W Q Shen 
  
Y J Cao 
  
Z B Liu 
  
J F Shao 
  
A multiscale elastoplastic constitutive model for geomaterials with a porous matrix-inclusion microstructure

Keywords: Geomaterials, Pores and grains, Drucker-Prager, Macroscopic criterion, Multi-scale modeling

. This criterion is applied to describe the peak stresses of Callovo Oxfordian argillite obtained by the uniaxial and triaxial compression tests with different compositions and different confining pressures. Then, a complete constitutive model is established with a plastic hardening behavior and the non-associated plastic flow rule. The evolutions of the microstructure, such as the variations of the porosity and the volume fraction of inclusions with the loading process, can be fully considered by this micromechanics based model. By comparing the numerical results with the experimental data, the proposed model is able to capture the main features of the studied geomaterial with a porous matrix-inclusion microstructure.

Introduction

For heterogeneous geomaterials, porosity and volume fraction of mineral grains are two common characteristics which affect significantly their macroscopic mechanical behaviors.

According to many experimental and site observation, the composition of heterogeneous geomaterials, such as pore and mineral grains vary in space, for instance with the depth. In regard to the stability and safety of the engineering applications, it is particularly important and meaningful to study these influences by experimental methods or analytical and numerical approaches. During the last decades, many researchers have focused on the micromechanics based modellings to take into account the influence of material microstructure and also their evolutions on the macroscopic mechanics behaviors. This is the main advantage comparing with the phenomenological modellings. For example, to consider the effect of pore in porous materials, analytical yield criteria have been derived in [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: part1-yield criteria and flow rules for porous ductile media[END_REF] for a hollow sphere or cylinder with von Mises matrix in the framework of limit analysis. The effect of porosity was explicitly considered. Based on these famous works, many extensions have been done: a heuristic extension of the Gurson model [START_REF] Tvergaard | Influence of voids on shear bands instabilities under plane strain conditions[END_REF][START_REF] Tvergaard | Material failure by void growth and coalescence[END_REF] known as the GTN model which is widely used in structural computations; considering the porosity, pore shape and size effects: [START_REF] Gologanu | Approximate models for ductile metals containing non-spherical voids-cas of axisymmetric prolate ellipsoidal cavities[END_REF][START_REF] Gologanu | Approximate models for ductile metals containing nonspherical voids-cas of axisymmetric oblate ellipsoidal cavities[END_REF][START_REF] Gologanu | Recent extensions of Gurson's model for porous ductile metals[END_REF][START_REF] Pardoen | An extended model for void growth and coalescence[END_REF][START_REF] Monchiet | Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids[END_REF][START_REF] Monchiet | Macroscopic yield criteria for ductile materials containing spheroidal voids: An eshelby-like velocity fields approach[END_REF][START_REF] Keralavarma | A constitutive model for plastically anisotropic solids with non-spherical voids[END_REF][START_REF] Benzerga | Plastic potentials for anisotropic porous solids[END_REF][START_REF] Pardoen | Micromechanics-based model for trends in toughness of ductile metals[END_REF][START_REF] Monchiet | A Gurson-type model accounting for void size effects[END_REF][START_REF] Fritzen | Computational homogenization of elastoplastic porous metals[END_REF][START_REF] Brach | Nanoporous materials with a general isotropic plastic matrix: Exact limit state under isotropic loadings[END_REF]; taking into account the plastic anisotropy of matrix [START_REF] Monchiet | Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids[END_REF][START_REF] Keralavarma | A constitutive model for plastically anisotropic solids with non-spherical voids[END_REF][START_REF] Pan | Approximate yield criteria for anisotropic porous ductile sheet metals[END_REF][START_REF] Liao | Yield criteria for porous ductile sheet metals with planar anisotropy under plane stress conditions[END_REF] or tensioncompression asymmetry [START_REF] Oana | Analytic plastic potential for porous aggregates with matrix exhibiting tension-compression asymmetry[END_REF]; to consider the pressure-sensitive of geomaterials, some studies have been devoted to porous materials with a Drucker-Prager type compressible matrix [START_REF] Jeong | A new yield function and a hydrostatic stress-controlled model for porous solids with pressure-sensitive matrices[END_REF][START_REF] Guo | Continuum modeling of a porous solid with pressure sensitive dilatant matrix[END_REF][START_REF] Trillat | Limit analysis and Gurson's model[END_REF][START_REF] Maghous | Micromechanical approach to the strength properties of frictional geomaterials[END_REF][START_REF] Barthelemy | Détermination du critère de rupture macroscopique d'un milieu poreux par homogénéisation non linéaire[END_REF][START_REF] Shen | Evaluation and improvement of macroscopic yield criteria of porous media having a drucker-prager matrix[END_REF], a Green type matrix has been recently studied by [START_REF] Shen | Approximate criteria for ductile porous materials having a Green type matrix: Application to double porous media[END_REF][START_REF] Pastor | 3d-fem formulations of limit analysis methods for porous pressuresensitive materials[END_REF][START_REF] Fritzen | Computational homogenization of porous materials of Green type[END_REF][START_REF] Shen | Improved criteria for ductile porous materials having a green type matrix by using eshelby-like velocity fields[END_REF], or the Mises-Schleicher type [START_REF] Lee | Yield functions and flow rules for porous pressure-dependent strain-hardening polymeric materials[END_REF][START_REF] Durban | Plastic response ofporous solids with pressure sensitive matrix[END_REF][START_REF] Monchiet | Exact solution of a plastic hollow sphere with a mises-schleicher matrix[END_REF][START_REF] Shen | A new macroscopic criterion of porous materials with a mises-schleicher compressible matrix[END_REF][START_REF] Shen | An approximate strength criterion of porous materials with a pressure sensitive and tension-compression asymmetry matrix[END_REF]; some works focus on the double porous material with two populations of voids at different scales [START_REF] Shen | Approximate criteria for ductile porous materials having a Green type matrix: Application to double porous media[END_REF][START_REF] Vincent | Ductile damage of porous materials with two populations of voids[END_REF][START_REF] Vincent | Porous materials with two populations of voids under internal pressure: I. instantaneous constitutive relations[END_REF][START_REF] Shen | Effective strength of saturated double porous media with a drucker-prager solid phase[END_REF]. On the other hand for the influence of mineral inclusions on the overall mechanical behavior of composite, [START_REF] Maghous | Micromechanical approach to the strength properties of frictional geomaterials[END_REF][START_REF] Barthélémy | A micromechanical approach to the strength criterion of druckerprager materials reinforced by rigid inclusions[END_REF][START_REF] Dormieux | Résistance d'un composite à renforts rigides : le cas d'une matrice de drucker-prager avec règle d'écoulement plastique non associée[END_REF] obtained the macroscopic yield criteria for Drucker-Prager type matrix reinforced by rigid inclusions with associated or non-associated plastic flow rule by adopting the non-linear homogenization methods based on the modified secant method. For porous materials reinforced by inclusions whose size is much bigger than the one of pore, macroscopic yield criteria have been established with two steps of homogenization due to the well separation of pores and grains at two different scales, such as [START_REF] Garajeu | Effective properties of porous ideally plastic or viscoplastic materials containing rigid particles[END_REF] for von Mises type solid phase et [START_REF] Shen | A closed-form three scale model for ductile rocks with a plastically compressible porous matrix[END_REF][START_REF] Shen | A micro-macro model for clayey rocks with a plastic compressible porous matrix[END_REF][START_REF] He | Strength properties of a drucker-prager porous medium reinforced by rigid particles[END_REF] for Drucker-Prager type solid phase. The first upscaling is for the porous matrix with effect of pore at the microscopic scale, the second one is for the influence for grains at the mesoscopic scale. However, the exact solution can not be retrieved by these criteria for the special case of porous medium having a Drucker-Prager type matrix. This point will be improved in this work.

The purpose of this study is to propose a new macroscopic criterion for geomaterials with a porous matrix-inclusion microstructure. The size of pore is much smaller than the one of inclusion. The paper is organized as follows: based on the previous works of [START_REF] Shen | A closed-form three scale model for ductile rocks with a plastically compressible porous matrix[END_REF], a new explicit expression of the effective yield criterion is derived in section 2 to describe the elastoplastic mechanical behavior of the studied composite. It improves the predictions in the case of porous medium. In section 3, this yield criterion is applied to describe the peak stresses of Callovo-Oxfordian argillite with different compositions and different confining pressures. Then, a complete constitutive model is established in section 4 which takes into account explicitly the influence of the microstructure and their evolutions on the macroscopic mechanical behavior of the studied porous matrix-inclusion type geomaterials.

Macroscopic yield criterion for geomaterials with a porous matrix-inclusion microstructure

Problem statement

Pores and grains are two common properties of geomaterials. Normally, the mineral grains (such as quartz , calcite) increase the material strength, which is reduced quickly by the increase of volume fraction of pore. According to the experimental observations, the size of pore are usually much smaller than the one of grains, such as the geomaterial argillite.

Based on the type of microstructure, this type of material can be treated as "porous matrix -inclusion" composite as illustrated in Figure 1. In order to derive an analytical solution, the shapes of pore and inclusion are assumed to be spherical and randomly distributed. Ω denotes the total volume of the studied representative elementary volume; Ω s , Ω f and Ω i are the ones of solid phase, pore and inclusion, respectively. Based on these definitions, the volume fraction of pores at the micorscopic scale and the one of inclusions at the mesoscopic scale can be calculated respectively:

f = Ω f Ω f +Ω s , ρ = Ω i Ω = Ω i Ω f +Ω s +Ω i .

Big inclusions

Porous matrix

Small voids Solid phase Unlike the metal materials, the performance of geomaterial usually depends on the hydrostatic stress and it is pressure sensitive. There is a strength asymmetry between tension and compression. For example, the uniaxial compression strength is much higher than the uniaxial tensile strength. For this reason, the following Drucker-Prager yield criterion is adopted to describe the elastoplastic mechanical behavior of the matrix at the microscopic scale:

φ(σ) = σ eq + 3ασ m -σ 0 ≤ 0 (1) 
in which σ m = tr(σ)/3 denotes the mean stress, σ eq = (3/2)σ : σ is the equivalent stress where σ the deviatoric part of the stress tensor, σ = σσ m I and I the second-order unit tensor. α and σ 0 are material parameters, the frictional coefficient and the strength in the case of purely shear loading, respectively.

Macroscopic criterion proposed by [1]

For the studied porous geomaterial with a microstructure "porous matrix -inclusion", a macroscopic yield criterion has been derived in [START_REF] Shen | A closed-form three scale model for ductile rocks with a plastically compressible porous matrix[END_REF] based on the works of [START_REF] Maghous | Micromechanical approach to the strength properties of frictional geomaterials[END_REF] with the modified secant method. This elastoplastic yield criterion (2) takes into account explicitly and simultaneously the influences of porosity f at the microscopic scale , the volume fraction of inclusion ρ at the mesoscopic scale and the pressure-sensitive of the solid phase by adopting the local yield criterion [START_REF] Shen | A closed-form three scale model for ductile rocks with a plastically compressible porous matrix[END_REF].

Φ = Θ Σ 2 eq σ 2 0 + 9 f 4 -9α 2 Σ 2 m σ 2 0 + 6(1 -f )α Σ m σ 0 - 3 + 2 f + 3 f ρ 3 + 2 f (1 -f ) 2 = 0 (2) 
where Θ =

1+ 2 3 f +ρ( f -4α 2 ) 24α 2 -12 f -9 36α 2 -13 f -6 ρ+1
.

Based on this criterion for the composite with a "porous matrix -inclusion" microstructure, some special cases will be studied firstly:

-Special case 1: without the influence of inclusion (ρ = 0)

The macroscopic yield criterion (2) reduces to the one proposed by [START_REF] Maghous | Micromechanical approach to the strength properties of frictional geomaterials[END_REF][START_REF] Barthelemy | Détermination du critère de rupture macroscopique d'un milieu poreux par homogénéisation non linéaire[END_REF]:

1 + 2 3 f Σ 2 eq σ 2 0 + 9 f 4 -9α 2 Σ 2 m σ 2 0 + 6(1 -f )α Σ m σ 0 -(1 -f ) 2 = 0 (3) 
where the square form of the local Drucker-Prager criterion (1) can be retrieved by taking f = 0.

-Special case 2: without the influence of pore ( f = 0)

One can simplify the yield criterion (2) as follows:

1 -4ρα 2 1 + 8α 2 -3 12α 2 -2 ρ Σ 2 eq σ 2 0 -9α 2 Σ 2 m σ 2 0 + 6α Σ m σ 0 -1 = 0 (4) 
It is interesting to note that the volume fraction ρ has no influence on the value of Σ m σ 0 for a solid phase reinforced by the inclusions in the case of purely hydrostatic loading ( Σ eq σ 0 = 0). In the macroscopic criterion (2), the parameter ρ have an effect due to the presence of pore at the matrix (last item

3+2 f +3 f ρ 3+2 f (1 -f ) 2
). But this effect is very small and can almost be ignored. However, the inclusion content affects the deviatoric value Σ eq σ 0 .

-Special case 3: a pure porous material with a von Mises type matrix (α = 0, ρ = 0) This criterion (3) reduced to the one proposed by [START_REF] Castaneda | The effective mechanical properties of nonlinear isotropic composites[END_REF] without pressure sensitivity:

1 + 2 3 f Σ 2 eq σ 2 0 + 9 f 4 Σ 2 m σ 2 0 -(1 -f ) 2 = 0 (5) 
As indicated in [START_REF] Maghous | Micromechanical approach to the strength properties of frictional geomaterials[END_REF][START_REF] Shen | Evaluation and improvement of macroscopic yield criteria of porous media having a drucker-prager matrix[END_REF][START_REF] Traxl | Multi-level homogenization of strength properties of hierarchicalorganized matrix-inclusion materials[END_REF] for a porous medium, the macroscopic yield criterion (3) or

(5) overestimates the material strength. With a Drucker-Prager type matrix, the exact value of Σ m σ 0 in the case of hydrostatic loading ( Σ eq σ 0 = 0) can be analytically calculated:

Σ m σ 0 =                    1 -f 2α (2α+1) 3α
, tensile hydrostatic loading

1 -f 2α (2α-1)

3α

, compressive hydrostatic loading

(6)
The corresponding one predicted by the criterion ( 3) is

Σ m σ 0 = 2 3 (2α ± f )(1 -f ) 4α 2 -f (7) 
As illustrated in Figure 2 for the pure hydrostatic loading, the value [START_REF] Gologanu | Recent extensions of Gurson's model for porous ductile metals[END_REF] given by (3) (blue dashed line) is different from the exact one (6) (red solid line), especially in the compressive loading with high value of α and low and medium porosity f . In the tensile loading, the difference is diminished. Based on these observations, the prediction of the yield criterion (3) for the case of a porous material with a Drucker-Prager type matrix should be improved. It means that the porosity effect considered in the macroscopic criterion (2) for the porous geomaterial with a "porous matrix -inclusion" microstructure should be ameliorated, specially for the hydrostatic loading.

A heuristic macroscopic yield criterion based on criterion (2)

In order to improve the performance of the yield criterion (2) for geomaterials with a "porous matrix -inclusion" microstructure, some special conditions will be considered. As indicated in the above section, the influence of porosity f are not well predicted by (3) in the compressive loading. So, it is interesting to study firstly the case of porous material without grains (ρ = 0). Based on the exact solution of Σ m σ 0 given in ( 6) for a porous material with a Drucker-Prager type matrix in the hydrostatic loading, the performance of the macroscopic yield criterion (2) will be improved.

According to the expression of Σ m σ 0 given in ( 6), it can be rearranged as the following form:

f 2α (2α±1) = 1 -3α Σ m σ 0 (8) 
which can be expressed as:

ln f 1 -3α Σ m σ 0 = ± 1 2α ln 1 -3α Σ m σ 0 ⇒ 1 -3α Σ m σ 0 f = e -± 1 2α ln 1-3α Σm σ 0 (9) 
With the following mathematical property:

γ = e -ϑ ⇔ 2γ cosh(ϑ) -1 -γ 2 = 0 (10) 
one can easily derive:

2 f 1 -3α Σ m σ 0 cosh 1 2α ln(1 -3α Σ m σ 0 ) A -f 2 -1 -3α Σ m σ 0 2 = 0 (11) 
The Taylor's expression of the first term "A" in equation ( 11) can be calculated:

2 f 1 -3α Σ m σ 0 cosh 1 2α ln(1 -3α Σ m σ 0 ) A = 9 f 4 Σ 2 m σ 2 0 + 2 f 1 -3α Σ m σ 0 B +O Σ 4 m σ 4 0 (12) 
Based on this observation, the yield criterion (3) can be arranged as follows with

Σ eq σ 0 = 0: 9 f 4 Σ 2 m σ 2 0 + 2 f 1 -3α Σ m σ 0 B -1 -3α Σ m σ 0 2 -f 2 = 0 (13) 
The term "B" in equation ( 13) depends on the porosity f . Its expression is the same as the one in equation [START_REF] Benzerga | Plastic potentials for anisotropic porous solids[END_REF]. Based on this observation, one can find that the difference between the exact solution ( 6) and the one [START_REF] Gologanu | Recent extensions of Gurson's model for porous ductile metals[END_REF] proposed criterion (3) in the pure hydrostatic loading is due to the omission of the higher order term O(). In order to overcome this default, the omitted term should be taken into account.

Then, it is interesting to rearrange the macroscopic yield criterion (2) for geomaterials with a "porous matrix -inclusion" microstructure as follows:

Φ = Θ Σ 2 eq σ 2 0 + 9 f 4 Σ 2 m σ 2 0 + 2 f 1 -3α Σ m σ 0 B -1 -3α Σ m σ 0 2 -f 2 -(1 -f ) 2 f ρ 1 + 2 3 f = 0 (14) 
The same term "B" as the one in equation ( 13) and ( 12) is found. It depends only on porosity f and the frictional parameter α and is independent of the volume fraction of inclusion ρ. Comparing with the expression of ( 11), ( 12) and ( 14), the term "B" in the criterion ( 14) will be replaced by the one "A" in equation [START_REF] Benzerga | Plastic potentials for anisotropic porous solids[END_REF] in order to take into account the omitted higher order term. Finally, the searched macroscopic yield criterion for the studied geomaterials with a "porous matrix -inclusion" microstructure can be expressed as follows:

Φ = Θ Σ 2 eq σ 2 0 +2 f 1 -3α Σ m σ 0 cosh 1 2α ln(1 -3α Σ m σ 0 ) -1 -3α Σ m σ 0 2 -f 2 -(1-f ) 2 f ρ 1 + 2 3 f = 0 (15)
It is worth to study some special cases of the obtained macroscopic yield criterion [START_REF] Fritzen | Computational homogenization of elastoplastic porous metals[END_REF].

When ρ = 0, this criterion reduces to the following one for elastoplastic behaviors of porous material with a Drucker-Prager type matrix:

1 + 2 3 f Σ 2 eq σ 2 0 + 2 f 1 -3α Σ m σ 0 cosh 1 2α ln(1 -3α Σ m σ 0 ) -1 -3α Σ m σ 0 2 -f 2 = 0 (16) 
The exact solutions of tension and compression [START_REF] Gologanu | Approximate models for ductile metals containing nonspherical voids-cas of axisymmetric oblate ellipsoidal cavities[END_REF] in the pure hydrostatic loading is retrieved by the yield criterion [START_REF] Brach | Nanoporous materials with a general isotropic plastic matrix: Exact limit state under isotropic loadings[END_REF], which improves fundamentally the one (3). When α → 0 for porous materials with an incompressible von Mises type matrix, the yield criterion ( 16) can be simplified as:

1 + 2 3 f Σ 2 eq σ 2 0 + 2 f cosh 3 2 Σ m σ 0 -1 -f 2 = 0 (17)
2.4. Comparisons between the macroscopic criteria (2) and [START_REF] Fritzen | Computational homogenization of elastoplastic porous metals[END_REF] In this section, the mechanical performances predicted by the macroscopic yield criterion

(2) proposed in [START_REF] Shen | A closed-form three scale model for ductile rocks with a plastically compressible porous matrix[END_REF] and the new one [START_REF] Fritzen | Computational homogenization of elastoplastic porous metals[END_REF] derived in this work will be fully compared. As illustrated in Figure 3, the influences of the volume fraction of inclusions ρ at the mesoscopic scale, the matrix porosity f and the frictional parameter α of the solid phase at the microscopic scale on the macroscopic mechanical behavior are investigated. With the increase of porosity, one can see from Figure 3(a) that the resistance of the studied material decreases very quickly. In the case of tensile loading, the mechanical behavior predicted by the new criterion (15) (solid line) is very similar to the one given by criterion (2) (dashed line). But for the case of compressive loading, the strength predicted by [START_REF] Fritzen | Computational homogenization of elastoplastic porous metals[END_REF] are much smaller, specially for the case of pure hydrostatic loading. As shown in Figure 3 

Comparisons between the macroscopic criterion (15) and experimental data

In the nuclear waste storage investigation, the layer of Callovo-Oxfordian argillite has been chosen as a possible geological disposal of radioactive wastes in France. Based on the experimental observations [START_REF] Chiarelli | Experimental Investigation and Constitutive Modeling of Coupled Elastoplastic Damage in Hard Claystones[END_REF][START_REF] Robinet | Mineralogie, porosite et diffusion des solutes dans l'argilite du Callovo-Oxfordien de Bure (Meuse/Haute-Marne, France) de l'echelle centimetrique a micrometrique[END_REF], the porosity of the argillite is mainly located in the clay matrix and varies from 11.04 to 13.84%. The typical mineralogical compositions are: 40 to 50% of clay matrix, 20 to 27% of calcite, 23 to 25% of quartz, 5 to 10% of minor minerals.

As the pores are totally embedded in the clay matrix, the porosity of the clay matrix is then equal to the overall porosity divided by the volume fraction of the clay matrix. The typical average value is taken here: f = 25%. The elastic properties of calcite and quartz grains are E 1 = 95GPa, v 1 = 0.27 and E 2 = 101GPa, v 2 = 0.06, respectively. Comparing with the ones of clay matrix E 0 = 3 GPa, v 0 = 0.3, the grains of calcite and quartz can be treated as rigid inclusions. The studied argillite is simplified as a composite having a "porous matrixinclusion" microstructure, as illustrated in Figure 1. The new macroscopic yield criterion [START_REF] Fritzen | Computational homogenization of elastoplastic porous metals[END_REF] will be adopted to describe the overall behavior of the argillite. The experimental data carried out in [START_REF] Chiarelli | Experimental Investigation and Constitutive Modeling of Coupled Elastoplastic Damage in Hard Claystones[END_REF] will be investigated. The mineralogical compositions vary with the depth. Three groups of samples have been prepared at different depths: 451.4 -466.8 m, 468.9 -469.1 m and 482.2 -482.4 m. Different uniaxial and triaxial compressive tests have Concerning the elastoplastic behavior of the solid phase, another expression of Drucker-Prager criterion is also widely used:

φ(σ) = σ d + T (σ m -c 0 ) ≤ 0 (18) 
In this section, this form will be adopted for the complete constitutive model. Then, the corresponding macroscopic yield criterion (15) can be rewritten as:

Φ = Θ Σ 2 eq c 2 0 + 2 f 1 - Σ m c 0 cosh        3 2T 2 ln(1 - Σ m c 0 )        -1 - Σ m c 0 2 -f 2 -(1 -f ) 2 f ρ 1 + 2 3 f = 0 (19) in which Θ = 1+2 f /3 T 2 2 3 + 4 9 ρ 3 f 2T 2 -1 4T 2 -12 f -9 6T 2 -13 f -6 ρ + 1 .
The criterion [START_REF] Oana | Analytic plastic potential for porous aggregates with matrix exhibiting tension-compression asymmetry[END_REF] will be adopted here to describe these mechanical behaviors of the studied argillite. With the variation of depths, the composition of the argillite will change.

These variations can be taken into account explicitly by the yield criterion [START_REF] Oana | Analytic plastic potential for porous aggregates with matrix exhibiting tension-compression asymmetry[END_REF]. However, the same mechanical properties of the solid phase will be adopted for all tests: T = 0.88, c 0 = 14.5MPa, with f = 0.25. The comparisons between yield surfaces predicted by new criterions (19) (solid line) and experimental data (points) [START_REF] Chiarelli | Experimental Investigation and Constitutive Modeling of Coupled Elastoplastic Damage in Hard Claystones[END_REF][START_REF] Chiarelli | Modeling of elastoplastic damage behavior of a claystone[END_REF] are shown in Figure 4 with different compositions and different confining pressures: 0 MPa (Figure 4 and experimental data (points) with different confining pressures: 0, 5, 10, 20 MPa.

A complete constitutive model for geomaterials with a porous matrix-inclusion microstructure

Based on the new macroscopic yield criterion [START_REF] Oana | Analytic plastic potential for porous aggregates with matrix exhibiting tension-compression asymmetry[END_REF] which takes into account explicitly the influence of matrix porosity f at the microscopic scale and the effect of inclusion ρ at the mesoscopic scale, a complete constitutive modeling will be established in this section.

By considering the macroscopic plastic potential for plastic flow rule, plastic hardening and also the evolutions of volume fractions of pores and inclusions, it will be used to describe the macroscopic mechanical behavior of geomaterials with a porous matrix-inclusion microstructure.

Construction of a complete constitutive model

Elastic behavior of the studied composite

The microstructure and its evolution have influences on the elastic mechanical behavior of the composite. In order to take into account the effects of matrix porosity, solid phase dilatation and the volume fraction of inclusion, a two-step homogenization procedure will be adopted. Due to the studied microstructure, the first homogenization is for the influences of the porosity f and the elastic properties (κ s , µ s ) of the solid phase at the microscopic scale. The Mori-Tanaka homogenization scheme [START_REF] Mori | Average stress in a matrix and average elastic energy of materials with misfitting inclusions[END_REF] is used to determine the effective elastic properties (κ pm , µ pm ) of the porous matrix:

κ pm = 4(1 -f )κ s µ s 4µ s + 3 f κ s ; µ pm = (1 -f )µ s 1 + 6 f κ s + 2µ s 9κ s + 8µ s (20) 
Based on [START_REF] Jeong | A new yield function and a hydrostatic stress-controlled model for porous solids with pressure-sensitive matrices[END_REF], the effect of big inclusion on the macroscopic elastic behavior (κ hom , µ hom ) is considered in the second upscaling:

κ hom = (1-ρ)κ pm 3κ pm +4µ pm + ρκ i 3κ i +4µ pm (1-ρ) 3κ pm +4µ pm + ρ 3κ i +4µ pm ; µ hom = (1-ρ)µ pm µ pm (9κ pm +8µ pm )+6µ pm (κ pm +2µ pm ) + ρµ i µ pm (9κ pm +8µ pm )+6µ i (κ pm +2µ pm ) (1-ρ)
µ pm (9κ pm +8µ pm )+6µ pm (κ pm +2µ pm ) + ρ µ pm (9κ pm +8µ pm )+6µ i (κ pm +2µ pm ) [START_REF] Guo | Continuum modeling of a porous solid with pressure sensitive dilatant matrix[END_REF] in which κ i , µ i are bulk and shear modulus of the inclusion.

Plastic behavior of the studied composite

The plastic behavior of the studied composite will be described by the macroscopic yield criterion [START_REF] Oana | Analytic plastic potential for porous aggregates with matrix exhibiting tension-compression asymmetry[END_REF] derived in this work. For most geomaterials, a plastic hardening phenomena can be observed in the experiment due to the plastic deformations generated during the loading. Based on the works of [START_REF] Shen | A closed-form three scale model for ductile rocks with a plastically compressible porous matrix[END_REF][START_REF] Shen | A micro-macro model for clayey rocks with a plastic compressible porous matrix[END_REF], the plastic hardening of the solid matrix at the microscopic scale is taken into account via the evolution of the frictional coefficient T as a function of the equivalent plastic strain ε p . Denoting T 0 the initial threshold and T m the asymptotic value of the frictional coefficient, the following exponential form is adopted for the hardening law:

T = T m -(T m -T 0 )e -b 1 ε p (22)
Then, the macroscopic yield criterion can be rewritten as:

Φ = ΘΣ 2 eq c 2 0 + 2 f 1 - Σ m c 0 cosh        3 2 T 2 ln(1 - Σ m c 0 )        -1 - Σ m c 0 2 -f 2 -(1 -f ) 2 f ρ 1 + 2 3 f = 0 (23) in which Θ = 1+2 f /3 T 2 2 3 + 4 9 ρ 3 f 2 T 2 -1 4 T 2 -12 f -9 6 T 2 -13 f -6 ρ + 1 .
The non associated flow rule is one of the main characteristic of geomaterials. Inspired by the work of [START_REF] Maghous | Micromechanical approach to the strength properties of frictional geomaterials[END_REF], a macroscopic plastic potential is proposed in the following form:

G = 1+2 f /3 T t 2 3 + 4 9 ρ 3 f 2 T t -1 4 T t-12 f -9 6 T t-13 f -6 ρ + 1 Σ 2 eq c 2 0 + 3 f 2 T t -1 Σ 2 m + 2(1 -f )c 0 Σ m (24) 
in which t is the dilatancy coefficient which controls the transition between volumetric contractance and dilatancy under deviatoric loading. As the rate of volumetric dilatancy generally varies with plastic deformation history, it is assumed that t is a function of the plastic hardening variable:

t = t m -(t m -t 0 )e -b 2 ε p ( 25 
)
where t 0 , t m and b 2 are used to describe the transition between volumetric contractance and dilatancy.

Generally, the non associated plastic flow rule is given by:

D p = λ ∂G ∂Σ (Σ, f, T , t) (26) 
where D p denotes the macroscopic plastic strain rate and λ the plastic multiplier.

According to the energy condition initially introduced by [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: part1-yield criteria and flow rules for porous ductile media[END_REF]:

Σ : D p = Ω -1 Ω s σ : d dΩ = Ω -1 Ω s εp tc 0 dΩ (27) 
the equivalent plastic strain rate of the solid matrix can be calculated:

εp = Σ : D p (1 -f )(1 -ρ) T c 0 + ( t -T ) Σ m 1-f (28) 
The variations of the porosity and of the volume fraction of inclusion can be determined from the kinematical compatibility as follows:

ḟ = 1-f 1-ρ trD p -1 Ω s +Ω f Ω s trd p dΩ = 1-f 1-ρ trD p -(1 -f ) t εp ρ = -ρtrD p (29) 

Application to the COx argillite

The complete constitutive model presented in the above section then is implemented in the finite element software Abaqus with a user subroutine and applied to describe the macroscopic mechanical behavior of COx argillite, considering the influence of the inclusions at the mesoscale scale, the matrix porosity and the dilatation of the solid phase at the microscopic scale and also their evolutions.

Identification of the model parameters

According to the experimental observations, the elastic properties of calcite and quartz grains are (Table 1). The obtained values are shown in Table 2:

E 1 = 95GPa, v 1 = 0.

Solid phase Inclusion

Elastic: E s = 5GPa, v s = 0.33

E i = 98GPa, v i = 0. 15 
Plastic: T 0 = 0.1, T m = 0.88, b 1 = 200, t 0 = -1.1, t m = 0.35, b 2 = 150, c 0 = 14.5MPa
Table 2: Elastic and plastic model parameters for COx argillite. 

Experimental validation

In order to fully assess the proposed constitutive model, a series of uniaxial and triaxial compression simulations with 0, 5, 10 and 20 MPa confining pressures are carried out for samples at different depth. As illustrated in Figure 7 to 9, the main features of the composite, such as the transition from contractancy to dilatancy, the effect of confining pressure and the influence of inclusion can be captured by the proposed model. Generally, a good agreement is found between the numerical simulations and experimental data. The evolutions of the porosity f and the volume fraction of inclusion ρ for the triaxial compression tests at depth 482.2 m are shown in Figure 10. According to the evolution law [START_REF] Shen | Improved criteria for ductile porous materials having a green type matrix by using eshelby-like velocity fields[END_REF], the variation of porosity ḟ depends on the macroscopic deformation of the composite and the one of the solid phase, while the variation of ρ depends only on the macroscopic deformation.

Taking the triaxial compressive test with 10 MPa as an example, the macroscopic volumetric deformation is in compressive state at the beginning of loading. The volume of inclusion Ω i is not changed at the mesoscopic scale. Then, the volume fraction of inclusion ρ increases and the porosity f decreases as the black lines shown in Figure 10(a) and 10(b). With the process of loading, there is a volumetric transition from contractancy to dilatancy of the composite. In this moment, the actual ρ will reduce due to the increasing volume of porous matrix at the mesoscopic scale. However, the porosity f still decreases because of the dila-tant of the solid phase at the microscopic scale. One finds that the total variations of f and ρ are small. With the same composition, the confining pressure increases the macroscopic volumetric contractancy and influences the microstructure evolution. These have been taken into account automatically by the proposed constitutive model. 

Conclusions

In the present work, the effective mechanical behaviors of geomaterial with a pressuresensitive solid phase and pore at the microscopic scale and bigger inclusions at the mesoscopic scale is investigated. A new macroscopic yield criterion is derived for the studied porousmatrix-inclusion type composite. This criterion improves the existing ones, specially for the case of porous medium with a Drucker-Prager type matrix. By considering the influences of mineral inclusions and the matrix porosity, the proposed yield criterion is able to describe the peak stresses of the Callovo-Oxfordian argillite with different compositions and different loading pathes. Then, a complete constitutive model is established which takes into account the influence of microstructure and its evolution. By comparing with the experimental data, the main features of the studied porous matrix-inclusion type geomaterials can be captured by the proposed model, such as the transition from contractancy to dilatancy, the influence of porosity and volume fraction of inclusion, as well as the effect of confining pressure.
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 1 Figure 1: Representative volume element of the studied geomaterial

( a )

 a Effects of porosity f , α = 0.2 (b) Effects of frictinal parameter α, f = 0.2

Figure 2 :

 2 Figure 2: Comparisons between the values of Σ m σ 0 predicted by (3) (blue dashed line) and the exact solution (6) (red solid line) as functions of f and α, respectively.

  Figure 3(c) by considering the frictional parameter α. With small value of α, the compressive mechanical behavior is similar to the tensile one, for example α = 0.05. The dissymmetry between tension and compression increases with the increasing of α. Figure 3(d) shows the values of Σ mσ 0 as functions of f and α in the case of pure hydrostatic compressive loading without the inclusion effects (ρ = 0). As indicated in the above section, the new criterion (15) (blue surface) retrieves the exact solution given by (6), which improves fundamentally the value given by (2) (red surface).

  (a) Effects of matrix porosity f (b) Effects of inclusion content ρ (c) Effects of frictional parameter α (d) Evolution of Σ m σ 0 with hydrostatic loading (ρ = 0): blue surface-(15), red one-(2)

Figure 3 :

 3 Figure 3: Comparisons between the yield surfaces predicted by the criteria (2) (dashed line) and (15) (solid line) with different f , ρ and α.

Figure 4 :

 4 Figure 4: Comparisons between yield surfaces predicted by new criterion (19) (solid line)

27 and E 2 =

 2 101GPa, v 2 = 0.06, respectively. Comparing with the ones of clay matrix E 0 = 3 GPa, v 0 = 0.3, the grains of calcite and quartz can be treated as rigid inclusions. Based on the average matrix porosity, the elastic properties of the solid phase at the microscopic scale can be calculated by adopting the inverse procedure of the first homogenization[START_REF] Jeong | A new yield function and a hydrostatic stress-controlled model for porous solids with pressure-sensitive matrices[END_REF]. One gets E s = 5GPa, v s = 0.33 for the solid phase. The plastic parameters are determined by the following procedure: the parameters are first identified by numerical fitting of stress-strain curves obtained from the hydrostatic compression test performed on a given mineralogical composition (see Figure5, ρ = 0.45, f = 0.25). The corresponding evolutions of the porosity and the volume fraction of inclusion are illustrated in Figure6. Then the obtained parameters are validated through the simulations of other tests performed on different mineralogical compositions, and different confining pressures

Figure 5 :

 5 Figure 5: Comparisons between numerical simulations (solid line) and experimental data (points) with the hydrostatic loading on a sample at depth 469.1 m, ρ = 0.45

Figure 6 :

 6 Figure 6: Evolutions of porosity f and volume fraction of inclusion ρ as a function of axial deformation with the hydrostatic loading on a sample at depth 469.1 m, ρ = 0.45.

  451.4m: ρ = 0.53

Figure 7 :

 7 Figure 7: Depth 1 : Comparisons between numerical simulations (solid line) and experimental data (points) with different confining pressures: 0, 5, 10, 20 MPa.

  468.9m: ρ = 0.66

Figure 8 :

 8 Figure 8: Depth 2 : Comparisons between numerical simulations (solid line) and experimental data (points) with different confining pressures: 0, 5, 10, 20 MPa.
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  482.3m: ρ = 0.55

Figure 9 :

 9 Figure 9: Depth 3 : Comparisons between numerical simulations (15) (solid line) and experimental data (points) with different confining pressures: 0, 5, 10, 20 MPa.

  Evolution of volume fraction of inclusion

Figure 10 :

 10 Figure 10: Evolutions of porosity f and volume fraction of inclusion ρ as a function of axial deformation with different confining pressures on samples at depth 482.2 m.

MPa √ √ √Table 1: Compressive tests at different depths with different confining pressures.
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