

Simulations of single- and two-phase shock tubes across abrupt changes of area and branched junctions

Frédéric Daude, P. Galon

▶ To cite this version:

Frédéric Daude, P. Galon. Simulations of single- and two-phase shock tubes across abrupt changes of area and branched junctions. Nuclear Engineering and Design, 2020, 365, pp.110734. 10.1016/j.nucengdes.2020.110734. hal-02882667

HAL Id: hal-02882667 https://hal.science/hal-02882667

Submitted on 27 Jun2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Simulations of single- and two-phase shock tubes across abrupt changes of area and branched junctions

F. Daude^{a,b}, P. Galon^{a,c}

^aIMSIA, UMR EDF-CNRS-CEA-ENSTA 9219, Université Paris-Saclay, F-91762 Palaiseau, France ^bEDF R&D, ERMES, F-91120 Palaiseau, France ^cCEA Saclay, DEN/SEMT, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France

Abstract

This work is devoted to the simulation of single- and two-phase shock-tubes. In particular, the interaction between pressure waves and an abrupt change of area (sudden expansion and sudden contraction) is also considered. For this purpose, the quasi 1-D Finite-Volume approach recently developed by the authors for compressible flows in pipelines is used and assessed on a variety of test-cases. The numerical solutions are compared with other numerical solutions obtained with codes as RELAP-5, WAHA or RELAP-7 or analytical solutions when available. Finally, the experimental pressure waves propagation in a network experiments is also considered. The carefully chosen test-cases assess the ability of the present approach to predict the complex dynamics of single- and two-phase pressure wave phenomena with satisfactory accuracy and efficiency.

Keywords: Variable cross-section, compressible two-phase flows, Finite Volume, pipe network, junction, abrupt change of area

1 1. Introduction

Propagation of pressure waves through piping systems is a field of interest for many years due to the potential 2 damages induced by such physical phenomena. That is why one-dimensional unsteady compressible flow analysis 3 is widely used to predict the pressure wave action phenomena in pipelines. Pressure surges are important in many fields of engineering applications as gas transmission piping systems, natural gas transport systems and nuclear reactor 5 piping systems. Pressure waves or pressure shocks are very important in the design and the safety of nuclear reactor 6 coolant systems. These pressure waves could have in certain situations destructive effects which could compromise the 7 integrity of the nuclear reactor coolant systems as it was described in [1]. For nuclear reactor safety analysis, system 8 codes such as RELAP-5 [2], TRACE [3] and CATHARE [4] have been developed. Recently, studies of pressure 9 waves propagation have showed that the system code RELAP-5 [5] can achieve sufficient accuracy when sufficiently 10 small time steps and grid size are used, even though the code was not initially designed for this purpose [6]. The 11 WAHA code [7, 8] was developed in order to circumvent some weaknesses exhibited by RELAP-5 and TRACE in 12 simulating two-phase flow water-hammer events. In a similar manner, the RELAP-7 code [9] has been developed 13 using a well-posed and unconditionally hyperbolic model to give correct pressure wave dynamics for fast transient 14 situations and safety analysis. In addition, Delchini et al. [10] have studied the capability of the RELAP-7 code to 15 simulate pressure waves in single- and two-phase flows. 16

The pipe systems are usually modelled as flow networks, where branched junctions or sudden changes of area are frequently encountered. In the numerical calculation of the flow networks, the boundary condition of pipe flows must be implemented at the junctions [11]. The incident, reflection, transmission, and attenuation of pressure waves appear at the junctions. Therefore, an improper specification of the boundary condition disturbs the flows. The different approaches encountered in the literature are based on the mass conservation at the junction. However, for

Preprint submitted to Elsevier

June 9, 2020

Email address: frederic.daude@edf.fr (F. Daude)

non-isentropic or non-isothermal flows, additional conditions should be satisfied in order to couple all of the flow 22 variables. In order to consider balance equations for the fluid of mass, energy and momentum at branched pipe 23 junctions, a finite-volume treatment for the junction problem has been recently proposed in [12]. This approach is 24 based on the integral form of the equations in a multi-dimensional cell used for exchanging mass, momentum and 25 energy with the adjacent pipes as in [13, 14, 15]. It has been shown that general Equations Of State (EOS) can be 26 handled with this approach: ideal perfect gas EOS and steam-water tables [12]. In addition, this numerical approach 27 has been assessed in a satisfactory manner on water-hammer experiments with vapor generation and collapse in elastic pipes [16]. The objective is here to assess this approach on single- and two-phase shock-tubes. In addition, 29 the interaction of pressure waves with sudden duct contraction and expansion has also to be studied as well as the 30 pressure wave propagation through networks. 31

The paper is organized as follows. First, the governing equations and, then the associated numerical schemes used 32 in the present work are recalled. Especially, the finite-volume treatment used for the junction and the abrupt change of 33 area previously proposed by the authors in [12] is briefly evoked. Afterwards, numerical results of shock-tubes taken 34 from the published literature are presented for the simulation of single- and two-phase pressure waves propagation in pipelines. Then, numerical shock-tubes interacting with an abrupt change of area, i.e. sudden expansion or contrac-36 tion, are also considered. All numerical results presented herein are compared to numerical solutions obtained with 37 other codes as RELAP-5 [2], WAHA [7] and/or RELAP-7 [9] and to analytical or quasi-analytical solutions when 38 available. Finally, the experimental propagation of pressure waves in a three- or four-pipe network filled by air at rest 39 [17] is considered. The purpose of this work is to assess the robustness and the accuracy of the present approach. 40

41 2. Governing equations and numerical procedure

The conservation equations for one-dimensional, unsteady, compressible flows in ducts with variable crosssectional area are considered in the following. It is based on the conservation equations of mass, momentum and total energy:

$$\begin{pmatrix} \partial_t (\rho A) &+ & \partial_x (\rho u A) &= 0\\ \partial_t (\rho u A) &+ & \partial_x (\rho u^2 A + p A) &- & p \partial_x A &= 0\\ \partial_t (\rho e A) &+ & \partial_x (\rho e u A + p u A) &= 0 \end{cases}$$
(1)

with t the time, x the spatial coordinate corresponding to the pipe axis, ρ the density of the mixture, u the crosssectional average of velocity in the pipe direction, p the absolute pressure and e the specific total energy. The pipe cross-section is denoted by A and d is the inner diameter of the pipe, *i.e.* $A = \pi d^2/4$. Eq. (1) corresponds to the Euler equations or the Homogeneous Equilibrium Model (HEM) [18] where the slip between phases is neglected and instantaneous thermal, mechanical and chemical equilibria are assumed. As a consequence, in HEM, the two phases share the same velocity, the same pressure, the same temperature and the same Gibbs free energy. The specific internal energy ε is given by:

$$\varepsilon = e - \frac{1}{2}u^2$$

It is linked to the density ρ and the absolute pressure p via an additional relation named equation of state:

$$\varepsilon = \varepsilon^{\text{EOS}}(\rho, p)$$

In the present work, two different EOS are considered. The first one is the ideal perfect gas EOS for single-phase 42 given by the analytical relation: $p = \rho(\gamma - 1)\varepsilon$ with γ the specific heat ratio. The second is the steam-water tables 43 based on the 1984 NBS/NRC (National Bureau of Standards/National Research Council of Canada) formulation [19] 44 retained for steam-water flows. Thermodynamic values listed in the tables are calculated from an analytic polynomial 45 equation that is an accurate approximation to the Helmholtz function (specific Helmholtz free-energy) for ordinary 46 (not pure) water and steam. In practice, instead of the expensive direct use of this analytic equation, a tabulation is 47 considered at the beginning of the simulation using interpolation algorithms. Then, at each time step, determining 48 49 the thermodynamic properties of steam and water as a function of absolute pressure and density from such accurate tabulation requires an iterative inversion as the steam-water tables are developed in a 3-D p-v-T diagram (p absolute 50 pressure, $v = 1/\rho$ specific volume and T absolute temperature). This iterative process is detailed in [20]. 51 52

Following the assumptions of the HEM, the steam-water mixture is supposed to be at its saturation point. As a consequence, the vapor fraction α_v is directly given by:

$$\alpha_{\nu} = \begin{cases} 0 & \text{when } \rho_{l,\text{sat}} \le \rho \\ \frac{\rho - \rho_{l,\text{sat}}}{\rho_{\nu,\text{sat}} - \rho_{l,\text{sat}}} & \text{when } \rho_{\nu,\text{sat}} \le \rho \le \rho_{l,\text{sat}} \\ 1 & \text{when } \rho \le \rho_{\nu,\text{sat}} \end{cases}$$
(2)

where $\rho_{l,sat}$ and $\rho_{v,sat}$ are the liquid and vapor densities at saturation obtained from the steam-water tables, respectively:

$$\rho_{l,\text{sat}} = \rho_{l,\text{sat}}^{\text{EOS}}(T) \quad \text{and} \quad \rho_{\nu,\text{sat}} = \rho_{\nu,\text{sat}}^{\text{EOS}}(T)$$

with the absolute temperature *T* given by the EOS: $T = T^{EOS}(\rho, p)$. As a consequence, the vapor fraction α_{ν} is directly given by the mixture density ρ and the absolute pressure *p* as the two-phase mixture is supposed to be at saturation, i.e. $\alpha_{\nu} = \alpha_{\nu}(\rho, p)$.

56

In the following sections, comparisons with RELAP-5 [2], RELAP-7 [9] or WAHA [7] codes are performed. 57 However, it has to be noticed that the models used in these different codes are different from the HEM model de-58 scribed previously. The model retained in the RELAP-5 and in the WAHA codes is the one-pressure and two-velocity 59 six-equation two-phase flow model assuming pressure-equilibrium between phases whereas the model retained in the 60 RELAP-7 system code is a two-pressure and two-velocity seven-equation two-phase flow model with distinct pres-61 sures (composed by two mass, two momentum and two energy balance equations for the six-equation model plus a 62 transport equation of the void fraction in the case of the seven-equation model). It is thus meaningful to recall that 63 the considered comparisons make only sense in the case where the seven-equation model and the six-equation model 64 relax to the HEM model. That means in single-phase flow configuration and in two-phase flow situations under me-65 chanical, thermal, chemical and kinetic equilibrium assumptions. For this purpose, as recalled or shown in [10] for the 66 seven-equation model and in [7, 21] for the six-equation model, using infinitely fast inter-phase exchange, i.e. quasi 67 instantaneous relaxations between phases, can be considered in order to relax the seven-equation and the six-equation 68 models to the three-equation homogeneous equilibrium model (HEM). 69

70

Equation (1) is solved using the Finite-Volume method proposed in [12] which can be written under the form:

$$V_i \left(\boldsymbol{U}_i^{n+1} - \boldsymbol{U}_i^n \right) + \Delta t^n \left[\boldsymbol{F}_{i+1/2} A_{i+1/2} - \boldsymbol{F}_{i-1/2} A_{i-1/2} \right] - \Delta t^n p_i^n \boldsymbol{R}_i^n = \boldsymbol{0}$$
(3)

with Δt^n the time step, U_i the cell average of the state vector, $F_{i\pm 1/2}$ the inviscid numerical fluxes and R_i^n the term linked to the spatial changes of area given by:

$$\boldsymbol{U} = \begin{pmatrix} \rho \\ \rho u \\ \rho e \end{pmatrix}, \quad \boldsymbol{F} = \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho e u + p u \end{pmatrix} \quad \text{and} \quad \boldsymbol{R}_i^n = \begin{pmatrix} 0 \\ A_{i+1/2} - A_{i-1/2} \\ 0 \end{pmatrix}$$

The volume V_i is computed as:

$$V_{i} = \frac{\pi h_{i}}{12} \left(d_{i+1/2}^{2} + d_{i+1/2} d_{i-1/2} + d_{i-1/2}^{2} \right)$$
(4)

with h_i the length of the control volume.

The numerical fluxes are obtained using the HLLC scheme [22, 23, 24]:

$$\boldsymbol{F}_{i+1/2} = \begin{cases} \boldsymbol{F}_L & \text{if } 0 < \mathbb{S}_L \\ \boldsymbol{F}_L^* & \text{if } \mathbb{S}_L \le 0 < \mathbb{S}_M \\ \boldsymbol{F}_R^* & \text{if } \mathbb{S}_M \le 0 < \mathbb{S}_R \\ \boldsymbol{F}_R & \text{if } \mathbb{S}_L \le 0 \end{cases}$$

with

$$\boldsymbol{F}_{K} = \begin{pmatrix} \rho_{K} u_{K} \\ \rho_{K} u_{K}^{2} + p_{K} \\ \rho_{K} e_{K} u_{K} + p_{K} u_{K} \end{pmatrix} \text{ where } K = L, R$$

with the left (K = L) or right (K = R) state of the interface i + 1/2 and with

$$\boldsymbol{F}_{K}^{*} = \frac{1}{\mathbb{S}_{K} - \mathbb{S}_{M}} \begin{pmatrix} \rho_{K} (\mathbb{S}_{K} - u_{K}) \mathbb{S}_{M} \\ \rho_{K} u_{K} (\mathbb{S}_{K} - u_{K}) \mathbb{S}_{M} + p_{M} \mathbb{S}_{K} - p_{K} \mathbb{S}_{M} \\ \rho_{K} e_{K} (\mathbb{S}_{K} - u_{K}) \mathbb{S}_{M} + p_{M} \mathbb{S}_{K} \mathbb{S}_{M} - p_{K} \mathbb{S}_{M} u_{K} \end{pmatrix}$$

where the pressure p_M is given by:

$$p_M = \rho_L (\mathbb{S}_L - u_L) (\mathbb{S}_M - u_L) + p_L = \rho_R (\mathbb{S}_R - u_R) (\mathbb{S}_M - u_R) + p_R$$

and the speed \mathbb{S}_M defined as:

$$\mathbb{S}_{M} = \frac{\rho_{R}u_{R}\left(\mathbb{S}_{R} - u_{R}\right) - \rho_{L}u_{L}\left(\mathbb{S}_{L} - u_{L}\right) + p_{L} - p_{R}}{\rho_{R}\left(\mathbb{S}_{R} - u_{R}\right) - \rho_{L}\left(\mathbb{S}_{L} - u_{L}\right)}$$

The speeds \mathbb{S}_L and \mathbb{S}_R corresponding to the fastest waves at each side of the interface are computed as proposed in Batten *et al.* [25]:

$$\mathbb{S}_L = \min(u_L - c_L, \hat{u} - \hat{c})$$
 and $\mathbb{S}_R = \max(u_R + c_R, \hat{u} + \hat{c})$

where \hat{u} and \hat{c} are the Roe average of the velocity u and speed of sound c variables [26]:

$$\hat{f} = \frac{\sqrt{\rho_L} f_L + \sqrt{\rho_R} f_R}{\sqrt{\rho_L} + \sqrt{\rho_R}}$$

The first-order accuracy in time and in space is obtained using $U_L = U_i^n$ and $U_R = U_{i+1}^n$.

72

In addition, realistic configurations are characterized by the presence of several pipes connected to specific points (called junctions in the following) leading to potentially complex networks with several junctions and branches. As detailed in [12], the junction coupling is here solved with the integral form of the 3-D equations in a similar manner as proposed by Hong & Kim [13] and also developed by Bermùdez *et al.* [14]. This consists in considering the junction as a multi-dimensional fictitious cell exchanging mass, momentum and energy with its adjacent pipes. The junction coupling reduces in the resolution of the 3-D equations at the junction cell and the associated coupling with the 1-D equations in the adjacent pipes through the normal averaged fluxes. This approach is also used to tackle the abrupt change of duct cross-sections. In this configuration, two pipes with different cross-sections meet at the junction. The discrete form of the governing equations on the 3-D junction cell V_j can be written as:

$$V_{j}\left(\boldsymbol{Q}_{j}^{n+1}-\boldsymbol{Q}_{j}^{n}\right)+\Delta t^{n}\sum_{l}\boldsymbol{\mathcal{F}}_{l}^{3\text{-D}}A_{l}+\Delta t^{n}\boldsymbol{\mathcal{F}}_{w}^{3\text{-D}}A_{w}=\boldsymbol{0}\quad\text{with}\quad\boldsymbol{Q}=\begin{pmatrix}\rho\\\rho\boldsymbol{u}\\\rho\boldsymbol{e}\end{pmatrix},\quad\boldsymbol{\mathcal{F}}^{3\text{-D}}=\begin{pmatrix}\rho\boldsymbol{u}_{n}\\\rho\boldsymbol{u}_{n}\boldsymbol{u}+p\boldsymbol{n}\\(\rho\boldsymbol{e}+p)\boldsymbol{u}_{n}\end{pmatrix}\quad\text{and}\quad\boldsymbol{u}_{n}=\boldsymbol{u}\cdot\boldsymbol{n}$$

where the fluxes are decomposed into contributions coming from the pipes connected at the junction and contributions coming from the walls surrounding the junction. n is the unit outward normal of V_j . Using a slip condition at the wall, the wall flux \mathcal{F}_w^{3-D} is given by:

$$\mathcal{F}_{w}^{3-\mathrm{D}} = \left(\begin{array}{c} 0\\ p_{w}\boldsymbol{n}_{w}\\ 0 \end{array}\right)$$

The fluxes associated with an interface connected to the neighboring pipe cells are directly given by the HLLC solver using left and right states coming from the junction and the adjacent pipe cells [12]. The expression of the wall contribution is obtained assuming that the wall pressure is the cell-averaged pressure at the junction cell (i.e. $p_w = p_j^n$) and using the Surface Conservation Law given by:

$$\sum_{l} \boldsymbol{n}_{l} \boldsymbol{A}_{l} + \boldsymbol{n}_{w} \boldsymbol{A}_{w} = \boldsymbol{0}$$

Finally, the balance equations at the junction cell can be written as:

$$V_j \left(\boldsymbol{Q}_j^{n+1} - \boldsymbol{Q}_j^n \right) + \Delta t^n \sum_l \mathcal{F}_l^{3\text{-D}} A_l - \Delta t^n p_j^n \sum_l \boldsymbol{G}_l A_l = \boldsymbol{0} \quad \text{with} \quad \boldsymbol{G}_l = \begin{pmatrix} \boldsymbol{0} \\ \boldsymbol{n}_l \\ \boldsymbol{0} \end{pmatrix}$$

In the present computations, the volume of the junction cell denoted by V_j is taken to be equal to the average of the volumes of the neighboring pipe cells of the junction.

75

The time step Δt^n is given by the Courant number *C* defined as:

$$C = \Delta t^n \max_i \left(\frac{|u_i^n| + c_i^n}{h_i} \right)$$
(5)

with *c* the speed of sound in an unconfined fluid given by the EOS: $c = c^{\text{EOS}}(\rho, p)$. In the case of the ideal gas EOS, the speed of sound is $c = \sqrt{\gamma p/\rho}$.

All of the algorithms described previously have been implemented in the fast transient dynamics software for fluids and structures *Europlexus* [27] (http://www-epx.cea.fr/) co-owned by the French *Commissariat à l'énergie atomique et aux énergies alternatives* (CEA) and by the European Commission. *Électricité de France* (EDF) is involved as a major partner of the consortium built for *Europlexus* software development.

3. Numerical tests: shock-tubes in a duct with constant cross-section

The ability of the present approach to predict pressure waves propagation is first assessed on perfect gas and 84 steam-water shock-tubes commonly used in the literature. In order to study the influence of the cell size on the 85 present numerical results, the shock-tubes are computed with several successively refined meshes using 500, 1000, 86 2000 and 5000 cells. Finally, comparisons with the numerical solutions obtained with RELAP-5 [2], RELAP-7 [9] 87 and/or WAHA [7] or analytical solutions when available are performed. We recall that, in steam-water two-phase 88 flow situations, the present comparisons with RELAP-5, RELAP-7 and WAHA only make sense in the case where the 89 six-equation (one-pressure and two-velocity) model for RELAP-5 or WAHA and the seven-equation (two-pressure 90 and two-velocity) model for RELAP-7 devolve to the HEM model as the HEM model is considered in the present 91 computations. 92

93 3.1. Test 1: Single-phase gas shock-tube

The first test-case considered in this paper consists of a 1-m long tube filled by air at rest. The tube is composed

	Left side (high pressure; $p = 1$ bar)		Right side (low pressure; $p = 0.1$ bar)	
x = 0 m		x = 0.5 m	x = 1 r	n

Figure 1: Sketch of the single-phase gas shock-tube with transmissive boundary conditions at the inlet (x = 0 m) and at the outlet (x = 1 m) of the tube.

Position	p (bar)	ρ (kg.m ⁻³)	$u ({\rm m.s^{-1}})$
$x \in [0; 0.5]$	1	1	0
$x \in [0.5; 1]$	0.1	0.125	0

Table 1: Initial conditions for the single-phase gas shock-tube.

94 95

- of a high-pressure chamber at p = 1 bar and a low-pressure chamber at p = 0.1 bar as shown in Fig. (1). The pressure
- discontinuity is initially located at x = 0.5 m. This corresponds to a ideal air shock-tube with the perfect gas EOS
- where $\gamma = 1.4$ and the corresponding initial conditions are given in Tab. (1) and was originally proposed by Sod
- [28]. The numerical solutions obtained with 500, 1000, 2000 and 5000 cells in conjunction with the Courant number
- C = 0.8 are compared with the analytical solution of this Riemann problem which is composed of a left rarefaction wave, a contact discontinuity and a right shock-wave as shown in Fig. (2). Good agreement is obtained as all of the

Figure 2: Numerical solutions obtained on the single-phase gas shock-tube at $t = 4.5125 \times 10^{-4}$ s with 500, 1000, 2000 and 5000 cells in conjunction with C = 0.8 corresponding to the averaged time step value of $\Delta t \approx 2.3 \times 10^{-6}$ s, $\Delta t \approx 1.15 \times 10^{-6}$ s, $\Delta t \approx 5.77 \times 10^{-7}$ s and $\Delta t \approx 2.3 \times 10^{-7}$ s, respectively; comparison with the analytical solution: (a) pressure, (b) density and (c) velocity.

¹⁰¹ intermediate states are obtained in the numerical solution with a satisfactory manner. Using 500 cells seems to be ¹⁰² sufficient with the present numerical approach to capture the three different waves involved in this test-case.

In order to investigate the influence of the Courant number on the numerical solutions, several computations have been performed using a mesh of 500 cells with three different Courant number values: C = 0.8, C = 0.4 and C = 0.2. The corresponding numerical results are shown in Fig. (3). No significant influence has been observed.

- ¹⁰⁶ Finally, for comparison, similar gas shock-tube problems have been computed using RELAP-5 code as it is re-
- ¹⁰⁷ ported in [5] (cf. Figs. 2, 3 and 4 pages 152-153), using WAHA code as it is shown in [7] (cf. Figs. 8-1-1 and 8-1-2 in
- ¹⁰⁸ Section 8.1.1) and using RELAP-7 [10] (cf. Fig. 1 page 110). It has to be noticed that the numerical results obtained

¹⁰⁹ with RELAP-5 code exhibit spurious oscillations behind the shock wave. In addition, the exact value of the velocity

plateau between the rarefaction wave and the shock wave is not well captured in [5] in contrast to the simulations

¹⁰⁰

Figure 3: Numerical solutions obtained on the single-phase gas shock-tube at $t = 4.5125 \times 10^{-4}$ s with in conjunction with C = 0.8, C = 0.4 and C = 0.2 corresponding to the averaged time step value of $\Delta t \approx 2.3 \times 10^{-6}$ s, $\Delta t \approx 1.15 \times 10^{-6}$ s and $\Delta t \approx 5.77 \times 10^{-7}$ s, respectively: (a) pressure and (b) density.

- obtained with RELAP-7 reported in [10] and the present ones. Finally, concerning the WAHA results depicted in [7],
- it has to be noticed that, as a non-conservative scheme is used, inaccuracies are observed for the shock wave which is

not the case here.

114 3.2. Test 2: Single-phase liquid shock-tube

This test corresponds to a liquid water shock-tube in a 10-m long pipe shown in Fig. (4) and previously considered

Left side (high pressure; $p = 100$ based by the second s	r)	Right side (low pressure; $p = 1$ bar)
x = 0 m	x = 5 m	x = 10 m

Figure 4: Sketch of the single-phase liquid shock-tube with transmissive boundary conditions at the inlet (x = 0 m) and at the outlet (x = 10 m) of the tube.

- 115
- in [7, 8, 5, 10] for which the initial conditions are given in Table (2). In the present test, the initial pressure discontinu-

Position	p (bar)	T (K)	α_v	$u ({\rm m.s^{-1}})$
$x \in [0; 5]$	100	300	0	0
$x \in [5; 10]$	1	300	0	0

Table 2: Initial conditions for the s	single-phase liquid shock-tube.
---------------------------------------	---------------------------------

¹¹⁶ ity is located at x = 5 m. The numerical results obtained using 500, 1000, 2000 and 5000 cells with a Courant number C = 0.8 at t = 1.64 ms are plotted in Fig. (5). A rarefaction wave propagates leftwards and is located at $x \approx 2.5$ m whereas a contact discontinuity propagates rightwards and is located at $x \approx 5$ m only visible on the temperature profile and a shock-wave propagates also rightwards and is visible at $x \approx 7.5$ m. The present results are compared in a satisfactory manner with the numerical solutions previously obtained with the RELAP-7 code [10] using 800 nodes and a CFL (Courant-Friedrichs-Lewy) condition of 0.1. As in the previous case, 500 cells seem to be enough to obtain a sufficiently accurate numerical solution.

Figure 5: Numerical solutions obtained on the single-phase liquid shock-tube at t = 1.64 ms with 500, 1000, 2000 and 5000 cells in conjunction with C = 0.8 corresponding to the averaged time step value of $\Delta t \approx 1.05 \times 10^{-5}$ s, $\Delta t \approx 5.25 \times 10^{-6}$ s, $\Delta t \approx 2.62 \times 10^{-6}$ s and $\Delta t \approx 1.05 \times 10^{-6}$ s, respectively; comparison with the RELAP-7 results issued from [10]: (a) pressure, (b) void fraction, (c) temperature and (d) velocity.

124 3.3. Test 3: Single-phase vapor shock-tube

This test was proposed in [7] which consists of a single-phase vapor shock-tube in a pipe of length L = 2 m as shown in Fig. (6) The initial pressure discontinuity is located at x = 1 m separating the two initial states given in Table

Left side (high pressure; $p = 20$ bar)		Right side (low pressure; $p = 10$ bar)
x = 0 m	x = 1 m	x = 2 m

Figure 6: Sketch of the single-phase vapor shock-tube with transmissive boundary conditions at the inlet (x = 0 m) and at the outlet (x = 2 m) of the tube.

(3). The numerical results obtained using 500, 1000, 2000 and 5000 cells in conjunction with the Courant number

Position	p (bar)	T (K)	α_v	$u ({\rm m.s^{-1}})$
$x \in [0; 1]$	20	589.02	1	0
$x \in [1; 2]$	10	577.60	1	0

Table 3: Initial conditions for the single-phase vapor shock-tube.

C = 0.8 at t = 1.2 ms are plotted in Fig. (7) and compared with the numerical solutions using WAHA [7] using 200

cells. Good agreement is observed between the present results and the ones obtained with WAHA. Finally, the three

discontinuities (the rarefaction wave located at $x \approx 0.25 \text{ m} - 0.5 \text{ m}$, the contact discontinuity located at $x \approx 1.2 \text{ m}$ and the shock wave located at $x \approx 1.8 \text{ m}$) are satisfactorily captured by the present finite-volume approach even using 500

132 cells.

126

127

Figure 7: Numerical solutions obtained on the single-phase vapor shock-tube at t = 1.2 ms with 500, 1000, 2000 and 5000 cells in conjunction with C = 0.8 corresponding to the averaged time step value of $\Delta t \approx 4.25 \times 10^{-6}$ s, $\Delta t \approx 2.12 \times 10^{-6}$ s, $\Delta t \approx 1.06 \times 10^{-6}$ s and $\Delta t \approx 4.25 \times 10^{-7}$ s, respectively; comparison with the WAHA results issued from [7]: (a) pressure, (b) void fraction, (c) density and (d) velocity.

133 3.4. Test 4: Two-phase shock-tube

The fourth test-case was proposed in [7] and used in [5, 10]. A sketch of this test is depicted in Fig. (4). The

Left side (high pressu	re; $p = 150$ bar, $\alpha_v = 0.1$)	Right side (low pressure; $p = 100$ bar, α	$v_v = 0.5$)
x = 0 m	$x = \frac{1}{2}$	50 m	x = 100 m

Figure 8: Sketch of the two-phase shock-tube with transmissive boundary conditions at the inlet (x = 0 m) and at the outlet (x = 100 m) of the tube.

134

two initial states are given in Table (4) corresponding to a pressure and temperature jumps in a two-phase flow at

Position	p (bar)	T (K)	α_v	$u ({\rm m.s^{-1}})$
$x \in [0; 50]$	150	615.28	0.1	0
$x \in [50; 100]$	100	584.09	0.5	0

Table 4: Initial conditions for the two-phase shock-tube.

135 the saturation point. The numerical results obtained using 500, 1000, 2000 and 5000 cells and the Courant number 136 C = 0.8 at t = 81 ms are plotted in Fig. (9). Three discontinuities (the rarefaction wave located at $x \approx 40$ m, the 137 contact discontinuity at $x \approx 50$ m and the shock wave at $x \approx 60$ m) are clearly visible on the void fraction profile. The 138 numerical solution obtained with RELAP-7 [10] using 400 cells and a CFL of 0.1 is also plotted for comparison. In 139 the computation presented in [10] on the present test-case, very large interfacial relaxation parameters are used such 140 as mechanical, thermal and kinematic equilibria are achieved. Under these assumptions the 7-equation model used 141 in RELAP-7 relaxes to the Homogeneous Equilibrium Model used here where the phasic pressures, velocities and 142 temperatures are equal. As a consequence it allows for the comparison with the present numerical solutions showing 143 that the three discontinuities are well captured even using 500 cells. In addition, in [10], the RELAP-7 results have 144 been compared with the RELAP-5 and the WAHA results issued from [5] and [7], respectively. It has been shown that 145 the WAHA and the RELAP-7 results are in good agreement. Some discrepancies have been observed for the velocity 146 plateau value between the rarefaction and shock waves between RELAP-5 and RELAP-7 results. Finally, it is observed 147

that both the rarefaction and the shock waves are associated to an increase of void fraction, i.e. vaporization.

Figure 9: Numerical solutions obtained on the two-phase shock-tube at t = 81 ms with 500, 1000, 2000 and 5000 cells and C = 0.8 corresponding to the averaged time step value of $\Delta t \approx 4.96 \times 10^{-4}$ s, $\Delta t \approx 2.48 \times 10^{-4}$ s, $\Delta t \approx 1.24 \times 10^{-4}$ s and $\Delta t \approx 4.96 \times 10^{-5}$ s, respectively; comparison with the RELAP-7 results issued from [10]: (a) pressure, (b) void fraction, (c) temperature and (d) velocity.

4. Numerical tests: shock-tubes with an abrupt change of area

In order to demonstrate the potentiality of the proposed numerical method, several single-phase and steam-water 150 shock-tube problems involving a sudden change of duct cross-sections are considered. The present test-cases were 151 initially proposed in [7, 8]. The computational domain is 5-m long. A shock-tube is initially located at x = 2 m 152 whereas an abrupt change of area with a cross-section ratio of 20 is located at x = 3 m. Both contraction and 153 expansion of the pipe cross-section are studied in the following. Transmissive boundary conditions are considered at 154 the inlet (x = 0 m) and at the outlet (x = 5 m) of the tube. As previously, successive computations using 500, 1000, 155 2000 and 5000 cells are considered to assess the influence of the grid size on the accuracy of the present numerical 156 solutions. At each computation, the volume of the junction used in the junction modeling described in [12] is set 157 to be equal to the average between the two neighboring pipe cells of the junction. Comparisons with the numerical 158 solutions obtained with RELAP-5 [2] or WAHA [7, 8] when available are performed. Once again, we recall that these 159 comparisons with RELAP-5 and WAHA are meaningful in the case where the unequal velocity unequal temperature 160 six-equation model used in these two codes degenerates to the HEM one considered in the present computations. 161

¹⁶² 4.1. Test 5: Single-phase liquid shock-tube interaction with an abrupt expansion

The present test-case is proposed in [7] and is represented in Fig. (10). The initial conditions are given in Table

Figure 10: Sketch of the single-phase liquid shock-tube interaction with an abrupt expansion (at x = 3 m) using transmissive boundary conditions at the inlet (x = 0 m) and at the outlet (x = 5 m) of the tube.

163

(5). The numerical results obtained with 500, 1000, 2000, 5000 cells and the Courant number C = 0.6 at t = 1 ms are

Position	p (bar)	T (K)	α_v	$u ({\rm m.s^{-1}})$	A (m ²)
$x \in [0; 2]$	100	413.43	0	0	0.02
$x \in [2;3]$	50	412.94	0	0	0.02
$x \in [3; 5]$	50	412.94	0	0	0.4

Table 5: Initial conditions for the single-phase liquid shock-tube interaction with an abrupt expansion.

plotted in Fig. (11). The rarefaction wave travels on the left side and is located at $x \approx 0.5$ m which is visible on the

pressure, temperature and velocity profiles. Then the transmitted shock wave after the expansion is visible at $x \approx 3.5$

m whereas the reflected rarefaction wave due to the expansion is located at $x \approx 2.5$ m. The contact discontinuity is

located at $x \approx 2$ m which is only visible on the temperature profile and the change of area is located at x = 3 m.

The present numerical results are in agreement with those obtained with WAHA [7] using 125 nodes and with the

analytical solution obtained with the Joukowsky theory [29, 30]. We recall that the computations with WAHA are second-order accurate while the present ones are first-order accurate. Once again, 500 cells seem to be sufficient for

171 second-order accurate172 this test-case.

¹⁶⁴ 165

Figure 11: Numerical solutions obtained on the single-phase liquid shock-tube interaction with an abrupt expansion at t = 1 ms with 500, 1000, 2000, 5000 cells and C = 0.6 corresponding to the averaged time step value of $\Delta t \approx 3.97 \times 10^{-6}$ s, $\Delta t \approx 1.98 \times 10^{-6}$ s, $\Delta t \approx 9.93 \times 10^{-7}$ s and $\Delta t \approx 3.97 \times 10^{-7}$ s, respectively; comparison with the WAHA results issued from [7] and with the Joukowsky-type solution: (a) pressure, (b) void fraction, (c) temperature and (d) velocity.

4.2. Test 6: Single-phase liquid shock-tube interaction with an abrupt contraction

The present shock-tube is represented in Fig. (12). The two initial thermo-dynamical states of the present test

Figure 12: Sketch of the single-phase liquid shock-tube interaction with an abrupt contraction (at x = 3 m) using transmissive boundary conditions at the inlet (x = 0 m) and at the outlet (x = 5 m) of the tube.

174

proposed in [7] are detailed in Table (6). The numerical results with 500, 1000, 2000, 5000 cells and the Courant

Position	<i>p</i> (bar)	T (K)	α_v	u (m.s ⁻¹)	A (m ²)
$x \in [0; 2]$	100	413.194	0	0	0.4
$x \in [2; 3]$	50	412.707	0	0	0.4
$x \in [3; 5]$	50	412.707	0	0	0.02

Table 6: Initial conditions for the single-phase liquid shock-tube interaction with an abrupt contraction.

175

number C = 0.6 at t = 1 ms are given in Fig. (13). As in the previous case, the rarefaction wave travelling on the left

side of the pipe is visible on the pressure, temperature and velocity profiles at x = 0.5 m. The transmitted and reflected

shock waves due to the interaction with the abrupt contraction are located at x = 3.5 m and x = 2.5 m, respectively.

In addition, the contact discontinuity, only visible on the temperature profile, is located at $x \approx 2$ m and the change of

area at x = 3 m. The comparisons with the numerical solutions previously obtained with the WAHA code [7] using 125 nodes and with the analytical solution obtained with the Joukowsky theory [29, 30] are satisfying. According to

the present numerical results, it seems that using 500 cells is sufficient for this test-case.

Figure 13: Numerical solutions obtained on the single-phase liquid shock-tube interaction with an abrupt contraction at t = 1 ms with 500, 1000, 2000, 5000 cells and C = 0.6 corresponding to the averaged time step value of $\Delta t \approx 3.97 \times 10^{-6}$ s, $\Delta t \approx 1.98 \times 10^{-6}$ s, $\Delta t \approx 9.93 \times 10^{-7}$ s and $\Delta t \approx 3.97 \times 10^{-7}$ s, respectively; comparison with the WAHA results issued from [7] and with the Joukowsky-type solution: (a) pressure, (b) void fraction, (c) temperature and (d) velocity.

183 4.3. Test 7: Single-phase vapor shock-tube interaction with an abrupt expansion

The present single-phase vapor shock-tube interaction with an abrupt expansion initially proposed in [7] is de-

Figure 14: Sketch of the single-phase vapor shock-tube interaction with an abrupt expansion (at x = 3 m) using transmissive boundary conditions at the inlet (x = 0 m) and at the outlet (x = 5 m) of the tube.

184

185

picted in Fig. (14). The corresponding initial conditions are given in Table (7). The numerical solutions obtained with

Position	p (bar)	T (K)	$ \alpha_v $	$u ({\rm m.s^{-1}})$	A (m ²)
$x \in [0; 2]$	150	644.17	1	0	0.02
$x \in [2; 3]$	100	607.96	1	0	0.02
$x \in [3; 5]$	100	607.96	1	0	0.4

Table 7: Initial conditions for the single-phase vapor shock-tube interaction with an abrupt expansion.

¹⁸⁶ 500, 1000, 2000, 5000 cells and a Courant number C = 0.8 at t = 2.5 ms are plotted in Fig. (15) and compared in

a satisfactory manner with the results previously obtained with WAHA [7] using 125 nodes. Five discontinuities are

observed in the numerical solutions: the left rarefaction wave located at $x \approx 0.8$ m, the right contact discontinuity at $x \approx 2.25$ m (only visible on the temperature profile), the reflected rarefaction wave due to the expansion of the pipe at

 $x \approx 2.25$ m (only visible on the temperature profile), the reflected rarefaction wave due to the expansion of the pipe at $x \approx 2.7$ m, the discontinuity at the change of area (x = 3 m) and the transmitted shock wave at $x \approx 3.4$ m. Once again,

using 500 cells makes it possible to capture all the intermediate states of the solutions with a satisfactory agreement

¹⁹² with the numerical results obtained with WAHA.

Figure 15: Numerical solutions obtained on the single-phase vapor shock-tube interaction with an abrupt expansion at t = 2.5 ms with 500, 1000 cells, 2000 cells, 5000 cells and C = 0.8 corresponding to the averaged time step value of $\Delta t \approx 1.38 \times 10^{-5}$ s, $\Delta t \approx 6.89 \times 10^{-6}$ s, $\Delta t \approx 3.44 \times 10^{-6}$ s and $\Delta t \approx 1.38 \times 10^{-6}$ s, respectively; comparison with the WAHA results issued from [7]: (a) pressure, (b) void fraction, (c) temperature and (d) velocity.

¹⁹³ 4.4. Test 8: Single-phase vapor shock-tube interaction with an abrupt contraction

The present single-phase vapor shock-tube with an abrupt contraction proposed in [7] is shown in Fig. (16) and the

Figure 16: Sketch of the single-phase vapor shock-tube interaction with an abrupt contraction (at x = 3 m) using transmissive boundary conditions at the inlet (x = 0 m) and at the outlet (x = 5 m) of the tube.

194

corresponding initial conditions are detailed in Table (8). The numerical results obtained with 500, 1000, 2000, 5000

Position	p (bar)	T (K)	α_v	u (m.s ⁻¹)	A (m ²)
$x \in [0; 2]$	150	644.17	1	0	0.4
$x \in [2;3]$	100	607.96	1	0	0.4
$x \in [3; 5]$	100	607.96	1	0	0.02

Table 8: Initial conditions for the single-phase vapor shock-tube interaction with an abrupt contraction.

195 cells and a Courant number C = 0.8 at t = 2.5 ms are plotted in Fig. (17). For comparison, the numerical solutions 196 obtained with WAHA [7] using 125 nodes are also given. Once again, five discontinuities are clearly visible on the 197 temperature profile: the rarefaction wave located at $x \approx 0.8$ m, the contact discontinuity at $x \approx 2.25$ m, the reflected 198 shock wave at $x \approx 2.65$ m, the change of area at x = 3 m and the transmitted shock located at $x \approx 3.45$ m in the 199 WAHA results [7] and located at $x \approx 3.42$ m in the present results. The grid independent solution of the transmitted 200 shock after the abrupt contraction requires at least 2000 cells. However, significant differences with the WAHA results 201 are observed for this shock wave. Due to the difference between the two sets of 1-D numerical results in front of the 202 sudden contraction, a reference 2-D axisymmetrical Finite-Volume computation is also considered. The corresponding 203 2-D computational domain considers the following space steps: $\Delta r = h = 2.5 \times 10^{-3}$ m. This corresponds to the grid 204 size obtained with 2000 cells in 1-D. The 2-D numerical solution is obtained using a Courant number of $C^{2-D} = 0.6$. 205 The numerical profiles of the pressure and temperature at the center-line of the 2-D computations are plotted in Fig. 206 (18). The comparison of the corresponding pressure profiles clearly demonstrates the satisfactory behavior of the 207 Finite-Volume junction modeling [12] used here. Obviously, the details of the 2-D computation can not be exactly 208

²⁰⁹ retrieved with a simple 1-D computation.

Figure 17: Numerical solutions obtained on the single-phase vapor shock-tube interaction with an abrupt contraction at t = 2.5 ms with 500, 1000 cells, 2000 cells, 5000 cells and C = 0.8 corresponding to the averaged time step value of $\Delta t \approx 1.38 \times 10^{-5}$ s, $\Delta t \approx 6.89 \times 10^{-6}$ s, $\Delta t \approx 3.44 \times 10^{-6}$ s and $\Delta t \approx 1.38 \times 10^{-6}$ s, respectively; comparison with the WAHA results issued from [7] and with a 2-D axisymmetrical computation: (a) pressure, (b) void fraction, (c) temperature and (d) velocity.

Figure 18: Numerical solutions obtained on the single-phase vapor shock-tube interaction with an abrupt contraction at t = 2.5 ms with 2000 cells and C = 0.8 corresponding to the averaged time step value of $\Delta t \approx 3.44 \times 10^{-6}$ s; comparison with the WAHA results issued from [7] and with a 2-D axisymmetrical computation: (a) pressure and (b) temperature.

4.5. Test 9: Two-phase shock-tube interaction with an abrupt expansion

Fig. (19) displays the present two-phase shock-tube interacting with an expansion initially proposed in [7]. The

Figure 19: Sketch of the two-phase shock-tube interaction with an abrupt expansion (at x = 3 m) using transmissive boundary conditions at the inlet (x = 0 m) and at the outlet (x = 5 m) of the tube.

211

associated initial conditions are given in Table (9). The numerical results obtained with 500, 1000, 2000, 5000 cells 212 and a Courant number C = 0.8 are depicted in Fig. (20). As in the present test-case, the thermo-dynamical conditions 213 are at the saturation curve, the comparison of the present results using HEM model with the numerical results obtained 214 with RELAP-5 can be considered. In this thermal and chemical equilibrium two-phase flow situation, the six-equation 215 model used in the RELAP-5 code degenerates to the HEM model. It has to be noticed that the present numerical results 216 are satisfactorily compared with the solutions obtained with RELAP-5 code issued form [7]. The present numerical 217 results seem to be less dissipative than the ones obtained with RELAP-5 which is particularly visible on the void 218 fraction profile. In particular, the contact discontinuity located at $x \approx 2.7$ m is only visible with the present approach 219 whereas the four other discontinuities appear in the two solutions, i.e. the rarefaction wave located at $x \approx 0.8$ m, the 220 reflected rarefaction wave at $x \approx 2.25$ m, the change of area at x = 3 m and the transmitted shock wave at $x \approx 4.45$ m. 221 According to the numerical results depicted in Fig. (20), it seems that 500 cells are sufficient to capture the different 222

Position	p (bar)	<i>T</i> (K)	α_v	$u ({\rm m.s^{-1}})$	A (m ²)
$x \in [0; 2]$	150	615.28	0.5	0	0.02
$x \in [2;3]$	100	584.09	0.9	0	0.02
$x \in [3; 5]$	100	584.09	0.9	0	0.4

Table 9: Initial conditions for the two-phase shock-tube interaction with an abrupt expansion.

Figure 20: Numerical solutions obtained on the two-phase shock-tube interaction with an abrupt expansion at t = 9 ms with 500, 1000, 2000, 5000 cells and C = 0.8 corresponding to the averaged time step value $\Delta t \approx 2.4 \times 10^{-5}$ s, $\Delta t \approx 1.2 \times 10^{-5}$ s, $\Delta t \approx 6 \times 10^{-6}$ s and $\Delta t \approx 2.4 \times 10^{-6}$ s, respectively; comparison with the RELAP-5 results issued from [7]: (a) pressure and (b) void fraction.

²²³ waves involved in this test-case with the present numerical approach.

224 4.6. Test 10: Two-phase shock-tube interaction with an abrupt contraction

The present test-case was also proposed in [7] and is shown in Fig. (21), the corresponding initial conditions are

Figure 21: Sketch of the two-phase shock-tube interaction with an abrupt contraction (at x = 3 m) using transmissive boundary conditions at the inlet (x = 0 m) and at the outlet (x = 5 m) of the tube.

²²⁵

detailed in Table (10). The numerical results obtained with the 1-D Finite-Volume approach proposed in [12] using

²²⁷ 500, 1000, 2000, 5000 cells and the Courant number C = 0.8 are displayed in Fig. (22). The thermo-dynamical

Position	<i>p</i> (bar)	<i>T</i> (K)	α_v	$u ({\rm m.s^{-1}})$	$A (m^2)$
$x \in [0; 2]$	150	615.28	0.5	0	0.4
$x \in [2;3]$	100	584.09	0.9	0	0.4
$x \in [3; 5]$	100	584.09	0.9	0	0.02

Table 10: Initial conditions for the two-phase shock-tube interaction with an abrupt contraction.

Figure 22: Numerical solutions obtained on the two-phase shock-tube interaction with an abrupt contraction at t = 9 ms with 500, 1000, 2000, 5000 cells and C = 0.8 corresponding to the averaged time step value $\Delta t \approx 2.4 \times 10^{-5}$ s, $\Delta t \approx 1.2 \times 10^{-5}$ s, $\Delta t \approx 6 \times 10^{-6}$ s and $\Delta t \approx 2.4 \times 10^{-6}$ s, respectively; comparison with the RELAP-5 results issued from [7]: (a) pressure and (b) void fraction.

conditions of the present test-case are the same as the previous one allowing the comparison with the RELAP-5 code 228 as the thermal, chemical, mechanical and kinematic equilibrium assumptions are verified. Thus, the present numerical 229 results are compared with those obtained with the RELAP-5 code given in [7]. Five discontinuities can be observed 230 on the void fraction profile: a left rarefaction wave located at $x \approx 0.8$ m, a reflected shock wave at $x \approx 2.05$ m, a 231 contact discontinuity at $x \approx 2.4$ m, the change of area at x = 3 m and the transmitted shock wave. In this test-case, it 232 is observed that the depressurisation wave is associated with an increase of void fraction, i.e. vaporization, as well as 233 the contact discontinuity, the change of pressure across the contraction and the transmitted shock wave. In contrast, 234 the reflected shock wave corresponds to a decrease of void fraction. As in Test 8, the transmitted shock after the 235 contraction seems more challenging to be captured. First, with the present approach, at least 2000 cells seem to be 236 necessary to obtain a grid-independent solution. Then, even if the location of the transmitted shock wave obtained 237 with a grid-converged solution ($x \approx 4.6$) is approximately the same with the RELAP-5 results [7], its amplitude is sig-238 nificantly different. This is the main discrepancy between the two 1-D numerical results. In order to have a reference 239 numerical solutions, a 2-D axisymmetrical Finite-Volume inviscid computation of the present test-case based on the 240 three-equation homogeneous equilibrium model is also considered. The corresponding 2-D computational domain 241 considers the following space steps: $\Delta r = h = 2.5 \times 10^{-3}$ m (which corresponds to the grid size obtained with 2000 242 cells in 1-D) and the 2-D numerical solution is obtained using a Courant number of $C^{2-D} = 0.6$. The pressure and void 243 fraction profiles at the center-line of the 2-D computational domain is considered. The corresponding results depicted 244 in Fig. (23) show that the present 1-D Finite-Volume modeling of the contraction [12] has a satisfactory behavior. 245 246

The previous shock-tubes are some idealized test-cases used for the verification of the present numerical finitevolume approach. In the following section, experiments with available data are considered for validation.

Figure 23: Numerical solutions obtained on the two-phase shock-tube interaction with an abrupt contraction at t = 9 ms with 2000 cells and C = 0.8 corresponding to the averaged time step value $\Delta t \approx 6 \times 10^{-6}$ s; comparison with the RELAP-5 results issued from [7] and with a 2-D axisymmetrical computation: (a) pressure and (b) void fraction.

5. Shock tube's experiments with a branched junction

The three shock-tube experiments with a branched junction conducted by William-Louis *et al.* [17] are now considered for validation as in Chae *et al.* [31]. This consists of a shock tube with a high-pressure chamber of 0.53 m long and a low-pressure chamber of 3.10 m long. This tube is connected to other pipes by a junction: three or four pipes with open or closed ends, depending of the considered test-case as represented in Fig. (24). The pressure mea-

Figure 24: Sketch of William-Louis *et al.*'s experimental apparatus from [17]: (a) with three open branches, (b) with four open branches and (c) with four closed branches.

253

surements are carried out far enough from the junction in order to ensure that the waves are planar at these locations [17]. The difference between the high-pressure and the low-pressure regions is $\Delta p = 15$ kPa. All of the computations performed here are obtained with the Euler equations in conjunction with the ideal perfect EOS (with $\gamma = 1.4$) using a space step h = 1/3 cm and a Courant number C = 0.95. The open ends are here modeled as "tank" boundary conditions detailed in [12] whereas as the closed ends are modeled using a classical wall boundary based on a mirror state as recalled in [12].

260 5.1. Experiment with a three-branch junction and open ends

The first case consists of a three-pipe network with open ends. The longitudinal branch denoted by Pipe 3 and the sided branch denoted by Pipe 2 are respectively 1.725 and 2.595 m long with the same cross-section. The initial conditions of this case are given in Table (11). A shock wave is generated in Pipe 1 and propagates towards the junction. Then, this pressure wave interacts with the junction. This leads to a reflected rarefaction wave propagating in Pipe 1 from the junction towards the end of the pipe and two transmitted shock waves propagating from the junction in Pipe 2 and Pipe 3. Afterwards, these pressure waves interacts with the boundaries of each pipe and then the reflected

Position		p (bar)	ρ (kg.m ⁻³)	u (m.s ⁻¹)	<i>L</i> (m)	<i>d</i> (m)
Pipe 1 –	(high-pressure)	1.15	1.4145	0	0.53	0.01
	(low-pressure)	1	1.23	0	3.1	0.01
Pipe 2		1	1.23	0	2.595	0.01
Pipe 3		1	1.23	0	1.725	0.01

Table 11: Initial conditions for the William-Louis et al.'s experiment with a three-branch junction [17].

Figure 25: Comparison between numerical solutions obtained with h = 1/3 cm, C = 0.95 and the data of William-Louis *et al.*'s shock-tube experiment with three pipes and open ends: pressure history (a) in Pipe 1 at x = 0.48 m from the junction, (b) in Pipe 2 at x = 0.52 m from the junction and (c) in Pipe 3 at x = 0.48 m from the junction.

pressure waves propagate in each pipe towards the junction generating other interactions. Fig. (25) represents the time
 evolution of the pressure at three locations (one per pipe). Good agreement between the present numerical results and

the experimental data obtained by William-Louis *et al.* [17] is obtained showing the accuracy of the present approach.

²⁷⁰ Otherwise, the present numerical method is not based on an iterative procedure as the one proposed in [17]. This

avoids the problem of divergence and multiple solutions and this leads to a gain in efficiency. In addition, in contrast

to the numerical method proposed by Chae *et al.* [31] based on the Thompson's boundary conditions, the present

numerical treatment of the junction problem is not EOS-dependent.

²⁷⁴ 5.2. *Experiment with a four-branch junction and open ends*

The same tube composed of a high-pressure and a low-pressure chambers is joined to three pipes in a 90° junction. The second sided branch denoted by Pipe 4 is 0.845 m long. As in the previous case, open ends modeled as "tank"

²⁷⁶ The second sided branch denoted by Pipe 4 is 0.845 m long. As in the previous case, open ends modeled as "tank" conditions given in [12] are considered here. The initial conditions of this case are given in Table (12). The length of

Position		p (bar)	ρ (kg.m ⁻³)	$u ({\rm m.s^{-1}})$	<i>L</i> (m)	d (m)
Pipe 1 –	(high-pressure)	1.15	1.4145	0	0.53	0.01
	(low-pressure)	1	1.23	0	3.1	0.01
Pipe 2		1	1.23	0	2.595	0.01
Pipe 3		1	1.23	0	1.725	0.01
Pipe 4		1	1.23	0	0.845	0.01

Table 12: Initial conditions for the two William-Louis et al.'s experiments with a four-branch junction [17].

each tube is different such as a clear dephasing between the secondary waves generated at the boundaries of each pipe

²⁷⁹ is obtained. As a consequence, numerous interactions of pressure waves with the junction are obtained leading to a

quite complex flow pattern. Fig. (26) shows the comparison between calculation and experimental data at different

locations. Once again, the numerical solution is in agreement with the experiments.

Figure 26: Comparison between numerical solutions obtained with h = 1/3 cm, C = 0.95 and the data of William-Louis *et al.*'s shock-tube experiment with four pipes and open ends: pressure history (a) in Pipe 1 at x = 0.48 m from the junction, (b) in Pipe 2 at x = 0.52 m from the junction, (c) in Pipe 3 at x = 0.48 m from the junction and (d) in Pipe 4 at x = 0.43 m from the junction.

282 5.3. Experiment with a four-branch junction and closed ends

The same configuration of the previous four-pipe network is considered here in conjunction with closed ends for

²⁸⁴ all tubes which are obtained using wall-type boundary conditions. The initial conditions of this case are given in ²⁸⁵ Table (12). The comparison between the present numerical solution with the experimental data collected at different

²⁸⁵ Table (12). The comparison between the present numerical solution with the experimental data collected at different ²⁸⁶ locations is given in Fig. (27). Due to the reflections at each pipe ends, this test-case is very challenging showing the

ability of the present approach to represent the complex wave interaction with a junction.

Figure 27: Comparison between numerical solutions obtained with h = 1/3 cm, C = 0.95 and the data of William-Louis *et al.*'s shock-tube experiment with four pipes and closed ends: pressure history (a) in Pipe 1 at x = 0.48 m from the junction, (b) in Pipe 2 at x = 0.52 m from the junction, (c) in Pipe 3 at x = 0.48 m from the junction and (d) in Pipe 4 at x = 0.43 m from the junction.

287

6. Further discussions

In the previous sections, the quasi 1-D numerical approach previously proposed in [12] is assessed on a carefully chosen series of shock-tubes involving constant cross-section and then sudden contraction/expansion of the tube crosssection or a junction of three or four branches. The present section is devoted to two complementary topics: the 3-D effects generated at a junction and the potentially significant fluid-structure interaction mechanism which can appear at a junction.

294 6.1. Three-dimensional effects

Compressible flows passing through a sudden contraction/expansion or a bifurcation are naturally multi-dimensional 295 even if the incoming flow is purely one-dimensional. For example, it has been experimentally observed in [32] in the 296 case of the propagation of a planar shock wave in air through a Y bifurcation that the flow behind the transmitted 297 shock is unsteady and multi-dimensional. As a consequence, multi-dimensional computations are required to capture 29 these 3-D flow features and the corresponding pressure loss as in [32]. However, due to their high computational cost 299 (w.r.t. 1-D approaches), 3-D numerical computations can not be considered for the simulation of pressure waves in 300 complex piping systems as those involved in power plants. For this purpose, local 1-D/3-D coupling as the one used 301 in [15] combining a 1-D model for pipes and a 3-D (or 2-D) model for junctions can be considered to capture the 3-D 302 flow pattern at the junction and its vicinity keeping the computational savings of a classical 1-D approach. 303

304 6.2. Fluid-structure interaction effects

Due to the potential destructive effects of pressure waves occurring in single- or two-phase flow situations, these 305 phenomena are of a major interest for the design and the safety of nuclear reactors. As a consequence, even if the 306 hydro- or thermo-hydraulic pressure loads are evaluated in a satisfactory manner in the computations, the mechanical 307 consequences due to this loading have also to be computed for performing structural integrity analyses. For this 308 purpose, both fluid and structural dynamics have to be taken into account as well as their interactions. For fast 309 fluid-transient events in piping systems inducing fluid-structure interaction, quasi 1-D two-way coupled modeling is 310 considered where 1-D fluid equations and Euler-Bernoulli or Timoshenko beam equations are treated simultaneously 311 as reviewed in [33, 34, 35]. In this way, both pressure waves propagation in fluids and stress waves propagation in 312 pipes are considered in the modeling as well as the pipe displacements and deformations. 313

314 7. Conclusions and perspectives

Several test-cases and experiments involving single- and two-phase flows developing pressure waves are here con-315 sidered to assess the finite-volume method proposed in [12]. Several configurations are considered for this assessment: 316 tubes with a constant cross-section or with a sudden change of area (involving both sudden expansion and sudden con-317 traction) and three experiments with a multi-branch junction. Single-phase shock tubes are considered with air, liquid 318 water and vapor using ideal and real equations of state showing that the present approach can accurately resolved 319 the shock, contact and rarefaction waves. Single-phase as well as two-phase numerical results compared well against 320 analytical solutions or numerical solutions obtained with the RELAP-7, RELAP-5 and WAHA system codes on tubes 321 with a constant cross-section presented in [10, 5, 7], respectively. In addition, numerical results obtained on sudden 322 expansion or contraction are compared to numerical solutions presented in [7]. In particular, the incident, reflection, 323 transmission, and attenuation of pressure waves are well retrieved in the present computations. In addition, a mesh 324 sensitivity analysis is also considered for each test-case showing that refining the mesh makes it possible to improve 325 the accuracy of the numerical solution. According to the present results, capturing the transmitted shock-wave across a 326 sudden contraction in the vapor single-phase and two-phase flow situations in a satisfactory manner appears to be quite 327 challenging. Overall, all the mentioned tests demonstrate the capabilities of the present approach to solve single- and 328 two-phase shock tubes when using steam-water tables. Finally, the calculation of the unsteady flow in a shock-tube 329 with three-branch and four-branch junctions [17] is considered showing a good agreement between the calculation 330 and the measurements. The multiplicity of flow patterns or waves-junction interaction encountered in these tests and 331 the level of agreement obtained confirm the accuracy and the robustness of the present approach. 332

333

Further investigations may concern the dynamic fluid-structure interaction necessary to estimate the displacement 334 of the pipeline system due to the mechanical loads caused by pressure waves. For example, in realistic pipe systems 335 involving movable bends or knees, the fluid-structure interaction mechanism called the junction coupling has to be 336 considered. Furthermore, in order to take into account the the 3-D flow pattern at the junction and its vicinity without 337 increasing drastically the computational cost of computations, local 1-D/3-D coupling can be considered. Finally, the 338 339 finite-volume approach assessed in the present paper have been recently extended to compressible non-equilibrium two-phase flows using the Baer-Nunziato model [36]. Further analysis will be done on condensation-induced water-340 hammer problems characterized by an initial counter-current flow condition. Appropriate heat and mass transfer 341 modeling are required for the computation of such physical phenomena. 342

343 Acknowledgements

This work has been achieved within the framework of the "FAST" project of the EDF/CEA/Framatome tripar-

- tite Institute. Computational facilities were provided by EDF. Numerical simulations have been performed with the
- 346 *Europlexus* software.

347 **References**

- [1] J. C. Watkins, R. A. Berry, State-of-the-art literature review of water hammer, Tech. Rep. RE-A-79-044, Idaho National Laboratory (1979).
- [2] K. E. Carlson, R. A. Riemke, S. Z. Rouhani, R. W. Shumway, W. L. Weaver, RELAP5/MOD3 Code Manual, Volume 1-7, Tech. Rep. NURE
 G/CR-5535, EG & G Idaho, Idaho Falls (1990).
- [3] F. Odar, C. Murray, R. Shumway, M. Bolander, D. Barber, J. Mahaffy, TRACE V4.0 User's Manual, Tech. rep., U.S. Nuclear Regulatory
 Commission (2004).
- [4] D. Bestion, The physical closure laws in the CATHARE code, Nuclear Eng. Design 124 (3) (1990) 229–245.
- [5] L. Sokolowski, Z. Koszela, RELAP5 capability to predict pressure wave propagation in single- and two-phase flow conditions, J. Power
 Technol. 92 (2012) 150–165.
- [6] I. Tiselj, S. Petelin, Modelling of two-phase flow with second-order accurate scheme, J. Comput. Phys. 136 (2) (1997) 503–521.
- I. Tiselj, A. Horvat, G. Cerne, J. Gale, I. Parzer, B. Mavko, M. Giot, J.-M. Seynhaeve, B. Kucienska, H. Lemonnier, WAHA3 code manual,
 Final report of the WAHALoads project, Tech. Rep. FIKS-CT-2000-00106, EU 6th program (2004).
- [8] I. Tiselj, A. Horvat, J. Gale, Numerical scheme for the WAHA Code, Multiph. Sci. Technol. 20 (3-4) (2008) 323-354.
- [9] R. A. Berry, L. Zou, H. Zhao, H. Zhang, J. Peterson, R. C. Martineau, S. Y. Kadioglu, D. Andrs, RELAP-7 Theory Manual, Tech. Rep.
 INL/EXT-14-31366 (Revision 3), Idaho National Laboratory (2018).
- M. O. Delchini, J. C. Ragusa, R. A. Berry, Simulations of single- and two-phase shock tubes and gravity-driven wave problems with the
 RELAP-7 nuclear reactor system analysis code, Nuclear Eng. Design 319 (2017) 106–116.
- [11] D. E. Winterbone, R. J. Pearson, Theory of Engine Manifold Design: Wave Action Methods for IC Engines, Professional Engineering
 Publishing Ltd., London, 2000.
- F. Daude, P. Galon, A Finite-Volume approach for compressible single- and two-phase flows in flexible pipelines with fluid-structure interac tion, J. Comput. Phys. 362 (C) (2018) 375–408.
- [13] S. W. Hong, C. Kim, A new finite volume method on junction coupling and boundary treatment for flow network system analyses, Int. J.
 Numer. Meth. Fluids 65 (6) (2011) 707–742.
- [14] A. Bermúdez, X. López, M. E. Vázquez-Cendón, Treating network junctions in finite volume solution of transient gas flow models, J. Comput.
 Phys. 344 (2017) 187–209.
- [15] F. Bellamoli, L. O. Müller, E. F. Toro, A numerical method for junctions in networks of shallow-water channels, Appl. Math. Comput. 337 (2018) 190–213.
- F. Daude, A. S. Tijsseling, P. Galon, Numerical investigations of water-hammer with column-separation induced by vaporous cavitation using
 a one-dimensional Finite-Volume approach, J. Fluids Struct. 83 (2018) 91–118.
- [17] M. J. P. William-Louis, A. Ould-El-Hadrami, C. Tournier, On the calculation of unsteady compressible flow through an *N*-branch junction,
 Proc. Instn. Mech. Engrs. 212 (1998) 49–56.
- [18] S. Clerc, Numerical simulation of the homogeneous equilibrium model for two-phase flows, J. Comput. Phys. 161 (1) (2000) 354–375.
- I. Haar, J. S. Gallangher, G. S. Kell, NBS/NRC Steam Tables: Thermodynamic and Transport Properties and Computer Programs for Vapor
 and Liquid States of Water in SI Units, Hemisphere Publishing Co., 1984.
- [20] M. Lepareux, Programme PLEXUS. Matériau "EAU". Modèle homogène équilibré, Tech. Rep. DRN/DMT 94.398, CEA, (in French) (1994).
 [21] I. Tiselj, J. Gale, A. Horvat, I. Parzer, Characteristic and propagation velocities of the two-fluid models, 10th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-10), Seoul, Korea, October 5-9, 2003.
- [22] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction, 3d edition, Springer, 2009.
- [23] E. F. Toro, M. Spruce, W. Speares, Restoration of the contact surface in the HLL-Riemann solver, Shock Waves 4 (1) (1994) 25–34.
- 386 [24] E. F. Toro, The HLLC Riemann solver, Shock Waves 4 (1) (2019) 25–34.
- [25] P. Batten, N. Clarke, C. Lambert, D. M. Causon, On the choice of wavespeeds for the HLLC Riemann solver, SIAM J. Sci. Comput. 18 (6)
 (1997) 1553–1570.
- [26] P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys. 43 (1981) 357-372.
- Joint Research Centre (JRC), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), *Europlexus* user's manual, http://europlexus.jrc.ec.europa.eu/ (2020).
- [28] G. A. Sod, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys. 27 (1)
 (1978) 1–31.
- ³⁹⁴ [29] E. B. Wylie, V. L. Streeter, L. Suo, Fluid Transients in Systems, Prentice Hall, Englewood Cliffs, NJ, 1993.
- [30] M. H. Chaudhry, Applied Hydraulic Transients, 3d edition, Springer, 2014.
- [31] K. S. Chae, K. T. Lee, C. J. Hwang, D. J. Lee, Formulation and validation of boundary conditions at a branched junction for nonlinear waves,
 J. Sound Vib. 295 (1–2) (2006) 13–27.
- [32] A. Marty, E. Daniel, J. Massoni, L. Biamino, L. Houas, D. Leriche, G. Jourdan, Experimental and numerical investigations of shock wave propagation through a bifurcation, Shock Waves 29 (2019) 285–296.
- [33] D. C. Wiggert, Fluid transients and fluid-structure interaction in flexible liquid-filled piping, ASME Pressure Vessels and Piping Conference,
 Chicago, USA (1986).
- [34] D. C. Wiggert, A. S. Tijsseling, Fluid transients and fluidstructure interaction in flexible liquid-filled piping, ASME Appl. Mech. Rev. 54
 (2001) 455–481.

- [35] A. S. Tijsseling, Fluid-structure interaction in liquid-filled pipe systems: A review, J. Fluids Struct. 10 (1996) 395–420.
 [36] F. Daude, R. A. Berry, P. Galon, A Finite-Volume method for compressible non-equilibrium two-phase flows in networks of elastic pipelines using the Baer-Nunziato model, Comput. Methods Appl. Mech. Engrg. 354 (2019) 820–849.