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Witt and cohomological invariants of Witt classes

Nicolas Garrel

We describe all Witt invariants and mod 2 cohomological invariants of the func-
tor I n as combinations of fundamental invariants; this is related to the study
of operations on mod 2 Milnor K-theory. We also study behaviour of these
invariants with respect to products, restrictions, similitudes and ramification.

Introduction

Building on classical constructions such as the discriminant and the Hasse–Witt
invariant, cohomological invariants have become a standard tool in the study of
quadratic forms. Cohomological invariants of quadratic forms are also related to
cohomological invariants of algebraic groups, for split groups of orthogonal type.

In [Garibaldi et al. 2003], Serre introduces cohomological invariants over a field,
and completely describes (away from characteristic 2) the invariants of Quadn (non-
degenerated n-dimensional quadratic forms) and Quadn,δ (those with prescribed de-
terminant δ), and in particular this settles the case of invariants of split orthogonal
and special orthogonal groups. In contrast, the case of split spin groups, corre-
sponding to invariants of Quadn ∩I 3 (meaning that the Witt classes of the forms
must be in I 3), is very much open, and has only been treated for small n (see for
instance [Garibaldi 2009]) or for invariants of small degree (the case of degree 3
has been essentially solved by Merkurjev [2016]), one problem being that we do
not have any satisfying parametrization of Quadn ∩I 3.

On the other hand, if we move from isometry classes to Witt classes, follow-
ing the resolution of Milnor’s conjecture by Voevodsky, we have at hand good
descriptions of I n (see for instance [Elman et al. 2008]), and at least one important
cohomological invariant of I n , en : I n(K )→ H n(K , µ2). The goal of this article
is to describe all mod 2 cohomological invariants of I n , and study some of their
basic properties.

Our starting point is a construction of Rost [1999], who defines a certain natural
operation Pn : I n(K )→ I 2n(K ) which behaves like a divided square in the sense
that Pn

(∑
ϕi
)
=
∑

i< j ϕi ·ϕ j if ϕi are n-fold Pfister forms. After composing with
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e2n this gives a cohomological invariant of I n of degree 2n. We generalize this
to operations πd

n : I n
→ I dn for all d ∈ N and thus cohomological invariants of

degree dn. Since our constructions involve both Witt invariants and cohomologi-
cal invariants, in order to avoid repeating very similar proofs in both settings, we
choose to adopt a unified point of view and treat both cases simultaneously, using
A to denote either the Witt ring or mod 2 cohomology.

We define two sets of generators for invariants, f d
n (the invariants mentioned

above, see Proposition 2.2) and gd
n (Definition 4.4), each being useful depending

on the situation. The invariants gd
n have the important property that only a finite

number of them are nonzero on a fixed form (Proposition 4.7), which allows us
to take infinite combinations, and we show that any invariant of I n is equal to
such a combination (Theorem 4.9). They are also better behaved with respect to
similitudes (Proposition 7.6). On the other hand, the f d

n are preferable for handling
products (Proposition 5.2 and Corollary 5.6) and restriction to I n+1 (Corollaries 6.3
and 6.4). We also study behaviour with respect to residues from discrete valuations
(Proposition 8.1), and establish links with Serre’s description of invariants of isom-
etry classes (Proposition 9.5).

Our invariants may be related to other various constructions on Milnor K-theory
and Galois cohomology, notably by Vial [2009]. The invariants defined here may
be seen as lifting of Vial’s to the level of I n . See Section 10 for more details.

Finally, we adapt an idea of Rost [1999] (see also [Garibaldi 2009]) to study
invariants of Witt classes in I n that are divisible by an r -fold Pfister form, giving
a complete description for r = 1 (Theorem 11.4).

Notations and some preliminaries

In all that follows, k is a fixed field of characteristic different from 2, and K denotes
any field extension of k. The set of natural integers is denoted by N, and the positive
integers by N∗; if x ∈ R, bxc ∈ Z denotes its floor, and dxe its ceiling. We extend
the binomial coefficient

(a
b

)
for arbitrary a, b ∈ Z in the only way that still satisfies

Pascal’s triangle.
For all facts on quadratic forms, the reader is referred to [Elman et al. 2008].

All the quadratic forms we consider are assumed to be nondegenerated. The
Grothendieck–Witt ring GW(K ) has a fundamental ideal Î (K ), defined as the ker-
nel of the dimension map GW(K )→ Z. We denote by [q] ∈W (K ) the Witt class
of an element q ∈ GW(K ), and this ring morphism GW(K )→W (K ) induces an
isomorphism between Î (K ) and the fundamental ideal I (K )⊂W (K ). If x ∈ I (K ),
we write x̂ ∈ Î (K ) for its (unique) antecedent. If n ∈ N and q ∈ W (K ), then
nq = q+· · ·+q is not to be confused with 〈n〉q , which is pointwise multiplication
by the scalar n ∈ K ∗.
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If a ∈ K ∗, then we write 〈〈a〉〉 = 〈1,−a〉 ∈ I (K ), and if a1, . . . , an ∈ K ∗, then
〈〈a1, . . . , an〉〉 = 〈〈a1〉〉 · · · 〈〈an〉〉 ∈ I n(K ). Those elements are (the Witt classes of)
the n-fold Pfister forms, and we use Pfn(K )⊂ I n(K ) for the set of such elements.
We also write 〈|a1, . . . , an|〉 for the antecedent of 〈〈a1, . . . , an〉〉 in Î n(K ); we call
such elements n-fold Grothendieck–Pfister elements, and we write P̂fn(K )⊂ Î n(K )
for their set. For instance, 〈|a|〉 = 〈1〉− 〈a〉, so 〈|1|〉 = 0. Notice that if q ∈W (K ),
then 2q = 〈〈−1〉〉q, and in particular if −1 is a square in K then 2q = 0 in W (K ).
Also, if ϕ ∈ Pfn(K ), then ϕ2

= 2nϕ, since 〈〈a, a〉〉 = 〈〈−1, a〉〉 = 2〈〈a〉〉. This relation
is also true if ϕ ∈ P̂fn(K ).

By a filtered group A we mean that there are subgroups A>d for all d ∈ Z, such
that A>d+1

⊂ A>d . We say the filtration is positive if A>d
= A for all d 6 0, and

that it is separated if
⋂

d A>d
= 0. If A is a ring, it is a filtered ring if

A>d
· A>d ′

⊂ A>d+d ′,

and M is a filtered A-module if it is a filtered group such that A>d
·M>d ′

⊂M>d+d ′ .
For any n ∈Z, we denote by M[n] the filtered module such that (M[n])>d

=M>d+n .
A morphism of filtered modules f : M → N is a module morphism such that
f (M>d)⊂ N>d .

Let Fields/k be the category of field extensions of k. If we are given functors
T : Fields/k→ Sets and A : Fields/k→ Ab (the category of abelian groups), then
an invariant of T with values in A (over k) is a natural transformation from T to A.
The set of such invariants is naturally an abelian group, denoted Inv(T, A). If T
takes values in pointed sets, then we can define normalized invariants as the ones
that send the distinguished element to 0. This subgroup is denoted Inv0(T, A), and
we have Inv(T, A)= A(k)⊕ Inv0(T, A).

Since we want to unify proofs for Witt and cohomological invariants, we use
A(K ) for either W (K ) or H∗(K , µ2), writing A = W or A = H if we want to
distinguish cases. For d ∈ N, we set A>d(K )= I d(K ) if A =W , and A>d(K )=⊕

i>d H i (K , µ2) if A = H . Then A(K ) is a filtered A(k)-algebra, and the filtra-
tion is separated and positive. Note that according to the resolution of Minor’s
conjecture by Voevodsky et al., the graded ring associated to A(K ) is in both cases
the mod 2 cohomology ring H∗(K , µ2).

For any n ∈ N∗, we write M(n)= Inv(I n, A), and M>d(n)= Inv(I n, A>d) for
all d ∈ N. Similarly, the subgroups of normalized invariants are denoted M0(n)
and M>d

0 (n). Then M(n) is a filtered A(k)-algebra, and M0(n) is a submodule.
We list here the formal properties of A on which the article relies. We have

a group morphism fn : I n(K )→ A>n(K ) (either the identity if A = W , or the
morphism en given by the Milnor conjecture if A = H ) and we write

{a1, . . . , an} = fn(〈〈a1, . . . , an〉〉)
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(so it is either a Pfister form or a Galois symbol, depending on A). Note that

fn(x) · fm(y)= fn+m(xy). (0.1)

We set δ = δ(A)= 1 if A =W , and δ = 0 if A = H . Then we have

∀a, b ∈ K ∗, {ab} = {a}+ {b}− δ{a, b} (0.2)

and
δ{−1} = 2 ∈ A(K ). (0.3)

We also freely use the following lemmas:

Lemma 0.4. If x ∈ A(K ) is such that for any extension L/K and any ϕ ∈ Pfn(L)
we have fn(ϕ) · x ∈ A>d+n(L), then x ∈ A>d(K ). In particular, for any n ∈ N∗, if
fn(ϕ) · x = 0 for all ϕ ∈ Pfn(L), then x = 0.

Lemma 0.5. Inv(Pfn, A)= A(K )⊕A(K )· fn , where we consider invariants defined
over K .

The first lemma can be proved by specialization, taking ϕ to be a generic Pfis-
ter form; the second corresponds to two theorems of Serre [Garibaldi et al. 2003,
Theorem 18.1, Example 27.17].

1. Some pre-λ-ring structures

We refer to [Yau 2010] for the basic theory of λ-rings. If R is a commutative ring,
a pre-λ-ring structure on R is the data of applications λd

: R→ R for all d ∈ N

such that for all x, y ∈ R,

(i) λ0(x)= 1;

(ii) λ1(x)= x ;

(iii) ∀d ∈ N, λd(x + y)=
∑d

k=0 λ
k(x)λd−k(y).

Example 1.1. The example we are interested in is R = GW(K ). The λd are the
exterior powers of bilinear forms, as defined in [Bourbaki 1970], and it is shown
in [McGarraghy 2002] that they define a λ-ring structure on GW(K ) (which is a
pre-λ-ring structure with additional conditions).

We define 3(R)= 1+ t R[[t]], the subset of formal power series with coefficients
in R that have a constant coefficient equal to 1. It is a group for the multiplication
of formal series. If we set λt(x)=

∑
d∈N λ

d(x)td
∈ R[[t]], we see that a pre-λ-ring

structure on R is equivalent to the data of a group morphism λt :(R,+)→(3(R), · )
such that for all x ∈ R the degree 1 coefficient of λt(x) is x . We switch freely
between those two descriptions.

Example 1.2. For the canonical λ-ring structure on GW(K ), we have λt(〈a〉) =
1+〈a〉t for all a ∈ K ∗.
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Recall that for any formal series f, g ∈ R[[t]] such that the constant coefficient of
f is zero, we can define the composition g ◦ f ∈ R[[t]]. If furthermore the degree 1
coefficient of f is invertible in R, then f has an inverse for the composition, which
we denote f ◦−1.

Lemma 1.3. Let R be a commutative ring. If λt : R→3(R) defines a pre-λ-ring
structure on R, then for any f ∈ t + t2 R[[t]], the map

λ f (t) : R→3(R), x 7→ λt(x) ◦ f =
∑
d∈N

λd(x) f (t)d

also defines a pre-λ-ring structure.

Proof. We have for any x, y ∈ R

λt(x + y) ◦ f = (λt(x)λt(y)) ◦ f = (λt(x) ◦ f ) · (λt(y) ◦ f ).

Furthermore, since the degree 1 term of f (t) is t , the degree 1 coefficient of λt(x)◦ f
is the same as that of λt(x), which is x . �

We want to define for each n ∈ N∗ a pre-λ-ring structure on GW(K ) that van-
ishes for d > 2 on n-fold Grothendieck–Pfister elements. Our starting point is the
following fundamental observation.

Lemma 1.4. Let a ∈ K ∗. For any d > 1, we have λd(〈|a|〉)= 〈|a|〉. Therefore,

λt(〈|a|〉)= 1+〈|a|〉θ(t),

where θ(t)=
∑

d>1 td
= t/(1− t).

Proof. We have

λt(1−〈a〉)=
λt(1)
λt(〈a〉)

=
1+ t

1+〈a〉t
= 1+

∑
d>1

(1−〈a〉)td ,

using 〈a〉2 = 1. �

We then define some formal series: for any n ∈ N∗, xn(t) ∈ Z[[t]] is defined
recursively by

x1(t)= θ(t)=
t

1− t
, xn+1 = xn + 2n−1x2

n ,

and hn(t) ∈Q[[t]] by
hn = x◦−1

n .

Lemma 1.5. For any n ∈N∗, we have hn(t) ∈ Z[[t]]. Furthermore, if an and bn are
the even part and odd part of xn , respectively, then{

an+1 = 2nb2
n = 2an + 2na2

n,

bn+1 = bn + 2nanbn.
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Proof. Note first that h1(t)= t/(1+ t) ∈ Z[[t]]. Let pn(t)= t+2n−1t2
∈ Z[[t]]; then

by definition xn+1= pn ◦xn , so hn+1= hn ◦ p◦−1
n . Now a simple computation yields

p◦−1
n = tC(−2n−1t), where C(t) = (1−

√
1− 4t )/2t is the generating function

of the Catalan numbers (this is essentially equivalent to the well-known functional
equation for C(t)); in particular, p◦−1

n has integer coefficients, so hn(t) ∈ Z[[t]].
Separating even and odd parts, the recursive definition of xn yields{

an+1 = an + 2n−1a2
n + 2n−1b2

n,

bn+1 = bn + 2nanbn.

So we need to show that for any n ∈ N∗, an + 2n−1a2
n = 2n−1b2

n . If n = 1, this is a
direct computation, using a1(t)= t2/(1− t2) and b1(t)= t/(1− t2).

Now suppose the formula holds until n ∈ N∗. Then

an+1+2na2
n+1 = 2nb2

n+2n(2nb2
n)

2
= 2nb2

n(1+22nb2
n),

2nb2
n+1 = 2nb2

n(1+2nan)
2
= 2nb2

n(1+2n+1an+22na2
n)= 2nb2

n(1+22nb2
n),

which shows the expected formula. �

We can now use those formal series to define our pre-λ-ring structures.

Theorem 1.6. For any n ∈N∗, the map (πn)t = λhn(t) defines a pre-λ-ring structure
on GW(K ) such that πd

n (ϕ)= 0 for any ϕ ∈ P̂fn(K ) and any d > 2.

Proof. According to Lemma 1.3, (πn)t does define a pre-λ-ring structure on GW(K ).
We show the statement about Grothendieck–Pfister elements by induction on n.
For n = 1, the statement is equivalent to Lemma 1.4 since for any ϕ ∈ P̂f1(K ),
λt(ϕ)= 1+ϕx1(t) and h1 = x◦−1

1 .
Suppose the statement holds until n∈N∗. Let ϕ∈ P̂fn+1(K ), and write ϕ=〈|a|〉ψ

with a ∈ K ∗ and ψ ∈ P̂fn(K ). We then need to show λhn+1(t)(ϕ)= 1+ ϕt , which
is equivalent to

λt(〈|a|〉ψ)= 1+〈|a|〉ψxn+1(t).

Note that for any x ∈ Î (K ), we have −〈a〉x = 〈−a〉x , which implies that
λd(−〈a〉x) = (−1)d〈ad

〉λd(x) for any d ∈ N, and thus λt(−〈a〉x) = λ−〈a〉t(x).
Therefore, we have in GW[[t]]

λt(ψ −〈a〉ψ)= λt(ψ)λ−〈a〉t(ψ)

= (1+ψxn(t))(1+ψxn(−〈a〉t))

= 1+ψ
(
xn(t)+ xn(−〈a〉t)+ 2nxn(t)xn(−〈a〉t)

)
.

Thus we can conclude if we show that

xn(t)+ xn(−〈a〉t)+ 2nxn(t)xn(−〈a〉t)= (1−〈a〉)xn+1(t).
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If we decompose in even and odd parts, this amounts to{
an(t)+ an(t)+ 2n(an(t)2−〈a〉bn(t)2)= (1−〈a〉)an+1(t),

bn(t)−〈a〉bn(t)+ 2n(bn(t)an(t)−〈a〉an(t)bn(t))= (1−〈a〉)bn+1(t),

which are consequences of Lemma 1.5. �

Remark 1.7. Those are not λ-ring structures; for instance, (π1)t(1)= 1+ h1(t)=
1+ t − t2

+ · · · , so πd
1 (1) 6= 0 for all d > 2.

Corollary 1.8. Let n ∈ N∗, and ϕ1, . . . , ϕr ∈ P̂fn(K ). Then

πd
n

( r∑
i=1

ϕi

)
=

∑
16i1<···<id6r

ϕi1 · · ·ϕid .

In particular, πd
n ( Î

n(K ))⊂ Î nd(K ), and πd
n is zero on forms that are sums of d−1

(or less) n-fold Grothendieck–Pfister elements.

Proof. The formula is proved by an easy induction, exactly similar to the proof
of the formula for exterior powers of diagonal quadratic forms (or more generally
λ-powers of a sum of elements of dimension 1 in any pre-λ-ring). If x ∈ Î n(K ),
then x = x1 − x2, where the xi are sums of elements of P̂fn(K ), and (πn)t(x) =
(πn)t(x1) · ((πn)t(x2))

−1. Now it is easy to see that since the degree d coefficient
of (πn)t(xi ) is in Î nd(K ), then the same is true for (πn)t(x). �

Note that the formula in Corollary 1.8 is not enough to completely describe πd
n

on Î n(K ), even if we could show directly that it is well-defined (which is possible
using the presentation of I n(K ) given in [Elman et al. 2008, Theorem 42.4]), since
not every element of I n(K ) is a sum of Pfister forms.

The idea of similar “divided power” operations on related structures such as Mil-
nor K-theory of Galois cohomology has been around for some time (see Section 10
for more details).

2. The fundamental invariants

We now use these various pre-λ-ring structures on GW(K ) to define some invari-
ants of I n .

Definition 2.1. Let n ∈ N∗ and d ∈ N. Then we define

f d
n : I

n(K ) ∼−→ Î n(K )
πd

n
−→ Î nd(K ) ∼−→ I nd(K ) fnd

−−→ A>nd(K ).

If A =W , then we sometimes write f d
n = π

d
n .

If A = H , then we sometimes write f d
n = u(n)nd .

This is well-defined according to Corollary 1.8. The notation u(n)nd may seem
dissonant with the rest, but we chose to stick with the tradition to write the degree
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of cohomological invariants in the index, and the exponent serves to distinguish
between, for instance, u(2)6 : I

2(K )→ H 6(K , µ2) and u(3)6 : I
3(K )→ H 6(K , µ2),

which are completely different (u(3)6 is not the restriction of u(2)6 to I 3).

Proposition 2.2. Let n ∈ N∗. Then for any d ∈ N, we have f d
n ∈ M>nd(n), and

( f d
n )d∈N is the only family of elements of M(n) such that

(i) f 0
n = 1 and f 1

n = fn;

(ii) for all q, q ′ ∈ I n(K ),

f d
n (q + q ′)=

d∑
k=0

f k
n (q) · f d−k

n (q ′);

(iii) for all ϕ ∈ Pfn(K ) and d > 2, f d
n (ϕ)= 0.

Furthermore, for any ϕ ∈ Pfn(K ) and any d ∈ N∗,

f d
n (−ϕ)= (−1)d{−1}n(d−1) fn(ϕ). (2.3)

Proof. The fact that f d
n is an invariant is clear by construction: the definition of πd

n
is made in terms of the exterior powers, which are of course compatible with field
extensions, and the expression of the πd

n in terms of the λd is given by a universal
hn ∈ Z[[t]].

The three properties are direct consequences of Theorem 1.6, after applying fnd

to the corresponding formulas for πd
n (and using formula (0.1)).

The last formula on opposites of Pfister forms can be easily proved by induction
using

0= f d
n (ϕ−ϕ)= f d

n (−ϕ)+ f d−1
n (−ϕ) fn(ϕ).

Uniqueness follows from property (ii) and the fact that Pfister forms additively
generate I n(K ), since the values of f d

n are fixed on ±ϕ for any ϕ ∈ Pfn(K ). �

The following corollary is an immediate consequence of either Corollary 1.8 or
Proposition 2.2.

Corollary 2.4. Let n ∈ N∗ and ϕ1, . . . , ϕr ∈ Pfn(K ). Then

f d
n

( r∑
i=1

ϕi

)
=

∑
16i1<···<id6r

fn(ϕi1) · · · fn(ϕid ).

In particular, f d
n is zero on forms that are sums of d− 1 or less n-fold Pfister forms.

3. The shifting operator

Since I n(K ) is additively generated by the n-fold Pfister forms, it is natural to
study how the invariants behave under adding or subtracting a Pfister form.



WITT AND COHOMOLOGICAL INVARIANTS OF WITT CLASSES 221

Proposition 3.1. Let n ∈ N∗ and ε = ±1. There is a unique morphism of filtered
A(k)-modules 8εn : M(n)→ M(n)[−n] such that

α(q + εϕ)= α(q)+ ε fn(ϕ) ·8
ε
n(α)(q)

for all α ∈ M(n), q ∈ I n(K ) and ϕ ∈ Pfn(K ).

Proof. Let α ∈ M(n) and q ∈ I n(K ). For any extension L/K and any ϕ ∈ Pfn(L),
we set

βq(ϕ)= α(q + εϕ).

Then βq ∈ Inv(Pfn, A), defined over K . According to Lemma 0.5, there are
uniquely determined xq , yq ∈ A(K ) such that βq = xq + yq · fn .

Taking ϕ = 0 we see that xq = α(q), and we then set 8εn(α)(q) = εyq , which
gives the expected formula, as well as the uniqueness of 8εn .

By definition, 8εn is clearly an A(k)-module morphism, and it is of degree −n
because if α ∈ M>d(n), then for any q ∈ I n(K ), fn(ϕ) · α

ε(q) ∈ A>d(L) for all
ϕ ∈ Pfn(L) and any extension L/K . Thus αε(q) ∈ A>d−n(K ) by Lemma 0.4. �

We often write 8+ =8+1
n and 8− =8−1

n , as there is in practice no confusion
to what n is in the context. We also write α+ =8+(α) and α− =8−(α) for any
α ∈ M(n). These two operators have natural links between each other:

Proposition 3.2. Let n ∈ N∗. The operators 8+n and 8−n commute, and further-
more, for any α ∈ M(n) we have

α+−α− = {−1}nα+− = {−1}nα−+.

Proof. Let q ∈ I n(K ) and ϕ,ψ ∈ Pfn(L). We have

α(q +ϕ−ψ)= α(q +ϕ)− fn(ψ)α
−(q +ϕ)

= α(q)+ fn(ϕ)α
+(q)− fn(ψ)α

−(q)− fn(ϕ) fn(ψ)α
−+(q),

but also

α(q +ϕ−ψ)= α(q −ψ)+ fn(ϕ)α
+(q −ψ)

= α(q)− fn(ψ)α
−(q)+ fn(ϕ)α

+(q)− fn(ϕ) fn(ψ)α
+−(q).

Thus fn(ϕ) fn(ψ)α
−+(q)= fn(ϕ) fn(ψ)α

+−(q), and since this holds for any ϕ, ψ
over any extension, by Lemma 0.4 we find α+− = α−+.

If we now take ϕ = ψ , the above formula gives

fn(ϕ)α
+(q)− fn(ϕ)α

−(q)= fn(ϕ) fn(ϕ)α
+−(q),

which gives the result, using fn(ϕ) fn(ϕ)= {−1}n fn(ϕ) and again Lemma 0.4. �
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In view of this proposition, we may write αr+,s−
∈ M(n) for any α ∈ M(n) and

r, s ∈ N, defined as applying r times 8+ to α, and s times 8−, in any order.
We also call 8=8+ the shifting operator, as justified by the following elemen-

tary result.

Proposition 3.3. Let n ∈ N∗. For any d ∈ N, 8( f d+1
n )= f d

n (and 8( f 0
n )= 0).

Proof. We need to show f d+1
n (q + ϕ) = f d+1

n (q)+ fn(ϕ) · f d
n (q), which is an

immediate consequence of Proposition 2.2. �

The action of 8− on the f d
n is more complicated, reflecting the fact that f d

n
behaves very nicely with respect to sums of Pfister forms, but quite poorly for
differences of those.

Proposition 3.4. Let n, d ∈ N∗. Then

( f d
n )
−
=

d−1∑
k=0

(−1)d−k−1
{−1}n(d−k−1) f k

n .

Proof. Let q ∈ I n(K ) and ϕ ∈ Pfn(K ). Then

f d
n (q−ϕ)=

d∑
k=0

f k
n (q) f d−k

n (−ϕ)= f d
n (q)+

d−1∑
k=0

(−1)d−k
{−1}n(d−k−1) fn(ϕ) f k

n (q)

using formula (2.3). �

Apart from its action on the f d
n , the main property of 8εn is the following:

Proposition 3.5. Let n ∈N∗ and ε =±1. The morphism 8εn induces for any d ∈N

an exact sequence

0→ A(k)/A>d+n(k)→ M(n)/M>d+n(n)
8εn
−→ M(n)/M>d(n).

In particular, the kernel of 8εn is the submodule of constant invariants in M(n).

Proof. If α, β ∈ M(n) are congruent modulo M>d+n(n), then since 8ε(M>d+n(n))
is included in M>d(n), αε and βε are congruent modulo M>d(n).

Let α ∈ M(n) be such that αε ∈ M>d(n). Then for any q ∈ I n(K ) and any
ϕ ∈ Pfn(K ), we have α(q+ εϕ)≡ α(q) modulo A>n+d(K ), and also by symmetry
α(q − εϕ) ≡ α(q). Since we can always write q = q1 − q2, where the qi are
sums of n-fold Pfister forms, then by simple induction on the lengths of the sums,
α(q)≡ α(0) modulo A>n+d(K ) (where α(0) is seen as a constant invariant).

Taking a large enough d, and since the filtration on A(K ) is separated, we see
that αε = 0 implies α = α(0). �

Corollary 3.6. Let n ∈ N∗ and let ε = ±1. If M ′(n) is the submodule of M(n)
generated by the f d

n for d ∈ N, then 8εn induces an exact sequence of filtered A(k)-
modules

0→ A(k)→ M ′(n)
8εn
−→ M ′(n)[−n] → 0.
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Proof. The only thing left to check is surjectivity, but this is easily implied by
Propositions 3.3 for 8+ and 3.4 for 8−. �

Remark 3.7. All this implies that 8 may be seen as some kind of differential
operator: if we know α+ for some invariant α, we may “integrate” to find α, with a
certain integration constant. Precisely, if α+=

∑
ad f d

n , then α=α(0)+
∑

ad f d+1
n

(and we show in the next section that such a decomposition always holds). We use
this method extensively to compute some invariants α by “induction on shifting”.

4. Classification of invariants

The main goal of this article, and this section, is to show that any α ∈ M(n) can
be expressed uniquely as a combination

∑
d ad f d

n . The next proposition gives the
first step:

Proposition 4.1. Let n ∈N∗ and d ∈N. The A(k)/A>d(k)-module M(n)/M>d(n)
is generated by the f k

n with nk < d.

Proof. We use induction on d . For d = 0, this is trivial since M>0(n)= M(n). Sup-
pose the property holds up to d−1, and let α ∈ M(n); we write α ∈ M(n)/M>d(n)
for its residue class. By induction, 8(α)=

∑
ak f k

n with nk < d − n, so if we set
β = α−

∑
ak f k+1

n we get 8(β)= 0. From there, β is congruent modulo M>d(n)
to a constant invariant a−1, hence α =

∑
ak−1 f k

n with nk < d . �

The problem is that to express an invariant in terms of the f d
n , it is in general

necessary to use an infinite combination, as the following example illustrates.

Example 4.2. Consider the case A=W . Let α(q)=〈disc(q)〉; it is a Witt invariant
of I . Then α+ =−α; indeed,

〈disc(q +〈〈a〉〉)〉 = 〈disc(q)a〉 = 〈disc(q)〉− 〈〈a〉〉〈disc(q)〉.

Thus α cannot be written as a finite combination of the f d
1 (since the length of such

a combination strictly decreases when applying 8+). On the other hand, we may
write it (at least formally for now) as

α =
∑
d∈N

(−1)d f d
1 .

But such an infinite combination may not always be well-defined: since the f d
n

take values in A>m for increasing values of m, any
∑

d∈N ad f d
n is well-defined as

an invariant with values in the completion of A with respect to its filtration, but
usually not in A itself, as the next example shows.

Example 4.3. If k is formally real, then
∑

d f d
1 sends−〈〈−1〉〉 to

∑
d∈N(−1)d{−1}d ,

which is not in A(k) (but is in its completion).
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It readily appears that the trouble is the bad behaviour of the f d
n with respect to

the opposites of Pfister forms. To get a satisfying description of M(n), we introduce
a new “basis”, with better balance between sums and differences of Pfister forms,
such that any infinite combination does take values in A.

Definition 4.4. Let n ∈ N∗. For any d ∈ N, we define gd
n ∈ M>nd(n) by

• g0
n = 1;

• if d ∈ N∗ is odd, (gd
n )
−
= gd−1

n and gd
n (0)= 0;

• if d ∈ N∗ is even, (gd
n )
+
= gd−1

n and gd
n (0)= 0.

If A =W (resp. A = H ), we sometimes write γ d
n (resp. v(n)nd ) for gd

n .

Corollary 3.6 ensures that these are well-defined. This definition, which bal-
ances 8+ and 8−, gives a reasonable behaviour under both operators:

Proposition 4.5. Let n ∈ N∗ and d ∈ N. Then

(gd+2
n )+− = (gd+2

n )−+ = gd
n ;

(gd+1
n )+ =

{
gd

n if d is odd,
gd

n +{−1}ngd−1
n if d is even;

(gd+1
n )− =

{
gd

n if d is even,
gd

n −{−1}ngd−1
n if d is odd.

Proof. If d is even, then (gd+2
n )− = gd+1

n and (gd+1
n )+ = gd

n , and if d is odd,
(gd+2

n )+ = gd+1
n and (gd+1

n )− = gd
n . In any case the first formula is satisfied.

For the remaining two, we use (gd+1
n )+− (gd+1

n )− = {−1}ngd−1
n coming from

Proposition 3.2. We may conclude, arguing according to the parity of d . �

We can now write the precise relation between f d
n and gd

n :

Proposition 4.6. Let n ∈ N∗. For any d ∈ N∗,

gd
n =

d∑
k=bd/2c+1

( ⌊ d−1
2

⌋
k−

⌊d
2

⌋
− 1

)
{−1}n(d−k) f k

n ,

f d
n =

d∑
k=1

(−1)d−k
(

d −
⌊ k+1

2

⌋
− 1⌊ k

2

⌋
− 1

)
{−1}n(d−k)gk

n .

In particular, ( f i
n )i6d and (gi

n)i6d generate the same submodule of M(n).

Proof. Denote by αd the invariant defined by the right-hand side of the formula
for gd

n . If d = 2m, the formula becomes

αd =

2m∑
k=m+1

(
m− 1

k−m− 1

)
{−1}n(2m−k) f k

n ,
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which gives

α+d =

2m∑
k=m+1

(
m− 1

k−m− 1

)
{−1}n(2m−k) f k−1

n ,

and if d = 2m+ 1 then we get

αd =

2m+1∑
k=m+1

(
m

k−m− 1

)
{−1}n(2m+1−k) f k

n .

Hence

α+d =

2m+1∑
k=m+1

(
m

k−m− 1

)
{−1}2m+1−k f k−1

n .

We thus have to check that in both cases we find the correct induction formula for
α+d+1 (coming from Proposition 4.5). If d=2m+1, we have to show α+2m+2=α2m+1,
which is immediate given the above formulas. If d = 2m, we have to show
α+2m+1 = α2m +{−1}nα2m−1, so we need to compare

2m∑
k=m

(
m

k−m

)
{−1}n(2m−k) f k

n

and

2m∑
k=m+1

(
m− 1

k−m− 1

)
{−1}n(2m−k) f k

n +

2m−1∑
k=m

(
m− 1
k−m

)
{−1}n(2m−k) f k

n ,

which are easily seen as being equal using Pascal’s triangle.
The formula for f d

n can be obtained either in a similar fashion, or by inverting
the one for gd

n . Let βd be the invariant defined by the right-hand side. Then we
show that β+d = βd−1, separating the sums according to the parity of k:

β+d = (−1)d
∑

m

(
d −m− 1

m− 1

)
{−1}n(d−2m)(g2m

n )+

+ (−1)d+1
∑

m

(
d −m− 2

m− 1

)
{−1}n(d−2m−1)(g2m+1

n )+

= (−1)d
∑

m

(
d −m− 1

m− 1

)
{−1}n(d−2m)g2m−1

n

+ (−1)d+1
∑

m

(
d −m− 2

m− 1

)
{−1}n(d−2m−1)(g2m

n +{−1}ng2m−1
n )
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= (−1)d+1
∑

m

(
d −m− 2

m− 1

)
{−1}n(d−2m−1)g2m

n

+ (−1)d
∑

m

((
d −m− 1

m− 1

)
−

(
d −m− 2

m− 1

))
{−1}n(d−2m)g2m−1

n

= (−1)d−1
∑

m

(
d − 1−m− 1

m− 1

)
{−1}n(d−1−2m)g2m

n

+ (−1)d−1+1
∑

m

(
d −m− 1

m− 2

)
{−1}n(d−2m)g2m−1

n ,

which does give αd−1.
The last statement comes from the fact that the transition matrix from ( f d

n )d to
(gd

n )d is triangular unipotent. �

The next proposition gives an important consequence of the balance of gd
n .

Proposition 4.7. Let n∈N∗, and let q ∈ I n(K ) be such that q=
∑s

i=1 ϕi−
∑t

i=1 ψi ,
where ϕi , ψi ∈ Pfn(K ). Then for any d > 2 max(s, t), we have gd

n (q)= 0.

Proof. We may add hyperbolic forms in either sum so that s = t . Then we prove
the statement by induction on s: if s = 0 then q = 0, so for d > 0 we have indeed
gd

n (q)= 0 by construction.
If the result holds up to s − 1 for some s ∈ N∗, then write q ′ = q − ϕs and

q ′′ = q ′+ψs . We get

gd
n (q)= gd

n (q
′)+ fn(ϕs)(gd

n )
+(q ′)

= gd
n (q
′′)− fn(ψs)(gd

n )
−(q ′′)+ fn(ϕs)(gd

n )
+(q ′′)− fn(ϕs) fn(ψs)(gd

n )
+−(q ′′).

Now according to Proposition 4.5, (gd
n )
−, (gd

n )
+ and (gd

n )
+− may all be expressed

as combinations of some gk
n with k > d− 2, so we may apply the induction hypoth-

esis with q ′′. �

Corollary 4.8. If q∈ I (K ) is the Witt class of an r-dimensional form, then gd
1 (q)=0

for any d > r .

Proof. Writing r = 2m, if q = 〈a1, b1, . . . , am, bm〉, then q =
∑m

i=1〈〈−ai 〉〉− 〈〈bi 〉〉,
which allows us to conclude using the previous proposition. �

We may now put it all together to prove the central theorem:

Theorem 4.9. Let n ∈ N∗, and let N (n)= A(k)N, which is a filtered A(k)-module
for the filtration N>m(n)= {(ad)d∈N | ad ∈ A>m−nd

}. The following applications
are mutually inverse isomorphisms of filtered A(k)-modules:

F : N (n) ∼−→ M(n), (ad)d∈N 7→
∑

d∈N ad gd
n ,

G : M(n) ∼−→ N (n), α 7→ (α[d](0))d∈N,

where α[d] = αm+,m− if d = 2m, and α[d] = α(m+1)+,m− if d = 2m+ 1.
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Proof. First, the application F is well-defined, since according to Proposition 4.7,
for any fixed q ∈ I n(K ) we have gd

n (q) = 0 for large enough d. Then F and G
are clearly module morphisms, and the fact that they respect the filtrations is just a
reformulation of the fact that gd

n takes values in A>nd , and that 8εn has degree −n.
Let α =

∑
d ad gd

n . Using Proposition 3.5, we see that for any r, s ∈ N, we can
ignore the terms for d large enough when we compute αr+,s−(0). Thus it is easy
to see from Proposition 4.5 that a2m = α

m+,m−(0) and a2m+1 = α
(m+1)+,m−(0),

which shows that G ◦ F = Id.
We now prove that G is injective, which finishes the proof of the theorem. Let

α ∈ Ker(G), and let d ∈ N. According to Proposition 4.1, and using the last
statement of Proposition 4.6, we see that α is congruent to some combination∑

nk<d ak gk
n modulo M>d(n). Now the exact sequence in Proposition 3.5 shows

that ak ≡ α
[k](0) modulo A>d−nk(k), so since α[k](0)= 0, ak ∈ A>d−nk(k). This in

turn implies that
∑

nk6d ak gk
n ∈ M>d(n), and thus α ∈ M>d(n). Since this is true

for any d ∈ N, we may conclude that α = 0. �

Corollary 4.10. Let n ∈ N∗ and let ε =±1. There is an exact sequence of filtered
A(k)-modules

0→ A(k)→ M(n)
8εn
−→ M(n)[−n] → 0.

Proof. Like for Corollary 3.6, the only thing left to prove after Proposition 3.5 is
the surjectivity of 8εn , but it is an easy consequence of Theorem 4.9. �

Corollary 4.11. Let n ∈ N∗ and α ∈ M(n). There is a unique sequence (ad)d∈N

with ad ∈ A(k) such that for any q ∈ I n(K ), the infinite sum
∑

d∈N ad f d
n (q) exists

in A(K ) and is equal to α(q). Furthermore, for all d ∈ N, we have ad = α
d+(0).

Proof. If such a sequence exists, then using Proposition 3.5 we find that αi+(0)≡ ai

modulo A>dn(k) for all i 6 d, so for a fixed i we can make d go to infinity, and
we find that indeed ad = α

d+(0), which shows uniqueness.
For existence, write α =

∑
d bd gd

n , and decompose each gd
n in terms of the f i

n
using Proposition 4.6. Then we find a decomposition of α in terms of f d

n which
is valid pointwise, and the ad we find are well-defined in A(k) since each ad is a
combination of a finite number of bi (using that f i

n appears in the decomposition
of gd

n only if d 6 2i). �

Remark 4.12. In particular, any invariant of I n with values in H d( – , µ2) may be
lifted to an invariant with values in I d .

Remark 4.13. If k is not a formally real field, then for large enough d we have
{−1}d = 0, and thus according to formula (2.3), f d

n (−ϕ)= 0 for any ϕ ∈ Pfn(K ).
This implies that in this case, for any q ∈ I n(K ) we have f d

n (q) = 0 for large
enough d (for the same reasons as in Corollary 2.4), and so we may use the f d

n
instead of the gd

n in the theorem (with G(α) = (αd+(0))d). In the extreme case
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where −1 is a square in k, we actually even get f d
n = gd

n , as can be seen from
Proposition 4.6. On the other hand, Example 4.3 shows that we cannot use the f d

n if
k is formally real. What happens in this case is that an arbitrary infinite combination
of the f d

n does correspond to a combination of the gd
n (using Proposition 4.6), but

with coefficients in the completion of A with respect to its filtration.

Remark 4.14. We may construct cohomological invariants α such that, even though
the degree of α(q) is bounded for fixed q, it is unbounded when q varies (for in-
stance, α =

∑
d gd

n ). This reflects in some sense the “infinite” nature of I n , and it is
a behaviour that does not appear for invariants of algebraic groups. The submodule
M ′(n) of uniformly bounded cohomological invariant is the submodule generated
by the f d

n (or by the gd
n ). We may write that M(n) = Inv(I n, lim

−−→
H6d( – , µ2)),

while M ′(n)= lim
−−→

Inv(I n, H6d( – , µ2)).

5. Algebra structure

Since M(n) is not only an A(k)-module, but also an algebra, we wish to understand
how the product can be expressed in terms of the basic elements f d

n .
For this section, if d, p, q ∈ N are such that p+ q 6 d , we set

Cd
p,q =

d!
p! · q! · (d − p− q)!

.

This is just a more compact notation for the usual multinomial(
d

p, q, d−p−q

)
.

Proposition 5.1. Let n ∈ N∗, and ε =±1. Then for any α, β ∈ M(n),

8ε(αβ)=8ε(α)β +α8ε(β)+ ε{−1}n8ε(α)8ε(β).

Proof. Let q ∈ I n(K ) and ϕ ∈ Pfn(K ). Then

(αβ)(q+εϕ)= (α(q)+ε fn(ϕ)α
ε(q))·(β(q)+ε fn(ϕ)β

ε(q))

= (αβ)(q)+ε fn(ϕ)
(
(αεβ)(q)+(αβε)(q)+ε{−1}n(αεβε)(q)

)
. �

Proposition 5.2. Let n ∈ N∗ and s, t ∈ N. Then

f s
n · f t

n =

s+t∑
d=max(s,t)

Cd
d−s,d−t {−1}n(s+t−d) f d

n .

Proof. First note that both sides of the equality have the same value in 0 (which is
1 if s = t = 0 and 0 otherwise). So we just need to show that applying 8 to both
sides of the equation gives the same expression.
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Now Proposition 5.1 gives

8( f s
n · f t

n )= f s
n · f t−1

n + f s−1
n · f t

n +{−1}n f s−1
n · f t−1

n . (5.3)

We proceed by induction, say on (s, t) with lexicographical order. First the
result is clear if s = 0 or t = 0. Then by induction we can replace each term in
(5.3) and rearrange them to find, for 8( f s

n · f t
n ),(

s
t

)
{−1}nt f s−1

n +

(
s+ t

t

)
f s+t−1
n +

s+t−2∑
d=s

Cd+1
d−s+1,d−t+1{−1}n(s+t−d−1) f d

n , (5.4)

where for the coefficient before f s−1
n we use

(s−1
t

)
+
(s−1

t−1

)
=
(s

t

)
, for that of f s+t−1

n
we use

(s+t−1
t

)
+
(s+t−1

t−1

)
=
(s+t

t

)
, and for the other terms we use

Cd
d−s+1,d−t +Cd

d−s,d−t+1+Cd
d−s+1,d−t+1 = Cd+1

d−s+1,d−t+1.

We can then compute that applying 8 to the right-hand side of the equality in the
statement of the proposition yields exactly (5.4). �

Of course there is a corresponding formula for the products of the gd
n , but it

turns out that it is much more involved, and we do not address it here. This means
that although we have a nice module isomorphism between M(n) and A(k)N, trans-
porting the algebra structure of M(n) to A(k)N is not as convenient. On the other
hand, if we use the f d

n we only have a module isomorphism between M(n) and a
submodule of A(k)N, which is hard to describe, but we can transport the product
in a reasonably easy way.

There are several cases where the formula of Proposition 5.2 can be greatly
simplified by studying the parity of the multinomials that appear. We introduce
some notation: if s, t ∈ N, we write s ∨ t (resp. s ∧ t) for the integer obtained by
applying a bitwise or (resp. a bitwise and) to the binary representations of s and t .
In particular, s ∨ t + s ∧ t = s+ t .

Lemma 5.5. Let d, s, t ∈ N be such that max(s, t) 6 d 6 s + t . Then Cd
d−s,d−t is

odd if and only if d = s ∨ t .

Proof. It is well-known that for any a ∈ N, the 2-adic valuation of a! is a− f (a),
where f (a) is the number of 1’s in the binary representation of a. Then

v2(Cd
d−s,d−t)

= (d− f (d))−(s+t−d− f (s+t−d))−(d−s− f (d−s))−(d−t− f (d−t))

= f (s+t−d)+ f (d−s)+ f (d−t)− f (d).

But it is easily seen that for any a, b ∈ N, f (a+ b)6 f (a)+ f (b), with equality
if and only if a ∧ b = 0. Thus Cd

d−s,d−t is odd if and only if s + t − d, d − s and
d − t have pairwise disjoint binary representations.
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We claim this is equivalent to d = s ∨ t . Indeed, if d = s ∨ t it is obvious, and
if d 6= s ∨ t , consider the weakest bit where d and s ∨ t differ; there are several
possibilities for the bits of s, t and d in this slot: s has 1 and d has 0, t has 1 and d
has 0, or s and t have 0 and d has 1. In all these cases, at least two numbers among
d − s, d − t and s+ t − d have a 1 in this slot, and their binary representations are
thus not disjoint. �

Then we can state the following:

Corollary 5.6. Let n ∈ N∗ and s, t ∈ N. If A = H , then

u(n)ns ∪ u(n)nt = (−1)n(s∧t)
∪ u(n)n(s∨t).

Proof. Since H∗(k, µ2) is a ring of characteristic 2, by Lemma 5.5 the only poten-
tially nonzero term in the formula of Proposition 5.2 is {−1}s∧t f s∨t

n . �

Remark 5.7. This is very reminiscent of the formula for the product of Stiefel–
Whitney classes, since ws ∪wt = (−1)s∧t

∪ws∨t . When −1 is a square, this is
easily explained by the fact that u(1)d coincides with the Stiefel–Whitney map wd

(see Remark 9.10), but in general wd is not well-defined on Witt classes so the
formulas are really different phenomena.

Corollary 5.8. Let n ∈ N∗ and s, t ∈ N. If −1 is a square in k, then f s
n · f t

n equals
f s+t
n if s ∧ t = 0, and 0 otherwise.

Proof. Note that in this situation A(k) is also a ring of characteristic 2, so the same
reasoning as in Corollary 5.6 applies, but this time if s∧ t 6= 0 the term is also 0. �

Remark 5.9. Consider the case A = H , and the submodule M ′(n) ⊂ M(n) gen-
erated by the u(n)nd , which is the subalgebra of cohomological invariants with uni-
formly bounded degree. Then from Corollary 5.6 we find a very simple algebra
presentation of M ′(n): the (commuting) generators are xi = u(n)n2i , and the relations
are given by x2

i = {−1}n2i
xi .

6. Restriction from I n to I n+1

For any m, n ∈ N∗ with m > n, there is an obvious restriction morphism

ρn,m : M(n)→ M(m), α 7→ α|I m . (6.1)

Given the definition of f d
n , if we want to express ( f d

n )|I n+1 in terms of the f k
n+1,

it is natural to try to express πd
n in terms of the π k

n+1 in GW(K ).

Proposition 6.2. Let n ∈ N∗. For any d ∈ N∗, we have

πd
n =

∑
d/26k6d

(
k

d − k

)
2(d−k)(n−1)π k

n+1.
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Proof. We define pn(t)= t + 2n−1t2
∈ Z[t]. Then recall that (πn)t = λhn(t), where

hn = x◦−1
n , and xn is defined recursively by xn+1 = pn ◦ xn . Thus we have the

formula hn = hn+1 ◦ pn , and

(πn)t = (πn+1)pn(t).

Therefore we find∑
d

πd
n · t

d
=

∑
k

π k
n+1(t + 2n−1t2)k =

∑
k

∑
k6d62k

(
k

d − k

)
2(d−k)(n−1)π k

n+1 · t
d ,

which gives the result. �

Then we deduce the corresponding results for our invariants.

Corollary 6.3. Let n, d ∈ N∗. If A =W then

(πd
n)|I n+1 =

∑
d/26k6d

(
k

d − k

)
〈〈−1〉〉(d−k)(n−1)π k

n+1.

Proof. This is an immediate consequence of the proposition, given that in W (K )
we have 〈〈−1〉〉 = 2. �

Corollary 6.4. Let n, d ∈ N∗. If A = H then

(u(n)nd )|I n+1 =

{
(− 1)m(n−1)

∪ u(n+1)
(n+1)m if d = 2m,

0 if d is odd.

Proof. This is also a consequence of the proposition, but we have to notice that
when we apply end to the formula, the terms corresponding to k > d/2 vanish.
Indeed, in this case 〈〈−1〉〉(d−k)(n−1)π k

n+1 sends Î n+1(K ) to Î r (K ) with

r = (d − k)(n− 1)+ k(n+ 1)= d(n− 1)+ 2k > nd.

Thus, composing with end gives zero.
So only the term k = d/2 remains (and only when d is even). �

Remark 6.5. In particular, for cohomological invariants, and when n = 1, we get
the simple formula (u(1)2d )|I 2 = u(2)2d , which shows that any cohomological invariant
of I 2 extends (not uniquely) to I . On the other hand, for n > 3 and d > 1, u(n)nd
never extends to I n−1. This vastly generalizes the familiar facts that e2 extends
to I , but e3 does not extend to I 2.

Remark 6.6. Suppose −1 is a square in k, and take n > 2. Then in the case of Witt
invariants, πd

n is independent of n, and in the case of cohomological invariants the
restriction of any α ∈ M(n) to I n+1 is constant.

As an application of Corollary 6.4, we may improve a result of Kahn [2005]: he
shows in the proof of Proposition 3.3 that if H r (K , µ2) has symbol length at most
l ∈N, then any element of H r(l+1)(K , µ2) is a multiple of (−1) ∈ H 1(K , µ2). We
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would like to thank Karim Becher for fruitful discussions about this application
during a visit in Antwerp.

Proposition 6.7. Let r ∈ N∗, and assume that H r (K , µ2) has symbol length at
most l ∈ N. Then for any d > l, we have

H rd(K , µ2)⊂ (−1)(r−1)d(d−l)/2e
∪ H∗(K , µ2).

In particular, any element of H m(K , µ2) for m > r(l + 1) is a multiple of

(−1)r−1
∈ H r−1(K , µ2).

Proof. It is enough to prove the result for Galois symbols: let α ∈ H rd(K , µ2) be a
symbol, and write α= α1∪· · ·∪αd with αi ∈ H r (K , µ2). Then we set ϕi ∈ Pfr (K )
such that er (ϕi ) = αi , and q =

∑
i ϕi ∈ I r (K ). According to Corollary 2.4, we

have α = u(r)rd (q).
Now by hypothesis, q = q ′+ x , where q ′ ∈ I r (K ) can be written as a sum of l

or less r -fold Pfister forms, and x ∈ I r+1(K ). We have

α = u(r)rd (q
′
+ x)=

rd∑
k=0

u(r)rk (q
′)∪ u(r)r(d−k)(x). (6.8)

But Corollary 2.4 shows that u(r)rk (q
′)= 0 when k > l, and Corollary 6.4 shows that

u(r)r(d−k)(x) is a multiple of (−1)(r−1)d(d−k)/2e. It thus follows from (6.8) that α is a
multiple of (−1)(r−1)d(d−l)/2e. �

7. Similitudes

In this section we study the behaviour of invariants with respect to similitudes.

Proposition 7.1. There is a unique morphism of filtered A(k)-modules

9 : Inv(W, A)→ Inv0(W, A)[−1], α 7→ α̃

such that
α(〈λ〉q)= α(q)+{λ}̃α(q) (7.2)

for any α ∈ Inv(W, A), q ∈ F(K ) and λ ∈ K ∗.
If F is a subfunctor of W such that F(L) is stable under similitudes for any L/k,

and 0 ∈ F(k), then 9 restricts to a morphism Inv(F, A)→ Inv0(F, A)[−1]. In
particular, for any n ∈ N∗ we get a filtered morphism M(n)→ M0(n)[−1].

Proof. Let α ∈ Inv(F, A>d) for some d ∈N and q ∈ F(K ). For any λ ∈ L∗, where
L/K is any field extension, we set βq(λ)= α(〈λ〉q).

Then βq is an invariant over K of square classes, with values in A. Now the
functor of square classes is isomorphic to Pf1, so we may apply Lemma 0.5: there
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are uniquely determined xq , yq ∈ A(K ) such that βq(λ) = xq + {λ} · yq for all λ.
Taking λ= 1 we see that xq = α(q), and we set α̃(q)= yq .

The uniqueness of yq implies that α̃ ∈ Inv(F, A). The fact that {λ} · yq ∈ A>d(L)
for all λ ∈ L∗ shows according to Lemma 0.4 that yq ∈ A>d−1(K ), so as a filtered
morphism 9 has degree −1. It is clear that if q = 0, then α(〈λ〉q)= α(q)+{λ} · 0,
so α̃(0)= 0, which means that α̃ is normalized. �

We first establish some basic properties of 9:

Proposition 7.3. Let α, β ∈ Inv(W, A). Then

9(αβ)=9(α)β +α9(β)+{−1}9(α)9(β).

Proof. Let q ∈W (K ) and λ ∈ K ∗. Then

(αβ)(〈λ〉q)= (α(q)+{λ}̃α(q))(β(q)+{λ}β̃(q))

= (αβ)(q)+{λ}
(
(̃αβ)(q)+ (αβ̃)(q)+{−1}(̃αβ̃)(q)

)
. �

Proposition 7.4. We have 92
=−δ(A)9.

Proof. For any extension L/K and any λ,µ ∈ L∗,

α(〈λµ〉q)= α(〈λ〉q)+{µ}̃α(〈λ〉q)

= α(q)+{λ}̃α(q)+{µ}̃α(q)+{λ,µ}̃̃α(q)

= α(q)+{λµ}̃α(q)+{λ,µ}(δα̃(q)+˜̃α(q)),
using formula (0.2) for the last equality. We also have

α(〈λµ〉q)= α(q)+{λµ}̃α(q),

so {λ,µ}(δα̃(q)+˜̃α(q))= 0. Since this holds for any λ, µ over any extension, we
may conclude that ˜̃α(q)=−δα̃(q). �

Remark 7.5. By definition, α̃ = 0 if and only if α(〈λ〉q) = α(q), that is to say,
α is invariant under similitudes. But the previous proposition suggests that in the
case A =W , α̃ =−α should also be an interesting property (notably, it is always
satisfied by invariants of the form β̃). And indeed, it is easily seen to be equivalent
to α(〈λ〉q)= 〈λ〉α(q), in which case we say α is compatible with similitudes. Then
the proposition shows that any α may be uniquely decomposed as a sum α = β+γ

with β compatible with similitudes, and γ invariant under similitudes. Precisely,
β =−α̃ and γ = α+ α̃.

From a less intrinsic point of view, if α is a finite combination of the f d
n , then

by definition of the f d
n it can be seen as a composition

I n(K ) ∼−→ Î n(K )⊂ GW(K ) h
−→ GW(K )→W (K ),
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where h is a combination of the λi . Then β corresponds to selecting only the
odd i , while γ corresponds to the even terms. Thus it makes sense to call β the
odd part of α, and γ its even part. This decomposition has no clear equivalent for
cohomological invariants.

We now want to describe the action of 9 on our basic invariants. It turns out
that it is much easier to deal with the gd

n than the f d
n in this situation.

Proposition 7.6. Let n, d ∈ N∗. Then

g̃d
n =

{
−δ(A)gd

n if d is odd,
{−1}n−1gd−1

n if d is even.

Proof. We prove the proposition by induction on d. If d = 1, the statement means
that

fn(〈λ〉q)= fn(q)− δ{λ} fn(q),

which is true whether A =W or A = H .
Now suppose the proposition holds until d − 1, for some d > 2. Since g̃d

n is
normalized, it is enough to compute g̃d

n
+

. Let L/K be any extension, and take
q ∈ I n(K ), ϕ ∈ Pfn(L) and λ ∈ L∗. Then

gd
n (〈λ〉(q +ϕ))= gd

n (q +ϕ)+{λ}g̃
d
n (q +ϕ)

= gd
n (q)+ fn(ϕ)(gd

n )
+(q)+{λ}g̃d

n (q)+{λ} fn(ϕ)g̃d
n
+
(q),

so if we consider generic λ and ϕ and take residues, we find exactly g̃d
n
+
(q).

On the other hand, if we write ϕ = 〈〈a〉〉ψ , we can compute

gd
n (〈λ〉(q +ϕ))= gd

n (〈λ〉q +〈〈λa〉〉ψ −〈〈λ〉〉ψ)

using successively on each term 8+ relative to 〈〈λa〉〉, 8− relative to 〈〈λ〉〉 and 9
relative to 〈λ〉, to get an 8-term sum. Again considering generic λ, a and ψ , taking
residues, and comparing to the previous computation, we find

g̃d
n
+
=−δ(gd

n )
+
− (̃gd

n )
+
+{−1}n−1(gd

n )
+−
+{−1}n (̃gd

n )
+−, (7.7)

using equations (0.2) and (0.3) several times.
If d is even, then (gd

n )
+
= gd−1

n and (gd
n )
+−
= gd−2

n , so by induction

(̃gd
n )
+
=−δgd−1

n and (̃gd
n )
+−
= {−1}n−1gd−3

n .

Thus, from (7.7), we get

g̃d
n
+
=−δgd−1

n + δgd−1
n +{−1}n−1(gd−2

n +{−1}ngd−3
n )= {−1}n−1(gd−1

n )+,

which is the expected formula (we need to be a little careful with the case d = 2,
but we can check that the reasoning still holds if we say that g−1

n = 0).
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Similarly, if d is odd, (gd
n )
+
= gd−1

n +{−1}ngd−2
n and (gd

n )
+−
= gd−2

n , so

(̃gd
n )
+
={−1}n−1gd−2

n −δ{−1}ngd−2
n =−{−1}n−1gd−2

n and (̃gd
n )
+−
=−δgd−2

n .

Then from (7.7),

g̃d
n
+
=−δ(gd

n )
+
+{−1}n−1gd−2

n +{−1}n−1gd−2
n − δ{−1}ngd−2

n =−δ(gd
n )
+

using (0.3), which gives the conclusion. �

Corollary 7.8. The module Inv(I n/∼, A) of invariants of similarity classes of
elements in I n is given by the combinations

∑
d∈N ad gd

n with {−1}n−1a2i+2 =

δ(A)a2i+1 for all i ∈ N.

Proof. The module Inv(I n/∼, A) is naturally isomorphic to the kernel of 9, and
if α =

∑
d∈N ad gd

n , we get

α̃ =
∑
i∈N

({−1}n−1a2i+2− δ(A)a2i+1)g2i+1
n ,

which gives the result. �

The formula for f̃ d
n is not particularly enlightening (see Remark 7.10), but we

may at least give the values of f d
n on general Pfister forms (which amounts to

computing the values of f̃ d
n on Pfister forms). This may be deduced from the

previous proposition using Proposition 4.6, but we can give a direct proof.

Proposition 7.9. Let n ∈ N∗ and d > 2. Then for any ϕ ∈ Pfn(K ) and λ ∈ K ∗ we
have

f d
n (〈λ〉ϕ)= (−1)d{−1}n(d−1)−1

{λ} fn(ϕ).

Proof. Write ϕ = 〈〈x〉〉ψ . Then since 〈λ〉〈〈x〉〉 = 〈〈λx〉〉− 〈〈λ〉〉, using (2.3), we get

f d
n (〈λ〉ϕ)= f d

n (〈〈λx〉〉ψ −〈〈λ〉〉ψ)

= f d
n (−〈〈λ〉〉ψ)+{λx} f d−1

n (−〈〈λ〉〉ψ)

= (−1)d{−1}n(d−1)
{λ} fn−1(ψ)

+{λx} fn−1(ψ)(−1)n(d−1)
{−1}n(d−2)

{λ} fn−1(ψ)

= (−1)d{−1}n(d−1)−1({−1}{λ}− {λx}{λ}) fn−1(ψ)

= (−1)d{−1}n(d−1)−1
{λ}{x} fn−1(ψ). �

Remark 7.10. We can give the general formula for f̃ d
n for the record, though we

do not prove it:

f̃ d
n = (−1)d

d−1∑
k=1

(
d − 1
k− 1

)
{−1}n(d−k)−1 f k

n +

{
0 if d even,
−δ(A) f d

n if d odd.

We can check that if we evaluate this on a Pfister form we retrieve Proposition 7.9,
and as an even more special case, formula (2.3).



236 NICOLAS GARREL

8. Ramification of invariants

In this short section we establish the behaviour of invariants with respect to residues
of discrete valuations (which incidentally was one of the main initial motivations
of this article). Let thus (K , v) be a valued field, where v is a rank 1 discrete k-
valuation, with valuation ring OK and residue field κ (in particular, κ is an extension
of k, so it has characteristic not 2).

Recall from [Elman et al. 2008, Lemma 19.10] the so-called second residue
map ∂π :W (K )→W (κ), which depends on the choice of a uniformizing element
π ∈ K . We say that q ∈ W (K ) is unramified if ∂π (q) = 0, which is independent
of the choice of π . Then q is unramified if and only if it has a diagonalization
〈a1, . . . , ar 〉 with ai ∈O∗K .

Recall also from [Garibaldi et al. 2003, §7.9, p. 18] the canonical residue map
∂ : H d(K , µ2)→ H d−1(κ, µ2), which extends to ∂ : H∗(K , µ2)→ H∗(κ, µ2). We
say that x ∈ H∗(K , µ2) is unramified if ∂(x)= 0.

Moreover, from [Elman et al. 2008, Lemma 19.14], we have ∂π(I d(K ))⊂I d−1(κ),
and using for instance [Elman et al. 2008, Proposition 101.8] we get for any d ∈N∗

a commutative diagram

I d(K ) I d−1(κ)

H d(K , µ2) H d−1(κ, µ2).

∂π

en ed−1

∂

Proposition 8.1. Let n ∈ N∗ and q ∈ I n(K ), where K is endowed with a rank 1
discrete k-valuation. If q is unramified, then α(q) ∈ A(K ) is unramified for any
α ∈ M(n).

Proof. By hypothesis, q̂ ∈ Î n(K ) comes from an element of GW(OK ), so any λi (q̂)
also comes from GW(OK ), and is unramified. Since πd

n is a combination of the λi

with integer coefficients, πd
n (q̂) ∈ Î nd(K ) is unramified.

Now, tautologically if A =W , and applying the above commutative diagram if
A = H , this implies that f d

n (q) ∈ A>nd(K ) is unramified.
Since any α ∈ M(n) is a combination of the f d

n with coefficients in A(k), and v
is a k-valuation, we can conclude that α(q) ∈ A(K ) is unramified. �

9. Invariants of Quad2r

In [Garibaldi et al. 2003], Serre gives a complete description of Inv(Quadm, A):
it is a free A(k)-module of rank n + 1, with basis (λd)06d6m for A = W , and
the Stiefel–Whitney classes (wd)06d6m for A = H (see [Garibaldi et al. 2003,
Theorem 27.16 and §17.1]). Clearly any invariant of I restricts to an invariant of
Quadm for any even m, and we want to express it in terms of the given basis.
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For practical purposes it is more convenient to introduce a different basis for
Inv(Quadm,W ) which is the equivalent of the Stiefel–Whitney classes for Witt in-
variants. We use the notations and definitions from Section 1. Recall from [Elman
et al. 2008, §5] that the total Stiefel–Whitney map wt : GW(K )→3(H∗(K , µ2))

is the only group morphism such that wt(〈a〉) = 1 + (a)t for all a ∈ K ∗. We
generalize this construction:

Proposition 9.1. There is a unique group morphism

ht : GW(K )→3(A(K )), x 7→ ht(x)=
∑
d∈N

hd(x)td

such that ht(〈a〉) = 1+ {a}t for all a ∈ K ∗. The map hd takes values in A>d(K ).
For any m ∈ N∗, we write hd

m : Quadm(K )→ A(K ) for the restriction of hd to
forms of dimension m. Then hd

m ∈ Inv(Quadm, A>d).
If A = H , then hd is the Stiefel–Whitney map wd . If A =W , we write Pd

= hd

and Pd
m = hd

m ; then for any q ∈ Quadm(K ),

Pd
m(q)=

d∑
k=0

(−1)k
(

m− k
d − k

)
λk(q). (9.2)

In both cases, (hd
m)06d6m is a basis of the A(k)-module Inv(Quadm, A).

Proof. The uniqueness of ht is obvious since GW(K ) is generated by the 〈a〉 as
an additive group. For A= H , the existence can either be deduced from the case
A=W, or from the classical existence of Stiefel–Whitney maps. For A =W , we
define Pd piecewise on quadratic forms, using (9.2) for Pd

m in each dimension m.
We see immediately from the definition that Pd

1 (〈a〉) is 1 if d = 0, 〈〈a〉〉 if d = 1 and
0 if d > 2. The fact that this extends to a group morphism GW(K )→3(GW(K ))
can be deduced using the universal property of Grothendieck groups if we can show
that for any q ∈ Quadm(K ), q ′ ∈ Quadn(K ), we have

Pd
m+n(q + q ′)=

d∑
k=0

Pm(q)Pn(q ′).

And indeed we find
d∑

k=0

Pm(q)Pn(q ′)=
d∑

k=0

k∑
i=0

d−k∑
j=0

(−1)i+ j
(

m− i
k− i

)(
n− j

d − k− j

)
λi (q)λ j (q ′)

=

d∑
l=0

(−1)l
∑

i+ j=l

( d− j∑
k=i

(
m− i
k− i

)(
n− j

d − k− j

))
λi (q)λ j (q ′)

=

d∑
l=0

(−1)l
(

m+ n− l
d − l

) ∑
i+ j=l

λi (q)λ j (q ′)= Pm+n(q + q ′).
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From the group property we easily see that

hd
m(〈a1, . . . , am〉)=

∑
i1<···<id

{ai1, . . . , aid }, (9.3)

so hd
m(q)∈ I d(K ) if q ∈Quadm(K ). The fact that hd

m is an invariant is obvious given
the definition with the λ-powers, or can be deduced from the uniqueness statement.
Finally, the fact that the hd

m for a basis of Inv(Quadm, A) is a consequence of Serre’s
result, directly for A= H , and observing for A=W that the transition matrix from
(Pd

m)06d6m to (λd)06d6m is triangular unipotent. �

Remark 9.4. Note that this does not define a pre-λ-ring structure on GW(K ) since
P1 is not the identity (indeed, P1(〈a〉)= 〈〈a〉〉).

Proposition 9.5. Let m = 2r ∈ N∗, d ∈ N and q ∈ Quadm(K ). Then

f d
1 (q)=

d∑
i=0

(−1)i
(

r − i
d − i

)
{−1}d−i hi

m(q),

gd
1 (q)=

d∑
i=0

(−1)i
(

r − i − 1+
⌊d+1

2

⌋
d − i

)
{−1}d−i hi

m(q).

Proof. We prove the statement concerning f d
1 ; the case of gd

1 may be deduced by a
lengthy but straightforward computation using Proposition 4.6, or can be directly
proved by the same method.

Write αd
m for the invariant of Quadm defined by the right-hand side of the equa-

tion. It is clear by definition that α0
m = 1 coincides with f 0

1 on Quadm . We claim
that it is enough to show that for any d ∈ N∗,

αd
2 (〈〈1〉〉)= 0, (9.6)

and for any m = 2r ∈ N∗, any q ∈ Quadm(K ) and any a ∈ K ∗,

αd
m+2(q +〈〈a〉〉)= α

d
m(q)+{a}α

d−1
m (q). (9.7)

Indeed, taking a = 1 in (9.7) shows that αd
m(q) depends only on the Witt class of

q ∈ Quadm(K ), so it defines an invariant αd
∈ M(1). Then (9.6) shows that αd

is normalized, and (9.7) shows that (αd)+ = αd−1, so by an immediate induction,
αd
= f d

1 .
From (9.3) we easily see that h0

2(〈〈a〉〉)= 1, h1
2(〈〈a〉〉)= {−a}, and hi

2(〈〈a〉〉)= 0
if i > 2. Thus αd

2 (〈〈1〉〉)= {−1}d −{−1}d−1
· {−1} = 0, which shows (9.6).

Furthermore, if i ∈ N and q ∈ Quadm(K ),

hi
m+2(q +〈〈a〉〉)= hi

m(q)+{−a}hi−1
m (q)

=
(
hi

m(q)+{−1}hi−1
m (q)

)
−{a}hi−1

m (q) (9.8)
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(where by convention h−1
m = 0). Therefore,

αm+2(q +〈〈a〉〉)=
d∑

i=0

(−1)i
(

r + 1− i
d − i

)
{−1}d−i(hi

m(q)+{−1}hi−1
m (q)

)
−{a}

d∑
i=0

(−1)i
(

r + 1− i
d − i

)
{−1}d−i hi−1

m (q)

=

d−1∑
i=0

(
(−1)i

(
r − i + 1

d − i

)
+ (−1)i+1

(
r − i

d − i − 1

))
{−1}d−i hi

m(q)

+(−1)dhd
m(q)−{a}

d−1∑
i=0

(−1)i+1
(

r − i
d − i − 1

)
{−1}d−i−1hi

m(q)

=

d∑
i=0

(−1)i
(

r − i
d − i

)
{−1}d−i hi

m(q)

+{a}
d−1∑
i=0

(−1)i
(

r − i
d − 1− i

)
{−1}d−1−i hi

m(q),

which gives the expected formula. �

Remark 9.9. In particular, looking carefully at the binomial coefficients in the
formula and remembering that hi

m = 0 if i > m, we retrieve the fact that gd
1 is zero

if d > m (recall Corollary 4.8). On the other hand, we see that f d
1 can be nonzero

for arbitrarily high values of d , even for fixed m.

Remark 9.10. If −1 is a square in k, then f d
1 = gd

1 = hd
m on Quadm for any

even m ∈ N∗.

Corollary 9.11. For any even m ∈N∗, the restrictions of f d
1 (or gd

1 ) for 06 d 6m
form an A(k)-basis of Inv(Quadm, A). In particular, any invariant of Quadm can
be extended to I .

Remark 9.12. Serre also describes the cohomological invariants of Quadm,δ , mean-
ing of forms with prescribed determinant δ, and in particular this gives a description
of invariants of Quadm ∩I 2. They are given by Stiefel–Whitney classes, plus one in-
variant that does not extend to Quadm in general. Since any invariant of I 2 extends
to I , this shows that there are invariants of Quadm ∩I 2 that do not extend to I 2.

There are also examples in the literature of some invariants of Quadm ∩I 3 that
one can show, using the results in this article, do not extend to I 3 (for instance the
invariant a5 mentioned in Section 11).

Remark 9.13. Let us consider the cohomological invariants of Quadm /∼ (the sim-
ilarity classes of quadratic forms of dimension n). This is of course the same thing
as an invariant of Quadm which is constant on similarity classes, so according to
Corollary 9.11 any such invariant is a unique combination of the v(1)d with 06 d6m.
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Now Corollary 7.8 shows that such a combination is constant on similarity classes
if and only if the only d that appear are odd. This is exactly the description that
Rost gives in [1998, Lemma 2], where he proves that any invariant of Quadm /∼ is
a unique combination of invariants he calls v2i+1, and a simple computation shows
that v2i+1 = v

(1)
2i+1.

On the other hand, our present tools cannot a priori describe all cohomological
invariants of similarity classes in Quadm ∩I 2, since not all invariants of Quadm ∩I 2

extend to I 2. What we can say from the previous remark and Corollary 7.8 is
that those which do extend to I 2 can be uniquely written as

∑r
d=0 ad ∪ v

(2)
2d with

(−1)∪ ad = 0 if d > 0 is even. However, Rost describes in [1998, Theorem 6] the
invariants of similarity classes Quadm ∩I 2, and proves that they are combinations
of invariants ηd . It turns out that ηd = v

(2)
2d , so this shows that even though some

invariants of isometry classes in Quadm ∩I 2 do not extend to I 2, all invariants of
similarity classes in Quadm ∩I 2 do extend to I 2 (and therefore to I ), and Rost’s
description is exactly the same as ours.

10. Operations on mod 2 cohomology

In this section we are specifically interested in cohomological invariants. It was
observed by Serre that one may define some sorts of divided squares on mod 2
cohomology:

H n(K , µ2)→ H 2n(K , µ2)/(−1)n−1
∪ H n+1(K , µ2),∑

i
αi 7→

∑
i< j
αi ∪α j .

The quotient on the right-hand side is necessary for the map to be well-defined.
Similarly, one may define higher divided powers:

H n(K , µ2)→ H dn(K , µ2)/(−1)n−1
∪ H (d−1)n+1(K , µ2),∑

i
αi 7→

∑
i1<···<id

αi1 ∪ · · · ∪αid .

On the other hand, Vial [2009] characterizes natural operations

H n(K , µ2)→ H∗(K , µ2)

(his statement is formulated for mod 2 Milnor K-theory, which is equivalent ac-
cording to the resolution of Milnor’s conjecture). The precise statement, slightly
reformulated, is the following (the original statement forgets to explicitly assume
that operations must have uniformly bounded degree):

Proposition 10.1 [Vial 2009, Theorem 2]. If n ∈ N∗, the H∗(k, µ2)-module of
operations H n(K , µ2)→ H∗(K , µ2) with uniformly bounded degree is

H∗(k, µ2) · 1⊕ H∗(k, µ2) · Id⊕
⊕
d∈N

Ker(τn) · θd ,
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where τn : H∗(k, µ2) → H∗(k, µ2) is defined by τn(x) = (−1)n−1
∪ x , and if

a ∈ Ker(τn), then

a · θd

( ∑
16i6r

xi

)
= a ·

∑
i1<···<id

xi1 ∪ · · · ∪ xid ,

where the xi are symbols.

Note that the “divided power operation” θd is not defined on its own, but a · θd is
well-defined when a ∈ Ker(τn). This is similar to how for Serre’s operations it was
necessary to consider some quotient on the right-hand side of the map; here one has
to put some restriction on the left-hand side, in both cases to annihilate appropriate
powers of the symbol (−1) ∈ H 1(K , µ2). The remarkable phenomenon is that
when we work on the level of I n , we can lift those θd with no restriction: this is
our u(n)nd .

Moreover, it is not too difficult to retrieve Vial’s theorem using our results about
invariants of I n: operations on H n(K , µ2) are none other than invariants α ∈ M(n)
(with A = H ) such that

α(q +ϕ)= α(q) for all q ∈ I n(K ), ϕ ∈ Pfn+1(K ). (10.2)

Consider the following easy lemma:

Lemma 10.3. Let n ∈ N∗, and let us restrict to A = H. For any α ∈ M(n), any
q ∈ I n(K ) and any ϕ ∈ Pfn+1(K ), we have

α(q +ϕ)= α(q)+ (−1)n−1
∪ en+1(ϕ)∪α

++(q).

Proof. Up to taking linear combinations, we may restrict to the case of α = u(n)nd .
Using Corollary 6.4, we see that u(n)nd (ϕ) is 1 if d = 0, (−1)n−1

∪ en+1(ϕ) if d = 2,
and 0 otherwise. Then using the sum formula for u(n)nd we find

u(n)nd (q +ϕ)= u(n)nd (q)+ (−1)n−1
∪ en+1(ϕ)∪ u(n)n(d−2)(q). �

Then α ∈M(n) satisfies condition (10.2) if and only if (−1)n−1
∪α++= 0, which

precisely means that if we write α =
∑

d ad ∪ u(n)nd then, for d > 2, ad ∈ Ker(τn),
and we indeed retrieve Vial’s description.

11. Invariants of semifactorized forms

Garibaldi [2009, §20] defines a cohomological invariant on Quad12 ∩I 3 in the fol-
lowing way: any such form can be written q = 〈〈c〉〉q ′, where q ′ ∈ I 2(K ), and
we set a5(q)= e5(〈〈c〉〉π2

2(q
′))= (c)∪ u(2)4 (q ′) (using our notation). Of course, the

nontrivial ingredient is that 〈〈c〉〉π2
2(q
′) is actually independent of the decomposition

of q .
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This construction does not correspond to any of the tools we developed so far,
since it does not give an invariant of I 3. However, it is easy to see that the con-
struction works for any Witt class q ∈ I 3(K ) that factorizes as q = 〈〈c〉〉q ′. This
leads us to the more general definition:

Definition 11.1. Let n ∈ N∗ and r ∈ N such that r 6 n. We set

I n,r (K )= {ϕ · q | ϕ ∈ Pfr (K ), q ∈ I n−r (K )}.

We also define M(n, r) = Inv(I n,r , A), and similarly M0(n, r), M>d(n, r) and
M>d

0 (n, r). In particular, I n,0
= I n , so M(n, 0)= M(n) and so on.

Remark 11.2. A consequence of Milnor’s conjecture proved in [Elman et al. 2008,
Theorem 41.7] is that I n,r (K )= I r,r (K )∩ I n(K ), so in particular

I n,r (K )∩ I n+1(K )= I n+1,r (K ).

Clearly, if (m, s) > (n, r), then I m,s(K ) ⊂ I n,r (K ), so we have a restriction
morphism

ρ(n,r),(m,s) : M(n, r)→ M(m, s), α 7→ α|I m,s ,

which is a morphism of filtered A(k)-algebras, and sends M0(n, r) to M0(m, s).
In particular, when r = s = 0, we retrieve the restriction morphism ρn,m defined
in (6.1). We usually drop the indexes and simply write ρ : M(n, r)→ M(m, s),
since the indexes can be inferred from the source and target modules.

We can also define a morphism that goes in the other direction:

Proposition 11.3. Let n, r, t ∈ N with t 6 r < n. There is a unique morphism of
filtered A(k)-modules

1t
(n,r) : M(n, r)→ M(n−t, r−t)[−t], α 7→ α(t),

such that α(t)(0)= α(0), and if α ∈ M0(n, r) then

α(ϕ · q)= ft(ϕ) ·α
(t)(q)

for any ϕ ∈ Pft(K ) and q ∈ I n−t,r−t(K ). Furthermore, 1t
(n,r) is injective.

Proof. Since M(n, r) = A(k)⊕ M0(n, r), this piecewise definition of 1t
(n,r) de-

termines the whole function. Let α ∈ M>d
0 (n, r) and q ∈ I n−t,r−t(K ). Then

ϕ 7→ α(ϕ · q) defines an invariant of Pft over K with values in A>d . Using
Lemma 0.5, there are unique x(q), y(q) ∈ A(K ) such that

α(ϕ · q)= x(q)+ ft(ϕ) · y(q)

and by uniqueness those are invariants of I n−t,r−t , with x = α(0) = 0. We then
set α(t) := y. Furthermore, using Lemma 0.4, we see that y(q) ∈ A>d−t(K ), so
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α(t) ∈ M>d−t
0 (n−t, r−t). The injectivity is clear since any element of I n,r (K ) is of

the form ϕq with ϕ and q as in the statement, and α(ϕq) is determined by α(t). �

We usually drop the indexes and simply write 1t
: M(n, r)→ M(n−t, r−t)[−t].

Using this notation, it is clear by definition that 1t
◦1t ′

= 1t+t ′ . The natural
question is then as follows:

Question. What is the image of 1t
: M(n+ t, r + t)→ M(n, r)?

This can be rephrased to ask for which β ∈ M0(n, r) is it true that for all
ϕ ∈ Pft(K ) and q ∈ I n,r (K ), ft(ϕ)β(q) only depends on ϕq? With this point
of view, the existence of the invariant a5 given at the beginning of the section
(which is [Garibaldi 2009, Corollary 20.7]) is exactly equivalent to the fact that
f 2
2 ∈ M(2, 0) is in the image of 11

: M(3, 1)→ M(2, 0). The main result of the
section is a generalization of this fact:

Theorem 11.4. For any n ∈N∗,11
:M0(n+1, 1)→M0(n)[−1] is an isomorphism

of filtered A(k)-modules.

Remark 11.5. This means that 11
: M(n+1, 1)→ M(n)[−1] is a module isomor-

phism, but it is not a filtered module isomorphism, since it is the identity on the
constant components, and while the identity is a bijective filtered morphism from
A(k) to A(k)[−1], it is of course not a filtered isomorphism.

Before we prove Theorem 11.4, we construct a common generalization of ρ
and 1t , which allows us to make simple statements about the general properties of
both those morphisms. Most of that is not useful for the proof of the theorem, but
has some independent interest.

Definition 11.6. Let m, n ∈N∗ and r, s ∈N be such that r < n and s <m. We say
that a filtered A(k)-module morphism M(n, r)→ M(m, s)[−t] is of type �t if it
is a composition of morphisms ωi : M(ni , ri )[−ai ] → M(ni+1, ri+1)[−ai − ti ] for
i = 0, . . . , d, with (n0, r0)= (n, r), a0 = 0, (nd+1, rd+1)= (m, s), t =

∑
i ti , and

ωi is either ρ (so ti = 0) or 1ti .
In particular, we define ω of type �1:

ω : M(n, r) ρ
−→ M(n+ 1, r + 1) 1

1
−→ M(n, r)[−1].

Remark 11.7. It is not hard to see that there is a morphism M(n, r)→M(m, s)[−t]
of type �t if and only if t > n−m and t > r − s.

Proposition 11.8. Let m, n ∈ N∗ and r, s ∈ N be such that r < n and s < m, and
let t ∈ N be such that t > n−m and t > r − s. Then there is exactly one morphism
M(n, r) → M(m, s)[−t] of type �t , and we call it simply �t . The morphism
�t
: M(n, r)→ M(n, r)[−t] is ωt .
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In particular, let t ′ > t . Then the following diagram of filtered A(k)-modules
commutes:

M(n, r)

M(m, s)[−t] M(m, s)[−t ′]

�t �t ′

ωt ′−t

Proof. The only thing to prove is that there is at most one morphism of type �t .
The fact that �t

= ωt then follows, since ωt is of type �t by definition, and the
commutativity of the diagram comes from the fact that both compositions are of
type �t ′ .

To show this uniqueness, it is enough to show that the following diagram com-
mutes whenever it makes sense:

M(n, r) M(m, s)

M(n−t, r−t)[−t] M(m−t, s−t)[−t]

ρ

1t 1t

ρ

Indeed, if we can prove this, then we can show by induction on the length of the
composition that in the definition of a morphism of type �t we can always assume
that the first morphisms are all of the form ρ, and the remaining ones are all of the
form 1ti . But then the result is clear, since a composition of restriction morphisms
is a restriction morphism, and 1t

◦1s
= 1t+s (with the only indices that make

sense), so the morphism is entirely characterized by its source, its target and t .
We now show that the diagram commutes. Let α ∈M(n, r). Since all morphisms

are the identity on the constant components, we may assume α ∈ M0(n, r). Let us
write β = (α(t))|I m−t,s−t , and take ϕ ∈ Pft(K ), ψ ∈ Pfs−t(K ) and q ∈ I m−s(K ). We
can setψ=ψ1ψ2 withψ1∈Pfr−t(K ) andψ2∈Pfs−r (K ); then if q ′=ψ2q∈ I m−r (K ),
we have

α(ϕψq)= α(ϕψ1q ′)= ft(ϕ)α
(t)(ψ1q ′)= ft(ϕ)β(ψq),

which shows that β = (α|I m,s )(t). �

Example 11.9. The morphism�0
:M(n, r)→M(m, s) exists when (m, s)> (n, r),

and it is the restriction morphism ρ. The morphism�t
:M(n, r)→M(n−t, r−t)[−t]

exists when t 6 r , and it is 1t .

Example 11.10. There is a morphism �t
: M(n)→ M(m)[−t] when t > n−m,

and if n = m it is ωt , with ω : M(n)→ M(n)[−1].

We can now collect some basic properties of the morphisms �t .

Proposition 11.11. Let n,m, r, s, t ∈ N be as in Proposition 11.8. Then for any
α, β ∈ M0(n, r), we have

�t(αβ)= {−1}t�t(α)�t(β).
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Proof. Since the restriction morphisms obviously preserve the product of invariants,
we may assume that �t

= 1t . Then for any ϕ ∈ Pft(K ), ψ ∈ Pfr−t(K ) and
q ∈ I n−r (K ), we have

(αβ)(ϕψq)= ( ft(ϕ)α
(t)(ψq))( ft(ϕ)β

(t)(ψq))= {−1}t ft(ϕ)(α
(t)β(t))(ψq),

hence the result. �

We may note from Proposition 7.1 that we have well-defined filtered morphisms

9 : M(n, r)→ M(n, r)[−1]

for any n, r ∈ N such that r < n.

Proposition 11.12. Let n,m, r, s, t ∈ N be as in Proposition 11.8. Then the follow-
ing diagram of filtered A(k)-modules commutes:

M(n, r) M(m, s)[−t]

M(n, r)[−1] M(m, s)[−t − 1]

�t

9 9

�t

Proof. The definition of 9 makes it clear that it commutes with restriction mor-
phisms, since it is defined on the whole Inv(W, A). Thus we may assume �t

=1t .
Let α ∈ M(n, r), ϕ ∈ Pft(K ), ψ ∈ Pfr−t(K ), q ∈ I n−r (K ) and λ ∈ K ∗. Then

α(〈λ〉ϕψq)= ft(ϕ)α
(t)(〈λ〉ψq)= ft(ϕ)α

(t)(ψq)+ ft(ϕ){λ}α̃(t)(ψq),

but also

α(〈λ〉ϕψq)= α(ϕψq)+{λ}̃α(ϕψq)= ft(ϕ)α
(t)(ψq)+{λ} ft(ϕ)̃α

(t)(ψq),

which gives α̃(t) = α̃(t). �

Since we saw in Corollary 6.3 that8+ is far from commuting with the restriction
morphisms, we cannot expect such a good compatibility with the morphisms �t ,
but we still get the following:

Proposition 11.13. Let n ∈N∗ and let t ∈N be such that t < n. Then the following
diagram of filtered A(k)-modules commutes for any ε =±1:

M(n) M(n−t)[−t]

M(n)[−n] M(n−t)[−n]

�t

8ε 8ε

{−1}t�t
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Proof. The diagram obviously commutes for the constant components (since we
find 0 in both cases), so we may consider α ∈M0(n). Let ϕ ∈Pft(K ), ψ ∈Pfn−t(K )
and q ∈ I n−t(K ). Then

α(ϕ(q + εψ))= α(ϕq)+ ε fn(ϕψ)α
ε(ϕq)

= ft(ϕ)α
(t)(q)+ ε{−1}t fn(ϕψ)(α

+)(t)(q)
as well as

α(ϕ(q + εψ))= ft(ϕ)α
(t)(q + εψ)

= fr (ϕ)α
(r)(q)+ ε fr (ϕ) fn−r (ψ)(α

(r))+(q),

which proves that ((α|I n,t )(t))+ = {−1}t(α+)(t)
|I n,t . �

Corollary 11.14. Let n, t ∈N be such that t<n. Then for any d ∈N∗, the morphism
�t
: M(n)→ M(n−t)[−t] satisfies

�t( f d
n )= {−1}t (d−1) f d

n−t .

In particular, if ϕ ∈ Pft(K ) and q ∈ I n(K ) is a multiple of ϕ, then f d
n (q) is a

multiple of ft(ϕ).

Proof. The formula follows from an induction on d, using Proposition 11.13. For
the last statement, note that according to Remark 11.2, there is q ′ ∈ I n−t(K ) such
that q = ϕq ′. Then according to the formula,

f d
n (q)= f d

n (ϕq ′)= {−1}t (d−1) ft(ϕ) f d
n−t(q

′). �

We now turn to the proof of Theorem 11.4. We first need a preliminary lemma.

Lemma 11.15. Let a, b ∈ K ∗, and consider q ∈ Î (K ) of the form

q =
r∑

i=1

〈xi 〉〈|ci |〉,

where ci is represented by 〈〈ab〉〉. Then for any k ∈ N∗,

〈〈a〉〉λk(q)= 〈〈b〉〉λk(q).

In particular, for any n, d ∈ N∗, 〈〈a〉〉πd
n (q)= 〈〈b〉〉π

d
n (q).

Proof. We have

λk(q)=
∑

d1+···+dr=k

λd1(〈x1〉〈|c1|〉) · · · λ
dr (〈xr 〉〈|cr |〉).

Now at least one of the di is nonzero, so we may conclude since

〈〈a〉〉λdi (〈xi 〉〈|ci |〉)= 〈xd
i 〉〈〈a〉〉〈|ci |〉 = 〈xd

i 〉〈〈b〉〉〈|ci |〉 = 〈〈b〉〉λdi (〈xi 〉〈|ci |〉),
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using Lemma 1.4 and the fact that if c is represented by 〈〈ab〉〉 then 〈〈a, c〉〉 = 〈〈b, c〉〉.
The statement about πd

n follows since by definition πd
n is a combination of the λk

with 16 k 6 d . �

We can finally prove the main result of the section:

Proof of Theorem 11.4. It suffices to show that f d
n is in the image of11 for all d > 1,

which amounts to saying that 〈〈a〉〉q 7→ {a} f d
n (q) is well-defined, in other words that

if q, q ′ ∈ I n(K ) and a, b ∈ K ∗, then 〈〈a〉〉q = 〈〈b〉〉q ′ implies {a} f d
n (q)= {b} f d

n (q
′).

Assume first that a = b. Then according to [Elman et al. 2008, Corollary 6.23],

q − q ′ =
∑
i∈J

〈〈ci 〉〉qi ,

where qi ∈W (K ) and ci is represented by 〈〈a〉〉. We may then reason by induction
on |J |, and we are reduced to the case where q ′ = q +〈〈c〉〉q0, with c represented
by 〈〈a〉〉. But according to Corollary 11.14, for any k ∈ N∗, f k

n (〈〈c〉〉q0) is divisible
by {c}, so {a} f k

n (〈〈c〉〉q0)= 0. From there,

{a} f d
n (q
′)= {a}

d∑
k=0

f k
n (q) f d−k

n (〈〈c〉〉q0)= {a} f d
n (q).

Suppose now that a 6= b. Then Hoffmann shows in [Garibaldi 2009, Corol-
lary B.5] that we have

〈〈a〉〉q = 〈〈a〉〉q0 = 〈〈b〉〉q0 = 〈〈b〉〉q ′,

where q0 =
∑

i∈J 〈xi 〉〈〈ci 〉〉 ∈ I n(K ), and ci is represented by 〈〈ab〉〉. The previous
discussion shows that {a} f d

n (q)= {a} f d
n (q0) and {b} f d

n (q)= {b} f d
n (q0), so it just

remains to show that {a} f d
n (q0)= {b} f d

n (q0) for any q0 admitting a decomposition
as above. This is a direct consequence of Lemma 11.15. �
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