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Abstract

This paper investigates the time-local discretization, using Gaussian quadrature, of a class of diffusive
operators that includes fractional operators, for application in fractional differential equations and related
eigenvalue problems. A discretization based on the Gauss-Legendre quadrature rule is analyzed both theoret-
ically and numerically. Numerical comparisons with both optimization-based and quadrature-based methods
highlight its applicability. In addition, it is shown, on the example of a fractional delay differential equation,
that quadrature-based discretization methods are spectrally correct, i.e. that they yield an unpolluted and
convergent approximation of the essential spectrum linked to the fractional derivative, by contrast with
optimization-based methods that can yield polluted spectra whose convergence is difficult to assess.
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1 Introduction
The broad focus of this article is the discretization of fractional operators using their so-called diffusive repre-
sentation, for application in time-domain computations or eigenvalue problems.

The diffusive representation of fractional operators enables to recast them into an observer of an infinite-
dimensional ODE: the long memory of the operator is reflected in the infinite dimension of the corresponding
state space. Convolution operators that admit such a representation, known as diffusive operators, have a
locally integrable completely monotone kernel. See [1, 2] for definitions of fractional operators, [3, 4] for an
introduction to the class of diffusive operators, [5] for examples of diffusive operators, and [6, 7] for a semigroup
formulation of the state-space representation in the context of Volterra equations.

Provided that the diffusive representation is suitably discretized, it constitutes a time-local alternative to,
for instance, fractional linear multistep methods [8] or methods based on the Grünwald-Letnikov approximation
[9]. Existing discretization methods for the diffusive representation can be split into two categories: methods
that rely on an optimization (hereinafter “optimization-based” methods) and purely analytical methods based
on known quadrature rules (hereinafter “quadrature-based” methods). Note that methods based on discrete
diffusive representations are also known as “non-classical” methods [10, 11].

In [12], which deals with a fractional monodimensional wave equation, the fractional integral is split into
two parts, namely a local and a historical one: while the former is approximated ad hoc, a Gauss-Legendre
quadrature rule is employed for the later, see [13] for an analysis. Another approach consists in directly using
a quadrature rule, without any split. To get back to a finite interval, one can either truncate the semi-infinite
integration domain [14] or use a change of variable [15, 10, 11].
In [14], Gauss-Legendre and Curtis-Clenshaw quadrature rules are used on a truncated domain. A method
proposed in [15], based on a Gauss-Laguerre quadrature rule with a change of variable, has been widely inves-
tigated and led to the definitions of methods based instead on the Gauss-Jacobi quadrature rule [10, 11], see
[11] for a comparison that favors [11, Eq. (23)].

Optimization-based methods have also received scrutiny and enjoyed a wide range of applications, notably in
wave propagation problems. A method based on a linear least squares optimization where the pole distribution

1Corresponding author.
E-mail: florian.monteghetti@onera.fr, denis.matignon@isae.fr, estelle.piot@onera.fr

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.apnum.2018.12.003
mailto:mailto:florian.monteghetti@onera.fr
mailto:mailto:denis.matignon@isae.fr
mailto:mailto:estelle.piot@onera.fr


2 Florian Monteghetti et al. / Applied Numerical Mathematics (2020)

is chosen a priori has been introduced in [16] for the identification of a lead acid battery impedance model using
time-domain measurements. Further refinements have been proposed in [5], with application to a wide range of
diffusive operators, and in [17], where a nonlinear least squares is compared with the method proposed in [11],
mentioned above.

The objective of this paper is to investigate the discretization of diffusive representations using Gaussian
quadrature, for application in the numerical solution of fractional differential equations as well as related eigen-
value problems. Inspired by classical works on numerical integration [18, 19], a family of discretization methods
that rely on the Gauss-Legendre quadrature rule is introduced and analyzed both theoretically and numerically.
The analysis enables to pin down the most suitable method for applications. In particular, it emphasizes that the
method must be tailored to the kernel at hand, by contrast with a one-size-fits-all approach. Numerical compar-
isons with existing discretization methods, both optimization and quadrature based, shed light on the practical
interest of the proposed method. Additionally, it is shown on a numerical example that quadrature-based dis-
cretization methods are spectrally correct, i.e. that they yield an unpolluted and convergent approximation of
the essential spectrum (linked to the fractional derivative), by contrast with optimization-based methods.

This paper is organized as follows. Section 2 recalls elementary facts about diffusive representations and
introduces the proposedQβ,N discretization method, where β is a scalar parameter to be suitably chosen andN is
the number of quadrature nodes. Section 3 presents an analysis of the method in the case of fractional operators,
which highlights the dependency of β upon the order of the fractional operator. Numerical applications and
comparisons are gathered in Section 4, where the Qβ,N method is compared against two existing methods,
one optimization-based and one quadrature-based. Section 5 investigates the use of a nonlinear least squares
minimization to refine the poles and weights given by the Qβ,N method.

2 Definition of the proposed quadrature-based discretization method
The purpose of this section is to introduce the proposed Qβ,N discretization method, where β is a scalar
parameter to be suitably chosen and N is the number of quadrature nodes. After some background on diffusive
representations in Section 2.1, the method is defined in Section 2.2, namely in Definition 4.

2.1 Diffusive representation
In this paper, we consider the discretization of so-called diffusive kernels, expressed as

h(t) :=

ˆ ∞
0

e−ξtH(t)µ(ξ) dξ (t ∈ R), (1)

where H is the Heaviside or unit step function (H(t) = 1 for t > 0, null elsewhere) and µ ∈ C((0,∞)) is the
diffusive weight. By definition, diffusive kernels are locally integrable on [0,∞), i.e. h ∈ L1

loc([0,∞)), so that
the diffusive weight satisfies ˆ ∞

0

µ(ξ)

1 + ξ
dξ <∞.

Note that, in general, h is not integrable over (0,∞). This class of kernels is physically linked to non-propagating
diffusion phenomena, encountered in viscoelasticity [6, 7, 20], electromagnetics [21], and acoustics [22] [23,
Chap. 2]. See [3, 5, 4, 17] and references therein for further background on diffusive representations and their
applications. By defining the Laplace transform as

ĥ(s) :=

ˆ ∞
0

h(t)e−st ds (<(s) > 0),

the identity (1) reads

ĥ(s) =

ˆ ∞
0

µ(ξ)

s+ ξ
dξ.

Remark 1. As defined herein, a diffusive kernel is a locally integrable completely monotone kernel on (0,∞). A
diffusive kernel h is integrable on (0,∞) if and only if [24, Thm. 5.2.5]

ˆ ∞
0

µ(ξ)

ξ
dξ <∞,

which is not the case for the kernels considered in this paper, see the three examples below.
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Remark 2 (Terminology). In this paper, we use the following terminology: the diffusive representation of h is
the identity (1), while the function µ is called the diffusive weight. This slightly differs from [3] where µ is called
the diffusive representation of h. The quantity µ is also known under other names such as spectral function [21]
or relaxation spectrum [20].

The computational interest of diffusive kernels is that, formally, the convolution operator u 7→ h ? u admits
the following infinite-dimensional time-local realization

∂tϕ(t, ξ) = −ξϕ(t, ξ) + u(t), ϕ(0, ξ) = 0 (ξ ∈ (0,∞)),

h ? u(t) =

ˆ ∞
0

ϕ(t, ξ)µ(ξ) dξ,
(2)

where u is a causal input. A functional framework for this realization has been proposed in [6, 7]. Let us now
list three examples of diffusive operators covered by the discretization method introduced in Section 2.2.

1. The Riemann-Liouville fractional integral, defined as [1, § 2.3] [25]

Iαu := Yα ? u,

where
α ∈ (0, 1)

and the fractional kernel is
Yα(t) :=

H(t)

Γ(α) t1−α
, Ŷα(s) =

1

sα
. (3)

The associated diffusive weight is

µα(ξ) :=
sin(απ)

πξα
. (4)

2. Another diffusive kernel is the zeroth-order Bessel function of the first kind [26, § 3.3]

J0(t)H(t) = +eit
ˆ ∞

0

µ1/2(ξ)√
−ξ + 2i

e−ξt dξ + e−it
ˆ ∞

0

µ1/2(ξ)√
−ξ − 2i

e−ξt dξ (5)

= +2<
[
eit
ˆ ∞

0

µ1/2(ξ)√
−ξ + 2i

e−ξt dξ
]
,

where µ1/2 is given by (4) and i is the unit imaginary number.

3. The fractional Caputo derivative, defined as [27] [2, § 2.4.1] [25]

dαu := I1−αu̇, (6)

where u̇ is the strong derivative. It formally admits the infinite-dimensional time-domain realization
(contrast with (2)) 

∂tϕ(t, ξ) = −ξϕ(t, ξ) + u(t), ϕ(0, ξ) =
u(0)

ξ
(ξ ∈ (0,∞)),

dαu(t) =

ˆ ∞
0

(−ξϕ(t, ξ) + u(t))µ(ξ) dξ,
(7)

where u is a sufficiently regular causal input. If u(0) = 0, then dαu matches the Riemann-Liouville
fractional derivative.

These three convolution operators can be discretized using the Qβ,N method, introduced in Section 2.2 below.
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2.2 Discretization method
The causal kernel h given by (1) is discretized using N first-order kernels as

h(t) ' hnum(t) :=

N∑
n=1

µne
−ξntH(t) (t ∈ R). (8)

In the Laplace domain, this reads

ĥ(s) ' ĥnum(s) =

N∑
n=1

µn
s+ ξn

(<(s) > 0).

In this work, we seek to find an expression for (ξn, µn) that applies at least to the kernels listed in Section 2.1,
whose diffusive weights µ are monotone on (0,∞) with a singularity at ξ = 0, which leads to the following
assumption.

Assumption 3. The diffusive weight µ ∈ C((0,∞)) has a power-law singularity at ξ = 0, i.e.

µ(ξ) = O
(

1

ξα

)
, (9)

with α ∈ (0, 1).

Following classical works on numerical quadrature [18, Chap. 3] [19, § 5.6], the following two methods could
be envisaged to deal with a singular integral like (1).

1. Consider µ as a weight function and define either a new set of Gauss nodes (if possible) or a new product
quadrature rule with equidistant nodes [19, § 5.6].

2. Recover a continuous integrand using a change of variables. For example, for this integral, MATLAB R©

integral function uses the change of variable ξ =
(

v
1−v

)2

, see [28, § 4.2].

To simplify the implementation, we choose the second method, i.e. we seek a suitable change of variables

Ψ : (−1, 1)→ (0,∞), Ψ(−1) = 0, Ψ(1) =∞,

so that the right-hand side of the identity

h(t) =

ˆ 1

−1

µ (Ψ(v)) e−Ψ(v)t Ψ̇(v) dv (10)

can be accurately discretized using the Gauss-Legendre quadrature rule (vn, wn), thus yielding

ξn := Ψ(vn), µn := wnΨ̇(vn)µ(ξn), (11)

where Ψ̇ denotes the derivative of Ψ. Given the singularity condition (9), a natural choice is [18, § 3.1] [19,
§ 5.6]

Ψβ(v) :=

(
1 + v

1− v

) 1
β

, β > 0. (12)

This change of variables results from the composition of v 7→ 1+v
1−v , which maps (−1, 1) to (0,∞), and the power

law v 7→ v
1
β . Using Ψβ , the representation (10) reads

h(t) =
2

β

ˆ 1

−1

e−t(
1+v
1−v )

1
β

(1− v)−1− 1
β (1 + v)

1
β−1

µ

((
1 + v

1− v

) 1
β

)
dv, (13)

which leads to the definition of the Qβ,N discretization method given below.

Definition 4. The Qβ,N discretization of (1) is (8) with

ξn :=

(
1 + vn
1− vn

) 1
β

, µn := wn
2

β
(1 + vn)

1
β−1

(1− vn)
−1− 1

β µ (ξn) , (14)

where (vn, wn) is the Gauss-Legendre quadrature rule [19, § 5.3].
Intuitively, one may expect the best value for β to be dependent on properties of the diffusive weight µ, such

as the value of α in (9). Section 3 investigates this for the case of fractional operators.
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3 Analysis for fractional operators
The purpose of this section is to show that, for the fractional kernel (3), the best practical value for β is given
by (22). The theoretical analysis is presented in Section 3.1 and examples of approximation errors are provided
in Section 3.2.

3.1 Theoretical analysis
Let us recall the following standard theorem.

Theorem 5 (Convergence rate). Let (vn, wn) be the Gauss-Legendre quadrature rule and p a nonnegative
integer. If f ∈ Cp([−1, 1]), then

lim
N→∞

Np

∣∣∣∣∣
ˆ 1

−1

f(v) dv −
N∑
n=1

wnf(vn)

∣∣∣∣∣ = 0.

In particular, if f ∈ C∞([−1, 1]) then spectral convergence is achieved.

Proof. Since f is at least continuous on [−1, 1], we have the estimate [19, Thm. 5.4]∣∣∣∣∣
ˆ 1

−1

f(v) dv −
N∑
n=1

wnf(vn)

∣∣∣∣∣ ≤ 4 inf
deg q≤2N−1

‖f − q‖L∞([−1,1]).

The conclusion follows from a polynomial approximation result [29, Thm. I.VIII].
Given the above result, to find the optimal value for β in the Qβ,N discretization, it is sufficient to study the

regularity of the integrand in (13). Let us now focus on the fractional kernel (3), which is the simplest kernel
that satisfies (9). A first convergence result is summarized in the proposition below.

Proposition 6. Let β > 0, N ∈ N∗, and Yα,num be the Qβ,N discretization of Yα with α ∈ (0, 1). If

β ≤ 1− α, (15)

then Yα,num(t)→ Yα(t) as N →∞ for any t > 0. If, additionally,

1

β
∈ N,

α

β
∈ N, (16)

then |Yα(t)− Yα,num(t)| =
k→∞

O
(
n−k

)
for every positive integer k and t > 0.

Proof. The diffusive representation (13) of the fractional kernel (3) reads

Yα(t) =

ˆ 1

−1

Φβ(t, v) dv, (17)

with
Φβ(t, v) :=

2 sin(απ)

πβ
e−t(

1+v
1−v )

1
β

(1− v)−1+α−1
β (1 + v)−1+ 1−α

β .

Since Φβ(t, ·) ∈ C∞((−1, 1)), the only task is to investigate the singularities at −1 and 1. There is no singularity

at v = 1 as long as t > 0, since x 7→ e
−t(1+ 2

x )
1
β

x
1+ 1−α

β

is infinitely differentiable at 0+, without assumption on α

and β. Since v 7→ e−t(
1+v
1−v )

1
β has a limit as v → −1+, the integrand Φβ(t, ·) is continuous if and only if (15)

holds. Furthermore, Φβ(t, ·) ∈ C∞([−1, 1]) if and only if (15) and (16) hold. The conclusion then follows from
Theorem 5.

From Proposition 6, a convergence result on ‖Yα−Ỹα‖L1(ε,T ) for any ε > 0 and T > ε can be readily deduced,
although this is not sufficient for time-domain computations. Indeed, for an input u ∈ L2(0, T ) ∩ L∞(0, T ), we
have the straightforward estimate

|h ? u(T )|
‖u‖L∞(0,T )

≤ ‖h‖L1(0,T ), (18)

which justifies an interest in approximating the L1 norm of h. This requires an additional constraint on β, see
Proposition 7.
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Proposition 7. Let β > 0, N ∈ N∗, and Yα,num be the Qβ,N discretization of Yα with α ∈ (0, 1). If both (15)
and

β ≤ α (19)

hold, then limN→∞ ‖Yα,num‖L1(0,T ) = ‖Yα‖L1(0,T ) for any T > 0. If, additionally, (16) holds, then this conver-
gence is spectral.

Proof. Let T > 0. Since α ∈ (0, 1), we have Φβ ∈ L1((0, T )× (−1, 1)). The Fubini theorem yields

‖Yα‖L1(0,T ) =

ˆ 1

−1

Θβ(T, v) dv, (20)

where
Θβ(T, v) =

2 sin(απ)

πβ

[
1− e−T( 1+v

1−v )
1
β

]
(1− v)−1+α

β (1 + v)−1−αβ .

It is sufficient to investigate the regularity of Θβ(T, ·) at v = ±1. Θβ(T, ·) is continuous at 1 if and only if (19)
holds. Expanding around v = −1 yields[

1− e−t(
1+v
1−v )

1
β

]
(1 + v)−1−αβ = t(1 + v)

1−α
β −1(1− v)−

1
β + · · · ,

hence continuity at −1 is achieved if and only if (15) holds. If, additionally, (16) is assumed, then Θβ(T, ·) ∈
C∞([−1, 1]).

Remark 8. Proposition 7 states convergence of the L1 norm, but not convergence in the L1 norm, i.e.
limN→∞ ‖Yα − Yα,num‖L1(0,T ) = 0 (which implies convergence of the L1 norm). This proposition can therefore
be deemed insufficient in view of the estimate (18); however, it gives a second constraint on β, namely (19),
which is practically useful.
Remark 9 (Frequency domain). A similar study in the frequency domain reaches the same conclusion. For any
s 6= 0 with <(s) ≥ 0, we have

Ŷα(s) =
2

β

sin(απ)

π

ˆ 1

−1

(1− v)
α
β−1 (1 + v)

1−α
β −1

s(1− v)
1
β + (1 + v)

1
β

dv,

and the integrand is continuous on [−1, 1] if and only if (15,19) hold. If, furthermore, (16) holds, then the
integrand is infinitely smooth and we have spectral convergence for∣∣∣∣∣Ŷα(s)−

N∑
n=1

µn
s+ ξn

∣∣∣∣∣ .
For any ωm > 0, we readily deduce that ‖iωŶα(iω) − iω

∑N
n=1

µn
iω+ξn

‖L2(−ωm,ωm) has the same convergence
properties.

Practical choice of β

Based on the above results, the following rules can be followed to choose β in practice.

1. If α ∈ (0, 1) ∩Q such that α = n0

n1
with ni ∈ N∗, then

β1 :=
1

n1
(21)

satisfies the condition (15), (16), and (19) so that the Qβ1,N method yields a spectrally convergent ap-
proximation. This value is also suited for α ∈ (0, 1) ∩ (R\Q) with α ' n0

n1
.

2. The conditions (15) and (19) suggest using a larger value of β, namely

β2 := min(α, 1− α), (22)

which yields at least a convergent approximation from Propositions 6 and 7. Section 3.2 below shows that
β2 is the most interesting choice for moderate values of N .
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3.2 Numerical illustrations
To investigate numerically the influence of β on the convergence of the Qβ,N method, we define three errors.
The first one is in the frequency domain

ε∞,ωm :=

∥∥∥∥∥1− ĥnum

ĥ
(iω)

∥∥∥∥∥
L∞(−ωm,ωm)

, (23)

with ωm > 0 a given angular frequency. The second and third ones are in the time domain, namely

εT :=

∣∣∣∣1− hnum

h

∣∣∣∣ (T ), ε1,T :=

∣∣‖h‖L1(0,T ) − ‖hnum‖L1(0,T )

∣∣
‖h‖L1(0,T )

, (24)

with T > 0. From now on, we set
ωm = T = 104, (25)

so that we consider broadband approximations of the kernel h. We first consider h = Yα, covered by the results
of Section 3.1, with four values of α and then conclude with h = J0. Computations are done with double
precision floating point.

The case h = Yα with α = 5
8 ' 0.62 ≥ 1

2 is shown in Figure 1. The choice β1 = 1
8 achieves spectral

convergence, with saturation at double precision, as expected from Section 3.1. The value β2 = 1− α does not
converge spectrally, but it provides a better approximation for moderate values of N . The value

β3 := max(α, 1− α),

which does not satisfy (15), is the least interesting option. The sensitivity of the errors obtained with β = β2 is
highlighted by the curves corresponding to β = 0.99×β2 and β = 1.01×β2, which are significantly worse in the
time domain. These error plots highlight that the time-domain norms do add information: here, the sensitivity
to β2 cannot be seen in the frequency domain for instance, while it is the opposite for other values of α covered
below.

The upper right plot of Figure 1 gives the maximum pole

ξmax := max
n

ξn. (26)

This quantity is especially important when using an explicit scheme to advance the realization (2) in time, since
the time step typically scales as O(ξ−1

max). The plot shows that

ξmax = O(N
2
β ).

Given that the higher ξmax, the more costly the time integration, one may expect that a higher value of ξmax

systematically yields a more accurate discretization. However, this need not be the case: although this is indeed
verified for β1, β2, and β3, the values 0.99× β2 and 1.01× β2 have a value of ξmax similar to β = β2, but give
significantly worse approximations.

Figure 2 plots the error graphs for α = 1
2 . Here, the values β1, β2, and β3 are identical so that the Qβ,N

discretization enjoys spectral convergence, with double precision on εT reached for around 100 variables. The
sensitivity to a change in β around β2 can be seen in both frequency-domain and time-domain errors: although
the values of ξmax remain close, the approximations are significantly worse for 0.99× β2 and 1.01× β2.

The conclusions for α = 2
7 ' 0.28 ≤ 1

2 , shown in Figure 3, are identical to α = 5
8 . The only difference is

that the sensitivity to β2 is only seen in the frequency-domain norm ε∞,ωm . Figure 4 shows the errors obtained
for α =

√
2−1√

2
' 0.29, a value close to 2

7 but irrational. The main difference is the error obtained for β = β1,
which is less accurate in the frequency domain compared to α = 2

7 . However, the hierarchy between the Qβ,N
methods is identical, and the other errors are similar. The choices β = 1

41 (justified by α ' 12
41 ) and β = 1

3
(justified by α ' 1

3 ), not shown here, deliver poorer results. Overall, Figure 4 illustrates that the irrationality
of α is not a major concern in practice.

In summary, Figures 1 – 4 show that, for moderate values of N , the Qβ,N method with β = β2 delivers
satisfactory convergence results for any α ∈ (0, 1), rational or irrational. In addition, the fact that β2 ≥ β1

implies that the Qβ2,N method yields a lower maximum pole (26) than Qβ1,N , which is of particular interest
for time-domain simulations. These two properties implies that the choice β = β2 is satisfactory in practice.
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Figure 1: Errors (23,24,25) and maximum pole (26) for h = Yα with α = 5
8 . ( ) Qβ,N with β = β1 = 1

8 .
( ) Qβ,N with β = β2. ( ) Qβ,N with β = β2 × 0.99. ( ) Qβ,N with β = β2 × 1.01. ( ) Qβ,N with
β = β3.
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Figure 2: Errors (23,24,25) and maximum pole (26) for h = Yα with α = 1
2 . ( ) Qβ,N with β = 1

2 . ( )
Qβ,N with β = β2 × 0.99. ( ) Qβ,N with β = β2 × 1.01.
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Figure 3: Errors (23,24,25) and maximum pole (26) for h = Yα with α = 2
7 . ( ) Qβ,N with β = β1 = 1

7 .
( ) Qβ,N with β = β2. ( ) Qβ,N with β = β2 × 0.99. ( ) Qβ,N with β = β2 × 1.01. ( ) Qβ,N with
β = β3.

1 10 100
10−16

10−12

10−8

10−4

1

500
N

ε∞,ωm

1 10 100
1

1010

1020

1030

1040

500
N

ξmax

1 10 100
10−16

10−12

10−8

10−4

1

500
N

εT

1 10 100
10−16

10−12

10−8

10−4

1

500
N

ε1,T

Figure 4: Errors (23,24,25) and maximum pole (26) for h = Yα with α =
√

2−1√
2

. ( ) Qβ,N with β = β1 = 1
7 .

( ) Qβ,N with β = β2. ( ) Qβ,N with β = β2 × 0.99. ( ) Qβ,N with β = β2 × 1.01. ( ) Qβ,N with
β = β3.



10 Florian Monteghetti et al. / Applied Numerical Mathematics (2020)

1 10 100
10−16

10−12

10−8

10−4

1

500
N

ε∞,ωm

1 10 100
1

104

108

1012

500
N

ξmax

1 10 100
10−16

10−12

10−8

10−4

1

500
N

εT

1 10 100
10−16

10−12

10−8

10−4

1

500
N

ε1,T

Figure 5: Errors (23,24,25) and maximum pole (26) for h = J0. ( ) Qβ,N with β = 1
2 . ( ) Qβ,N with

β = β2 × 0.99. ( ) Qβ,N with β = β2 × 1.01.

Figure 5 gives the errors obtained in approximating the Bessel function J0, whose diffusive representation
is given by (5): the results are similar to that shown in Figure 2 for the fractional kernel of order 1/2, since the
diffusive weights of both kernels have a similar behavior.

The computational merits of the Qβ,N -method with β = β2 are further investigated in Section 4, where
numerical applications are gathered.

4 Numerical applications and comparisons
The purpose of this section is to investigate the computational properties of the Qβ,N method as well as compare
them to those of two existing methods: one quadrature-based, recalled in Section 4.1, and one optimization-
based, recalled in Section 4.2. The comparison is carried out in the other three sections: Section 4.3 gathers
approximation errors, Section 4.4 focuses on the simulation of a fractional differential equation, and Section 4.5
investigates spectral correctness, which turns out to be an important feature of the Qβ,N method, and, more
generally, of quadrature-based methods.

4.1 Birk-Song quadrature method
After reviewing existing methods, notably [15] and [10], Birk and Song proposed the change of variable ξ = Ψβ(v)
with β = 1

4 . However, they propose to use a Gauss-Jacobi quadrature rule instead of a Gauss-Legendre one
(thereby introducing a singularity at v = −1 in the integrand), which leads to the discrete representation [11,
Eq. (23)]

ξn :=

(
1− ṽn
1 + ṽn

)4

, µn := 8
sin(απ)

π

w̃n
(1 + ṽn)4

, (27)

where (ṽn, w̃n) is the Gauss-Jacobi quadrature rule for the weight function v 7→ (1− v)2α+1(1 + v)−(2α−1) with
α := 1− 2α. (Beware that, in [11, Eq. (23)], “α” denotes the order of the Caputo derivative, whereas herein, α
is the order of the fractional integral.)

4.2 Optimization method
We briefly recall here the optimization method defined in [5, § 4.3], which consists in a least squares optimization.
The main challenge of such an optimization is that ĥnum is nonlinear with respect to the poles (ξn)n, which
furthermore have a wide variation since theoretically ξ ∈ (0,∞). To avoid this computational difficulty the
method proceeds as follows.

1. The three input parameters, namely N ∈ J2,∞J, ξmin > 0, and ξmax > ξmin are chosen.
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2. The N poles ξn are logarithmically spaced in [ξmin, ξmax]:

ξn = ξmin

(
ξmax

ξmin

) n−1
N−1

(n ∈ J1, NK).

3. Let A :=
[
(iωk + ξn)−1

]
k,n
∈ CK×N and b :=

[
ĥ(iωk)

]
k
∈ CK , where the K angular frequencies ωk are

also logarithmically spaced in [ξmin, ξmax] . The N weights µn are computed with a linear least squares
minimization of

J(µ) := ‖Cµ− d‖22 =

K∑
k=1

∣∣∣∣∣
N∑
n=1

µn
iωk + ξn

− ĥ(iωk)

∣∣∣∣∣
2

, (28)

where C and d are given by

C :=

[
<(A)
=(A)

]
∈ R2K×N , d :=

[
<(b)
=(b)

]
∈ R2K .

Provided that 2K > N the problem is overdetermined and can be directly solved by a pseudo-inverse.
The reality of the weights µn is enforced through the definition of C and d, which separates real and
imaginary parts. However, note that the sign of each µn is unconstrained.

This technique is particularly suited for time-domain simulations, where ξmax is naturally known (from e.g. the
minimum acceptable time step or the maximum frequency of interest in wave propagation problems); it can also
handle more complex representations that involve additional poles. For a given N and ξmax, there is usually
an optimal range for the lower bound ξmin, which governs the long-time behavior of hnum, which must not be
chosen too small. For the diffusive kernels considered herein, a logarithmic spacing of the poles ξn is satisfactory
(a linear spacing yields poorer results). In all the applications presented in this section, we set

K = 104. (29)

Remark 10. There is an inherent difficulty when comparing the above optimization method with the Qβ,N
method, since both do not have the same number of parameters: 1 for the Qβ,N method (namely the number of
quadrature nodes N , since β has been chosen to be β2 following the analysis of Section 3), 3 for the optimization
method (namely N and the minimum and maximum poles ξmin and ξmax). In all the results presented below,
the parameters ξmin and ξmax of the optimization method have been empirically chosen to yield the best results.

4.3 Approximation errors
In the spirit of Section 3.2, here are gathered comparisons of the approximation errors.

Comparison with the Birk-Song method A comparison between the Qβ,N method and the Birk-Song
method (27) is shown in Figure 6 for α = 5

8 and Figure 7 for α = 1
2 .

Let us first consider the case α = 5
8 . The behavior of ε∞,ωm highlights the accuracy of the Birk-Song method

in the frequency domain, where it outperforms the three Qβ,N methods, the closest being the one corresponding
to β = 1

4 for N ≤ 70, as one may expect from the change of variable that defines the Birk-Song method. A
similar trend is seen in the time domain, although there the closest Qβ,N method for N ≤ 70 is that obtained
with β = β2. All the methods are closer for α = 1

2 , at least in the time domain, and the method Qβ,N with
β = 1

4 has almost identical convergence properties to that of the Birk-Song method.
As already mentioned when comparing the various Qβ,N methods in Section 3.2, the graphs of ε∞,ωm , εT ,

and ε1,T alone are not sufficient to compare discretization methods: one must take into account the value of
ξmax, shown in the top right plot of Figures 6 and 7. These plots show that for the Birk-Song method we have
ξmax = O(N

2
β ) with β = 1

4 , i.e. ξmax = O(N8), which implies significantly larger values that the Qβ2,N method
recommended from the analysis of Section 3.2. The impact of these large values of ξmax is of concern when
using explicit time-marching scheme, see Section 4.4.
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Figure 6: Errors (23,24,25) and maximum pole (26) for h = Yα with α = 5
8 . ( ) Qβ,N with β = β1 = 1

8 .
( ) Qβ,N with β = β2. ( ) Birk-Song method (27). ( ) Qβ,N with β = 1

4 .
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Figure 7: Errors (23,24,25) and maximum pole (26) for h = Yα with α = 1
2 . ( ) Qβ,N with β = 1

2 . ( )
Birk-Song method (27). ( ) Qβ,N with β = 1

4 .
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Figure 8: Errors (23,24,25) and maximum pole (26) for h = Yα with α = 1
2 . ( ) Qβ,N with β = β2.

Optimization with ξmax = 104: ( ) ξmin = 10−16, ( ) ξmin = 10−14, ( ) ξmin = 10−10, ( ) ξmin =
10−6.
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Figure 9: Errors (23,24,25) and maximum pole (26) for h = Yα with α = 5
8 . ( ) Qβ,N with β = β2.

Optimization with ξmax = 104: ( ) ξmin = 10−16, ( ) ξmin = 10−14, ( ) ξmin = 10−10, ( ) ξmin =
10−6.

Comparison with the optimization method The errors for α = 1
2 and α = 5

8 are plotted in Figures 8 and
9, respectively. Given the results of Section 3, only the Qβ,N method with β = β2 is considered. For the (three-
parameter) optimization method, we choose ξmax = ωm = 104 and plot the errors for various values of ξmin: the
result shows that the optimal value of ξmin does strongly depend upon N , so that ξmin is not straightforward to
choose a priori. However, provided that the value of ξmin is well-chosen, the optimization method can outperform
the Qβ2,N method on a range of N , which justifies its popularity in large-scale applications where the value
of N is critical. Note that, by contrast with Section 3.2, the comparison is restricted to N ∈ J1, 50K, since
outside of this interval, the maximum pole ξmax of the Qβ2,N method is significantly larger than 104 so that the
comparison would not be fair. In summary, here, the main advantage of the Qβ2,N -method is that it has just
one parameter.

To refine the computed poles and weights, one may consider the use of a nonlinear least squares minimization
by adding the following fourth step to the three-step optimization method described in Section 4.2:

4. Compute N new weights (µn)n and poles (ξn)n with a nonlinear least squares minimization of the right-
hand side of (28), starting from the poles chosen in step 2 and the weights obtained in step 3, with the
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following linear constraints
µn ≥ 0, ξn ≥ 0, ξn ≤ ξmax (n ∈ N).

Figure 10 shows the approximation errors obtained using the trust-region algorithm implemented in MATLAB R©

lsqnonlin. Both the convergence speed of the nonlinear optimization stage and the quality of the end result
strongly depend upon the initial poles distribution, which makes this method unpractical (for example, the case
ξmin = 10−14 is difficult to converge while ξmin = 10−16 is almost instantaneous.). Furthermore, the approxima-
tion error graphs show that it is unsatisfactory, so that it is not worth considering in practice. In fact, nonlinear
optimization is best used in combination with quadrature rules: this is investigated in Section 5. This nonlinear
four-stage optimization method is not further considered in the remaining of this section: “optimization method”
will denote the three-step method described in Section 4.2.

1 2 3 4 5 10 20
10−4

10−3

10−2

10−1

1

N

ε∞,ωm

1 2 3 4 5 10 20
1

102

104

106

N

ξmax

1 2 3 4 5 10 20
10−8

10−6

10−4

10−2

1

N

εT

1 2 3 4 5 10 20
10−8

10−6

10−4

10−2

1

N

ε1,T

Figure 10: Errors (23,24,25) and maximum pole (26) for h = Yα with α = 1
2 . ( ) Qβ,N with β = β2.

Four-stage optimization with ξmax = 104: ( ) ξmin = 10−16, ( ) ξmin = 10−14, ( ) ξmin = 10−10. (Same
parameters as Figure 8.)

4.4 Fractional differential equation
Let us consider the following scalar fractional differential equation

ẏ(t) = ay(t)− g d
1
2 y(t), y(0) = y0 (t > 0), (30)

where ẏ is the strong derivative and d
1
2 is the Caputo derivative defined in (6). The exact solution of (30) can

be expressed using the Mittag-Leffler function Eα,β as [25, Ex. 1.6]

ye(t) :=
y0

λ1 − λ2

[
λ1E1/2,1

(
λ2

√
t
)
− λ2E1/2,1

(
λ1

√
t
)]
, (31)

where λ1 and λ2 are the roots of s 7→ s2 + gs− a. The left plot of Figure 11 shows the exact solution on [0, tf ]
with tf = 100, y0 = 1, and for both g = 0 (i.e. standard ODE) and g = 1 to highlight the effect of the fractional
derivative. To accurately evaluate ye, we rely on the algorithm proposed in [30].

Comparison with the optimization method We seek to compute numerical solutions of (30) with a
relative accuracy of, say, 6%. With the Qβ,N method, the sole parameter of which is N , this accuracy target
is attained for any N ≥ 6, so that we set N = 6 for the optimization method as well. The corresponding
numerical solutions are shown in Figure 11, which also plots the relative error for other values of ξmin and
ξmax. Time-integration is performed using a fourth-order eight-stage explicit Runge-Kutta method, namely the
RKF84 from [31, Tab. A.9], with a timestep of ∆t = 9 × 10−3, which is the maximum stable time step for all
methods. As expected from Section 3.2, both methods yield similar results.
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Figure 11: FDE (30) for y0 = 1 and g = 1. Numerical solutions computed with RKF84, ∆t = 9 × 10−3, and
N = 6. ( ) Q

β,N
with β = β2 (ξmin = 1.221× 10−3, ξmax = 8.189× 102). ( ) Optimization (ξmin = 10−3,

ξmax = 102). ( ) Optimization (ξmin = 10−4, ξmax = 102). (Left only) ( ) Exact solution (31), ( )
Exact solution for g = 0.

Comparison with the Birk-Song method For the time step ∆t = 9× 10−3, used in Figure 11, the Birk-
Song method (27) yields a stable result only for N ≤ 2. For instance, for N = 3, the stability timestep is found
to be ∆tmax = 2.37× 10−3, which is a significant reduction. This can be explained by the large values of ξmax,
already highlighted in Section 4.3. This timestep reduction could be balanced by an accuracy increase. To
investigate this, Figure 12 plots a comparison between the Birk-Song and Qβ2,N

methods at a timestep well-
below the stability limit, namely ∆t = 10−3 for N = 3. On this example, the Qβ,N method is more accurate,
in addition to having a larger stability limit.
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Figure 12: FDE (30) for y0 = 1 and g = 1. Numerical solutions computed with RKF84, ∆t = 10−3 and
N = 3. ( ) Q

β,N
with β = β2 (ξmin = 1.613 × 10−2, ξmax = 6.198 × 101). ( ) Birk-Song method (27)

(ξmin = 3.139× 10−4, ξmax = 3.185× 103). (Left only) ( ) Exact solution (31).

4.5 Eigenvalue approach to stability
To conclude this section on numerical applications, let us consider a case where the Qβ,N and optimization
methods have radically different properties. We are interested in studying the stability of the solution of the
following vector-valued fractional delay differential equation

ẋ(t) = Ax(t) +Bx(t− τ)− g I2 d1−αx(t), (32)

with
A =

1

2

[
−3 1
1 −3

]
, B =

1

4

[
1 1
1 1

]
, I2 =

[
1 0
0 1

]
, τ = 10, α =

5

8
. (33)

The matrices A and B are chosen so that (32) is asymptotically stable for any g ≥ 0, τ ≥ 0, and α ∈ (0, 1) [32,
Thm. 7].

To study the stability of (32), we recast it into an abstract Cauchy problem

dX
dt

(t) = AX(t), X(0) ∈ H, X :=

 x
ψ
ϕ

 ∈ H, (34)
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which is known as an eigenvalue approach. The definition of A is obtained by using the diffusive representation
of d1−α and rewriting the time-delay term as an observer of a transport equation on the bounded interval (−τ, 0)
[33, § VI.6] [34, § 2.4] [35, Chap. 2], which leads to

AX :=

 Ax+Bψ(−τ)− g I2
´∞

0
[−ξϕ(ξ) + x] µα(ξ)dξ

dψ
dθ

−ξϕ(ξ) + x

 ,

with state-space H and domain D(A) given by

H := C2 × L2(−τ, 0;C2)× L2
ξµα(ξ)(0,∞;C2),

D(A) :=

{
(x, ψ, ϕ) ∈ H

∣∣∣∣∣ψ ∈ H
1(−τ, 0;C2)

− ξϕ(ξ) + x ∈ L2
(1+ξ)µα(ξ)(0,∞;C2)

}
,

where the weighted L2 spaces L2
ξµα(ξ) and L2

(1+ξ)µα(ξ) are defined as

L2
f (0,∞) :=

{
ϕ : (0,∞)→ C measurable

∣∣∣∣ ˆ ∞
0

|ϕ(ξ)|2f(ξ) dξ <∞
}
,

with f(ξ) = ξµα(ξ) and f(ξ) = (1 + ξ)µα(ξ), respectively. For additional background on this semigroup
formulation, see [36, 37].

Remark 11 (Motivation). The equation (32) is a toy model meant to check the suitability of a given discretiza-
tion method for stability studies, thus validating its use for equations that do not enjoy theoretical results.
Practical stability studies consist in computing stability regions, see e.g. [35] for delay equations. When using
an eigenvalue approach, it is of paramount importance that the spectrum of A be accurately approximated,
something which is less of concern with time-domain simulations.

The stability of the fractional delay differential equation (32) follows from properties of the spectrum of A.
Theoretically, the spectrum of A consists of two distinct parts: (a) isolated eigenvalues with finite algebraic
multiplicity; (b) an essential spectrum on (−∞, 0) if g 6= 0. This essential spectrum implies that

S(A) := sup
λ∈σ(A)

<(λ) = 0,

so that (32) cannot be exponentially stable, but is indeed asymptotically stable.
Let us chose g = 2 and try to recover this stability result numerically, by computing the spectrum of Ah,

a finite-dimensional approximation of A, which requires to discretize both the time-delay and the fractional
derivative.

The monodimensional transport equation on (−τ, 0) can be discretized using any numerical scheme suited
to the transport equation. Herein, we use a discontinuous Galerkin finite element method [38], whose spectral
properties are well-known [39], on 1 element with Np nodes (i.e. a polynomial of degree Np − 1). For the large
value Np = 80, the spectrum is satisfactory in the region of interest, so that any witnessed spectral pollution
stems from the approximation of the fractional derivative.

The fractional derivative is approximated with N variables ϕn, so that the matrix Ah is square with (2 +
Np+N) lines. Figures 13 and 14 plot the spectra obtained using both the Qβ,N and the optimization methods.
In both cases, the structure of the spectrum is consistent with the theory; there are however major differences
between the two methods.

Since the Qβ,N method has one parameter, it is straightforward to assess convergence. In the region of
interest, the spectrum is converged for N ≥ 11, see Figure 13. The right plot of Figure 13 shows that the
essential spectrum is only made of real eigenvalues. Moreover, we have the most important property that

S(Ah) := max
λh∈σp(Ah)

<(λh)

is negative for all values of N . Hence, the stability result is verified numerically.
Let us now turn to the optimization method described in Section 4.2 . Let us set ξmax = 104 so that the

two remaining free parameters are N and the lower bound ξmin. Figure 14 plots the spectra obtained using
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Figure 13: Spectrum σ(Ah) for (32,33) obtained with the Qβ,N method with β = β2. Transport equation
discretized with Np = 80 nodes. ( ) N = 400 (S(Ah) = −8.12× 10−11). ( ) N = 200 (S(Ah) = −1.29× 10−9).
( ) N = 11 (S(Ah) = −1.00× 10−4).
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Figure 14: Spectrum σ(Ah) for (32,33) obtained with the optimization method with ξmax = 104. Transport
equation discretized with Np = 80 nodes. N = 400 with ( ) ξmin = 10−15 (S(Ah) = +3.5 × 1012); ( )
ξmin = 10−10 (S(Ah) = −7.1× 10−11). N = 20 with ( ) ξmin = 10−15 (S(Ah) = +2× 10−15); ( ) ξmin = 10−10

(S(Ah) = −10−12).

two values for N and ξmin, namely small ones (N = 20 and ξmin = 10−15) and large ones (N = 400 and
ξmin = 10−10). The left plot shows that the structure of the spectrum is apparently identical to that obtained
with the Qβ,N method, with a reasonably converged point spectrum. However, the zoom given in the right
plot shows that the essential spectrum is polluted. Significantly for a stability study, the spectrum can become
slightly unstable, see the positive value of S(Ah) for ξmin = 10−15: although S(Ah) remains close to zero, its
sign depends on the choice of ξmin and N . This implies that the optimization method is not suited to compute
the spectrum of A in this example.

The Birk-Song method (27) also enjoys spectral accuracy, see Figure 15. At N = 11, the spectrum is well-
converged and the essential spectrum is both non-polluted and stable. This suggests the conjecture that spectral
correctness is exhibited by every quadrature-based methods, so that they should be preferred to optimization-
based ones for any application where a correct spectrum is needed.
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Figure 15: Spectrum σ(Ah) for (32,33) obtained with two quadrature methods with N = 11. Transport equation
discretized with Np = 80 nodes. ( ) Qβ,N method with β = β2. (S(Ah) = −10−4). ( ) Birk-Song method (27)
(S(Ah) = −3.5× 10−8).

−0.3 −0.2 −0.1 0 0.1

−4

−2

0

2

4

<(λh)

=
(λ
h
)

−8 −6 −4 −2 0

·10−3

−1

−0.5

0

0.5

1

<(λh)

Figure 16: Spectrum σ(Ah) for (35,33) obtained with the Qβ,N method with β = β2 and N = 400. Transport
equation discretized with Np = 80 nodes. ( ) τ0 = 0 (S(Ah) = −6× 10−10). ( ) τ0 = 2τ (S(Ah) = 6.3× 10−2).

Let us conclude this section with two additional examples.

Application to Bessel function As recalled in Section 2.1, diffusive representations need not be restricted
to fractional operators. Let us consider a more complex equation than (32), for instance the memory delay
equation

ẋ(t) = Ax(t) +Bx(t− τ)− g I2 J0 ? x (t− τ0), (35)

where τ0 ≥ 0 and A, B, g, and τ are given by (33). Similarly to (32), the diffusive representation of J0 given
by (5) enables to formulate an abstract Cauchy problem (34). However, since the weight µ is complex-valued,
the asymptotic stability of (35) cannot be established using the energy method followed in [32, Thm. 7] for
(32). Hence the need for a numerical stability study. Figure 16 plots the discrete spectrum obtained with the
Qβ,N method for two values of τ0, namely τ0 = 0 and τ0 = 2τ . The spectrum exhibits two straight lines that
start from −i and +i, which are the cuts chosen to extend the Laplace transform Ĵ0 to the left half-plane. This
discretization enables us to conclude that the case τ0 = 0 is asymptotically stable while the case τ0 = 2τ is
unstable.

Constrained optimization The pollution of the essential spectrum visible in the right plot of Figure 14
can be linked to the unconstrained nature of the linear least squares optimization described in Section 4.2.
More specifically, it is caused by the negativity of some weights µn (which is not necessarily a practical concern
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Figure 17: Spectrum σ(Ah) for (32,33) obtained by minimizing (28) with the nonnegativity constraint µ ≥ 0.
Upper bound chosen as ξmax = 104. Transport equation discretized with Np = 80 nodes. Lower bound ξmin =
10−10 with ( ) N = 400 (S(Ah) = −10−12); ( ) N = 50 (S(Ah) = −10−12); ( ) N = 20 (S(Ah) = −10−12). ( )
N = 50 with ξmin = 10−15 (S(Ah) = +5.4× 10−16).

for time-domain computations). An alternative is therefore to use, instead of the pseudo-inverse, an iterative
optimization algorithm that enforces the nonnegativity constraint. This is illustrated by Figure 17, which
presents spectra obtained by minimizing (28) with µ ≥ 0 using the nonnegative least squares algorithm [40,
(23.10)] through its implementation in MATLAB R© lsqnonneg. The spectral pollution is significantly reduced,
but has not completely disappeared, since slightly unstable spectra (or even unconverged spectra) can still be
obtained for some poorly chosen parameters such as ξmin = 10−15, ξmax = 104, and N = 50. The cost of
this optimization algorithm, as well as its difficulty to converge for some triplets (ξmin, ξmax, N), is a practical
challenge to the computation of stability regions.

5 Improvement of the quadrature method using a nonlinear least
squares optimization

The discussion of Section 4.3 has highlighted that the sole use of a nonlinear least squares minimization of
the cost function (28) is not practical, due to both its computational cost and sensitivity to the initial pole
distribution (i.e. the initial distribution of (ξn)n). This section investigates the use of a nonlinear least squares
minimization to refine the poles and weights given by the Qβ,N method (see Definition 4), i.e. a combined
use of an optimization and a quadrature rule. It emphasizes the importance of the cost function definition by
comparing (37), (38), and (39) using a trust-region method; the numerical results show that the cost function
(37) is to be preferred to build parsimonious approximations as it can deliver substantial improvements when
the number of quadrature nodes is low.

Section 5.1 defines the numerical methodology as well as the covered cost functions, while Section 5.2 gathers
the numerical results and concludes with practical guidelines. The MATLAB code is available online.2

5.1 Numerical methodology and considered cost functions
The purpose of the numerical methodology described below is to improve the poles and weights given by the
Qβ,N method by minimizing a given cost function J ; from now on, this methodology is denoted QOPT-J

β,N . A
similar methodology is used in [17, § 4.2] to improve the Birk-Song method (27).

Definition 12. The QOPT-J
β,N discretization of (1) is (8) where the poles and weights are computed with the

following three-step method.

1. Choose N (number of quadrature nodes), β (scalar parameter that sets the change of variable), and
(ξ, µ) 7→ J(ξ, µ) (cost function).

2https://github.com/fmonteghetti/Diffusive-Representation

https://github.com/fmonteghetti/Diffusive-Representation
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2. Compute the poles (ξn)n and weights (µn)n using the Qβ,N method (see Definition 4).

3. Refine the computed poles and weights by minimizing J under the linear constraints

0 ≤ ξn (a) ξn ≤ ξmax (b) µn ≥ 0 (c) (n ∈ N), (36)

starting with the values obtained in step 2.

The constraints (36) are motivated by the discussions of the previous sections: let us summarize their
purposes. Condition (a) is required for stability, as it prevents any pole of ĥnum from having a nonnegative
real part. Condition (b) ensures that the poles stay below the upper bound given by the Qβ,N method, so
that there is no time-step reduction with an explicit time-integration scheme. Condition (c) is optional but can
be enforced when the diffusive weight ξ 7→ µ(ξ) is nonnegative as it enables to get an unpolluted and stable
spectrum (see Section 4.5 for an illustration of the impact of this constraint).

The use of a nonlinear least squares optimization implies an additional freedom in the definition of the cost
function, compared with the linear least squares considered in Section 4.2. The three studied cost functions are
formulated in the frequency domain. The first one is that already used in Section 4.2:

J(ξ, µ) :=

K∑
k=1

∣∣∣∣∣
N∑
n=1

µn
iωk + ξn

− ĥ(iωk)

∣∣∣∣∣
2

, (37)

with the K angular frequencies logarithmically spaced in [ξmin, ξmax]

ωk = ξmin

(
ξmax

ξmin

) k−1
K−1

(k ∈ J1,KK).

The second cost function is formulated so as to cancel an integrable singularity of ω 7→ ĥ(iω) at ω = 0 (consider
ĥ = Ŷα with α ∈ (0, 1)):

Js(ξ, µ) :=

K∑
k=1

∣∣∣∣∣iω
N∑
n=1

µn
iωk + ξn

− iω ĥ(iωk)

∣∣∣∣∣
2

. (38)

The last cost function is more intricate:

Jψ(ξ, µ) :=

K∑
k=1

∣∣∣∣∣ψ
(

N∑
n=1

µn
iωk + ξn

)
− ψ

(
ĥ(iωk)

)∣∣∣∣∣
2

, (39)

where ψ is given by

ψ(s) :=
s− 1

s+ 1
. (40)

Let us explain the reasoning behind the definition of the cost function Jψ. Assume that u 7→ h ? u models a
passive system [41]: the Laplace transform ĥ is then a positive-real function [42, Thm. 3.15], the definition of
which is recalled below, where

C+
0 = {s ∈ C | <(s) > 0}.

Definition 13. A function f : C+
0 → C is positive-real if (i) f is analytic in C+

0 , (ii) f(s) ∈ R for s ∈ (0,∞),
(iii) < [f(s)] ≥ 0 for s ∈ C+

0 .
The definition of ψ in (39) is then suggested by the fact that ψ is a conformal map of the open half-plane

C+
0 onto the open unit disk [43, Chap. XI]. This transformation is linked to the so-called scattering formulation

[42, 44].

5.2 Numerical results
This section gathers numerical comparisons between the Qβ,N and QOPT-J

β,N methods for the three cost functions
introduced above, namely (37), (38), and (39).

The minimization is done using a subspace trust-region method based on the interior-reflective Newton
method described in [45, 46] through its implementation in MATLAB R© lsqnonlin. The analytical expression
of the jacobian matrix ∇ξ,µJ(ξ, µ) is supplied to the algorithm. Unless explicitly mentioned, all the termination
tolerances are set to 10−15. For the numerical comparisons we use the same parameters as in the previous
sections, namely (25,29). (Reducing K does make convergence easier to attain but worsens the results.)
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Figure 18: Errors (23,24,25) and maximum pole (26) for h = Yα with α = 1
2 . ( ) Qβ,N with β = β2.

Quadrature rule combined with nonlinear least squares minimization using three different cost functions: ( )
QOPT−J
β2,N

(cost function given by (37), with tolerance relaxed to 10−14 for N = 10 and 17), ( ) QOPT−Js
β2,N

(cost function (38)), ( ) QOPT−Jψ
β2,N

(cost function (39)).
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Figure 19: FDE (30) for y0 = 1 and g = 1. Numerical solutions computed with RKF84, ∆t = 9 × 10−3, and
N = 6. ( ) Q

β,N
with β = β2 (ξmin = 1.221×10−3, ξmax = 8.189×102). ( ) QOPT−J

β2,B
(ξmin = 2.960×10−4,

ξmax = 1.747 × 101). ( ) QOPT−Js
β2,B

(ξmin = 5.920 × 10−3, ξmax = 8.189 × 102). ( ) QOPT−Jψ
β2,B

(ξmin =

2.018× 10−3, ξmax = 5.371× 102). (Left only) ( ) Exact solution (31).

Method QOPT−J
β,N based on the cost function (37) Figure 18 shows the comparison with the Qβ,N method

for the approximation of the fractional kernel (3) with α = 1/2. The top left graph shows that the QOPT−J
β,N

method does not reduce the error in L∞(−ωn, ωn), which may be justified by the fact that it relies on a least
squares optimization in [ξmin, ξmax]. Let us now comment the three other graphs, which are more relevant for
time-domain simulations. For a moderate number of variables, this method yields a significant improvement
which can be seen on the reduction of both the errors and maximum pole ξmax. This improvement can be
noticed when solving the FDE (30), as illustrated in the right graph of Figure 19, which plots the relative error
when solving with N = 6: not only is the error reduced compared to the Qβ,N method but the maximum stable
time step is also increased, since ξmax is lower. Here, the QOPT−J

β,N method is superior to the Qβ,N method.
However, as N increases past N = 10 (20 optimization variables), the convergence of the trust-region method
becomes more difficult to achieve and the improvements fade away. This can be seen on the right graph of
Figure 20, where for N = 15 the accuracy delivered by the QOPT−J

β,N method is worse than that of the Qβ,N
method.

Method QOPT−Js
β,N based on the cost function (38) The trust-region method converges slightly faster with

Js than with J and it delivers a better error in the frequency domain, as can be seen on the top left graph of
Figure 18. However, the two bottom graphs show that the time-domain errors are worsened. The time-domain
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simulation results presented in Figures 19 and 20 indicates that all the other methods outperform the QOPT−Js
β,N

method: Js is therefore not an improvement over J , at least with the employed trust-region algorithm.

Method QOPT−Jψ
β,N based on the cost function (39) The cost function Jψ yields the fastest convergence of

the trust-region algorithm, especially for a large number of quadrature nodes: this justifies a posteriori why this
cost function has been introduced above. The top left graph of Figure 18 shows that a significant improvement
is obtained in the frequency domain. By contrast, the time-domain errors can be larger than those obtained
with J for small values of N , but improve as N increases. Let us now look at the errors obtained when solving
the FDE (30) with N = 6 and N = 10, plotted in Figures 19 and 20, respectively. For N = 6, the QOPT−Jψ

β,N

method is roughly equivalent to the Qβ,N method, with no significant improvement or worsening of the error.
For N ≥ 10, the reduction in the approximation errors seen on Figure 18 does not necessarily translate as a
reduced error in the solution of the FDE. For example, for N = 15, the QOPT−Jψ

β,N method delivers a worse
solution than the Qβ,N method, although it fares better than the QOPT−J

β,N method.

Summary The following guidelines can be deduced from the numerical results. The Qβ,N method is a
convenient choice for time-domain simulations, as it delivers accurate results without the need for a nonlinear
least squares optimization whose convergence is not guaranteed. If the application at hand mandates a low
number of quadrature nodes, then the QOPT−J

β,N method should yield satisfactory results. The main interest of
the QOPT−Jψ

β,N method is that it scales better than QOPT−J
β,N with respect to N , with swift convergence and no

dramatic worsening of the initial poles and weights; however, it may not deliver a significant improvement.
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Figure 20: FDE (30) for y0 = 1 and g = 1. Numerical solutions computed with RKF84, ∆t = 2.8 × 10−4 and
N = 15. ( )Q

β,N
with β = β2 (ξmin = 3.648×10−5, ξmax = 2.741×104). ( )QOPT−J

β2,B
(ξmin = 3.417×10−6,

ξmax = 3.776× 103). ( ) QOPT−Js
β2,B

(ξmin = 3.696× 10−5, ξmax = 2.741× 104, maximum error 11 %). ( )
Q

OPT−Jψ
β2,B

(ξmin = 1.815× 10−5, ξmax = 2.741× 104). (Left only) ( ) Exact solution (31).

6 Conclusion and outlook
This paper has focused on the discretization using Gaussian quadrature of a class of diffusive kernels that
contains the zeroth-order Bessel function of the first kind (5) as well as the fractional kernel (3).

Section 2 has introduced the proposed Qβ,N discretization method and Section 3 has shown that β must
be tailored to the kernel at hand. The choice β = min(α, 1 − α), where α is the power of the diffusive weight
singularity, has proven to be a suitable choice for both time-domain computations and eigenvalue problems. In
particular, for rational α, a spectral convergence rate can be attained. Numerical comparison with an existing
discretization method based on the Gauss-Jacobi quadrature rule has shown the complementarity of the two
approaches: although the Qβ,N method can have a slower convergence, see Figures 6 and 7, it is more suited to
numerical simulations using an explicit scheme due to its lower ξmax, see Section 4.4.

However, both methods are spectrally correct, in the sense that they yield an unpolluted and convergent
approximation of the essential spectrum (linked to the diffusive operator), by contrast with optimization-based
methods that can yield polluted spectra whose convergence is difficult to assess. This property, highlighted
on the fractional delay differential equation (32), should be verified with any quadrature-based discretization
method, so that quadrature-based methods should be preferred to optimization-based ones for any application
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where a correct spectrum is needed, for instance eigenvalue problems that arise in fractional ordinary and partial
differential equations.

Nonetheless, this does not mean that optimization-based methods should be ignored. Section 5 has shown
that for time-domain simulations, combining a nonlinear least squares minimization of (37) with the Qβ,N
method can yield substantial improvements for a low number of quadrature nodes N , convergence becoming an
issue for a large number of nodes. Although the alternative cost function (39) has been shown to scale better
with N , it has not delivered significant improvements with the employed trust-region algorithm.

Another important feature of optimization-based methods is their flexibility, which makes them applicable to
a large class of diffusive operators encountered e.g. in wave propagation problems. Indeed, the main limitation
of the proposed Qβ,N method, as well as other existing quadrature-based discretization method, is that it does
not apply to diffusive kernels whose diffusive weight µ is less well-behaved, for instance with sharp variations
or oscillations. An example is

ĥ(s) =
e−ε
√
s

1− ρe−2(s+ε
√
s)

with ρ ∈ (−1, 1) and ε > 0 with ε � 1, which is encountered with the Webster-Lokshin equation [47, Chap. 6]
and impedance models of sound absorbing materials [22, § 6] [23, Chap. 2]. Another example encountered in
acoustics is [22, § 5]

ĥ(s) =
1

a0 + a 1
2

√
s+ a1s

,

where a0, a 1
2
, and a1 are positive coefficients such that a1 � a 1

2
.

In both cases, any method that solely relies on change of variables and quadrature rules breaks down due
to the fact that the corresponding diffusive weight µ can have a singular or near-singular behavior within its
domain (0,∞). Circumventing this issue would first require locating these (near)-singularities. Existing adaptive
quadrature algorithms, possibly combined with splitting the integration domain, may provide a satisfactory
answer; for instance, in most cases, MATLAB R© integral [28] is able to accurately compute

´
e−ξtµ(ξ)dξ for

t > 0.
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