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Axiomatics for oriented connectivity✩

Christian Ronse

ICube, Université de Strasbourg, CNRS, 300 Boulevard Sébastien Brant, CS 10413, 67412 ILLKIRCH CEDEX, FRANCE

Abstract

Tankyevych et al. (2013) considered, in a directed graph, any set S of vertices where there is some marker vertex p ∈ S such that

for every vertex x ∈ S , there is a directed path from p to x included in S ; the family of all such sets S was called a semi-connection.

Their properties were briefly analysed and compared with connectivity and connected components in undirected graphs.

We give an abstract algebraic formalization of this concept, following the same approach as that of Serra (1988) and Ronse

(2008) for the notions of connection and partial connection, which generalize both topological and graph-theoretic connectivity.

Here the sets S are unsufficient, one must associate to them their markers p; thus in a space E we consider a family R of ordered

pairs (p, S ) ∈ E × P(E), where the set S can be “reached” from marker p; this family, which we call a reach, must satisfy the three

properties of union, transitivity and membership; a fourth point property leads to a full reach. As in (Serra, 1988; Ronse, 2008),

we give an equivalent definition in terms of a system of point openings (γp, p ∈ E) satisfying some properties. The special case

of symmetry, where S does not depend on the choice of the marker p ∈ S , leads to a partial connection or a connection. Some

examples are given.

Possible applications of this new theory lie in the analysis of connected structures having an orientation, for instance vascular

networks in medical imaging. One can also apply it to geodesic reconstruction and connected filtering.

Keywords: oriented path, oriented connectivity, reach, full reach, partial connection, connection

1. Introduction

Connectivity is an important issue in morphological im-

age processing, it intervenes in image filtering and segmenta-

tion (Ronse and Serra, 2010; Salembier, 2010; Salembier and

Wilkinson, 2009; Serra et al., 2010). The notion of a connected

object was formalized by Serra (1988) who defined a connec-

tion on sets, for which alternate axioms were given in (Ronse,

1998). This concept was generalized by Ronse (2008) who in-

troduced the notion of a partial connection.

Given a non-empty set E, a partial connection on P(E) is a

family C ⊆ P(E) such that ∅ ∈ C, and for any B ⊆ C such

that
⋂

B , ∅, we must have
⋃

B ∈ C. When {p} ∈ C for all

p ∈ E, we say that C is a connection. Examples of connections

include:

• In a topological space, the set of connected sets (i.e., sets

that cannot be partitioned by two open sets).

• In a topological space, the set of arc-connected sets (i.e.,

sets S such that for any p, q ∈ S , there is a continuous map

f : [0, 1]→ S with f (0) = p and f (1) = q).

• In an undirected graph, the family of all sets of vertices

that are chain-connected (i.e., where any two vertices can

be joined by a chain of edges that remains inside the set).
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These general axioms allowed to define new connectivities,

for instance by clustering into a single connected component

objects at a small distance from each other (Serra, 1988), or

by restricting connectivity to objects having a minimum width

(Ronse, 1998). Other examples of connections and partial

connections can be found in (Ouzounis and Wilkinson, 2007;

Ronse, 2008; Ronse and Serra, 2010).

A partial connection C can be characterized in terms of a

system of point openings, that is, a map associating to every

p ∈ E an opening γp on sets, where these openings must satisfy

the following two properties:

(TS) For any p, q ∈ E and X ∈ P(E), q ∈ γp(X) ⇒ γq(X) =

γp(X).

(M) For any p ∈ E and X ∈ P(E), p ∈ X or γp(X) = ∅.

The condition (M) is equivalent to:

(M′) For any p ∈ E and X ∈ P(E), p ∈ γp(X) or γp(X) = ∅.

When C is a connection, a further condition is required:

(P) For any p ∈ E, γp({p}) = {p}.

It is equivalent to:

(P′) For any p ∈ E and X ∈ P(E), p ∈ X ⇒ p ∈ γp(X).

The reason behind the notation (TS), (M) and (P) will be seen

in Sections 2 and 3. Then for any X ∈ P(E), the γp(X) for p ∈ X

are the connected components of X; for a partial connection C,
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the connected components of X constitute a partial partition of

X (Ronse, 2008), but when C is a connection, they constitute a

partition of X (Serra, 1988).

These notions consider connectivity without any orientation.

However some structures combine the two; for instance in med-

ical imaging, vascular networks form connected structures (of-

ten with further topological properties, such as having neither

tunnel nor cavity), but they have also an orientation given by

the direction of blood flow. To our knowledge, the first attempt

to combine the two was given by Tankyevych et al. (2013) in

the framework of directed graphs.

Let (V, A) be a directed graph, where V is the set of vertices

and A is the set of arcs (directed/oriented edges); each arc of A

has an origin and a destination, both being vertices of V . We

assume that the directed graph (V, A) is simple, that is, there are

no multiple arcs with the same origin and destination (they do

not bring any further connectivity information anyway); thus

the unique arc with origin p and destination q (p, q ∈ V) can

be identified by the ordered pair (p, q). Given two vertices p, q,

a (directed) path from p to q is a sequence x0, . . . , xn of ver-

tices, where n ≥ 0, p = x0 and q = xn, such that (xi−1, xi) ∈ A

for i = 1, . . . , n. For a set S of vertices, we say that the path

x0, . . . , xn is included in S if each of its vertices belongs to S :

xi ∈ S (i = 0, . . . , n). Given S ⊆ V and a marker vertex p ∈ S ,

Tankyevych et al. (2013) says that S is semi-connected if for

any q ∈ S , there is a path from p to q included in S . When S

is not semi-connected, one defines the semi-connected compo-

nents of S as all semi-connected subsets of S that are maximal

for inclusion; each such semi-connected subset of S is consid-

ered independently from the marker from which its vertices can

be joined through directed paths. This structure was called a

semi-connection.

A troublesome weakness of this approach is that it consid-

ers the semi-connected set S independently from the marker p.

Indeed, given another q ∈ S , there does not necessarily exist

a directed path from q to p that is included in S , hence only a

subset of S can be reached from q by directed paths included

in S . Moreover, a union of overlapping semi-connected sets is

not necessarily semi-connected. We did not have such a prob-

lem with connected sets in a partial connection: here orientation

plays no role, so the choice of the marker p ∈ S is irrelevant,

and a union of overlapping connected sets is connected. We

will thus consider ordered pairs (p, S ), where for any q ∈ S ,

there is a path from p to q included in S . Taking into account

the marker p allows giving conditions under which a union of

overlapping semi-connected sets is semi-connected: see Defi-

nitions 1 and 2.

Another limitation is that this approach restricts itself to the

connectivity in directed graphs; it is an oriented version of

graph connectivity. Following the unification of various con-

nectivities under the more general concept of a connection

(Serra, 1988; Ronse, 1998) or a partial connection (Ronse,

2008), we can similarly give general axioms for oriented con-

nectivity: given an arbitrary space E, we consider a family of

ordered pairs (p, S ) ∈ E × P(E) satisfying some general prop-

erties that are indeed satisfied in the special case of Tankyevych

et al. (2013). We will do this in Section 2, and this structure will

be called a reach; it is characterized by three axioms called the

union, transitivity and membership properties; a fourth point

property deals with the connectivity of singletons (as in con-

nections), and it leads to a full reach. We will also characterize

a reach or full reach in terms of a system of point openings

(γp, p ∈ E) satisfying some properties.

In (Serra, 1988; Ronse, 2008), the characterization of a con-

nection or partial connection in terms of a system of point open-

ings satisfying some properties was done globally. Here the

correspondence will be built progressively: the union property

will give the system of point openings (γp, p ∈ E), then the

transitivity, membership and point properties will correspond

to conditions (T), (M) and (P) on the (γp, p ∈ E). In Section 3

we will consider a further property, symmetry, with a corre-

sponding property (S) on the (γp, p ∈ E). We will see that a

symmetrical reach is equivalent to a partial connection, and a

symmetrical full reach is equivalent to a connection. Indeed,

writing (TS) for the conjunction of properties (T) and (S), we

get the above conditions.

In Section 4, we will study the complete lattice of reaches,

this will allow us to define the reach generated by a family of

ordered pairs (p, S ) with p ∈ S . Some examples will be gi-

ven for forests. Section 5 proposes possible applications to the

analysis of vascular networks in medical imaging, discusses ex-

tensions of the theory towards oriented geodesic reconstruction

and connected filtering, then concludes.

2. Reach axioms

We first recall some well-known notions (Serra, 1988; Hei-

jmans, 1994; Ronse and Serra, 2010). Let E be a non-empty

set. A family F of subsets of E is closed under union if for

any X ⊆ F , we have
⋃

X ∈ F ; in particular ∅ =
⋃

∅ ∈ F .

An equivalent formulation is that for any X ∈ P(E), among all

A ∈ F such that A ⊆ X, there is a greatest one (w.r.t. inclusion).

An opening on P(E) is an operator γ : P(E) → P(E) such

that for any X,Y ∈ P(E), we have γ(Y) ⊆ X ⇔ γ(Y) ⊆ γ(X).

Equivalently, the operator γ is anti-extensive, order preserving

(isotone) and idempotent. There is a bijection between open-

ings and families of subsets closed under union, under which to

the opening γ corresponds its invariance domain

Inv(γ) = {X ∈ P(E) | γ(X) = X} = {γ(X) | X ∈ P(E)} ,

which is indeed closed under union, while to the family F

closed under union corresponds the opening γ defined by

∀ X ∈ P(E), γ(X) =
⋃

{A ∈ F | A ⊆ X} ,

in other words, γ(X) is the greatest A ∈ F such that A ⊆ X. This

bijection is an isomorphism between the two partially ordered

sets of families closed under union and of openings. The least

and greatest families closed under union are {∅} and P(E). An

intersection of families closed under union will also be closed

under union; thus these families form a complete lattice for the

inclusion order. Then openings constitute a complete lattice;

given a family of opening γi, i ∈ I, there is an opening γ̂ such
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that
⋂

i∈I Inv(γi) = Inv(γ̂), and γ̂ is the infimum of the γi, i ∈

I, in the complete lattice of openings; on the other hand the

supremum γ̌ of the γi is their union: γ̌(X) =
⋃

i∈I γi(X) for all

X ∈ P(E).

A system of point openings is a map associating to every p ∈

E an opening γp on P(E). We write it (γp, p ∈ E).

Let us now consider axioms for oriented continuity. We will

contemplate a family R ⊆ E × P(E); we say that S is reach-

able from p when (p, S ) ∈ R. Intuitively, there is some process

inside S that allows p to reach all points of S . For example in

a directed graph (V, A), a natural process is the concatenation

of arcs, so (p, S ) ∈ R if and only if for any x ∈ S there is a

directed path from p to x included in S . We first define the

following sets:

O(E) =
{

(p, ∅) | p ∈ E
}

,

Σ(E) =
{

(p, {p}) | p ∈ E
}

,

Ψ(E) =
{

(p, S ) ∈ E × P(E) | p ∈ S
}

,

Φ(E) = O(E) ∪ Σ(E) ,

Ω(E) = O(E) ∪ Ψ(E) .

(1)

We give a first property, which allows a characterization in

terms of point openings:

Definition 1. The family R ⊆ E×P(E) satisfies the union prop-

erty if for any X ⊆ P(E) and p ∈ E such that (p, S ) ∈ R for

every S ∈ X, we will have
(

p,
⋃

X
)

∈ R. In particular for X

empty, we have (p, ∅) ∈ R for all p ∈ E, that is, O(E) ⊆ R.

Proposition 1. There is a bijection between families R ⊆

E × P(E) satisfying the union property and systems of point

openings, under which:

• To the family R satisfying the union property corresponds

the system of point openings (γp, p ∈ E) defined by:

∀ p ∈ E, ∀ X ∈ P(E), γp(X) =
⋃

{A ⊆ X | (p, A) ∈ R} ,

(2)

that is, γp(X) is the greatest A ⊆ X such that (p, A) ∈ R.

• To the system of point openings (γp, p ∈ E) corresponds

the family

R = {(p, S )) | p ∈ E, S ∈ Inv(γp)}

= {(p, γp(X)) | p ∈ E, X ∈ P(E)} .
(3)

Proof. Each opening γp corresponds to a family Fp ⊆ P(E)

closed under union. Thus the system (γp, p ∈ E) corresponds

to the set of ordered pairs (p,Fp) for all p ∈ E, or to the set

R = {(p, S ) | p ∈ E, S ∈ Fp} . (4)

In other words, (p, S ) ∈ R ⇔ S ∈ Fp. The fact that each Fp is

closed under union means that R satisfies the union property.

Given the family R satisfying the union property, each γp,

p ∈ E, is defined by setting for every X ∈ P(E):

γp(X) =
⋃

{A ∈ Fp | A ⊆ X} =
⋃

{A ⊆ X | (p, A) ∈ R} ,

in fact, the greatest A ⊆ X such that (p, A) ∈ R.

Given the system of point openings (γp, p ∈ E), we have

Fp = Inv(γp) = {γp(X) | X ∈ P(E)}; combining it with (4), we

get (3).

Now we consider the following intuitive idea: if S is reach-

able from p and T is reachable from q ∈ S , then S ∪ T is

reachable from p. This property holds in the case of directed

graphs: (a) for any x ∈ S , we have a path from p to x included

in S ⊆ S ∪ T ; (b) for any x ∈ T we have a path from q to x

included in T , but then the concatenation of the paths from p to

q and from q to x will join p to x and will be included in S ∪ T ;

thus from (a,b) we get that for any x ∈ S ∪ T , there is a path

from p to x included in S ∪ T .

Definition 2. The family R ⊆ E ×P(E) satisfies the transitivity

property if for any (p, S ) ∈ R, q ∈ S and (q,T ) ∈ R, we will

have (p, S ∪ T ) ∈ R.

Proposition 2. Let the family R ⊆ E × P(E) satisfy the union

property, and let (γp, p ∈ E) be the corresponding system of

point openings. Then R satisfies the transitivity property if and

only if (γp, p ∈ E) satisfies the following:

(T) For any p, q ∈ E and X ∈ P(E), q ∈ γp(X) ⇒ γq(X) ⊆

γp(X).

Proof. Suppose that R satisfies the transitivity property. Let

p, q ∈ E and X ∈ P(E) such that q ∈ γp(X). By (3) we have

(p, γp(X)), (q, γq(X)) ∈ R. The transitivity property implies that

(p, γp(X)∪γq(X)) ∈ R, so by (3) again, we have γp(X)∪γq(X) ∈

Inv(γp); as γp(X) ⊆ γp(X)∪ γq(X) ⊆ X, this means that γp(X)∪

γq(X) = γp(X), that is, γq(X) ⊆ γp(X). So (T) holds.

Suppose now that (T) holds. Let (p, S ) ∈ R, q ∈ S and

(q,T ) ∈ R. By (3), S ∈ Inv(γp) and T ∈ Inv(γq). Thus S =

γp(S ) ⊆ γp(S ∪ T ), q ∈ γp(S ∪ T ) and T = γq(T ) ⊆ γq(S ∪ T ).

Applying (T) with X = S ∪ T , we get γq(S ∪ T ) ⊆ γp(S ∪ T ).

Hence S ,T ⊆ γp(S ∪ T ), so S ∪ T ⊆ γp(S ∪ T ), which means

that S ∪ T ∈ Inv(γp); then (3) gives (p, S ∪ T ) ∈ R. Therefore

the transitivity property is satisfied.

Our third property concerns the relation between the marker

p and the set S reachable from it: Tankyevych et al. (2013)

requires a path from p to any point in S , this path being included

in S ; hence p ∈ S . When p neighbours S , we must consider

that S ∪ {p}, and not S , is reached from p. We postulate thus

that the marker always belongs to the reachable set, except for

the empty set, which can always be reached.

Definition 3. The familyR ⊆ E×P(E) satisfies the membership

property if R ⊆ Ω(E), that is, for any (p, S ) ∈ R, either S = ∅

or p ∈ S .

Proposition 3. Let the family R ⊆ E × P(E) satisfy the union

property, and let (γp, p ∈ E) be the corresponding system of

point openings. Then R satisfies the membership property if

and only if (γp, p ∈ E) satisfies the following:

(M) For any p ∈ E and X ∈ P(E), p ∈ X or γp(X) = ∅.

It is equivalent to:
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(M′) For any p ∈ E and X ∈ P(E), p ∈ γp(X) or γp(X) = ∅.

Proof. For (p, S ) ∈ E × P(E), by (3) we have (p, S ) ∈ R if

and only if there is some X ∈ P(E) such that S = γp(X). The

membership property states that either S = ∅ or p ∈ S , in other

words γp(X) = ∅ or p ∈ γp(X), that is (M′).

Now (M) and (M′) correspond to properties (C1a) and (C1b)

of Ronse (2008), the equivalence between them was shown in

Lemma 19 of that paper.

In order to have the analogy with a connection, where single-

tons are connected, we finally consider the property that a point

can be reached from itself:

Definition 4. The family R ⊆ E ×P(E) satisfies the point prop-

erty if Σ(E) ⊆ R, that is, for any p ∈ E we have (p, {p}) ∈ R.

Proposition 4. Let the family R ⊆ E × P(E) satisfy the union

property, and let (γp, p ∈ E) be the corresponding system of

point openings. Then R satisfies the point property if and only

if (γp, p ∈ E) satisfies the following:

(P) For any p ∈ E, γp({p}) = {p}.

It is equivalent to:

(P′) For any p ∈ E and X ∈ P(E), p ∈ X ⇒ p ∈ γp(X).

Proof. For p ∈ E, by (3) we have:

(p, {p}) ∈ R ⇐⇒ {p} ∈ Inv(γp) ⇐⇒ γp({p}) = {p} ;

Thus R satisfies the point property if and only if (P) holds.

Now (P) and (P′) correspond to properties (C0a) and (C0b)

of Ronse (2008), the equivalence between them was shown in

Lemma 19 of that paper.

We do not require any further property in order to define the

notion of a reach:

Definition 5. A reach on E is a family R ⊆ E ×P(E) satisfying

the union, transitivity and membership properties. If it satisfies

also the point property, we call it a full reach.

From Propositions 1, 2, 3 and 4 we deduce:

Corollary 5. There is a bijection between reaches and systems

of point openings satisfying both (T) and (M) / (M′). A reach R

and a system of point openings (γp, p ∈ E) correspond to each

other by (2,3). The reach is full if and only if the system of point

openings satisfies (P) / (P′).

We will see in Section 3 that for a partial connection C, the

set of all (p, S ), where p ∈ S ∈ C or S = ∅, is a reach; for a

connection, this gives a full reach. In a directed graph (V, A),

the set of ordered pairs (p, S ) ∈ Ω(V) such that S = ∅ or for

any q ∈ S there is a directed path from p to q included in S ,

constitutes a full reach; we call it the Tankyevych reach and

write it T(V,A); here for p ∈ X, γp(X) is the set of all x ∈ X such

that there is a directed path from p to x included in X.

Let us give other examples. Our first ones rely on a quasi-

order on E, that is, a reflexive and transitive binary relation ⊑

on E; the inverse relation ⊒ is also a quasi-order. Now

H⊑(E) = O(E) ∪ {(p, S ) ∈ Ψ(E) | ∀ q ∈ S , p ⊑ q}

is a full reach, we call it the ⊑-reach. For instance, given a map

g : E → T and a quasi-order � on T , we get a quasi-order ⊑ on

E defined by p ⊑ q ⇔ g(p) � g(q); if g is a numerical function

defining a grey-level image on E and � is the numerical order

on T , then ⊑ compares points of E according to their values in

the image, and for p ∈ X ⊆ E, γp(X) = {x ∈ X | g(p) � g(x)},

the thresholding of X above level g(p).

When E is a topological space with a quasi-order ⊑, we get

an ordered variant of arc-connectivity. Let A⊑(E) be made of

O(E) and of all (p, S ) ∈ Ψ(E) such that for any q ∈ S , there is

a continuous map f : [0, 1] → S with f (0) = p, f (1) = q, and

for 0 ≤ s ≤ t ≤ 1, we have f (s) ⊑ f (t); in other words, either

S = ∅, or all points of S can be reached from p by an arc in S

which is increasing for ⊑. ThenA⊑(E) is a full reach.

Given a simple directed or undirected graph (V, A) with a

quasi-order ⊑ on V , we define in an analogous way the full

reach A(V,⊑,A), included in T(V,A). Again we take ordered pairs

(p, S ) ∈ Ω(V) such that S = ∅ or for any q ∈ S there is a di-

rected path from p to q included in S , but we require that this

path p = x0, . . . , xn = q is increasing for ⊑: x0 ⊑ · · · ⊑ xn.

For instance, let V be a digital set of pixels, A the set of

arcs corresponding to ordered pairs of adjacent pixels, and T

a set of numerical values ordered by ≤; given a numerical

function g : V → T , we define the quasi-order ⊑ on V by

p ⊑ q ⇔ g(p) ≤ g(q). Thus A(V,⊑,A) will consist of all (p, S )

such that S = ∅ or for any q ∈ S there is in S a path from p to

q where the function g is increasing on the pixels; for A(V,A,⊒),

the path must be decreasing for g.

We can take a dual view and define a full reach on the set

of arcs. Here we exchange the role of vertices and arcs in the

above discussion; a path will be a sequence of arcs a1, . . . , an,

such that for i = 2, . . . , n, the destination of ai−1 is the origin of

ai. Note that the graph is no more assumed to be simple. We

can then define the dual Tankyevych reach T ∗
(A,V)

, where from

a marker arc we can reach a set of arcs thanks to paths starting

in the marker and ending in the arcs of the set. If we have a

quasi-order E on A, we define similarly the full reachA∗
(A,E,V)

,

included in T ∗
(A,V)

; here the path a1, . . . , an must be increasing;

for a numerical function g : A → T , we get the quasi-order

E on A by a E a′ ⇔ g(a) ≤ g(a′); thus for A∗
(A,E,V)

, arcs are

reached through a the path on which the function g is increasing

on the arcs; forA∗
(A,D,V)

, the function must decrease on the path.

Paths with decreasing values on the arcs are often considered

in relation to watersheds (Bertrand et al., 2010; Cousty et al.,

2014), thus the full reachA∗
(A,D,V)

is relevant here.

Our final example deals with rooted forests, we explain it

through genealogy and inheritance. A woman receives some

money. Then the following rule can be repeated a finite number

of times:

• any woman having some money can either keep it for her-

self, or share it equally between her daughters.
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If we model the genealogy of women as a union of disjoint

rooted trees, with women as vertices and an arc (directed edge)

from mother to daughter (they are thus parent and child vertex),

then the initial woman p and the set S of all women having

received some money satisfy the following:

1. p ∈ S .

2. For any q ∈ S \ {p}, q is a descendant of p, and the parent

of q belongs to S .

3. For any q ∈ S , if one child of q belongs to S , then all

children of q belong to S .

The set of all pairs (p, S ) satisfying items 1, 2 and 3, together

with O(E), constitutes a full reach. We call it the inheritance

reach. We illustrate it in Figure 1. Note that a set S of vertices

is connected in the underlying undirected forest if and only if

there is some vertex p for which items 1 and 2 hold (it is in fact

a particular case of the Tankyevych reach); however item 3 is

not necessarily satisfied.

(a) (b)

(c) (d)

Figure 1: We consider a binary rooted tree (with the root at the top). In each

example (a,b,c,d), the marker p is indicated by a cross, S is the set of vertices

shown as filled disks, while vertices not in S are shown as hollow disks. In

(a), (p, S ) belongs to the inheritance reach; in (b,c,d) it does not, and an arrow

indicates a vertex q ∈ S that does not satisfy some rule: in (b), q is not a

descendant of p; in (c), q is a descendant of p, but its parent does not belong to

S ; in (d), q has one child in S but the other not in S .

In Proposition 18 of (Ronse, 2008), we showed that for C ⊆

P(E), C is a partial connection if and only if by adding to C all

singletons in E, we get a connection. We give here an analogous

result:

Proposition 6. A family R ⊆ E × P(E) is a reach if and only if

R∪Σ(E) is a full reach; then R∪Σ(E) is the least full reach con-

taining R. Given (γp, p ∈ E) and (γ̂p, p ∈ E) the two systems of

point openings corresponding to R and R ∪ Σ(E) respectively,

we have for any p ∈ E and X ∈ P(E):

γ̂p(X) =















{p} if p ∈ X and γp(X) = ∅ ,

γp(X) otherwise .
(5)

Proof. Suppose that R is a reach. Let X ⊆ P(E) and p ∈ E

such that (p, S ) ∈ R ∪ Σ(E) for every S ∈ X; set Y = {S ∈

X | (p, S ) ∈ R}. By the union property on R,
(

p,
⋃

Y
)

∈ R. If
⋃

Y =
⋃

X, then
(

p,
⋃

X
)

∈ R. Assume now that
⋃

Y ,
⋃

X;

thenY ⊂ X, and for any S ∈ X\Y, (p, S ) < R, so (p, S ) ∈ Σ(E),

which means that S = {p}; thus
⋃

X =
⋃

Y ∪ {p}; as
⋃

Y ,
⋃

X, p <
⋃

Y, so p < S for all S ∈ Y; by the membership

property on R, Y = ∅ orY = {∅}, so
⋃

Y = ∅; therefore
⋃

X =
⋃

Y ∪ {p} = {p} and
(

p,
⋃

X
)

= (p, {p}) ∈ Σ(E). We have

thus shown that
(

p,
⋃

X
)

∈ R ∪ Σ(E) in any case, so R ∪ Σ(E)

satisfies the union property.

Let (p, S ) ∈ R ∪ Σ(E), q ∈ S and (q,T ) ∈ R ∪ Σ(E). If

(q,T ) ∈ Σ(E), then T = {q}, and as q ∈ S , S ∪ T = S ; similarly,

if T = ∅, then S ∪ T = S ; in both cases, (p, S ∪ T ) = (p, S ) ∈

R ∪ Σ(E). Assume now that ∅ , T , {q}; then (q,T ) ∈ R, and

by the membership property on R, q ∈ T . If (p, S ) ∈ Σ(E),

then S = {p}, and as q ∈ S , p = q; now q ∈ T , so S ∪ T =

{p} ∪ T = {q} ∪ T = T , so (p, S ∪ T ) = (q,T ) ∈ R ∪ Σ(E). If

(p, S ) < Σ(E), then (p, S ) ∈ R, and as q ∈ S and (q,T ) ∈ R, we

get (p, S ∪ T ) ∈ R by the transitivity property on R. We have

thus shown that (p, S ∪ T ) ∈ R ∪ Σ(E) in any case, so R∪ Σ(E)

satisfies the transitivity property.

Let (p, S ) ∈ R ∪ Σ(E). If (p, S ) ∈ R, then S = ∅ or p ∈ S

by the membership property on R; if (p, S ) < R, then (p, S ) ∈

Σ(E), which means that S = {p}, so p ∈ S . Therefore R ∪ Σ(E)

satisfies the membership property.

Obviously R∪Σ(E) satisfies the point property. We have thus

shown that R ∪ Σ(E) is a full reach.

Conversely, suppose that R ∪ Σ(E) is a full reach. Let X ⊆

P(E) and p ∈ E such that (p, S ) ∈ R for every S ∈ X. By

the union property on R ∪ Σ(E),
(

p,
⋃

X
)

∈ R ∪ Σ(E). Thus
(

p,
⋃

X
)

∈ R or
(

p,
⋃

X
)

∈ Σ(E); in the latter case,
⋃

X =

{p}, hence {p} ∈ X and
(

p,
⋃

X
)

= (p, {p}) ∈ R. Therefore
(

p,
⋃

X
)

∈ R in any case, and R satisfies the union property.

Let (p, S ) ∈ R, q ∈ S and (q,T ) ∈ R. By the transitivity

property on R∪Σ(E), (p, S ∪T ) ∈ R∪Σ(E). Thus (p, S ∪T ) ∈

R or (p, S ∪ T ) ∈ Σ(E); in the latter case, S ∪ T = {p}; as

q ∈ S , S , ∅, so S = {p} = S ∪ T , and (p, S ∪ T ) = (p, S ) ∈

R. Therefore (p, S ∪ T ) ∈ R in any case, and R satisfies the

transitivity property.

Let (p, S ) ∈ R. By the membership property on R ∪ Σ(E),

S = ∅ or p ∈ S . Therefore R satisfies the membership property.

We have shown that R is a reach.

Every full reach containing R must also contain Σ(E), hence

R ∪ Σ(E) is the least full reach containing R.

By (2), we have for p ∈ E and X ∈ P(E):

γ̂p(X) =
⋃

{

A ⊆ X | (p, A) ∈ R ∪ Σ(E)
}

=
⋃

{

A ⊆ X | (p, A) ∈ R
}

∪
⋃

{

A ⊆ X | (p, A) ∈ Σ(E)
}

= γp(X) ∪
⋃

{

A ⊆ X | A = {p}
}

=















γp(X) if p < X ,

γp(X) ∪ {p} if p ∈ X .

Now for p ∈ X, (M′) gives either γp(X) = ∅, so γ̂p(X) = {p}, or

p ∈ γp(X), so γ̂p(X) = γp(X).

In a directed graph (V, A), Tankyevych et al. (2013) defined

the semi-connected components of a subset X of V as the γp(X),

p ∈ X; since T(V,A) is a full reach, these components are non-

empty and cover X, thanks to (P′). In a reach R that is not full,

we must eliminate the empty set from the components, as we
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did in (Ronse, 2008) for partial connections; so we consider

all non-empty γp(X), that is, the γp(X) such that p ∈ γp(X),

cf. (M′); here the γp(X), p ∈ X, do not necessarily cover X.

One could also eliminate the components that are not maximal

for inclusion: we do not consider γq(X) when γq(X) ⊂ γp(X)

(in this case we necessarily have q ∈ γp(X) by the member-

ship property); in particular if V is finite, every component is

included in a maximal component.

Several properties of connected components (in a partial con-

nection) are not satisfied by semi-connected components. The

set of all maximal γp(X) does not necessarily constitute a par-

tial partition (Ronse, 2008), nor even a hierarchy (Serra, 2011):

we can have γp(X) ∩ γq(X) , ∅ with both γp(X) * γq(X) and

γq(X) * γp(X); furthermore γp(X) ∪ γq(X) will not necessar-

ily be semi-connected. For example take V = {a, b, c, d} and

A = {(a, c), (b, c), (c, d)}; then in T(V,A) we have γa(V) = {a, c, d}

and γb(V) = {b, c, d}; they are maximal semi-connected com-

ponents, since the only greater set is V , which is not semi-

connected (there is no directed path from a to b or from b to

a); now γa(V) ∩ γb(V) , ∅, γa(V) * γb(V), γb(V) * γa(V)

and γa(V) ∪ γb(V) = V , which is not semi-connected. Other

examples are given in Perret et al. (2014).

3. Symmetry and links with connections

In a directed graph (V, A), a set S of vertices is strongly con-

nected if for any p, q ∈ S there is a directed path from p to q

and one from q to p. It is easily seen (by concatenating paths)

that the set of strongly connected subsets of V constitutes a con-

nection. In the Tankyevych reach T(V,A), a strongly connected

set S satisfies (p, S ) ∈ T(V,A) for all p ∈ S . We will take this

property as the basis for constructing a partial connection from

a reach R, the symmetrical part Sym(R).

Definition 6. In a reach R, the symmetrical part is the family

Sym(R) = {S ∈ P(E) | ∀ q ∈ S , (q, S ) ∈ R} . (6)

We say that R is symmetrical if for all (p, S ) ∈ R, S ∈ Sym(R).

Proposition 7. Let R be a reach, and let (γp, p ∈ E) be the

corresponding system of point openings. Then

Sym(R) = {S ∈ P(E) | ∀ q ∈ S , S = γq(S )} . (7)

In particular, ∅ ∈ Sym(R). Furthermore, R is symmetrical if

and only if (γp, p ∈ E) satisfies the following:

(S) For any p, q ∈ E and X ∈ P(E), q ∈ γp(X) ⇒ γq(X) ⊇

γp(X).

Proof. Let S ∈ P(E). Then S ∈ Sym(R) iff for any q ∈ S ,

(q, S ) ∈ R, which means by (3) that S ∈ Inv(γq), in other words

S = γq(S ). Hence (7) holds. The condition of (6,7) is trivially

satisfied for S = ∅, thus ∅ ∈ Sym(R).

Suppose that R is symmetrical. Let p, q ∈ E and X ∈ P(E)

such that q ∈ γp(X). By (3) we have (p, γp(X)) ∈ R. Thus

γp(X) ∈ Sym(R), so (7) gives γp(X) = γq(γp(X)); since γp, γq

are openings, we have γp(X) ⊆ X, so γq(γp(X)) ⊆ γq(X). Hence

γp(X) = γq(γp(X)) ⊆ γq(X) and (S) holds.

Suppose now that (S) holds. Let (p, S ) ∈ R; by (3) we have

S ∈ Inv(γp), that is, S = γp(S ). Now for any q ∈ S , we

have q ∈ γp(S ), so applying (S) with X = S , we get γq(S ) ⊇

γp(S ); but (T) gives γq(S ) ⊆ γp(S ), hence γq(S ) = γp(S ) = S .

Therefore S ∈ Sym(R) by (7); as this holds for all (p, S ) ∈ R,

R is symmetrical.

We get then the following generalization of strongly con-

nected sets in a directed graph:

Proposition 8. The symmetrical part of a reach is a partial

connection. The symmetrical part of a full reach is a connec-

tion.

Proof. Let R be a reach. We have ∅ ∈ Sym(R). Let X ⊆

Sym(R) with
⋂

X , ∅, and let x ∈
⋂

X. For any q ∈
⋃

X there

is some S ∈ X such that q ∈ S ; as S ∈ Sym(R), (q, S ) ∈ R.

For any T ∈ X \ {S }, as x ∈ T ∈ Sym(R), (x,T ) ∈ R; as

(q, S ) ∈ R, x ∈ S and (x,T ) ∈ R, the transitivity property

gives (q, S ∪ T ) ∈ R. Now
⋃

T∈X\{S }(S ∪ T ) =
⋃

X, hence

the union property gives
(

q,
⋃

X
)

=
(

q,
⋃

T∈X\{S }(S ∪ T )
)

∈ R.

As
(

q,
⋃

X
)

∈ R for all q ∈
⋃

X,
⋃

X ∈ Sym(R). Therefore

Sym(R) is a partial connection.

If R is full, then for any p ∈ E we have (p, {p}) ∈ R. For any

q ∈ {p}, q = p, so (q, {p}) ∈ R. Thus {p} ∈ Sym(R) and Sym(R)

is a connection.

Let us consider the symmetrical part for some examples

of reaches given in Section 2. The symmetrical part of the

Tankyevych reach T(V,A) consists of all strongly connected sub-

sets of V . Now consider a map g : E → T with a partial order

≤ on T , and define the quasi-order ⊑ on E by p ⊑ q ⇔ g(p) ≤

g(q). The symmetrical part of H⊑(E) consists of all S ⊆ E

such that g takes a constant value on S . When E is a topologi-

cal space, Sym(A⊑(E)) consists of all arc-connected S ⊆ E on

which g takes a constant value. Finally, for E = V in a graph

(V, A), Sym(A(V,⊑,A)) is the set of strongly connected S ⊆ V on

which g takes a constant value. All three are obviously connec-

tions.

Comparing (T) and (S), they differ only in the sense of the

inclusion relation between γq(X) and γp(X). Thus their con-

junction takes the following form:

(TS) For any p, q ∈ E and X ∈ P(E), q ∈ γp(X) ⇒ γq(X) =

γp(X).

Now (TS) and (M) / (M′), the axioms satisfied by the system

of point openings of a symmetrical reach, are precisely those

given for the system of point openings of a partial connection;

the supplementary axioms (P) / (P′) for a full reach are exactly

those added for a connection. We have thus a natural bijection

between symmetrical reaches and partial connections, and in

particular between symmetrical full reaches and connections:

Proposition 9. Let C ⊆ P(E) and let

R = (E×C)∩Ω(E) = {(p, S ) | p ∈ E, S ∈ C, p ∈ S or S = ∅} .
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Then C is a partial connection if and only if R is a reach (which

is thus symmetrical), and C is a connection if and only if R is a

full reach.

Proof. If R is a reach, then it is necessarily symmetrical, since

for (p, S ) ∈ R we have (q, S ) ∈ R for all q ∈ S . Also we have

C = Sym(R). Hence by Proposition 8, if R is a reach, then

C is a partial connection, and if R is a full reach, then C is a

connection.

Now suppose that C is a partial connection. Since R ⊆ Ω(E),

R satisfies the membership property.

Let X ⊆ P(E) such that (p, S ) ∈ R for every S ∈ X; so

X ⊆ C. If
⋃

X = ∅, as ∅ ∈ C, we have
(

p,
⋃

X
)

= (p, ∅) ∈ R.

Assume thus that
⋃

X , ∅ and let Y = X \ {∅}, so
⋃

Y =
⋃

X.

For S ∈ Y, as S , ∅ and (p, S ) ∈ Ω(E), we have p ∈ S ; hence

p ∈
⋂

Y; but Y ⊆ C, so
⋃

Y ∈ C. As p ∈
⋃

Y, we have
(

p,
⋃

X
)

=
(

p,
⋃

Y
)

∈ R. Hence R satisfies the union property.

Now let (p, S ) ∈ R, q ∈ S and (q,T ) ∈ R. If T = ∅, then

(p, S ∪ T ) = (p, S ) ∈ R. If T , ∅, as (q,T ) ∈ R, we get q ∈ T ;

since q ∈ S , S , ∅, and as (p, S ) ∈ R, we have p ∈ S . Since

S ,T ∈ C and q ∈ S ∩ T , we get S ∪ T ∈ C, and as p ∈ S ,

we have p ∈ S ∪ T , so (p, S ∪ T ) ∈ R. Hence R satisfies the

transitivity property. Therefore R will be a reach.

Finally, if C is a connection, then for any p ∈ E, {p} ∈ C,

thus (p, {p}) ∈ R, hence the reach R is full.

In the Tankyevych reach, we note that given (p, P), (q,Q) ∈

T(V,A) such that q ∈ P and p ∈ Q, there is in P a directed path

from p to q, and in Q a directed path from q to p, then the union

of these two paths is strongly connected. This property will not

extend to an arbitrary reach: for (p, P), (q,Q) ∈ R with q ∈ P

and p ∈ Q, it does not follow that there exists some S ∈ Sym(R)

with p, q ∈ S . For example, take E of size at least 3, choose two

distinct p, q ∈ E, and let R = O(E)∪ {(p, E), (q, E)}; then R is a

reach where (p, E), (q, E) ∈ R with p, q ∈ E, but Sym(R) = {∅}.

4. The lattice of reaches

We will analyse the inclusion order on reaches, and the com-

plete lattice structure that it induces. This will allow us to de-

scribe the reach generated by a subset of R ⊆ E × P(E). Our

approach is very similar to that of Section 2.4 in (Ronse, 2008).

Let us write ℜ(E), ℜf(E), ℜs(E) and ℜfs(E) respectively for

the set of all reaches, full reaches, symmetrical reaches and

symmetrical full reaches on E.

Theorem 10. The four setsℜ(E),ℜf(E),ℜs(E) andℜfs(E),

ordered by inclusion, are complete lattices, with Ω(E) as great-

est element, and the non-empty infimum operation is given by

the intersection. The least element of ℜ(E) and of ℜs(E) is

O(E), while the least element ofℜf(E) and ofℜfs(E) is Φ(E).

More precisely:

1. The greatest reach on E is Ω(E), it is symmetrical and

full, and its system of point openings (ωp, p ∈ E) is given

by ωp(X) = X if p ∈ X, and ωp(X) = ∅ if p < X. The

least reach on E is O(E), it is symmetrical, and its system

of point openings (op, p ∈ E) is given by op(X) = ∅ for all

p ∈ E and X ∈ P(E). The least full reach on E isΦ(E), it is

symmetrical, and its system of point openings (φp, p ∈ E)

is given by φp(X) = {p} if p ∈ X, and φp(X) = ∅ if p < X.

2. Given two reaches R and R′ on E with systems of point

openings (γp, p ∈ E) and (γ′p, p ∈ E), we have R ⊆ R′ if

and only if for every p ∈ E we have Inv(γp) ⊆ Inv(γ′p), in

other words γp ≤ γ
′
p.

3. Given a non-empty familyRi (i ∈ I, I , ∅) of reaches on E,

with corresponding systems of point openings (γi
p, p ∈ E),

then
⋂

i∈I Ri is a reach on E, its system of point openings

(γp, p ∈ E) satisfies

∀ p ∈ E, Inv(γp) =
⋂

i∈I

Inv(γi
p) ,

in other words γp is the infimum of the γi
p, i ∈ I, in the

lattice of openings on P(E). If the reaches Ri are all full,

then
⋂

i∈I Ri is also full. We have:

Sym
(
⋂

i∈I

Ri

)

=
⋂

i∈I

Sym(Ri) .

If the reaches Ri are all symmetrical, then
⋂

i∈I Ri is also

symmetrical.

Proof. 1. The union and membership properties are satis-

fied by O(E) and Ω(E). Now for the transitivity property,

the condition in Definition 2 states q ∈ S , so S , ∅; thus

the condition cannot apply in O(E), while in Ω(E) we must

have (p, S ) ∈ Ψ(E), that is p ∈ S , hence p ∈ S ∪ T , so

(p, S ∪ T ) ∈ Ψ(E) ⊆ Ω(E). Hence O(E) and Ω(E) are reaches;

as Σ(E) ⊆ Ω(E), Ω(E) is full.

For any reach R, the union property gives O(E) ⊆ R, while

the membership property gives R ⊆ Ω(E). Thus O(E) andΩ(E)

are the least and greatest reaches. By Proposition 6, the least

full reach will be O(E) ∪ Σ(E) = Φ(E). It is easily seen that

O(E), Φ(E) and Ω(E) are symmetrical, see Definition 6.

To describe the systems of point openings (op, p ∈ E) and

(ωp, p ∈ E), we apply (2): the only A ⊆ X with (p, A) ∈ O(E)

is A = ∅; now the A ⊆ X with (p, A) ∈ Ω(E) are only A = ∅

for p < X, but all A ∈ P(X) for p ∈ X. Then the expression for

(φp, p ∈ E) is derived from the one for (op, p ∈ E), thanks to

(5).

2. By (3), for any p ∈ E and S ∈ P(E), (p, S ) ∈ R ⇔ S ∈

Inv(γp) and (p, S ) ∈ R′ ⇔ S ∈ Inv(γ′p). Thus

R ⊆ R′ ⇔
[

∀ p ∈ E, Inv(γp) ⊆ Inv(γ′p)
]

.

By the isomorphism between the lattices of openings and of

families closed under union, this means that ∀ p ∈ E, γp ≤ γ
′
p.

3. It is easily checked that the union, transitivity, member-

ship and point properties are all preserved by a non-empty in-

tersection of families Ri. (NB. The membership property is not

satisfied by an empty intersection of families.) Thus
⋂

i∈I Ri is

a reach, and if the Ri are all full, then
⋂

i∈I Ri is also full.
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By (3), for any p ∈ E and S ∈ P(E),

S ∈ Inv(γp) ⇔ (p, S ) ∈
⋂

i∈I

Ri ⇔
[

∀ i ∈ I, (p, S ) ∈ Ri

]

⇔
[

∀ i ∈ I, S ∈ Inv(γi
p)
]

⇔ S ∈
⋂

i∈I

Inv(γi
p) ,

so Inv(γp) =
⋂

i∈I Inv(γi
p) for all p ∈ E.

Apply (6): for any S ∈ P(E), we have S ∈ Sym
(⋂

i∈I Ri

)

iff

∀ q ∈ S , (q, S ) ∈
⋂

i∈I Ri, iff ∀ i ∈ I, ∀ q ∈ S , (q, S ) ∈ Ri,

iff ∀ i ∈ I, S ∈ Sym(Ri), iff S ∈
⋂

i∈I Sym(Ri). Thus

Sym
(⋂

i∈I Ri

)

=
⋂

i∈I Sym(Ri). If all Ri are symmetrical, then

for (p, S ) ∈
⋂

i∈I Ri we have ∀ i ∈ I, (p, S ) ∈ Ri, and the

symmetry of Ri gives S ∈ Sym(Ri) (see Definition 6), hence

S ∈
⋂

i∈I Sym(Ri) = Sym
(⋂

i∈I Ri

)

, therefore
⋂

i∈I Ri is sym-

metrical.

Since ℜ(E), ℜf(E), ℜs(E) and ℜfs(E) are closed under

non-empty intersection and have a common greatest element

Ω(E), they constitute complete lattices.

One can consider a hierarchy of full reaches, that is, a chain

Φ(E) = R0 ⊂ · · · ⊂ Rn = Ω(E) of full reaches (Tankyevych

et al., 2013; Perret et al., 2014), with corresponding chains of

point openings φp = γ
0
p ≤ · · · ≤ γ

n
p = ωp, p ∈ E; for p ∈ X ⊆ E

we have γi
p(X) ⊆ γi+1

p (X) (i = 0, . . . , n − 1), but there can be

several q ∈ X with distinct γi+1
q (X) such that γi

p(X) ⊆ γi+1
q (X):

thus semi-connected components in a hierarchy of full reaches

do not make a rooted tree (Perret et al., 2014); this contrasts

with hierarchies of connections, where we have a rooted tree,

since γi+1
p (X) is the only connected component of X at level

i + 1 containing γi
p(X).

Given B ⊆ Ω(E), there is at least one reach containing B,

namely Ω(E). Thus the intersection of all reaches containing B

will be the least reach containing B, we call it the reach gen-

erated by B and write it Reach(B). Since every reach contains

O(E), the elements of O(E) are useless for the generation of a

reach, that is, Reach(B) = Reach(B \ O(E)). Hence we can

without loss of generality assume that B ⊆ Ψ(E).

The same can be said for full reaches, the intersection of all

full reaches containing B will be the full reach generated by B;

we will not introduce any notation for it, since by Proposition 6

it is in fact Reach(B) ∪ Σ(E).

Note that whenB ⊆ E×P(E) butB * Ω(E), there is no reach

containing B, because the membership property is not satisfied:

there is some (p, S ) ∈ B with S , ∅ and p < S .

We will now introduce the analogue of the notion of chaining

used in the generation of (partial) connections (Ronse, 1998,

2008). We call it linking; it will allow us to describe Reach(B).

Note that for S ⊆ E, Ψ(S ) = Ψ(E) ∩ (S × P(S )).

Definition 7. (See Figure 2.) Let B ⊆ Ψ(E).

1. Given two points p, q ∈ E, we say that B joins p to q if for

some n ≥ 0 there are (p0, S 0), . . . , (pn, S n) ∈ B such that

p = p0, q ∈ S n and pi ∈ S i−1 for i = 1, . . . , n.

2. Given (p, S ) ∈ Ω(E), we say that B links p to S if B ⊆

S × P(S ) (that is, B ⊆ Ψ(S )) and for every x ∈ S , B joins

p to x.

Note that trivially ∅ (subset of Ω(E)) links p to ∅ (subset of

E). It is easily seen that the property of joining is transitive: if

B joins p to q and q to r, then it joins p to r.

BB
Sp

Bb

q
p

Bb

(a) (b) (d)(c)

Figure 2: Let B⊳ ⊆ Ψ(E), where (a) for each (b, B) ∈ B⊳, B is a triangle and

b is shown as a black dot on its corner, and the two arrows pointing out of it

indicate that B is reachable from b. Then (b)B⊳ joins p to q through a sequence

of 6 elements of B⊳. Let B⊂⊃ ⊆ Ψ(E), where (c) for each (b, B) ∈ B⊂⊃, B is

a rounded rectangle. Then (d) B⊂⊃ links p to the set S (the big rectangle with

rounded corners), using 7 elements of B⊂⊃.

Proposition 11. For any B ⊆ Ψ(E), Reach(B) is the set of

all (p, S ) ∈ Ω(E) such that B ∩ (S × P(S )) = B ∩ Ψ(S ) links

p to S . In other words, for (p, S ) ∈ Ω(E), we have (p, S ) ∈

Reach(B) if and only if either S = ∅ or for any q ∈ S there

are p0, . . . , pn ∈ S and S 0, . . . , S n ∈ P(S ) (n ≥ 0) such that

(p0, S 0), . . . , (pn, S n) ∈ B, p = p0, q ∈ S n and pi ∈ S i−1 for

i = 1, . . . , n.

Proof. As B ⊆ Ψ(E), for S ∈ P(E) we have

B ∩ Ψ(S ) = B ∩ (S × P(S )) = {(q,T ) ∈ B | q ∈ S , T ⊆ S } .

LetD be the set of all (p, S ) ∈ Ω(E) such that B∩Ψ(S ) links p

to S . Let us show thatD is a reach. Let p ∈ E. As B∩Ψ(∅) = ∅

trivially links p to ∅, (p, ∅) ∈ D. Now let X ⊆ P(E) such that
⋃

X , ∅ and (p, S ) ∈ D for every S ∈ X. For any x ∈
⋃

X

there is some S ∈ X such that x ∈ S , then B ∩ Ψ(S ) links p to

S , so it joins p to x; now S ⊆
⋃

X, so B∩Ψ(S ) ⊆ B∩Ψ
(⋃

X
)

,

thus B ∩ Ψ
(⋃

X
)

joins p to any such x, so it links p to
⋃

X.

Hence (p,
⋃

X
)

∈ D, andD satisfies the union property.

Let (p, S ) ∈ D, q ∈ S and (q,T ) ∈ D; thus B ∩ Ψ(S ) links

p to S , and B ∩ Ψ(T ) links q to T . As B ∩ Ψ(S ),B ∩ Ψ(T ) ⊆

B∩Ψ(S ∪ T ), B∩Ψ(S ∪ T ) joins p to any x ∈ S and joins q to

any y ∈ T ; as B ∩Ψ(S ∪ T ) joins p to q and q to y, it joins p to

y. Therefore B ∩ Ψ(S ∪ T ) joins p to any point of S ∪ T , so it

links p to S ∪ T , and the transitivity property is satisfied.

Let (p, S ) ∈ D such that S , ∅, and take x ∈ S ; thenB∩Ψ(S )

joins p to x, thus we have (p0, S 0) ∈ B ∩Ψ(S ) with p = p0 and

either p1 ∈ S 0 (if n > 0) or x ∈ S 0 (if n = 0); so S 0 , ∅, and as

(p0, S 0) ∈ B ∩ Ψ(S ), p = p0 ∈ S 0 ⊆ S . Hence D satisfies the

membership property. ThereforeD is a reach.

For (p, S ) ∈ B, {(p, S )} joins p to every x ∈ S (take n = 0

and S 0 = S ), and {(p, S )} ⊆ B∩Ψ(S ), thus B∩Ψ(S ) links p to

S . Therefore B ⊆ D.

Let R be a reach containing B. We show that D ⊆ R.

Let (p, S ) ∈ D; thus B ∩ Ψ(S ) links p to S . If S = ∅,

then (p, S ) = (p, ∅) ∈ R by the union property; assume thus

that S , ∅. Take any x ∈ S , so B ∩ Ψ(S ) joins p to x:

there are (p0, S 0), . . . , (pn, S n) ∈ B ∩ Ψ(S ) (n ≥ 0) such that

p = p0, x ∈ S n and pi ∈ S i−1 for i = 1, . . . , n. Thus

S 0, . . . , S n ⊆ S , so S 0 ∪ · · · ∪ S n ⊆ S . By induction on

8



j = 0, . . . , n we have (p, S 0 ∪ · · · ∪ S j) ∈ R: (a) for j = 0

we have (p, S 0) = (p0, S 0) ∈ B ⊆ R; (b) if the result holds for

j, then it holds for j + 1: as (p, S 0 ∪ · · · ∪ S j) ∈ R, p j+1 ∈ S j

and (p j+1, S j+1) ∈ B ⊆ R, by the transitivity property we have

(p, S 0 ∪ · · · ∪ S j ∪ S j+1) ∈ R. Thus (p, S 0 ∪ · · · ∪ S n) ∈ R, with

x ∈ S 0 ∪ · · · ∪ S n ⊆ S . Hence for any x ∈ S there exists S x ⊆ S

such that x ∈ S x and (p, S x) ∈ R; so S =
⋃

x∈S S x and by the

union property, (p, S ) = (p,
⋃

x∈S S x) ∈ R. ThereforeD ⊆ R.

Since D is a reach containing B, and every reach containing

Bmust containD, it follows thatD is the least reach containing

B, that is, Reach(B).

For example, the inheritance reach, see Figure 1, is the full

reach Reach(B) ∪ Σ(V) generated by the set B consisting of

all pairs (p, S ), where p is a non-leaf vertex and S is the set

made of p and all its children vertices. The Tankyevych reach

T(V,A) is the full reach generated by all (p, {p, q}) for p, q ∈ V

such that (p, q) ∈ A. For a quasi-order ⊑ on V , A(V,⊑,A) is the

full reach generated by all such (p, {p, q}), (p, q) ∈ A, with the

further restriction that p ⊑ q.

Linking allows us to construct new reaches. We illustrate this

first with some new examples defined on arc-weighted directed

graphs. Let (V, A) be a simple directed graph, and assume that

a strictly positive weight function is defined on A: to every arc

(p, q) ∈ A is associated a weight w(p, q) > 0. For each vertex

p ∈ V , define the ingoing neighbourhood N−(p) and outgoing

neighbourhood N+(p):

N−(p) = {q ∈ V | (q, p) ∈ A} , N+(p) = {q ∈ V | (p, q) ∈ A} .

For every vertex p ∈ V and real number t ≥ 0, let

W(p, t) = {p} ∪ {q ∈ N+(p) | w(p, q) < t}

be the set made of p and all outgoing neighbours joined by

an arc of weight < t. Note that W(p, 0) = {p} (since all

w(p, q) > 0), and for a family of values ti ≥ 0, i ∈ I, we have

W
(

p, supi∈I ti
)

=
⋃

i∈I W(p, ti). For any t ≥ 0, let Wt be the

family of all (p,W(p, t)) for p ∈ V . We illustrate in Figure 3

Reach(Wt) for a rooted tree.

Now let D be the set of all (p, {p, q}) for p, q ∈ V , such that

(p, q) ∈ A and for every r ∈ N−(p), w(r, p) ≥ w(p, q). The

full reach Reach(D) ∪ Σ(V) generated by it will be included in

the Tankyevych reach T(V,A). Given (p, S ) ∈ Reach(D)∪ Σ(V),

every x ∈ S can be reached from p by a path whose successive

arcs have decreasing weights; this condition is necessary, but

generally not sufficient; when (V, A) is a rooted tree, the nec-

essary and sufficient condition for (p, S ) ∈ Reach(D) ∪ Σ(V)

is that S ⊆ {p} or S is the set of vertices of a subtree with

root p, such that the weights of the arcs decrease on any di-

rected path in S , and either p is the root of V , or the unique

r ∈ N−(p) (the parent vertex of p) satisfies w(r, p) ≥ w(p, q) for

all q ∈ N+(p) ∩ S (i.e., for all children nodes q of p inside S ).

Our next example considers a structuring element in a digital

space. Let E = Zn, with origin o = (0, . . . , 0), and take B ⊆ E

such that o ∈ B. We set B = {(p, Bp) | p ∈ E}, where Bp =

{b+p | b ∈ B} is the translate of B by p. In Figure 4 we compare

point openings in Reach(B) with the connected components in

the partial connection generated by the Bp, p ∈ E.
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3.3 2.7

1.4

2.7

2

1

1 1 2 1

2

3

2 3

2

2 3

2 1

1 1 2 12

3 2

2 3

2 1

2 1

3 2

2

2 1

1

2

11 2

3

3

2121

Figure 3: Top left: a rooted tree with integer edge weights. Top right: 4 sets

W(p, t) of vertices, for t = 2.2 (in blue), t = 2.5 (in green), t = 1.6 (in red) and

t = 6 (in magenta). Bottom left: the blue marker p indicated by a cross and

the reached set S of blue vertices constitute an element (p, S ) of Reach(W3.3).

Bottom right: two elements of Reach(W2.7) (in red and in green), and an

element of Reach(W1.4) (in magenta); in each the marker is crossed.

o

B

X X X

Figure 4: Let E = Z2. Left: we show the pair (o, B), with o ∈ B, then the set

X decomposed, in the partial connection generated by the translates of B, into

two connected components (in dark grey) and a residual (in light grey). Middle

and right: for several marker points p ∈ E we show (in the same colour) the

opening γp(X); for the black markers p, γp(X) = ∅. Since B is under o, the

joining process cannot move upwards.

5. Discussion and conclusion

In medical imaging, a vascular network can be represented

by a directed graph. The arcs correspond to the branches of

the network, and they are oriented according to the direction

of the blood flow; the vertices correspond to the origin of the

network, bifurcations, blood vessel terminations, or locations

of interest such as stenoses. For several arterial networks, such

as the coronary arteries originating from the aorta (Bouraoui

et al., 2010), this graph is a rooted tree, see Figure 5.

The arcs can be weighted by various measurements on the

branches (such as width, length, etc), they can also be labelled

according to the anatomical labels of the branches. For in-

stance, if the arc weight corresponds to the width of the vessel

branch, some reaches described above can be useful for select-

ing specific connected subsets of the network: Reach(Wt) ∪

Σ(V) will select those having blood vessels narrower than t,

while Reach(D) ∪ Σ(V) will select those where the width of

blood vessels decreases in the direction of blood flow.

Tankyevych et al. (2013) applied semi-connected sets (i.e.,

the Tankyevych reach) to the segmentation of vascular struc-

tures. Perret et al. (2014) applied them to the segmentation of

9



Figure 5: Left: from Bouraoui et al. (2010), segmentation of the start of the

aorta (directed upwards) and of the two coronary arteries. Right: the corre-

sponding directed graph (the thick arc denotes the aorta).

neurite and miocardium images. Other reaches could also be

applied.

A theoretical perspective is the design of new reaches.

Several works, in particular (Ouzounis and Wilkinson, 2007;

Ronse, 1998, 2008; Ronse and Serra, 2010; Serra, 1988), stud-

ied second generation connectivity, that is, methods for gener-

ating new (partial) connections from existing ones. It could be

possible to generalize such methods to the case of reaches.

In morphological image filtering, connectivity intervenes in

the design of connected operators, that is, operators that can

merge objects, but do not deform their contours (Ronse and

Serra, 2010; Salembier, 2010; Salembier and Wilkinson, 2009;

Serra et al., 2010). An important tool in the design of such oper-

ators is the operation of geodesic reconstruction. The links be-

tween connections and geodesic reconstruction have been stud-

ied in the abstract framework of complete lattices (Braga-Neto

and Goutsias, 2002; Ronse and Serra, 2001); in particular, the

latter paper axiomatized the notion of geodesic reconstruction

in a way that generalizes usual geodesic reconstructions by di-

lation or by erosion.

According to our preliminary investigations, given two sets

R, S ∈ P(E) such that R ⊆ S and a full reach R corresponding

to the system of point openings (γp, p ∈ E) satisfying (T), (M)

/ (M′) and (P) / (P′), the operation (S ,R) 7→
⋃

p∈R γp(S ) is a

geodesic reconstruction in the sense of Ronse and Serra (2001),

and the Tankyevych reach corresponds to the geodesic recon-

struction obtained by iteration of a conditional dilation on the

marker R inside the mask S . This topic, as well as the possi-

ble extension of the theory to arbitrary complete lattices, will

be studied in further papers. In particular, the oriented geode-

sic reconstruction for grey-level images, introduced by Vincent

(1998), could be analysed from a topological point of view.

We conclude. We have succeeded in establishing a theory

of oriented connected structures, thanks to the new concepts

of a reach and of a full reach. Partial connections and con-

nections arise under the special condition of symmetry. As in

the theory of connections and partial connections (Serra, 1988;

Ronse, 2008), we gave an alternate characterization in terms of

a system of point openings satisfying some properties, and we

could describe the complete lattice of reaches (and the one of

full reaches); in particular we could show how to generate a

reach from a family of pairs (p, S ) ∈ E × P(E) by a process

similar to chaining.

We indicated possible applications of our theory to the study

of vascular networks in medical imaging. Other oriented and

connected structures could be studied with our framework.
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