between connective and triangular maps.
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Proposition 33 Let L be a complete lattice. For any map ξ : P(E1) → L,
the following three statements are equivalent:

1. ξ is connective.
2. ξ satisfies the following three conditions:

(a) ξ(∅) = 0;
(b) the map θ : E2

1 → L defined by θ(p, p) = ξ({p}) for p ∈ E1, and
θ(p, q) = ξ({p, q}) for two distinct p, q ∈ E1, is strongly triangular;

(c) for any X ⊆ E1 such that |X | ≥ 2, ξ(X) =
∨
P∈P2(X) ξ(P ).

3. There is a triangular map θ : E2
1 → Π∗(E2) such that for any X ⊆ E1,

ξ(X) =
∨

(p,q)∈X2 θ(p, q).

Moreover, the map defined in item 2(b) is the unique strongly triangular map
satisfying the condition of item 3.

Proof 1 ⇒ 2. By definition, ξ is upper-regular, thus (a) holds. For any
distinct p, q ∈ E1, {p} ⊆ {p, q}, and as ξ is isotone (Lemma 3), we have
ξ({p}) ≤ ξ({p, q}), that is θ(p, p) ≤ θ(p, q), cf. (29). For any three mutually
distinct p, q, r ∈ E1, {p, q}∩ {q, r} = {p} 6= ∅ and {p, q} ∪ {q, r} = {p, q, r}; as
ξ is connective, we get ξ({p, q, r}) = ξ({p, q}) ∨ ξ({q, r}), and as ξ is isotone,
ξ({p, r}) ≤ ξ({p, q, r}); hence ξ({p, r}) ≤ ξ({p, q})∨ ξ({q, r}), that is θ(p, r) ≤
θ(p, q)∨ θ(q, r), cf. (28). Thus (b) holds. Now take X ⊆ E1 such that |X | ≥ 2;
for p ∈ X we have X =

⋃
q∈X\{p}{p, q} with

⋂
q∈X\{p}{p, q} = {p} 6= ∅, and

as ξ is connective, we get ξ(X) =
∨
q∈X\{p} ξ({p, q}); as ξ is isotone, for any

P ∈ P2(X), ξ(P ) ≤ ξ(X); thus

ξ(X) =
∨

q∈X\{p}

ξ({p, q}) ≤
∨

P∈P2(X)

ξ(P ) ≤ ξ(X) ,

which gives (c).
2 ⇒ 3. Take θ as in 2(b); thus θ is strongly triangular, hence triangular.

Let X ⊆ E1. If |X | ≥ 2, by 2(b,c) and (33) we have

ξ(X) =
∨

P∈P2(X)

ξ(P ) =
∨

{p,q}∈P2(X)

θ(p, q) =
∨

(p,q)∈X2

θ(p, q) .

For x ∈ E1, ξ({x}) = θ(x, x) =
∨

(p,q)∈{x}2 θ(p, q). By 2(a), ξ(∅) = 0, while∨
(p,q)∈∅2 θ(p, q) =

∨
∅ = 0. Therefore ξ(X) =

∨
(p,q)∈X2 θ(p, q) whatever the

size (0, 1 or ≥ 2) of X .
3 ⇒ 1. Here ξ(∅) =

∨
∅ = 0. Let B ⊆ P(E1) such that B 6= ∅ and⋂

B 6= ∅. Take p ∈
⋂
B. Let (q, r) ∈ (

⋃
B

)2
. Now r ∈ B for some B ∈ B, so if

q = p or q = r we get q ∈ B too, thus (q, r) ∈ B2, that is, (q, r) ∈
⋃
B∈B B

2.
The same conclusion is reached if r = p. In these cases, θ(q, r) is one of the
θ(x, y) for (x, y) ∈

⋃
B∈B B

2. There remains the case where p 6= q 6= r 6= p; as
θ is triangular, θ(q, r) ≤ θ(q, p) ∨ θ(p, r), with (q, p), (p, r) ∈

⋃
B∈B B

2. Hence

in any case we get θ(q, r) ≤
∨{

θ(x, y) | (x, y) ∈
⋃
B∈B B

2
}
, so

∨

(q,r)∈(
⋃

B)2

θ(q, r) ≤
∨{

θ(x, y) | (x, y) ∈
⋃

B∈B

B2
}

=
∨

B∈B

∨

(x,y)∈B2

θ(x, y) .
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Since
⋃
B∈B B

2 ⊆ (
⋃
B

)2
, we have

∨{
θ(x, y) | (x, y) ∈

⋃

B∈B

B2
}
≤

∨

(q,r)∈(
⋃

B)2

θ(q, r) .

The two inequalities give then the equality

∨

(q,r)∈(
⋃

B)2

θ(q, r) =
∨

B∈B

∨

(x,y)∈B2

θ(x, y) .

By definition of ξ, we have then ξ
(⋃

B
)

=
∨
B∈B ξ(B). Therefore ξ is connec-

tive.
We showed above that the strongly triangular map θ defined in 2(b) satisfies

the condition ξ(X) =
∨

(p,q)∈X2 θ(p, q) of item 3. Conversely, given a strongly

triangular map θ satisfying it, we get ξ({x}) =
∨

(p,q)∈{x}2 θ(p, q) = θ(x, x)
and for x 6= y,

ξ({x, y}) =
∨

(p,q)∈{x,y}2

θ(p, q) = θ(x, x) ∨ θ(y, y) ∨ θ(x, y) ∨ θ(y, x) ,

and since θ is strongly triangular, this simplifies to ξ({x, y}) = θ(x, y). Hence
θ is as in 2(b). ⊓⊔

Combining Theorems 13 with Lemma 32 and Proposition 33, we easily get:

Proposition 34 Let L be a complete lattice.

1. A map δ : Π∗(E1) → L is a dilation if and only if there is a triangular
map θ : E2

1 → L such that

∀π ∈ Π∗(E1), δ(π) =
∨

B∈π

∨

(p,q)∈B2

θ(p, q) . (34)

Furthermore, the map θ♯ : E2
1 → L given by θ♯(p, p) = δ(1{p}) for p ∈ E1,

and θ♯(p, q) = δ(1{p,q}) for two distinct p, q ∈ E1, is the unique strongly
triangular map satisfying (34).

2. A map δ : Π(E1) → L is a dilation if and only if there is a triangular map
ζ : E2

1 → L such that for any π ∈ Π(E1),

δ(π) =
∨

B∈RS1(π)

∨

{p,q}∈P2(B)

ζ(p, q) .

Furthermore, we can take ζ such that for any two distinct p, q ∈ E1,
ζ(p, q) = δ(1{p,q} ∪ 0E\{p,q}).

Obviously, for any triangular map θ satisfying (34), the strongly triangular
map θ♯ given after (34) is the one of item 2 of Lemma 32.
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Corollary 35 Let (ε, δ) be an adjunction L ⇀↽ Π∗(E1), and let θ♯ be the
strongly triangular map satisfying (34). Then for any t ∈ L, ε(t) is the par-
tial partition corresponding to the partial equivalence relation linking p and q
whenever θ♯(p, q) ≤ t:

∀ p, q ∈ E1, p PE(ε(t)) q ⇐⇒ θ♯(p, q) ≤ t . (35)

Proof Let P = {p, q} for p 6= q and P = {p} for p = q. Then p PE(ε(t)) q means
that p and q are members of a same block of ε(t), in other words, 1P ≤ ε(t);
equivalently δ(1P ) ≤ t by the adjunction (ε, δ); now δ(1P ) = θ♯(p, q) in both
cases p 6= q and p = q, so (35) follows. ⊓⊔

4.1 Ultrametrics and hierarchies

Let us now consider the particular case where L is the real interval [0,⊤] for
0 < ⊤ < +∞, or a discrete interval {t0, . . . , tn} for 0 = t0 < · · · < tn = ⊤;
thus L is a complete chain with 0 and ⊤ as least and greatest elements. Set
E1 = E. Consider an adjunction (ε, δ) : L ⇀↽ Π∗(E) and the correspond-
ing strongly triangular map θ♯. For all x, y, z ∈ E, it satisfies the inequality
θ♯(x, z) ≤ θ♯(x, y)∨θ♯(y, z), cf. (30), which generalizes the triangular inequality
d(x, z) ≤ d(x, y) + d(y, z) satisfied by a metric d. Metric spaces where the tri-
angular inequality is replaced by (30) were introduced by [21], they are called
ultrametric spaces. Hence this inequality (30) has been called the ultrametric
triangular inequality or the ultratriangular inequality. We can thus extend to
θ♯ some concepts defined in metric spaces, for example:

– The ball of radius t centered about a point p ∈ E: B(t, p) = {q ∈ E |
θ♯(p, q) ≤ t}.

– The diameter of a set X ⊆ E: diam(X) = sup{θ♯(p, q) | p, q ∈ X}; it is
also the minimum radius of a ball containing X .

In fact the diameter is the connective map corresponding to θ♯ according to
Proposition 33. Then for π ∈ Π∗(E), δ(π) is the supremum of diameters of all
blocks of π, while for t ∈ L, ε(t) is the partial partition of E into all balls of
radius t. Since ε is an erosion and L is a chain, the partial partitions ε(t) form
a chain whose greatest element is ε(⊤) = 1E .

Now assume that θ♯(x, x) = 0 for all x ∈ E. Here (29) is always satisfied,
thus if θ♯ is triangular, it will be strongly triangular. This identity θ♯(x, x) = 0
means that a ball is never empty, it must contain its center. Then (E, θ♯) is a
pseudometric space. Now for every t ∈ L, ε(t) will be a partition. Since ε is an
erosion L→ Π∗(E) and a map L→ Π(E), and since Π(E) is a Moore family
in Π∗(E), we get that ε will be an erosion L→ Π(E).

Finally, on top of θ♯(x, x) = 0 for all x ∈ E, we can assume θ♯(x, y) > 0
for x 6= y; in other words, for all x, y ∈ E, θ♯(x, y) = 0 ⇔ x = y. This
means that every ball of radius 0 is the singleton made of its center. Then
(E, θ♯) is a metric space; since it satisfies the ultratriangular inequality, it is
called a ultrametric space and θ♯ is called an ultrametric distance [21]. Here
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ε(0) = 0E . The partitions ε(t), t ∈ L, form a chain with least element ε(0) =
0E and greatest element ε(⊤) = 1E , in other words a hierarchy [2,18]; in fact
this hierarchy is indexed, each t ∈ L is the index of the partition ε(t), with
t < t′ ⇒ ε(t) ≤ ε(t′). This hierarchy can also be expressed in terms of the
family H =

⋃
t∈L ε(t) of all blocks of all partitions ε(t) [27]. We have

1. E ∈ H.
2. ∀ p ∈ E, {p} ∈ H.
3. ∀X,Y ∈ H, X ⊆ Y or Y ⊆ X or X ∩ Y = ∅.

Then the elements of H can also be indexed: to each B ∈ H we associate
the index µ(B) which is the least t ∈ L such that B ∈ ε(t). Note that
this least t always exists, because ε is an erosion, and by (12) an infimum
of partitions having each B as a block, will also have B as a block. In fact,
µ(B) = diam(B) = δ(1B).

The equivalence between ultrametrics and hierarchies is due to [2,18], al-
though this theory has always been expressed in the case where L is discrete.
Let us thus assume that L = {t0, . . . , tn} for 0 = t0 < · · · < tn = ⊤. One can
represent the indexed hierarchy of partitions by a dendrogram as in Figure 9.
We already encountered such a discrete hierarchy in the quad-tree decompo-
sition of sets, see Figure 6.

a

b d f

ec 1

2

3

0
b c e d fa

Fig. 9 Here L = {0, 1, 2, 3}. Left: the
space E = {a, b, c, d, e, f}. Middle: the par-
titions ε(1) (top) and ε(2) (bottom); we
have ε(0) = 0E and ε(3) = 1E . Right: the
corresponding dendrogram; the horizontal
lines at height t represent the merging of
blocks of ε(t− 1) into a block of ε(t).

Here ε is a complete morphism L→ Π(E) (both a dilation and an erosion).
Its lower adjoint is δ, while its upper adjoint is the erosion ζ : Π(E) → L
associating to a partition π the greatest t such that the distance between two
points belonging to distinct blocks of π is always > t. In other words, ζ(π) is
the greatest radius t such that all balls of radius t are included in blocks of π,
while δ(π) is the least radius t such that all blocks of π are included in balls
of radius t:

ζ(π) = max{t ∈ L | ε(t) ≤ π} , δ(π) = min{t ∈ L | π ≤ ε(t)} .

Note that (εζ, εδ) is an adjunction, εζ is an opening, εδ is a closure, and for
every π ∈ Π(E), εζ(π) is the greatest ε(t), t ∈ L, such that ε(t) ≤ π, while
εδ(π) is the least ε(t), t ∈ L, such that π ≤ ε(t). This is exactly the situation
described in Lemma 1.

Everything that we said in Example 21 remains true. In particular, the map
ψ : P(E) → P(E) such that ψ(∅) = ∅, and associating to each non-empty set
the least member of H containing it, in other words X 7→ B(diam(X), p) for
any p ∈ X , is connective. Note that these two properties, of ε being a dilation
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and ψ being connective, are valid because L is a finite chain, they will generally
fail in other cases.

Ultrametrics and hierarchies have been used in various domains of sciences,
in particular for image segmentation [23,24,27].

4.2 Set-valued triangular maps

Let us now return to dilations Π∗(E1) → Π∗(E2). We see no simple char-
acterization of triangular maps E2

1 → Π∗(E2). Note that for a (strongly)
triangular map ψ : E2

1 → Π∗(E2), the maps E2
1 → Π∗(E2) : P 7→ RS(ψ(P ))

and E2
1 → Π(E2) : P 7→ FS(ψ(P )) are (strongly) triangular; we get also the

two (strongly) triangular maps E2
1 → P(E2) given by P 7→ supp(ψ(P )) and

P 7→ supp(RS(ψ(P ))).
By Lemmas 3 and 16, a connective map ψ : P(E1) → P(E2) will be lower-

regular if and only if ∀ p ∈ E1, ψ({p}) 6= ∅. We obtain thus the following
analogue of Theorem 17:

Proposition 36 A map δ : Π∗(E1) → Π∗(E2) is a lower-regular one-block-
preserving dilation if and only if there is a triangular map θ : E2

1 → P(E2)
satisfying θ(p, p) 6= ∅ for every p ∈ E1, such that

∀π ∈ Π∗(E1), δ(π) =
∨

B∈π

∨

(p,q)∈B2

1θ(p,q) . (36)

There is a unique strongly triangular map θ♯ : E2
1 → P(E2) satisfying (36),

and θ♯(p, p) 6= ∅ for every p ∈ E1.

Consider the connective operator ψ of Theorem 17; then θ♯(p, p) = ψ({p})
for p ∈ E1, and θ♯(p, q) = ψ({p, q}) for two distinct p, q ∈ E1. The condition
θ(p, p) 6= ∅ ensures the fact that ψ is lower-regular.

Proposition 36 allows us to build dilations on partial partitions by spec-
ifying triangular maps on sets. For instance, using the identity A \ C ⊆
(A \B) ∪ (B \C), it follows that for any map ω : E1 → P(E2), the map

θ♯ : E2
1 → P(E2) : (p, q) 7→

(
ω(p) \ ω(q)

)
∪

(
ω(q) \ ω(p)

)

will be strongly triangular.

Example 37 Let E1 = E2 = E, and to every x ∈ E we associate a subset Bx
of E containing x. For every two p, q ∈ E, set

θ♯(p, q) = {p, q} ∪
(
Bp \Bq

)
∪

(
Bq \Bp

)
,

in particular θ♯(p, p) = {p} for every p ∈ E. Then θ♯ is strongly triangular and
θ♯(p, p) 6= ∅, thus θ♯ satisfies the requirements of Proposition 36.

This map is illustrated in Figure 10 for E = R2, the Euclidean plane
provided with the Euclidean metric d, where for every x ∈ R2 we set Bx =
Br(x) = {y ∈ R2 | d(x, y) ≤ r}, the closed ball of radius r centered about x.
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r

x

Fig. 10 Top left: the radius r. Bottom left: for x ∈ R2 (the black dot), Br(x) (the grey
disk). Middle and right: we show four configurations of two distinct points p, q (as black
dots), and θ♯(p, q) consists of the two points p and q plus the two grey crescents (which
become disks when d(p, q) > 2r).

Here the corresponding connective map ψ satisfies: for p ∈ E we have
ψ({p}) = {p}, while for X ∈ P(E) such that |X | ≥ 2,

ψ(X) = X ∪
⋃

(p,q)∈X2

(
Bp \Bq

)
.

For a lower-regular dilation δ, B(δ) satisfies the conditions of Proposition 36
with θ♯(p, p) = δ({p}) and θ♯(p, q) = δ({p, q}) for p 6= q; in particular θ♯ is
strongly triangular (see also Lemma 3 and Proposition 28).

Following Theorem 17, Theorem 25 characterized a lower-regular one-
block-preserving dilation expressed as B(ψ) for a lower-regular operator ψ,
in terms of partial partitions πx associated to each x ∈ E2. We can instead
follow Proposition 36, and in (27) replace the subsets of E1 by ordered pairs.

For every x ∈ E2, let
x
∼ = PE(πx), the partial equivalence relation on E1

that corresponds to the partial partition πx. Now (27) is expressed by

∀x ∈ E2, ∀ p, q ∈ E1, x /∈ θ♯(p, q) ⇐⇒ p
x
∼ q . (37)

Independently of Theorem 25, we can notice that (37) gives a bijection between

maps θ♯ : E2
1 → P(E2), and map associating to each x ∈ E2 a relation

x
∼ on

E1. Now θ♯ is symmetric if and only if each
x
∼ is symmetric; in this case, using

(30) in Lemma 32, θ♯ is strongly triangular if and only if for any p, q, r ∈ E1

and x ∈ E2, [x /∈ θ♯(p, q), x /∈ θ♯(q, r)] ⇒ x /∈ θ♯(p, r), in other words the

symmetric relation
x
∼ is also transitive, that is, a partial equivalence relation.

Now the condition θ♯(p, p) 6= ∅ means that ∀ p ∈ E1, ∃x ∈ E2, x ∈ θ♯(p, p),

i.e., p 6
x
∼ p; this is equivalent to the fact that the intersection of the partial

equivalences
x
∼, for all x ∈ E2, is empty (cf. the last sentence of Lemma 24

with πx in place of
x
∼). Therefore we obtain directly the bijection between the

strongly triangular maps θ♯ with θ♯(p, p) 6= ∅ of Proposition 36, and the maps
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associating to each x ∈ E2 a partial equivalence
x
∼ on E1 with

⋂
x∈E2

x
∼ = ∅,

corresponding to the maps π• : E2 → Π∗(E1) : x 7→ πx with
∧
x∈E2

πx = Ø

of Theorem 25. Note that if for each i ∈ I, θ♯i corresponds to the family of
x
∼
i

for x ∈ E2, then
∨
i∈I θ

♯
i will correspond to

⋂
i∈I

x
∼
i
, cf. the last sentence of

Theorem 25.
For instance, in Example 37 (where E1 = E2 = E), for every x ∈ E, πx

has the two blocks B̌x \ {x} and E \ B̌x, where B̌x = {y ∈ E | x ∈ By}
(since x ∈ Bx, we have x ∈ B̌x). In the particular case of Figure 10, where
E = R2 and Bx = Br(x), the closed ball of radius r centered about x, we
have B̌x = Br(x). Here x /∈ supp(πx), so by Proposition 26, ψ and B(ψ) are
extensive. Since πx has two blocks, by Proposition 28, ψ is not a dilation.

5 Applications in image processing and in data clustering

We will briefly describe some existing or potential applications of dilations
and erosions on partial partitions; they center around the grouping of points
or objects on the basis of spatial proximity or similarity of attributes.

The first type of application is clustering (Subsection 5.1): given a collection
of mutually disjoint subsets of space, regroup them into clusters. Clustering
can be applied in unsupervised classification, but also in morphological image
processing: given a set of mutually disjoint connected markers that serve as
seeds for growing regions, regroup them (on the basis of proximity) into clusters
that will serve as new markers, leading thus to a smaller number of regions.

The second type of application in image processing is image segmentation
(Subsection 5.2), that is, extracting from a grey-level or colour image a parti-
tion of the underlying space into relatively homogeneous zones corresponding
to the distinct objects seen in the image. In some way segmentation can be
seen as a clustering of image points on the basis of their proximity, both in
space and in the set of grey-level or colour values.

Both clustering and segmentation rely on some notion of connectivity, so we
will start by recalling the essential facts of the morphological theory of partial
connections, then give some links between it and the connective operators
studied in this paper.

A partial connection [29,31] on P(E) is a family C of subsets of E, com-
prising the empty set, such that for B ⊆ C,

⋂
B 6= ∅ ⇒

⋃
B ∈ C. When

C comprises also all singletons, one says that it is a connection [35] (or con-
nectivity class). Elements of C are called connected. This notion generalizes
the usual connectivities (topological, arc-based, etc.), which constitute indeed
connections, and permits the notion of a connected component of a set X [29,
31,35]: it is a non-void connected subset Y of X that is maximal for the inclu-
sion: Y ∈ P(X) ∩ C, Y 6= ∅, ∀Z ∈ P(X), Y ⊂ Z ⇒ Z /∈ C; then the family
of connected components of X constitute a partial partition of X , and when
C is a connection, they form a partition.

A dual Moore family of P(E) is a partial connection, in the same way as a
dilation is a connective operator. One sees that the relation between connective
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operators and dilations is analogous to that between partial connections and
dual Moore families: a property about

⋃
B is restricted to the case where⋂

B 6= ∅. Our use of the word “connective” to describe such a map comes
from this analogy. Also we have:

Proposition 38 Given a partial connection C on P(E2) and a lower-regular
connective operator ψ : P(E1) → P(E2), then ψ−1(C) = {X ∈ P(E1) | ψ(X) ∈
C} is a partial connection on P(E1).

This result was given in [29] in the restricted case where ψ is a dilation,
but the proof works also for ψ connective (and it is similar to the proof of
item 4 of Lemma 3).

5.1 Clustering

Clustering amounts to merging some blocks of the partial partition made by
the initial sets. In practice, given a partial partition π, we build a coarser
one π′, and we take π′ ∧ blend(π). Then supp(π′ ∧ blend(π)) = supp(π′) ∩
supp(blend(π))) = supp(π′) ∩ supp(π) = supp(π), and for p ∈ supp(π), we
have Clπ′∧blend(π)(p) = Clπ′(p) ∩ Clblend(π)(p) = Clπ′(p) ∩ supp(π); as π ≤ π′,
Clπ′(p) ∩ supp(π) includes all blocks of π included in Clπ′(p), and excludes all
other blocks of π, disjoint from Clπ′(p). Hence two distinct blocks B,C ∈ π
will be merged in π′ ∧ blend(π) if and only if they are included in the same
block of π′, see Figure 11.

π’ blend (π)π’
A

CD

π

π

π
B

1
3

4

5

6

A
A A

B

B

C

2 A

3

Fig. 11 Left: the partial partitions π and π′, with π ≤ π′; the 6 blocks of π are shown in
dark grey and labelled 1, . . . , 6 (note that block 3 is not connected), while the 4 blocks of
π′ are shown in light grey and labelled A, . . . , D. Right: in π′ ∧ blend(π), we fuse together
blocks of π that are included in a same block of π′, we get thus 3 blocks labelled A, B, C
according to the corresponding blocks of π′.

Thus clustering can be seen as a support-preserving extensive operator on
Π∗(E1), taking the form ψ ∧ blend for an extensive operator ψ on Π∗(E).
We will consider in particular the case where ψ is the closure B(ε)B(δ) for
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a regular adjunction (ε, δ) : P(E2) ⇀↽ P(E1); since blend is also a closure,

ψ ∧ blend will be a closure. Let us define the binary relation
δ
∼ on P(E1) by

X
δ
∼ Y if and only if δ(X) )( δ(Y ), in other words if and only if there is some

p ∈ X and q ∈ Y such that δ({p}) ∩ δ({q}) 6= ∅. We have then the following:

Proposition 39 Let (ε, δ) be a regular adjunction P(E2) ⇀↽ P(E1).

1. For any π ∈ Π∗(E1), two distinct blocks B,C ∈ π will be merged in
B(ε)B(δ)(π) ∧ blend(π) if and only if δ(B) and δ(C) are included in the
same block of B(δ)(π), if and only if there is a sequence B0, . . . , Bn in π

(n ≥ 1) such that B = B0
δ
∼ · · ·

δ
∼ Bn = C.

2. Suppose that E1 ⊆ E2 and δ is extensive (equivalently, ε is anti-extensive).
Then for any π ∈ Π∗(E1) and π′ ∈ Π∗(E2) such that B(δ)(π) ≤ π′, we
have π′ ∧ blend(π) = B(ε)(π′) ∧ blend(π).

Proof Let π ∈ Π∗(E1). For any D ∈ B(δ)(π), by (20) D is obtained through
chaining some δ(A) with A ∈ π, hence every such A gives ε(D) ⊇ A 6= ∅. By
(25) we get then

B(ε)B(δ)(π) = {ε(D) | D ∈ B(δ)(π), ε(D) 6= ∅} = {ε(D) | D ∈ B(δ)(π)}.

By the above discussion, any two distinct blocks B,C ∈ π will be merged
in B(ε)B(δ)(π) ∧ blend(π) if and only if they are included in a same block
of B(ε)B(δ)(π), that is, B,C ⊆ ε(D) for some D ∈ B(δ)(π), in other words
δ(B), δ(C) ⊆ D. Since D is obtained by chaining some δ(A) with A ∈ π,
this means that δ(B) and δ(C) must also be chained in this way: we have
B0, . . . , Bn ∈ π with B = B0 and Bn = C, and δ(B0) )( · · · )( δ(Bn), that is,

B0
δ
∼ · · ·

δ
∼ Bn.

Now let E1 ⊆ E2, with δ extensive and ε anti-extensive. Then B(δ) is
extensive by Lemma 16, so π ≤ B(δ)(π) ≤ π′. Let B ∈ π. As B(δ)(π) ≤ π′,
by (20) δ(B) must be included in a block of B(δ)(π), itself included in a block
of π′: for some A ∈ π′, δ(B) ⊆ A, and as B ⊆ δ(B), we get B ⊆ A. For
any D ∈ π′, if B ⊆ D, we must have D = A, and as δ(B) ⊆ A, we get
B ⊆ ε(A) = ε(D); conversely if B ⊆ ε(D), as ε(D) ⊆ D, we get B ⊆ D.
Hence B ⊆ D ⇐⇒ B ⊆ ε(D). By (25), any block of B(ε)(π′) takes the
form ε(D) for some D ∈ π′. Therefore any two distinct blocks B,C ∈ π
will be merged in π′ ∧ blend(π) if and only if B,C ⊆ D for some D ∈ π′,
equivalently B,C ⊆ ε(D) ∈ B(ε)(π′), if and only if B and C will be merged
in B(ε)(π′) ∧ blend(π). Thus π′ ∧ blend(π) = B(ε)(π′) ∧ blend(π). ⊓⊔

Our first example deals with digital connected components. Let E1 = Zn

and E2 = (1
2Z)n. We consider a Euclidean norm N with integer values on

E1, and the adjacency relation ∼ on E1 corresponding to N by p ∼ q ⇔
N(p− q) = 1 (this is for example the case for the 4- and 8-adjacencies on Z2,
corresponding to the L1 and L∞ norms). Define the adjacency relation ≈ on
E2 by p ≈ q ⇔ N(p− q) = 1/2. Then

∀ p, q ∈ E1,
(
p = q or p ∼ q

)
⇐⇒

(
∃ r ∈ E2, p ≈ r ≈ q

)
. (38)
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Let δ≈ : P(E1) → P(E2) be the dilation adding to a set its neighbours ac-
cording to ≈:

∀X ∈ P(E1), δ
≈(X) = X ∪ {q ∈ E2 | ∃ p ∈ X, p ≈ q} ; (39)

let ε≈ : P(E2) → P(E1) be the upper adjoint erosion. Given two disjoint
X,Y ∈ P(E1), we have δ≈(X) )( δ≈(Y ) if and only if there are p ∈ X and q ∈ Y
such that δ≈({p}) )( δ≈({q}), and by (38) this means that p ∼ q. Thus by item 1
of Proposition 39, B(ε≈)B(δ≈)∧blend acts on a partial partition π by merging
adjacent blocks (according to ∼), in other words B(ε≈)B(δ≈)(π) ∧ blend(π)
will be the join of π and of the partial partition of all connected components
of supp(π). See Figure 12. In particular, for a subset X of E1,

B(ε≈)B(δ≈)(0X) ∧ blend(0X) = B(ε≈)B(δ≈)(0X) ∧ 1X

will be the partial partition of all connected components of X . Since Zn ⊂
(1
2Z)n, we can apply item 2 of Proposition 39 to the case where π′ = B(δ≈)(π),

thus we get that B(ε≈)B(δ≈) ∧ blend = B(δ≈) ∧ blend.

Fig. 12 Points of E1 = Z2 and of E2 \ E1 = ( 1
2
Z)2 \ Z2 are shown as big dots and small

dots respectively. We consider the 4-adjacency ∼ on E1. Left: a partial partition π of E1

with 3 blocks, each one is shown surrounded by a closed line. Middle: apply δ≈ to each block
of π; the two blocks of π that are 4-adjacent have their dilates overlapping, so B(δ≈)(π) has
two blocks. Right: the resulting clustering B(ε≈)B(δ≈)(π) ∧ blend(π); the two 4-adjacent
blocks of π, whose dilates overlapped, are merged.

This type of clustering can be generalized to an arbitrary set E provided
with an irreflexive and symmetric adjacency relation ∼. Set E1 = E and
E2 = E2, and define the adjacency ≈ by setting

∀ p, q ∈ E,

{
p ≈ (p, q) ,
q ≈ (p, q) ⇔ p ∼ q .

Then (38) holds, and for δ≈ : P(E1) → P(E2) given by (39) and its upper
adjoint ε≈ : P(E2) → P(E1), B(ε≈)B(δ≈) ∧ blend will, in a partial partition,
merge blocks that are adjacent according to ∼.

Now assume that E1 = E2 = E. Let δ be an extensive dilation on P(E)
(thus δ is regular), and let ε be the upper adjoint of δ. By item 2 of Proposi-
tion 39, B(ε)B(δ)∧blend = B(δ)∧blend. This operator is a support-preserving
closure on Π∗(E). By item 1 of Proposition 39, for π ∈ Π∗(E), two distinct
blocks B,C ∈ π will be merged in the same block of B(δ)(π) ∧ blend(π) if
and only if there is a sequence B0, . . . , Bn in π (n ≥ 1) such that B0 = B,
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Bn = C, and Bt−1
δ
∼ Bt for t = 1, . . . , n. For example if δ({p}) is the ball of

radius r centered about p, B(δ)∧blend will fuse any two blocks such that the
minimum distance between their respective points is ≤ 2r, see Figure 13.

A

1

1

2

3

1
3

2

a

d

e

c

f
g

b

Fig. 13 Let E = Z2. Top left: a partial partition π with 7 blocks labelled a, . . . , g. Top
right: take the dilation δ : X 7→ X ⊕ A by the disk A of radius r centered about the origin
(shown as a black dot); δ is extensive. Bottom left: the dilates δ(B) (in grey, with B in black)
of all B ∈ π; now for B,C ∈ π, δ(B) and δ(C) overlap iff the minimum distance between
points of B and those of C is ≤ 2r; then B(δ)(π) has 3 blocks. Bottom right: restrict these
3 blocks to supp(π), we obtain B(δ)(π) ∧ blend(π), whose 3 blocks are labelled 1, 2 and 3.

This example resembles the construction of a “second generation connec-
tivity” defined in [35]. Given a connection C on P(E) and an extensive dilation
δ on P(E) such that for any p ∈ E, δ({p}) ∈ C, then Cδ = {X ∈ P(E) | δ(X) ∈
C} is a connection containing C; it is a particular case of Proposition 38 and
it has been called the “clustering connectivity”. For any subset X of E, each
connected component of X for the connection Cδ is of the form X ∩C, where
C is a connected component of δ(X) for the connection C. Equivalently, two
connected components B,C of X (for C) are clustered (for Cδ) whenever their
dilates δ(B), δ(C) belong to the same connected component of δ(X).

The difference between B(δ) ∧ blend and Cδ is that in the former, two
blocks B,C are merged if δ(B) and δ(C) overlap, while in the latter they
are also merged if they are adjacent. If we return to the above example of
E1 = Zn with an adjacency relation ∼ on E1 corresponding to a Euclidean
norm N , and take C to be the connection consisting of all connected subsets of
E1 for that adjacency, then the clustering operated by the connection Cδ will
be constructed as follows. As above we take E2 = (1

2Z)n with the adjacency
relation ≈ satisfying (38), define the dilation δ≈ : P(E1) → P(E2) by (39),
and its upper adjoint ε≈ : P(E2) → P(E1); then for an extensive dilation δ
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on P(E1) such that δ({p}) ∈ C for all p ∈ E, the clustering according to Cδ is
given by the operator

B(ε)B(ε≈)B(δ≈)B(δ) ∧ blend = B(εε≈)B(δ≈δ) ∧ blend .

Indeed, for π ∈ Π∗(E1), two distinct blocks B,C ∈ π will be merged if
δ≈δ(B) )( δ≈δ(C), in other words δ(B) is adjacent (for ∼) to δ(C). Apply-
ing item 2 of Proposition 39 with π′ = B(δ≈)B(δ)(π) = B(δ≈δ)(π) for the
dilation δ≈δ : P(E1) → P(E2), then with π′ = B(ε≈)B(δ≈)B(δ)(π) for the
dilation δ : P(E1) → P(E1) (noting that B(ε≈)B(δ≈) is a closure on Π∗(E)),
we obtain:

B(ε)B(ε≈)B(δ≈)B(δ) ∧ blend =

B(ε≈)B(δ≈)B(δ) ∧ blend = B(δ≈)B(δ) ∧ blend .

5.2 Image segmentation

The interest in lattice-theoretical aspects of partitions has recently been re-
vived by studies applying mathematical morphology to the problem of image
segmentation. In particular the theory of connective segmentation [29,31,37]
associates to any grey-level or colour image F defined on a space E a (partial)
connection CF , and then the segmentation of F on any subset A of E will
be the (partial) partition of connected components of A according to CF . For
example if E = Zn and CF is the family of all digitally connected subsets
of E on which F is constant, then the segmentation of F on A ∈ P(E) will
be its partition into flat zones. An associated problem is the design of so-
called connected filters for image simplification; such filters coarsen the image
segmentation partition [31,37].

Connective segmentation involves an opening on (partial) partitions [29],
and many segmentation algorithms operate by growing several regions in paral-
lel, in other words through extensive operators on partial partitions. However,
to our knowledge, dilations and erosions on (partial) partitions have not been
used in relation to image segmentation, except for one instance using an ero-
sion on image partitions: the work by Serra [36] on multivariate images, where
to each point p of space is asssociated a vector of n heterogeneous values
(v1(p), . . . , vn(p)). Most segmentation algorithms given in the literature are
described in the case of univalued images (associating to each point p a single
value v(p)). Hence in order to segment a multivariate image, the following
sequence of operations is performed:

1. Segment separately the n univalued images v1, . . . , vn, resulting in n par-
titions π1, . . . , πn.

2. Apply to each partition πi (i = 1, . . . , n) the erosion FS · B(ε) · IN for an
anti-extensive set erosion ε, resulting in n partitions π′

1, . . . , π
′
n.

3. For i = 1, . . . , n, with the partition π′
i one associates the numerical function

fi defined by fi(p) = −d(p,Bi(p)), where d is a metric and Bi(p) is the
boundary of the class Clπ′

i
(p).
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4. Segment the univalued function f1 + · · · + fn.

Soille [40–42] has devised an image segmentation algorithm combining sev-
eral segmentations with a criterion. Take a chain π0 < · · · < πn of prior seg-
mentation partitions of a grey-level image I (they are obtained by varying a
numerical parameter in the segmentation algorithm). Given a “constraining”
homogeneity criterion cons (always satisfied by π0), build the partition π such
that for every point p, Clπ(p) = Clπt(p), where t is the greatest i = 0, . . . , n
such that on the set Clπi(p), the image I satisfies the criterion cons. This
construction has some resemblance with that of Example 21; a possible appli-
cation of the latter could be: given a chain π0 < · · · < πn of prior segmentation
partitions of an image,

– from a “seed” partial partition π, we construct the final partition B(ψ)(π)
(the least partial partition ≥ π with blocks from π0, . . . , πn);

– from an “enclosing” partition π, we construct the final partition ε(π) (the
greatest partial partition ≤ π with blocks from π0, . . . , πn).

Other examples of hierarchical segmentations are studied in [27].
Note also from Example 21 that the quad-tree decomposition of a set is an

erosion η : P(E) → Π∗(E), cf. Figure 6.

6 Conclusion

We have made an exhaustive study of adjunctions on the lattice of parti-
tions, on the one of partial partitions, or between both. First Theorem 9 de-
scribes three fundamental adjunctions between Π∗(E) and Π(E). Then The-
orem 12 shows how any adjunction Π(E2) ⇀↽ Π(E1) can be derived from one
Π∗(E2) ⇀↽ Π∗(E1), combined with those of Theorem 9. Theorem 13 charac-
terizes dilations on partial partitions in terms of connective maps. This char-
acterization is further developed in Theorem 17 in the case of lower-regular
one-block-preserving dilations, with the upper adjoint erosion characterized in
Proposition 20. Finally Theorem 23 shows how any regular adjunction on sets
leads to a regular adjunction on partial partitions. It is from them that the
adjunction on partitions given by [30,36] is built.

Furthermore, in Subsection 3.4 we have characterized lower-regular con-
nective operators P(E1) → P(E2) in terms of a map associating to each point
of E2 a partial partition of E1, see Theorem 25. In Section 4 we expressed
(for an arbitrary complete lattice L) connective operators P(E1) → L, hence
dilations Π∗(E1) → L, in terms of strongly triangular maps. A particular case
of our theory is given by ultrametrics [21] and hierarchies [2,18].

Besides the use of in [36] of an erosion on partitions for the segmentation
of multivariate images, we have given several examples of image processing or
clustering operators, some of them based on connectivity, that can be expressed
in our framework.

Through this work we see that the framework of partial partitions is more
flexible than that of partitions. In fact, as explained in [29,31], many image
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processing operators produce a partial partition instead of a partition; in or-
der to impose the framework of partitions, the usual practice is to fill the
space with singleton blocks (i.e., to apply the operator FS), but then we lose
the distinction between meaningful singleton blocks from the original partial
partition and dummy singleton blocks added only to fill space.

In [30] it was shown how dilations on partitions (of the form FS·B(δ)·RSIN
for an extensive set dilation δ) can be used to produce so-called geodesic
operators. This can of courses be extended to partial partitions (using the
dilation B(δ)). This suggests a new research topic on the theory of connectivity
and geodesic operators on partial connections.

Another promising research track is the analysis of idempotent operators
in Π∗(E) that are involved in image segmentation:

– on the one hand anti-extensive operators that act by splitting blocks, they
model segmentation approaches that split space into homogeneous image
regions, cf. [29,31,37,40–42];

– on the other hand extensive operators that model region growing ap-
proaches, in particular block clustering (cf. above) or block closing as in
[19,20].

Acknowledgements One of the referees pointed out the relation between triangular maps
and ultrametrics, cf. Subsection 4.1. L. Najman and F. Meyer provided us with basic infor-
mation and references on ultrametrics and hierarchies.
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