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CLOSURES ON PARTIAL PARTITIONS FROM CLOSURES

ON SETS

CHRISTIAN RONSE

Abstract. Jordens and Sturm investigated the link between closure sys-
tems on sets and closure systems on partitions. We extend that study to
the wider framework of partial partitions, and highlight better the rela-
tion between these two families of closure systems. Then we consider the
construction of a closure operator on partial partitions by the iterated ap-
plication a set operator to the blocks of a partial partition; the resulting
closure system fits into our framework.

1. Introduction

A partial partition of a set E is a partition of a subset of E, in other words
a set of mutually disjoint non-void subsets of E (called blocks). The refinement
order on partitions [19] extends naturally to partial partitions, and the latter
constitute then a complete lattice, which was briefly studied by Czekoslovak
mathematicians 40 years ago [8, 9, 29].

Partitions or partial partitions are used in programming semantics [2, 18, 25],
consensus theory (how to make a “median” classification from several empiri-
cally obtained classifications) [1, 13], and the management of spatial data. For
example in clustering (unsupervised classification), several points in space are
grouped on the basis of their mutual proximity relations or the shapes of various
subgroups; the resulting classification is both a partition of the set of points
and a partial partition of the whole space. The interest in the complete lattice
of partitions was recently revived in the context of image analysis [24, 28], for
the problem of image segmentation: to obtain from an image a partition of the
underlying space, whose blocks represent the distinct homogeneous regions seen
in the image; sometimes the regions do not cover the whole space (there is a
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2 CHRISTIAN RONSE

“background” or a set of separating borders between regions), and in this case
we deal with the complete lattice of partial partitions [20, 22, 23].

An important topic in lattice theory is the study of maps with specific order-
theoretic properties, such as adjunctions [5, 7, 12] or closure operators [10]. Be-
sides their mathematical interest, such maps play a fundamental role in various
applications of lattice theory to computer science, as they represent the pro-
cesses operating on the data; we see this for example in programming semantics
[6, 12], logic [4], formal concept analysis [11] and image analysis [4, 14, 26].

Such specific operators are also important in the framework of the lattice
of (partial) partitions. For instance in image segmentation, a partition is built
either by splitting the space, or by successively clustering points; the two case
correspond respectively to anti-extensive and extensive operators on partial par-
titions. The author recently investigated adjunctions [21], which are linked to
hierarchies of segmentations, and idempotent anti-extensive operators that act
by splitting each block [22, 23], the latter are used in several image segmentation
approaches.

Jordens and Sturm [16, 17] studied closure operators on partitions in terms of
the associated closure system (consisting of all invariants of the closure operator).
For example given a closure system S on sets, the family of all partitions whose
blocks belong to S will be a closure system on partitions; on the other hand,
given a closure system Σ on partitions, the set of all blocks of all members of
Σ, with the empty set added, will be a closure system on sets. We deepen their
investigation of this link between closure systems on sets and closure systems on
partitions, and extend it to the case of partial partitions. Our approach relies on
an adjunction between sets of parts of a space E and sets of (partial) partitions
of E.

If we apply a closure operator to the blocks of a partial partition and chain
together the overlapping closed blocks, the resulting partial partition will gen-
erally have blocks that are not closed; then we can repeat the operation. Now
a closure operator can be obtained as the limit of the iteration of an extensive
and isotone operator satisfying some “continuity” condition [15]. We study thus
the generation of a closure on partial partitions as the limit of the iteration of
applying to the blocks a “continuous” extensive isotone operator ψ on sets, and
chaining the overlapping resulting blocks; the resulting closure system will con-
sist of all partial partitions with blocks closed under the closure operator on sets
that is the limit of the iteration of ψ.

In [21] it was shown that an adjunction on sets satisfying a “regularity”
condition leads to an adjunction on partial partitions, by applying the operators
to the blocks. We briefly investigate the relation between the two closures on
sets and on partial partitions generated from these two adjunctions.
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The dual version of the topic of this paper has been investigated recently
[20, 22, 28]: for which type of family S of sets will the family of all (partial)
partitions whose blocks belong to S be a dual closure system ? We recall the
relevant results and discuss the combined problem of characterizing families S
of sets for which the family of all (partial) partitions with blocks in S will be
both a closure system and a dual closure system, i.e., a complete sublattice of
the lattice of (partial) partitions.

A possible application of our results could be in clustering, if one requires the
clusters to belong to a closure system, for example to be convex.

1.1. Paper organization. Subsection 1.2 gives our terminology and notation;
it also recalls some essential facts about closure operators and systems, adjunc-
tions, etc. Section 2 investigates the link between closure systems on sets and
those on partitions or partial partitions, following the approach of Jordens and
Sturm [16, 17]. Section 3 discusses the construction of closure operators on par-
tial partitions from operators applying a given set operator to each block; we
consider in particular iterations of extensive isotone operators and closures from
adjunctions. Section 4 discusses our results and compares them with those of
[20, 22, 28] on dual closure systems of (partial) partitions; then it concludes.

1.2. Terminology and notation. Given two sets A and B, we will write
(α, β) : A ⇋ B, or say that (α, β) is A ⇋ B, if α is a map A → B and β
is map B → A.

We follow [14] for the notation concerning lattice operators. Let L be a
complete lattice with least element 0 and greatest element 1. We call an operator
on L any map L→ L. Operators will be designated by lower-case Greek letters
α, . . . , ω, except π, reserved for partial partitions; more specifically, we will use ϕ
for a closure, δ for a complete join-morphism, ε for a complete meet-morphism,
and (ε, δ) for an adjunction. We write ψ(x) for the image of x by ψ, and given
two operators ψ and ξ, the composition of ψ followed by ξ, that is, the operator
x 7→ ξ(ψ(x)), will be written ξψ. For any integer n ≥ 1, the power ψn is the self-
composition of ψ n times; inductively, ψ1 = ψ and ψn+1 = ψnψ. The invariance
domain of an operator ψ is the set Inv(ψ) = {x ∈ L | ψ(x) = x}.

A closure operator on L is an operator ϕ that is isotone (x ≤ y ⇒ ϕ(x) ≤
ϕ(y)), extensive (x ≤ ϕ(x)) and idempotent (ϕ(ϕ(x)) = ϕ(x)). A closure system
on L is a subset S ⊆ L that is stable under the infimum operation (in particular
for the empty infimum, 1 ∈ S). The map ϕ 7→ Inv(ϕ) gives a dual isomorphism
between the poset of closure operators and that of closure systems.

Clearly ϕ(0) = 0 iff 0 ∈ Inv(ϕ). We call a 0-closure system a closure system
S such that 0 ∈ S, and a 0-closure operator a closure operator ϕ such that
ϕ(0) = 0. Given a closure operator ϕ and the corresponding closure system
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S = Inv(ϕ), then we obtain the 0-closure system S0 = S∪{0}, and S0 = Inv(ϕ0)
for the 0-closure operator ϕ0 defined by ϕ0(0) = 0 and ϕ0(x) = ϕ(x) for x > 0.

A kernel operator on L [12] or a dual closure operator on L [5] is an operator
γ that is isotone, anti-extensive (x ≥ γ(x)) and idempotent. A kernel system
on L or dual closure system on L is a subset S ⊆ L that is stable under the
supremum operation (in particular for the empty supremum, 0 ∈ S). The map
γ 7→ Inv(γ) gives an isomorphism between the poset of kernel operators and that
of kernel systems.

Let L and M be two complete lattices, and consider (ε, δ) : M ⇋ L; we say
that (ε, δ) is an adjunction [12] if

∀x ∈ L, ∀y ∈M, δ(x) ≤ y ⇐⇒ x ≤ ε(y) .

Then δ is called the lower adjoint of ε and ε is called the upper adjoint of δ [12].
It is well-known [12, 14] that δ is a complete join-morphism (it commutes with
the supremum operation), ε is a complete meet-morphism (it commutes with the
infimum operation), δεδ = δ, εδε = ε, εδ is a closure operator and δε is a kernel
(dual closure) operator .

A well-known example of adjunction is given by Minkowski operations [14].
Let E = R

d or E = Z
d. For every p ∈ E and X ⊆ E, let Xp = {x+ p | x ∈ X}

be the translate of X by p. We define the Minkowski addition ⊕ by

X ⊕B =
⋃

b∈B

Xb =
⋃

x∈X

Bx = {x+ b | x ∈ X, b ∈ B} ,

and the Minkowski subtraction ⊖ by

X ⊖B =
⋂

b∈B

X−b = {p ∈ E | Bp ⊆ X} .

Then the two maps δB : P(E) → P(E) : X 7→ X ⊕ B and εB : P(E) → P(E) :
X 7→ X⊖B are called the dilation by B and erosion by B respectively [14]; they
form an adjunction (εB , δB). Thus δBεB : X 7→ (X⊖B)⊕B is a kernel operator
and εBδB : X 7→ (X ⊕ B) ⊖ B is a closure operator; here (X ⊖ B) ⊕ B is the
union of all translates of B that are included in X , while (X⊕B)⊖B is obtained
by adding to X all portions of its complement Xc that cannot be covered by a
translate of B̌ = {−b | b ∈ B}; for a symmetrical B we have B̌ = B.

For sets and (partial) partitions, we adopt the terminology and notation of
[21, 22, 23]. Let E be a “space”, whose elements are called “points”; in fact E
is an arbitrary set of size at least 2, although in practical examples we will often
consider the Euclidean space R

d, the digital space Z
d, or a bounded interval

in such spaces. Points of E will be written p, q, r, . . ., subsets of E will be
designated by upper-case letters A,B, . . . , Y, Z (except the empty set ∅), and
families of subsets of E will be written A,B, . . . ,Y,Z.
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A partial partition of E is a family π of subsets of E that are non-empty
and mutually disjoint; an element of π is called a block [19]; the union of all
blocks of π is the support of π, written supp(π). Partial partitions of E will be
written π, π′, π1, π

1, . . .. A partition of E is a partial partition whose support is
E. Every partial partition is a partition of its support. Given a partial partition
π of E and p ∈ E, let Clπ(p) = ∅ if p /∈ supp(π), while for p ∈ supp(π), Clπ(p) is
the unique block of π to which p belongs; then Clπ(p) is called the class of p in
π [20].

Write Π(E) for the set of all partitions of E, and Π∗(E) for the set of all partial
partitions of E. Thus Π∗(E) =

⋃
A∈P(E) Π(A). Families of partial partitions

will be designated by upper-case Greek letters Γ, . . . ,Ω. Write Ø for the empty
partial partition having no block. For A ∈ P(E), let 0A be the partition of A
into its singletons, and 1A the partition of A into a single block (or no block if
A = ∅):

0A =
{
{p} | p ∈ A

}
and 1A = {A} \ {∅} =

{
{A} if A 6= ∅ ,

Ø if A = ∅ .

The well-known refinement ordering on partitions [19] extends to partial par-
titions. Given π1, π2 ∈ Π∗(E), we say that π1 is finer than π2, or that π2 is
coarser than π1, and write π1 ≤ π2 (or π2 ≥ π1), iff every block of π1 is included
in a block of π2:

π1 ≤ π2 ⇐⇒ ∀C1 ∈ π1, ∃C2 ∈ π2, C1 ⊆ C2 .

Equivalently, point classes in π1 are included in those of π2:

π1 ≤ π2 ⇐⇒ ∀ p ∈ E, Clπ1(p) ⊆ Clπ2(p) .

Then Π∗(E), ordered by refinement, is a complete lattice with least element Ø
and greatest element 1E [8, 20]. Given a family {πi | i ∈ I} of partial partitions,
the class map of their infimum

∧
i∈I πi is given by intersection of the respective

class maps:

∀ p ∈ E, Cl∧
i∈I πi

(p) =
⋂

i∈I

Clπi
(p) . (1)

The class map of their supremum
∨
i∈I πi is given by chaining [19] class maps:

for p, q ∈ E, q ∈ Cl∨
i∈I πi

(p) iff there is some integer n ≥ 1 and a sequence

x0, . . . , xn in E with x0 = p and xn = q, such that for each t = 1, . . . , n there is
some i(t) ∈ I with xt ∈ Clπi(t)

(xt−1).

For A ∈ P(E), the non-empty supremum and infimum operations in Π∗(A)
are inherited from Π∗(E): for a non-void {πi | i ∈ I} ⊆ Π∗(A),

∨
i∈I πi and∧

i∈I πi are the same in Π∗(A) and in Π∗(E).
We have Π(E) = {π ∈ Π∗(E) | π ≥ 0E}. Now Π(E), ordered by refinement,

is a complete lattice with least element 0E and greatest element 1E , and whose
and non-empty supremum and infimum operations are inherited from Π∗(E).
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2. Relating closure systems on sets and on partial partitions

This section extends some results from [16, 17]. Note that [17] logically pre-
cedes [16], although it was published after the latter.

The fact that an infimum of partial partitions is obtained by intersecting their
respective blocks, see (1), is at the basis of the relation between closure systems
on P(E) and those on Π∗(E). However, since intersecting blocks can give the
empty set, we will have to consider 0-closure systems on P(E), that is, closure
systems S on P(E) such that ∅ ∈ S.

Given a family S ⊆ P(E), Π(E) ∩ P
(
S \ {∅}

)
and Π∗(E) ∩ P

(
S \ {∅}

)
will

be the families respectively of partitions and of partial partitions, whose blocks
belong to S (in fact, blocks are non-void, so they belong to S \{∅}). Conversely,
given a family Σ ⊆ Π∗(E),

⋃
Σ will be the family of all blocks from all π ∈ Σ.

Let us write P0(P(E)) for the set of all S ∈ P(P(E)) such that ∅ ∈ S. Define
the 4 maps

∆ : P(Π(E)) → P0(P(E)) : Σ 7→ {∅} ∪ (
⋃
Σ) ,

∆∗ : P(Π∗(E)) → P0(P(E)) : Σ 7→ {∅} ∪ (
⋃
Σ) ,

∇ : P0(P(E)) → P(Π(E)) : S 7→ Π(E) ∩ P(S \ {∅}) ,
∇∗ : P0(P(E)) → P(Π∗(E)) : S 7→ Π∗(E) ∩ P(S \ {∅}) .

(2)

The two maps ∆ and ∇ coincide respectively with the maps c and e defined
in [16] and [17] respectively. Then ∆∗ and ∇∗ are their extensions to partial
partitions.

Lemma 1. (∇∗,∆∗) : P0(P(E)) ⇋ P(Π∗(E)) and (∇,∆) : P0(P(E)) ⇋

P(Π(E)) are adjunctions. For any S ∈ P0(P(E)), ∆(∇S)) ⊆ S = ∆∗(∇∗S)).

Proof. Let Σ ∈ P(Π∗(E)) and S ∈ P0(P(E)). As Σ ⊆ Π∗(E), we have

Σ ⊆ Π∗(E) ∩ P(S \ {∅}) ⇐⇒ Σ ⊆ P(S \ {∅})

⇐⇒ ∀π ∈ Σ, π ⊆ S \ {∅} ⇐⇒
⋃

Σ ⊆ S \ {∅} ,

and as ∅ ∈ S, the latter is equivalent to {∅}∪ (
⋃
Σ) ⊆ S. Thus ∆∗(Σ) ⊆ S ⇐⇒

Σ ⊆ ∇∗(S), so (∇∗,∆∗) is an adjunction.
When Σ ∈ P(Π(E)), we have ∆(Σ) = ∆∗(Σ), and as Σ ⊆ Π(E), we get

Σ ⊆ ∇∗(S) ⇐⇒ Σ ⊆ ∇∗(S)∩Π(E) = ∇(S); hence ∆(Σ) ⊆ S ⇐⇒ Σ ⊆ ∇(S),
so (∇,∆) is an adjunction.

From the two adjunctions (∇∗,∆∗) and (∇,∆) we get ∆(∇S)) ⊆ S and
∆∗(∇∗S)) ⊆ S. By definition, ∅ ∈ ∆∗(∇∗S)); for S ∈ S \ {∅}, we have
{S} ∈ Π∗(E) ∩ P(S \ {∅}) = ∇∗(S), so S ∈

⋃
∇∗(S) ⊆ ∆∗(∇∗S)); hence

S ⊆ ∆∗(∇∗S)), and the equality follows. �

We will now show how these two adjunctions link 0-closure systems on P(E)
with closure systems on Π∗(E) and on Π(E), generalizing the analysis of [16, 17].
We deal first with the case of partial partitions, as it is simpler.
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Theorem 2. For any S ∈ P0(P(E)), the following three statements are equiv-
alent:

(1) S is a 0-closure system on P(E).
(2) ∇∗(S) is a closure system on Π∗(E).
(3) There is a closure system Σ on Π∗(E) such that S = ∆∗(Σ).

Proof. 1 ⇒ 2. Let S be a 0-closure system on P(E), and let Γ ⊆ ∇∗(S). If Γ is
empty, then

∧
Γ = 1E , and as E ∈ S (since S is a closure system), 1E ∈ ∇∗(S).

Assume now Γ non-empty. For any π ∈ Γ, all blocks of Γ belong to S \ {∅},
hence for any p ∈ E, Clπ(p) ∈ S. By (1) we have Cl∧Γ(p) =

⋂
π∈Γ Clπ(p), and

as S is a closure system, this intersection belongs to S. Hence all blocks of
∧
Γ

belong to S \ {∅}, that is,
∧
Γ ∈ ∇∗(S). Therefore ∇∗(S) is a closure system on

Π∗(E).
2 ⇒ 3. By Lemma 1, S = ∆∗(∇∗S)).
3 ⇒ 1. Let Σ be a closure system on Π∗(E) and let C ⊆ ∆∗(Σ). If C is

empty, then
⋂
C = E, and as 1E ∈ Σ (since Σ is a closure system), E ∈ ∆∗(Σ).

Assume now C non-empty. By definition, ∅ ∈ ∆∗(Σ). Thus if
⋂
C = ∅, in

particular if ∅ ∈ C, then
⋂
C ∈ ∆∗(Σ). Suppose now that

⋂
C 6= ∅, in particular

∅ /∈ C; then for each A ∈ C, let Σ(A) = {π ∈ Σ | A ∈ π}; since A ∈
⋃
Σ, we

have Σ(A) 6= ∅. Let p ∈
⋂
C; for any A ∈ C and π ∈ Σ(A), Clπ(p) = A. Let

πC =
∧
A∈C

∧
Σ(A); since Σ is a closure system, πC ∈ Σ; then by (1) we have

ClπC
(p) =

⋂
C, so

⋂
C is a block of πC ∈ Σ, and

⋂
C ∈ ∆∗(Σ). Therefore ∆∗(Σ)

is a 0-closure system. �

Let us now exchange the roles of P(E) and Π∗(E):

Corollary 3. For any Σ ∈ P(Π∗(E)), consider the following three statements:

(1) Σ is a closure system on Π∗(E).
(2) ∆∗(Σ) is a 0-closure system on P(E).
(3) There is a 0-closure system S on P(E) such that Σ = ∇∗(S).

Then 3 ⇒ 1 ⇒ 2. When there is some C ∈ P0(P(E)) such that Σ = ∇∗(C),
the three statements are equivalent.

Proof. The implications 3 ⇒ 1 and 1 ⇒ 2 correspond to implications
1 ⇒ 2 and 3 ⇒ 1 respectively of Theorem 2. The adjunction (∇∗,∆∗) gives
∇∗∆∗∇∗ = ∇∗; hence for Σ = ∇∗(C) we get ∇∗(∆∗(Σ)) = ∇∗(∆∗(∇∗(C))) =
∇∗(C) = Σ, so 2 ⇒ 3. �

Since ∇∗∆∗∇∗ = ∇∗, the condition “there is some C ∈ P0(P(E)) such that
Σ = ∇∗(C)” is equivalent to ∇∗(∆∗(Σ)) = Σ.

Let us now turn to the case of partitions. We need to describe a property
introduced first in [17]. Let S be a 0-closure system on P(E), and let ϕ be the
corresponding 0-closure operator on P(E), i.e., S = Inv(ϕ). For any p ∈ E,
write ϕ(p) for ϕ({p}). Now S, ordered by inclusion, is a complete lattice where
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the infimum is given by the intersection, and ∅ is the least element. For A ∈ S
and p ∈ A, ϕ(p) ⊆ A and ϕ(p) ∈ S, thus A is an atom of S iff for any p ∈ A,
ϕ(p) = A. In particular, every atom is of the form ϕ(p), p ∈ E. However, for
p ∈ E, ϕ(p) is not necessarily an atom.

Lemma 4. Let ϕ be a 0-closure operator on P(E) and let S = Inv(ϕ). Then
the following three statements are equivalent:

(1) For every p ∈ E, ϕ(p) is an atom of S.
(2) The set of all ϕ(p), p ∈ E, is a partition of E.
(3) The set of all atoms of S is a partition of E.

Proof. 1 ⇒ 2. The atoms of S are the ϕ(p), p ∈ E. Given p, q ∈ E such
that ϕ(p) 6= ϕ(q), ϕ(p) ∩ ϕ(q) ∈ S, and since ϕ(p) and ϕ(q) are atoms of S, we
get ϕ(p) ∩ ϕ(q) = ∅. Thus the ϕ(p), p ∈ E, are non-void, pairwise disjoint, and
cover E, i.e., they constitute a partition of E.

2 ⇒ 3. Let p, q ∈ E such that q ∈ ϕ(p); then ϕ(q) ⊆ ϕ(p), and as ϕ(p)
and ϕ(q) are blocks of a partition, we get ϕ(q) = ϕ(p); this means that ϕ(p) is
an atom of S. Hence the atoms of S are the ϕ(p), p ∈ E, and they constitute a
partition of E.

3 ⇒ 1. For any p ∈ E, p is covered by the partition of atoms of S, so there
is an atom A with p ∈ A; then ϕ(p) = A, and ϕ(p) is an atom of S. �

Note that the condition “there is a partition of E whose blocks are of the
form ϕ(p), p ∈ E”, is not sufficient. In [17], condition 2 was called “condition
P”. Therefore we call a P-0-closure system a 0-closure system satisfying the
properties of Lemma 4. Now this property can be linked to the adjunction
(∇,∆); the following is a slight generalization of Lemma 2.b of [17]:

Proposition 5. For any 0-closure system S on P(E), ∆(∇(S)) is the greatest
P-0-closure system included in S, and ∇(∆(∇(S))) = ∇(S). In particular S is
a P-0-closure system iff ∆(∇(S)) = S.

Proof. We first prove that S is a P-0-closure system iff ∆(∇(S)) = S. Let S
be a P-0-closure system, and let A be the set of atoms of S. Let B ∈ S \ {∅};
for A ∈ A, we have either A ⊆ B or A ∩B = ∅; since A constitutes a partition
of E, this means that {A ∈ A | A ∩ B = ∅} is a partition of E \ B. Hence
πB = {B} ∪ {A ∈ A | A ∩ B = ∅} is a partition with blocks in S, that is,
πB ∈ ∇(S), and asB ∈ πB, we getB ∈

⋃
∇(S) ⊆ ∆(∇(S)). Since ∅ ∈ ∆(∇(S)),

we deduce that S ⊆ ∆(∇(S)). But ∆(∇S)) ⊆ S by Lemma 1, so the equality
follows.

Let S be a 0-closure system such that ∆(∇(S)) = S. Let p, q ∈ E such
that q ∈ ϕ(p); then ϕ(q) ⊆ ϕ(p). Now ϕ(q) ∈ ∆(∇(S)), that is, there is some
π ∈ ∇(S) (a partition with blocks in S) such that ϕ(q) ∈ π; there is some
B ∈ π such that p ∈ B, and as B ∈ S, we get ϕ(p) ⊆ B; but ϕ(q) ⊆ ϕ(p),
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with ϕ(q), B ∈ π, from which we deduce that ϕ(q) = ϕ(p) = B. Hence ∀ p ∈ E,
q ∈ ϕ(p) ⇒ ϕ(q) = ϕ(p), so ϕ(p) is an atom of S.

Now we prove the general result. Let S be a 0-closure system on P(E). From
the adjunction (∇,∆), ∆∇ is a kernel operator (dual closure), so ∆(∇(S)) ⊆ S
and ∆(∇(∆(∇(S)))) = ∆(∇(S)), from which we deduce that ∆(∇(S)) is a P-0-
closure system. Let T be a P-0-closure system such that T ⊆ S; then ∆(∇(T )) =
T , and since ∆∇ is isotone, ∆(∇(T )) ⊆ ∆(∇(S)); hence T ⊆ ∆(∇(S)). Thus
∆(∇(S)) is the greatest P-0-closure system included in S. �

We give now the analogue of Theorem 2 for partitions; its last sentence was
proved in Theorem 1.a of [17].

Theorem 6. For any S ∈ P0(P(E)), the following three statements are equiv-
alent:

(1) S is a P-0-closure system on P(E).
(2) ∇(S) is a closure system on Π(E) and there is some Γ ∈ P(Π(E)) such

that S = ∆(Γ).
(3) There is a closure system Σ on Π(E) such that S = ∆(Σ).

Furthermore, for any 0-closure system S on P(E), ∇(S) is a closure system on
Π(E).

Proof. 1 ⇒ 2. By Theorem 2, ∇∗(S) is a closure system on Π∗(E). Now
∇(S) = ∇∗(S) ∩ Π(E); since Π(E) is a closure system on Π∗(E), and the
infimum operation in the complete lattice Π(E) (including the empty infimum,
i.e., greatest element) is inherited from Π∗(E), it follows that ∇(S) is a closure
system on Π(E). By Proposition 5, S = ∆(∇(S)) with ∇(S) ∈ P(Π(E)).

2 ⇒ 3. By the adjunction (∇,∆), ∆∇∆ = ∆, so S = ∆(Γ) = ∆(∇(∆(Γ)))
= ∆(∇(S)), where ∇(S) is a closure system on Π(E).

3 ⇒ 1. Since the infimum operation in the complete lattice Π(E) is in-
herited from Π∗(E), Σ is a closure system on Π∗(E), and ∆(Σ) = ∆∗(Σ). By
Theorem 2, S = ∆∗(Σ) is a 0-closure system on P(E). The adjunction (∇,∆)
gives ∆∇∆ = ∆, hence ∆(∇(S)) = ∆(∇(∆(Σ))) = ∆(Σ) = S, so S is a P-0-
closure system by Proposition 5.

Let S be 0-closure system on P(E). By Proposition 5, ∆(∇(S)) is a P-0-
closure system and ∇(∆(∇(S))) = ∇(S), so ∇(S) is a closure system on Π(E)
(by 1 ⇒ 2). Otherwise we remark that in the proof of 1 ⇒ 2, property P was
not used for showing that ∇(S) is a closure system. �

In item 2, the condition “there is some Γ ∈ P(Π(E)) such that S = ∆(Γ)”
is equivalent to ∆(∇(S)) = S, and to “for T ⊂ S, ∇(T ) ⊂ ∇(S)”. Comparing
Theorem 2 to Theorem 6, we see that in the latter this condition “there is some
Γ ∈ P(Π(E)) such that S = ∆(Γ)” has been added in item 2. Indeed, given
S ∈ P0(P(E)) such that ∇(S) is a closure system on Π(E), S will not necessarily
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be a closure system on P(E). Let for example the set E be the disjoint union of
4 non-void subsets A,B,C,D, and take S = {∅, A∪B,A ∪C,E}; then S is not
a closure system on P(E) because (A∪B)∩ (A∪C) = A /∈ S, but ∇(S) = {1E}
is a closure system on Π(E).

We obtain then the analogue of Corollary 3 for partitions:

Corollary 7. For any Σ ∈ P(Π(E)), consider the following three statements:

(1) Σ is a closure system on Π(E).
(2) ∆(Σ) is a P-0-closure system on P(E).
(3) There is a P-0-closure system S on P(E) such that Σ = ∇(S).

Then 3 ⇒ 1 ⇒ 2. When there is some C ∈ P0(P(E)) such that Σ = ∇(C),
the three statements are equivalent.

Proof. The implications 3 ⇒ 1 and 1 ⇒ 2 follow from implications 1 ⇒ 2
and 3 ⇒ 1 respectively of Theorem 6. The adjunction (∇,∆) gives ∇∆∇ = ∇;
hence for Σ = ∇(C) we get∇(∆(Σ)) = ∇(∆(∇(C))) = ∇(C) = Σ, so 2 ⇒ 3. �

Since ∇∆∇ = ∇, the condition “there is some C ∈ P0(P(E)) such that
Σ = ∇(C)” is equivalent to ∇(∆(Σ)) = Σ. In [17], the property ∇(∆(Σ)) = Σ
was called “Σ is closed under reconstruction”, and Proposition 1.e there showed
that it leads to the equivalence between items 1 and 3 of Corollary 7.

C

B

D

A
(a) (b)

(c)

Figure 1. Here E = Z
2. (a) The 4 sets A,B,C,D partitioning

E. (b) The set Σ0 of 3 partitions satisfies item 2, but not item 1.
(c) The set Σ1 of 4 partitions satisfies item 1, but not item 3.

Example 8. When we do not have Σ = ∇(C) for some C ∈ P0(P(E)), we will
not obtain any other implication than 3 ⇒ 1 ⇒ 2, as show the following
two counter-examples. Let the set E be the disjoint union of 4 non-void subsets
A,B,C,D, see Figure 1(a).

(1) See Figure 1(b). Let

Σ0 =
{
{A ∪B,C,D}, {A,B,C ∪D}, {E}

}
.
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Then

∆(Σ0) = {∅, A,B,C,D,A ∪B,C ∪D,E}

is a P-0-closure system on Π(E), but Σ0 is not a closure system on
Π(E), because

∧
Σ0 = {A,B,C,D} /∈ Σ0. Thus Σ0 satisfies item 2, but

not item 1.
(2) See Figure 1(c). Let

Σ1 =
{
{A,B,C,D}, {A ∪ C,B ∪D}, {A ∪B,C ∪D}, {E}

}
.

Then Σ1 is a closure system on Π(E); since {A∪B,C,D} ∈ ∇(∆(Σ1))\
Σ1, ∇(∆(Σ1)) 6= Σ1, hence we cannot have S ∈ P0(P(E)) with Σ1 =
∇(S). Thus Σ1 satisfies item 1, but not item 3.

These two counter-examples remain valid with Π∗(E), ∇∗ and ∆∗ instead of
Π(E), ∇ and ∆. So in Corollary 3 too, we will not have any other implication
than 3 ⇒ 1 ⇒ 2 when we do not have Σ = ∇∗(C) for some C ∈ P0(P(E)).

3. Closures from operators acting on blocks

Given a 0-closure system S on P(E), ∇∗(S) is a closure system on Π∗(E); we
will now describe how to construct the closure operator on Π∗(E) corresponding
to ∇∗(S) from the 0-closure operator on P(E) corresponding to S. In particular,
we will see that under some conditions it can be achieved by taking the limit of
the iterated application of some specific set operators on the blocks of a partial
partition.

Let ϕ be a 0-closure operator on P(E). Since Inv(ϕ) is a 0-closure system on
P(E), ∇∗(Inv(ϕ)) = Π∗(E) ∩ P(Inv(ϕ) \ {∅}), the set of partial partitions with
blocks in Inv(ϕ), is by Theorem 2 a closure system on Π∗(E). There is thus
a closure operator C(ϕ) on Π∗(E) such that Inv(C(ϕ)) = ∇∗(Inv(ϕ)). For any
π ∈ Π∗(E), C(ϕ)(π) is the least π′ ∈ Π∗(E) such that π′ ≥ π and all blocks of π′

are invariant under ϕ. Note that C(ϕ)(Ø) = Ø, so C(ϕ) is a 0-closure operator.
In [17], the restriction of C(ϕ) to Π(E) was written Ce.

Following [21], given an operator ψ on P(E), we define the blockwise extension
of ψ as the operator B(ψ) on Π∗(E) given by

∀π ∈ Π∗(E), B(ψ)(π) =
∨

B∈π

1ψ(B) . (3)

In other words, B(ψ)(π) is obtained by applying ψ to each block of π, then re-
cursively merging all overlapping blocks ψ(B) 6= ∅, B ∈ π. Usually one assumes
that ψ(∅) = ∅. Indeed, if ψ is isotone and ψ(∅) 6= ∅, then for any π ∈ Π∗(E),
B(ψ)(π) will have a single block (since all ψ(B), B ∈ π, overlap through ψ(∅));
furthermore, defining ψ′ by ψ′(∅) = ∅ and ψ′(X) = X for X ∈ P(E) \ {∅}, then
ψ′ inherits the isotony of ψ and B(ψ′) = B(ψ).
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We recall a known fact [14, 26]: given an extensive isotone operator θ on a
complete lattice L, then Inv(θ) is a closure system on L, there is a unique closure

operator θ̂ on L such that Inv
(
θ̂
)
= Inv(θ), and θ̂ is the least closure operator on

L which is ≥ θ. We get then the following consequence:

Proposition 9. Let ψ be an extensive isotone operator on P(E) such that
ψ(∅) = ∅. Let ϕ be the least closure operator on P(E) such that ϕ ≥ ψ. Then
B(ψ) is extensive and isotone, ϕ is a 0-closure operator, and C(ϕ) is the least
closure operator on Π∗(E) such that C(ϕ) ≥ B(ψ).

Proof. Since ψ(∅) = ∅, Inv(ψ) is a 0-closure system on P(E), and as Inv(ϕ) =
Inv(ψ), ϕ is a 0-closure operator. By [21] B(ψ) inherits from ψ the property
of being extensive and isotone. Now Inv(C(ϕ)) = ∇∗(Inv(ϕ)), the set of partial
partitions with blocks in Inv(ϕ) = Inv(ψ). For π ∈ ∇∗(Inv(ϕ)), each block B ∈ π
belongs to Inv(ϕ) = Inv(ψ), that is, ψ(B) = B; by (3), we get B(ψ)(π) = π, thus
π ∈ Inv(B(ψ)). For π /∈ ∇∗(Inv(ϕ)), there is a block B ∈ π that does not belong
to Inv(ϕ) = Inv(ψ), that is, ψ(B) 6= B; as ψ is extensive, B ⊂ ψ(B), and by
(3) 1ψ(B) ≤ B(ψ)(π), in other words ψ(B) is included in a block of B(ψ)(π); it
follows then that for p ∈ B we have Clπ(p) = B ⊂ ψ(B) ⊆ ClB(ψ)(π)(p), in other
words π 6= B(ψ)(π), thus π /∈ Inv(B(ψ)). Therefore Inv(C(ϕ)) = ∇∗(Inv(ϕ)) =
Inv(B(ψ)), and as C(ϕ) is a closure operator, it must be the least one ≥ B(ψ). �

Given a 0-closure operator ϕ on P(E), for any π ∈ Π∗(E) we will have
B(ϕ)(π) ≤ C(ϕ)(π), but generally not the equality. This is for example the
case for E = Z

d with the closure operator ϕ = εBδB : X 7→ (X ⊕ B) ⊖ B,
the composition of the dilation and erosion by some bounded B ∈ P(E); as
seen in Figure 2, for a finite partial partition, several iterations of B(ϕ) may be
necessary in order to reach a partial partition with blocks invariant under ϕ.
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(e)(a) (b) (c) (d)

Figure 2. Here E = Z
2. (a) The symmetrical bounded set B

(centered about the origin); we consider the closure operator
ϕ = εBδB : X 7→ (X ⊕B)⊖B. (b) A partial partition π with 2
blocks A1, A2 (identified by their hatching). (c) Applying ϕ to
the blocks A1, A2, the two closed blocks ϕ(A1), ϕ(A2) overlap.
(d) B(ϕ)(π) has one block ϕ(A1)∪ϕ(A2). (e) B(ϕ)

2(π) has one
block closed under ϕ, hence B(ϕ)2(π) = C(ϕ)(π).
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Proposition 10. Given a 0-closure operator ϕ on P(E), for any finite π ∈
Π∗(E), there is some n ∈ N such that B(ϕ)n(π) = C(ϕ)(π).

Proof. For a finite partial partition π = {B1, . . . , Bm}, B(ϕ)(π) is the least
partial partition such that each one of ϕ(B1), . . . , ϕ(Bm) is included in one (and
only one) of its blocks, and in particular each block of B(ϕ)(π) contains at least
one of ϕ(B1), . . . , ϕ(Bm); since ϕ is extensive, ϕ(B1), . . . , ϕ(Bm) are all non-
empty. Thus either ϕ(B1), . . . , ϕ(Bm) are pairwise disjoint and constitute the m
blocks of B(ϕ)(π), or we have some i, j (1 ≤ i < j ≤ m ) with ϕ(Bi)∩ϕ(Bj) 6= ∅,
hence ϕ(Bi)∪ϕ(Bj) is included in the same block of B(ϕ)(π), and the latter has
less than m blocks. Therefore repeated application of B(ϕ) can only decrease the
number of blocks, and there is thus some t ∈ N such that B(ϕ)t(π) has the same
number of blocks as B(ϕ)t+1(π). This means that for B(ϕ)t(π) = {C1, . . . , Ck}
we have B(ϕ)t+1(π) = {ϕ(C1), . . . , ϕ(Ck)}, where ϕ(C1), . . . , ϕ(Ck) ∈ Inv(ϕ).
Hence π ≤ B(ϕ)t+1(π) ∈ Inv(C(ϕ)), where C(ϕ) is the least closure operator
≥ B(ϕ) (thus ≥ B(ϕ)t+1), we deduce then that B(ϕ)t+1(π) = C(ϕ)(π). �

We show in Figure 3 an example of an infinite partial partition π such that for
the same closure operator ϕ as in Figure 2, the sequence of B(ϕ)n(π) is strictly
increasing, and here C(ϕ)(π) =

∨∞

n=1 B(ϕ)
n(π).

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

����
����
����
����
����

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

����
����
����
����

����
����
����
����

����
����
����
����
����

����
����
����
����
����

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������
������

������
������
������
������
������
������
������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

B

(d)

(a) (b) (c)

(e) (f)

Figure 3. Here E = Z
2. (a) The symmetrical bounded set B

(centered about the origin); we consider the closure operator
ϕ = εBδB : X 7→ (X ⊕ B) ⊖ B. In the following partial parti-
tions, each block is identified by its hatching or grey-level; blocks
not invariant under ϕ are shown in black (it will be the leftmost
block in each). (b) An infinite partial partition π. (c) B(ϕ)(π).
(d) B(ϕ)2(π). (e) B(ϕ)3(π). For any n ∈ N, B(ϕ)n(π) will al-
ways have its leftmost block not in Inv(ϕ). (f)

∨∞

n=1 B(ϕ)
n(π)

consists of one block in Inv(ϕ), so C(ϕ)(π) =
∨∞

n=1 B(ϕ)
n(π).
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This example suggests a form of semi-continuity of the operator. Given a non-
empty directed set D and a complete lattice L, for any isotone map λ : D → L,
the set {λ(d) | d ∈ D} is directed; now an isotone operator θ on L will be called
D↑-continuous if for any isotone map λ : D → L we have θ

(∨
d∈D λ(d)

)
=∨

d∈D θ(λ(d)). An interesting particular case is when D = N with the numerical
order, and then following [15] we say that θ is ↑-continuous, and this means
that for a sequence xn ∈ L, n ∈ N, that is monotonous increasing (∀n ∈ N,
xn ≤ xn+1), we have θ

(∨
n∈N

xn
)
=

∨
n∈N

θ(xn).

Proposition 11. Let D be a non-empty directed set and let ψ be a D↑-conti-
nuous isotone operator on P(E). Then B(ψ) is D↑-continuous and isotone.

Proof. By [21], B(ψ) inherits the isotony of ψ. Consider an isotone map λ : D →
Π∗(E). Since B(ψ) is isotone, we have B(ψ)

(∨
d∈D λ(d)

)
≥

∨
d∈D B(ψ)(λ(d)).

Consider a block B ∈
∨
d∈D λ(d) and take p ∈ B; thus B = Cl∨

d∈D λ(d)(p).

Since λ and the map Π∗(E) → P(E) : π 7→ Clπ(p) are isotone, the map D →
P(E) : λ 7→ Clλ(d)(p) will be isotone. Thus the set {Clλ(d)(p) | d ∈ D} is
directed, so by [20] we have B = Cl∨

d∈D λ(d)(p) =
⋃
d∈D Clλ(d)(p). As ψ is D↑-

continuous, ψ(B) =
⋃
d∈D ψ(Clλ(d)(p)). Let Dp = {d ∈ D | Clλ(d)(p) 6= ∅}; then

B =
⋃
d∈Dp

Clλ(d)(p), so Dp 6= ∅. For d ∈ Dp and d′ ∈ D \ Dp, Clλ(d′)(p) =

∅ ⊆ Clλ(d)(p), and as ψ is isotone, ψ(Clλ(d′)(p)) ⊆ ψ(Clλ(d)(p)); hence ψ(B) =⋃
d∈Dp

ψ(Clλ(d)(p)). Thus there exists d0 ∈ Dp such that p ∈ ψ(Clλ(d0)(p)) and

for any q ∈ ψ(B), there exists d1 ∈ Dp such that q ∈ ψ(Clλ(d1)(p)); as D is
directed, there is some d2 ∈ D with d0, d1 ≤ d2, so ψ(Clλ(d0)(p)), ψ(Clλ(d1)(p)) ⊆
ψ(Clλ(d2)(p)), hence p, q ∈ ψ(Clλ(d2)(p)); now ∅ ⊂ Clλ(d0)(p) ⊆ Clλ(d2)(p), so
d2 ∈ Dp. In other words all points of ψ(B) are chained by the ψ(Clλ(d)(p)),
d ∈ Dp. We deduce that

∨
d∈Dp

1ψ(Clλ(d)(p)) = 1ψ(B). Now for every d ∈ Dp,

Clλ(d)(p) is the block of λ(d) containing p; hence

1ψ(B) =
∨

d∈Dp

1ψ(Clλ(d)(p)) ≤
∨

{1ψ(A) | ∃ d ∈ D, A ∈ λ(d)}

=
∨

d∈D

∨

A∈λ(d)

1ψ(A) =
∨

d∈D

B(ψ)(λ(d)) .

As this holds for any B ∈
∨
d∈D λ(d), we get

B(ψ)
( ∨

d∈D

λ(d)
)
=

∨{
1ψ(B) | B ∈

∨

d∈D

λ(d)
}
≤

∨

d∈D

B(ψ)(λ(d)) .

But B(ψ)
(∨

d∈D λ(d)
)
≥

∨
d∈D B(ψ)(λ(d)); hence the equality follows. Therefore

B(ψ) is D↑-continuous. �
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Given an ↑-continuous isotone operator θ on a complete lattice L,
∨
n∈N

θn

is the least closure operator on L which is ≥ θ, and it is ↑-continuous [15]. We
deduce then the following:

Corollary 12. Let ψ be a ↑-continuous extensive isotone operator on P(E) such
that ψ(∅) = ∅, and let ϕ be the least 0-closure operator on P(E) such that ϕ ≥ ψ.
Then C(ϕ) =

∨
n∈N

B(ψ)n, and the closure operator C(ϕ) is ↑-continuous.

An isotone operator ψ on P(E) is finitary if for all X ∈ P(E), ψ(X) =⋃
{ψ(Y ) | Y ∈ P(E), |Y | < ∞} [3]. Obviously every finitary operator is ↑-

continuous, because for any increasing sequence of sets Xn, n ∈ N, a finite
subset of

⋃
n∈N

Xn is necessarily included in some Xn. For example for E = R
d

or E = Z
d, given a finite subset B of E, the maps δB : X 7→ X ⊕ B and

εB : X 7→ X ⊖ B, as well as their compositions δBεB and εBδB are finitary.
This explains the convergence of B(ϕ)n(π) to C(ϕ)(π) in Figure 3. Also in R

d,
the convex hull operator is finitary.

When ψ is not ↑-continuous, C(ϕ) can be constructed as the limit of a trans-
finite iteration of B(ψ): for a limit ordinal α, set B(ψ)α(π) =

∨
β<α B(ψ)

β(π),

and for the successor α+ 1 of an ordinal α, set B(ψ)α+1(π) = B(ψ)(B(ψ)α(π));
then for some ordinal α we obtain B(ψ)α = C(ϕ). This construction was given
in [17], with B(ϕ) in place of B(ψ), for the restriction of C(ϕ) to Π(E).

Given an adjunction (ε, δ) on P(E), we say that (ε, δ) is regular [20, 21] if
ε(∅) = ∅, equivalently, ∀X ∈ P(E), X 6= ∅ ⇒ δ(X) 6= ∅ (we have δ(∅) = ∅
anyway). In [21] we showed that for any regular adjunction (ε, δ) on P(E),(
B(ε),B(δ)

)
is an adjunction on Π∗(E) and for any π ∈ Π∗(E) we have B(ε)(π) =

{ε(B) | B ∈ π, ε(B) 6= ∅}. Thus B(ε)B(δ) is a closure operator on Π∗(E), and
we can compare it to C(εδ):

Proposition 13. Let (ε, δ) be a regular adjunction on P(E). Then B(ε)B(δ) ≥
C(εδ).

Proof. Let π ∈ Π∗(E) and let π′ = B(δ)(π). Then B(ε)B(δ)(π) = B(ε)(π′) =
{ε(B) | B ∈ π′, ε(B) 6= ∅}. Now by the adjunction (ε, δ), for any B ∈ π′ we have
εδ(ε(B)) = ε(B), in other words all blocks of B(ε)B(δ)(π) = B(ε)(π′) belong
to Inv(εδ), thus B(ε)B(δ)(π) ∈ Inv(C(εδ)). Hence Inv(B(ε)B(δ)) ⊆ Inv(C(εδ)),
and as C(εδ) and B(ε)B(δ) are closure operators, this means that B(ε)B(δ) ≥
C(εδ). �

For a partial partition π with several blocks, we often have B(ε)B(δ)(π) >
C(εδ)(π). Indeed, given two block A1, A2 ∈ Inv(εδ), we can have δ(A1)∩δ(A2) 6=
∅, so B(δ)({A1, A2}) = {δ(A1) ∪ δ(A2)} and B(ε)B(δ)({A1, A2}) = {ε(δ(A1) ∪
δ(A2))}. See Figure 4.

Given a closure operator Φ on Π∗(E), the restriction of Φ to Π(E) will be
a closure operator on Π(E). However [21] gives another construction: given a
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(b)(a) (c) (d) (e)

Figure 4. Here E = Z
2. (a) The symmetrical bounded

set B (centered about the origin); we consider the dilation
δB : X 7→ X⊕B and the erosion εB : X 7→ X⊖B. (b) A partial
partition π with 2 blocks A1, A2 (identified by their hatching),
both invariant under the closure operator εBδB. (c) Applying
δB to the blocks A1, A2, the two dilated blocks δB(A1), δB(A2)
overlap. (d) B(δB)(π) has one block δB(A1) ∪ δB(A2). (e)
B(εB)B(δB)(π) has one block εB(δB(A1) ∪ δB(A2)), which is
invariant under εBδB.

partition π, first remove all singleton blocks of π, next apply Φ to the resulting
partial partition, finally add all singleton blocks outside the support; in other
words, we get the partition Φ′(π) = Φ(π\0E)∨0E . Then Φ′ is a closure operator
on Π(E); moreover, if Φ is a 0-closure operator on Π∗(E) (Φ(Ø) = Ø), then
Φ′ will be a 0-closure operator on Π(E) (Φ′(0E) = 0E). When Φ = C(ϕ) for a
0-closure operator ϕ on P(E), then Φ′ will be the restriction to Π(E) of C(ϕs),
where ϕs is the 0-closure operator on P(E) given by ϕs(p) = {p} for all p ∈ E,
and ϕs(X) = ϕ(X) for any non-singleton X ⊆ E; here Inv(ϕs) = Inv(ϕ)∪

{
{p} |

p ∈ E
}
: adding all singletons to a 0-closure system on P(E) yields a 0-closure

system. Note that C(ϕs)(0E) = 0E .

4. Discussion and conclusion

We have shown that for a 0-closure system S on P(E), ∇∗(S) and ∇(S)
are closure systems on Π∗(E) and Π(E) respectively, and conversely every S ∈
P0(P(E)) such that ∇∗(S) is a closure system on Π∗(E), must be a 0-closure
system. The dual problem, namely characterizing when ∇∗(S) and ∇(S) are
kernel systems (i.e., stable under the supremum operation) has also been studied.

Let S ∈ P0(P(E)); we say that S is a partial connection on P(E) [20] if for
any B ⊆ S,

⋂
B 6= ∅ ⇒

⋃
B ∈ S; in other words, any set formed by chaining

elements of S must belong to S. It is easy to see that S ∈ P0(P(E)) is a partial
connection iff it satisfies the following two conditions:
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(a) for any C,D ∈ S, C ∩D 6= ∅ ⇒ C ∪D ∈ S;
(b) for any directed subset D of S,

⋃
D ∈ S.

When the partial connection S contains all singletons {p}, p ∈ E, it is called
a connection on P(E); the latter concept originated in [27]. Note that any
connection S satisfies the condition ∆(∇(S)) = S; indeed, for any C ∈ S \ {0},
{C} ∪

{
{p} | p ∈ E \ C

}
∈ ∇(S), so C ∈

⋃
∇(S) ⊆ ∆(∇(S)). Now for

S ∈ P0(P(E)), we have:

(1) ∇∗(S) is a kernel system on Π∗(E) iff S is a partial connection on P(E)
[20].

(2) ∇(S) is a kernel system on Π(E) iff S is a connection on P(E) [28].

Combining these two results with Theorems 2 and 6 and the fact that a connec-
tion S satisfies ∆(∇(S)) = S, we deduce:

(3) ∇∗(S) is a complete sublattice of Π∗(E) iff S is both a partial connection
and a 0-closure system on P(E).

(4) ∇(S) is a complete sublattice of Π(E) iff S is both a connection and a
0-closure system on P(E).

Note that in item 4, the corresponding 0-closure operator ϕ satisfies ϕ(p) = {p}
for all p ∈ E; this property was called T1 in [17], it is a particular case of the
properties given in Lemma 4; thus S is a P-0-closure system. In order to consider
Lemma 4 in the general case of an arbitrary partition of atoms, item 4 can be
extended as follows:

(5) Let π0 ∈ Π(E) and let S ∈ P0(P(E)) such that each element of S is
a union of some blocks of π0; then ∇(S) is a complete sublattice of
{π ∈ Π(E) | π0 ≤ π} iff S is both a partial connection and a 0-closure
system on P(E), where the blocks of π0 are the atoms of S.

Items 4 and 5 are slight extensions of Corollary 2.h and Theorem 2.f of [17],
where S was assumed a priori to be a 0-closure system; the fact that S is a
partial connection was expressed through conditions (a) and (b) above; note
that a closure system satisfying property (b) is called algebraic, while property
(a) was called Q. Finally, Corollary 2.g of [17] showed that for a P-0-closure
system S, ∇(S) is stable under binary join iff S satisfies property (a); the proof
is similar to that of item 2 in [28].

Let us conclude. We have analysed the relation between closure systems on
sets and closure systems on (partial) partitions, where the closed sets are the
blocks of the closed (partial) partitions; it is induced by the two adjunctions
(∇,∆) and (∇∗,∆∗). We generalize the analysis made by Jordens and Sturm
[16, 17] in two ways: first we give stronger results in the case of partitions,
second we extend the framework to partial partitions. We have also considered
the design of the associated closure operator on partial partitions by iterating
the application to the blocks of the corresponding closure operator on sets.
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The topic of closure operators on partitions and partial partitions is relevant
in applied domains such as data clustering and image segmentation. Besides
those based on applying a closure operator to the blocks, there are many other
closure operators on partial partitions, in particular those that cluster together
blocks on the basis of proximity relations [21].
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