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Highlights
Nonlinear passive tremor control of human arm
A. Ture Savadkoohi,C.-H. Lamarque,C. Goossaert

• Nonlinear locomotion equations of human arm are investigated.
• Linear frequencies vary with respect to the postures.
• The system is coupled to a nonlinear energy sink.
• Fast and slow dynamics are revealed.
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Abstract
An academic model for passive vibration control of human arm suffering from essential tremors
is proposed. The nonlinear uncontrolled system equations are linearised around arbitrary postu-
ral positions showing variations of linear natural frequencies as functions of postural positions.
The coupled system, i.e. the model of the arm with the attached nonlinear absorber, is treated
via a time multiple scale method leading to detection of fast and slow systems dynamics. These
dynamics provide design tools for tuning parameters of the nonlinear absorber.

1. Introduction
The unwanted or large amplitude vibrations of systems seek for appropriate control devices to be able to reduce

oscillation levels corresponding to comfort and undamaged states for systems. The control solutions cover large spec-
trum of categories expanding from active to passive solutions (Housner et al., 1997). The active category of absorbers
demand injected (at least initial) energies for their activation while passive systems exploit direct linear or nonlinear
interactions between oscillators for reducing energies of main systems. Roberson (1952) illustrated that via supple-
menting the linear restoring forcing function of an absorber by a cubic term, the suppression width of the absorber
would increase. Since then different types of nonlinear absorbers are developed exploiting different sources of non-
linearities. One of such absorbers is named as nonlinear energy sink (NES) (Vakakis et al., 2008) which in its early
developments possessed pure cubic nonlinearity, i.e. with no linear part (Vakakis, 2001; Vakakis and Gendelman,
2000). The control process by NES is accomplished via nonlinear energy exchanges between oscillators leading to pe-
riodic or non periodic regimes (Starosvetsky and Gendelman, 2008b; Ture Savadkoohi et al., 2016). The NES and its
derived technologies are applied to different engineering systems such as acoustics (Cochelin et al., 2006), aero-elastic
effects on wings (Hubbard et al., 2010), chatter instabilities (Gourc et al., 2015), buildings (Gourdon et al., 2007; Ture
Savadkoohi et al., 2012; Wierschem et al., 2014), cables (Weiss et al., 2018), etc.
The idea of the current paper is “passive control" of tremors of human arm due to some disorders such as essential
tremors, i.e. action and postural tremor, that is the most frequent movement problems and difficulties which affects
daily life patients (Espay et al., 2017). There are several works and patents which aim at mitigation of the pathologi-
cal tremors with “active" systems. From them we can name patents of Rosen which all of them incorporate velocity
dependent forces in an active manner: for example, inducing linear velocity dependent forces (viscous damping) in
two (Rosen, 1987) and four (three translation and one angular movement) degrees-of-freedom (dof) (Rosen, 1992).
The device consists of a chamber filled with a viscous fluid and a positioned rotation-sensing actuators for sensing the
positions and angles and generating electrical signals accordingly. Later on, a four-dof orthosis was invented which
permits the patient to move the midpoint of the forearm in a horizontal plane and to rotate the forearm out of the plane
via several rotational joints (Rosen and Baiges, 1993). The orthosis could apply linear (viscous) and square-velocity
dependent forces (Arnold et al., 1993). Rocon et al. (2007) presented a robotic exoskeleton which exploits two con-
trol techniques based on biomechanical loading, namely tremor reduction by impedance control and notch filtering at
tremor frequency (Rocon et al., 2012). Lora-Millán et al. (2019) studied effects of mechanical vibrations on tremors
of the arm and forearm. They used some piezoelectric actuators in order to provide stimuli to the arm and forearm
and monitoring tremors by sensors. They spotted that the mechanical vibration sometime could increase amplitudes
of tremors. A literature review about different devices for tremor control is reported by Castrillo-Fraile et al. (2019).
The linear passive control of tremors are already studied (see for example (Hashemi et al., 2004)). Our paper exploits
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the NES technology for passive control of tremors of a simplified model of human arm. The paper is organised as
it follows: the simplified nonlinear mathematical model of the locomotion of human arm and detection of its linear
natural frequencies are presented in Sect. 2. In Sect. 3 the system is coupled to a NES and its fast and slow dynamics
are clarified. Application of the proposed system in passive control of human arm due to essential tremors is provided
in Sect. 4. Finally, the paper is concluded in Sect. 5.

2. The mathematical model of the upper limb and linearisation about a postural potion
The simplified academic model of the locomotion of human arm is illustrated in Fig. 1. In this model some

biomechanical effects such as
• the elbow locking (Jackson et al., 1978), i.e. limitation of extension of human arm at elbow joint when arm and

forearm are at the same line;
• the elastic activities of muscles;
• three-dimensional movement of the arm,

are ignored. Moreover, we neglect the movement of hand via assuming that the forearm and the hand constitute a single
piece with the equivalent mass of both pieces which is situated at the centre of their masses. Let us define following
parameters and variables:

• � and �: developed angles in arm and forearm, respectively;
• m1 and m2: the mass of the arm and the equivalent mass of the forearm and the hand, respectively;
• l1: length of the arm;
• l2: distance of the equivalent mass m2 from the elbow joint;
• d1: distance of the center of the mass of the arm to the glenohumeral joint;
• I : the moment of inertia of the upper arm with respect to the glenohumeral joint;
• H ′ and J ′: applied torques about the glenohumeral and the elbow joints, respectively.

We use the developed model by Jackson et al. (1978) for representing locomotion of human upper limb; it reads:
⎧

⎪

⎨

⎪

⎩

�11�̈ + �12�̈ + �13 − TI + VI = H ′

�21�̈ + �22�̈ + �23 − TII + VII = J ′
(1)

Different parameters of Eq. 1 are reported in Appendix A. It should be mentioned that other models exist which
take into account more complete factors of the locomotion such as detailed bones and joints behaviours (Barhorst and
Schovanec, 2009; Moody et al., 2009) or pennate (Wojnicz et al., 2017) and mono- and bi-articular muscles (Zagrodny
et al., 2018).
Let us linearise system equations around a provided postural positions represented by �0 and �0; i.e.

� = �0 + �s
� = �0 + �s

(2)

Following system is obtained:
⎧

⎪

⎨

⎪

⎩

�11�̈s + �12�̈s + �11�s + �12�s + C1 = H ′

�21�̈s + �22�̈s + �21�s + �22�s + C2 = J ′
(3)
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Figure 1: The simplified academic model of the locomotion of human arm.

All variables of the Eq. 3 are clarified in Appendix B.
The parameters C1 and C2 are fact the the resistive moments in order to maintain the postural position. Therefore, the
total excitation due to tremor, Fext, is summarised as:

Fext =
(

H ′ − C1
J ′ − C2

)

(4)

We assume that Fext can be decomposed in the form of Fourier series on the basis of the frequency Ω. To simplify the
study, we take the first harmonics of the series and we consider a mono-frequency excitation; we can suppose:

Fext =
(

f1 sin(Ωt)
f2 sin(Ωt)

)

(5)

Equation 3 can be written as:
⎛

⎜

⎜

⎝

�11 �12

�21 �22

⎞

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
M

⎛

⎜

⎜

⎝

�̈s

�̈s

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

�11 �12

�21 �22

⎞

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
K

⎛

⎜

⎜

⎝

�s

�s

⎞

⎟

⎟

⎠

=
(

f1 sin(Ωt)
f2 sin(Ωt)

)

(6)

Variation of natural frequencies of the linear system of Eq. 6 with respect to different postures are illustrated in Fig.
2. The system parameters are reported in Table 1. These figures show that system frequencies are sensitive to initial
postural positions. This means that classical linear absorbers, i.e. tuned mass dampers (Frahm, 1911), can not be
efficient for passive control of tremors due to variations of natural frequencies according to different initial postural
positions.
A. Ture Savadkoohi et al.: Preprint submitted to Elsevier Page 3 of 20
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In the next section the two degrees of freedom pendulumwill be coupled to a NES and different dynamics of the system
will be clarified.

Table 1
System parameters of the arm (Drillis et al., 1964)

g (m.sec−2) l1 (m) l2 (m) d1 (m) m1 (kg) m2 (kg) I (kg.m2)

9.81 0.364 0.293 0.155 2.07 1.7 0.076

3. The mathematical model of the upper limb coupled to a NES
Let us consider a simplified model of the upper limb which is coupled to a NES with the distance of l3 from the

elbow joint (see Fig. 3). We assignmN and u as the mass and the generalised displacement of the NES which possesses
a general nonlinear restoring forcing function as fNES(u), e.g. fNES(u) = kNu3. The damping scenario of the NES is
supposed to be linear and its coefficient is represented by cN . Governing equations of the three-dof systems is written
as:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�11�̈ + �12�̈ + �13ü + �14 − T1 + V1 = H ′

�21�̈ + �22�̈ + �23ü + �24 − T2 + V2 = J ′

�31�̈ + �32�̈ + �33ü + �34 − T3 + V3 + cN u̇ = 0

(7)

Appendix C describes all variables of Eq. 7. Let us also assume that:
H ′ = f1 sin(Ωt)
J ′ = f2 sin(Ωt)

(8)

We can perform linearisation of system equations around a postural position described in Eq. 2. Introducing the
parameter � = mN

m2
and assuming � ≪ 1, following system is obtained:

M ′
⎛

⎜

⎜

⎝

�̈s
�̈s
ü

⎞

⎟

⎟

⎠

+K ′
⎛

⎜

⎜

⎝

�s
�s
u

⎞

⎟

⎟

⎠

+N ′ + A′ + C ′ =
⎛

⎜

⎜

⎝

F1 sin(Ωt)
F2 sin(Ωt)

0

⎞

⎟

⎟

⎠

(9)

with variables which are defined in Appendix D.
Let us suppose that p = nint(!2(�0, �0)

!1(�0, �0)
), p ∈ ℕ∗, where nint(… ) stands for the nearest integer function. Moreover,

we assume that:
!1 = Ω + �1�
!2 = p!1 + �̃2� = pΩ + �2�

(10)

In the modal coordinate, we apply following change of variables:
⎛

⎜

⎜

⎝

�S
�S
u

⎞

⎟

⎟

⎠

= P
⎛

⎜

⎜

⎝

W1
W2
W3

⎞

⎟

⎟

⎠

,with P =
⎛

⎜

⎜

⎝

V11 V12 0
V21 V22 0
0 0 1

⎞

⎟

⎟

⎠

(11)

where P is a matrix of eigenvectors of M ′−1K ′. To take into account dissipations of the main system, following
damping matrix can be introduced to the system 9 as:

C ′d =
⎛

⎜

⎜

⎝

C11 C12 0
C21 C22 0
0 0 0

⎞

⎟

⎟

⎠

(12)
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(a) !1

(b) !2
Figure 2: Variations of system linear frequencies with respect to initial postural positions �0 and �0. a) !1 b) !2.

Then, we set
P−1M ′−1C ′dP = �CD (13)

with

CD =
⎛

⎜

⎜

⎝

c1 0 0
0 c2 0
0 0 0

⎞

⎟

⎟

⎠

(14)
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Figure 3: The academic model of the locomotion of human arm coupled with a NES with the mass mN and the generalised
displacement as u. The NES presents a nonlinear restoring forcing function and a linear damping scenario.

Considering explained change of variables in Eq. 9 following system is obtained:
⎛

⎜

⎜

⎝

Ẅ1
Ẅ2
Ẅ3

⎞

⎟

⎟

⎠

+ (D + �Λ)
⎛

⎜

⎜

⎝

W1
W2
W3

⎞

⎟

⎟

⎠

+ �CD
⎛

⎜

⎜

⎝

Ẇ1
Ẇ2
Ẇ3

⎞

⎟

⎟

⎠

+ Ẇ3(T + �U ) + n0(W3)(X + �Y ) + (A + �B) = �H (15)

D and Λ are 3× 3matrices, where T , U,X, Y , A, B andH are 3× 1 vectors. All of these, are clarified in Appendix E.
In the next section the complexified form of system equations are treated by a time multiple scale method for clarifying
its different dynamics.
3.1. Complexification of the system and keeping its firs harmonics

Let us introduce complex variables of Manevitch (Manevitch, 2001):
⎧

⎪

⎪

⎨

⎪

⎪

⎩

Ψ1 exp(iΩt) = Ẇ1 + iΩW1

Ψ2 exp(ipΩt) = Ẇ2 + ipΩW2

Ψ3 exp(iΩt) = Ẇ3 + iΩW3

(16)
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We are interested to keep first harmonic of the system (Ture Savadkoohi et al., 2016). Following equation is obtained:

⎛

⎜

⎜

⎜

⎝

Ψ̇1 +
i(!1−�1�)

2 Ψ1
Ψ̇2 +

i(!2−�2�)
2 Ψ2

Ψ̇3 +
i(!1−�1�)

2 Ψ3

⎞

⎟

⎟

⎟

⎠

+ (D + �Λ)

⎛

⎜

⎜

⎜

⎝

− i
2(!1−�1�)

Ψ1
− i
2(!2−�2�)

Ψ2
− i
2(!1−�1�)

Ψ3

⎞

⎟

⎟

⎟

⎠

+ �CD
⎛

⎜

⎜

⎝

Ψ̇1
Ψ̇2
Ψ̇3

⎞

⎟

⎟

⎠

+
Ψ3
2
(T + �U )+(X + �Y )fn(Ψ3,Ψ∗3) = �ℍ

(17)
where the function fn is defined as (Gendelman, 2008):

fn(Ψ3,Ψ∗3) =
Ω
2� ∫

2�
Ω

0
n0(W3) exp(−iΩt)dt= −

iΨ3
2
G(|Ψ3|2) (18)

where G(|Ψ3|2) is a function which depends on the nonlinearity type of the NES. The .∗ stands for the complex
conjugate of the variable. Definition of ℍ is provided in Appendix F.
3.2. Fast/slow dynamics of the system

To treat system equations, we use a perturbation technique namely, the multiple scale method (Nayfeh, 2004).
Different scales of the time t are defined as �0 = t (fast scale), and �j = �j t, j ∈ ℕ+ (slow scales). These time scales
are coupled to each other via the physical parameter �. To clarify different systems dynamics, different orders of the �
should be considered in Eq. 17.
3.2.1. Fast dynamics: �0 order of system equations

The �0 order of the system 17 leads to:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

)Ψ1
)�0

= 0

)Ψ2
)�0

= 0

)Ψ3
)�0

+
i!1
2
Ψ3 −

i
2
(
D31
!1

Ψ1 +
D32
!2

Ψ2) +
c0Ψ3
2

+ fn = 0

(19)

For a NES with cubic nonlinearity, G(|Ψ3|2) = 3kn
4!31

|Ψ3|2, so fn = − i
2Ψ3

3kn
4!31

|Ψ3|2. Fixed points of the system
correspond to system behaviours when �0 → ∞, leading to )Ψ3

)�0
→ 0 or

(Ψ1,Ψ∗1,Ψ2,Ψ
∗
2,Ψ3,Ψ

∗
3) = −

i
2!1

(D31Ψ1 +
D32
p
Ψ2) + (

i!1
2
+
c0
2
)Ψ3 + fn = 0 (20)

If we write system variables in polar forms as Ψj = Nj exp(i�j), j = 1, 2, 3, then Eq. 20 reads:

(

c20 + !
2
1 + G

2(N2
3 ) − 2!1G(N

2
3 )
)

N2
3= (

D31
!1

)2N2
1 + (

D32
p!1

)2N2
2 +

2D31D32
p!21

cos(�1 − �2)N1N2 (21)

The complex function  or the real equation of the system 21 are a geometrical surface corresponding to final desti-
nations of the system which is named as slow invariant manifold (SIM). It is seen that the four-dimensional SIM is a
function of amplitudes Nj , j = 1, 2, 3 and phase lag between Ψ1 and Ψ2 represented by � = �1 − �2. Different viewsof the four-dimensional SIM for some values of the � are illustrated in Fig. 4. Some zones of the SIM are unstable.
A stability analysis can be carried out via linear perturbation of variables of the Eq. 20 or 21 for tracing stable and
unstable zones of the SIM (see for example Lamarque et al. (2017); Hurel et al. (2019)). When the system reaches to
A. Ture Savadkoohi et al.: Preprint submitted to Elsevier Page 7 of 20
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(a) � = 0 (b) � = �
4

(c) � = �
2 (d) � = �

Figure 4: Three-dimensional views of the four-dimensional SIM (see Eq. 21) for some fixed phase lag (� = �1−�2). System
parameters are kn = 10, c0 = 1, l3 = 0.299, �0 = 0, �0 = 0.

boundaries of the unstable zones, it bifurcates to its another stable zone. Depending on the characteristics of external
forcing terms, the system can be attracted by periodic or non periodic regimes (Gendelman et al., 2008; Starosvetsky
and Gendelman, 2008a). Different possible regimes can be revealed by studying slow dynamics of the system which
is explained in the next section.
3.2.2. Slow dynamics: �1 order of system equations

The �1 order of first two equations of the system 17 reads:
⎧

⎪

⎨

⎪

⎩

)Ψ1
)�1

− i
2!1

(

(Λ11 + 2�1!1)Ψ1 +
Λ12
p
Ψ2 + Λ13Ψ3

)

+
c1
2
Ψ1 +

U1
2
Ψ3 + fnY1 = ℍ1

)Ψ2
)�1

−
ip
2!2

(

Λ21Ψ1 + (Λ22 + 2�2!2)
Ψ2
p
+ Λ23Ψ3

)

+
c2
2
Ψ2 +

U2
2
Ψ3 + fnY2 = ℍ2

(22)

Which can be written in a compact form as:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

)Ψ1
)�1

= 1(Ψ1,Ψ∗1,Ψ2,Ψ
∗
2,Ψ3,Ψ

∗
3)

)Ψ2
)�1

= 2(Ψ1,Ψ∗1,Ψ2,Ψ
∗
2,Ψ3,Ψ

∗
3)

(23)
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The evolution of the SIM (see Eq. 20) at �1 time scale yields to:

⎛

⎜

⎜

⎜

⎜

⎝

)
)Ψ1

)
)Ψ∗1

)
)Ψ2

)
)Ψ∗2

)
)Ψ3

)
)Ψ∗3

)∗

)Ψ1
)∗

)Ψ∗1

)∗

)Ψ2
)∗

)Ψ∗2

)∗

)Ψ3
)∗

)Ψ∗3

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

)Ψ1
)�1
)Ψ∗1
)�1

)Ψ2
)�1

)Ψ∗2
)�1

)Ψ3
)�1

)Ψ∗3
)�1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= 0 (24)

which can be reorganised as:

⎛

⎜

⎜

⎜

⎜

⎝

)
)Ψ3

)
)Ψ∗3

)∗

)Ψ3
)∗

)Ψ∗3

⎞

⎟

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟


⎛

⎜

⎜

⎜

⎜

⎜

⎝

)Ψ3
)�1

)Ψ∗3
)�1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= −

⎛

⎜

⎜

⎜

⎜

⎝

)
)Ψ1

)
)Ψ∗1

)
)Ψ2

)
)Ψ∗2

)∗

)Ψ1
)∗

)Ψ∗1

)∗

)Ψ2
)∗

)Ψ∗2

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

)Ψ1
)�1

)Ψ∗1
)�1

)Ψ2
)�1

)Ψ∗2
)�1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⏟⏞⏞⏟⏞⏞⏟


(25)

Looking at Eq. 23, we can write:
T =

(

1 ∗1 2 ∗2
) (26)

Equilibrium points of the system (corresponding to periodic regimes of the initial system) are those which satisfy:
⎧

⎪

⎨

⎪

⎩

V = 0
 = 0
Det(B) ≠ 0

(27)

while singularities of the system (corresponding to non periodic regimes of the initial system) verify:
⎧

⎪

⎨

⎪

⎩

V = 0
 = 0
Det(B) = 0

(28)

3.2.3. A numerical example
Let us consider the parameters of the arm which are presented in Table 1. The system is coupled to a NES which

its supplementary parameters are reported in Table 2. All possible equilibrium points of the system for sweeping �1
A. Ture Savadkoohi et al.: Preprint submitted to Elsevier Page 9 of 20
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Figure 5: Equilibrium points of the system of Table 2 as a function of the detuning parameter: N1 vs. �1
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Figure 6: Equilibrium points of the system of Table 2 as a function of the detuning parameter: N2 vs. �1

are presented in Figs. 5-7. As an example, let us take the case which correspond to �1 = 0.2. Equation 9 is integratednumerically by ode45 function of Matlab. Results for different system amplitudes are depicted in Figs. 8-10, showing
that the system is being attracted by equilibrium points which are predicted in Figs. 5-7. Obtained numerical results
are confronted with the three-dimensional view of the SIM in Fig. 11 for the section of � = 0. It is seen that (after
starting from initial conditions), the system oscillates around the SIM and finally is attracted by the equilibrium point
which is already clarified in Figs. 5-7. Different two-dimensional views of this confrontation are presented in Figs.
12.

Table 2
The coupled system parameters

kn c0 l3 c1 c2 �0 �0 � F1 F2
102 0.1 0.299 0.2 0.2 0 0 10−3 10 10
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Figure 7: Equilibrium points of the system of Table 2 as a function of the detuning parameter: N3 vs. �1
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Figure 8: Time history of the system of Table 2 as a function of the detuning parameter: N1 vs. t. Results are obtained
by direct numerical integration of Eq. 9 for �1 = 0.2.

4. Application to passive control of the arm
In order to show the capability of the proposed device in tremor control of the arm, the undamped locomotion

equations of human arm, i.e. Eq. 6, are integrated numerically (see Table 1 for parameters) and are compared with
those which are equipped with the NES (see Table 3 for parameters). Results are shown in Figs. 13 and 14 showing
the capability of the NES in controlling the diverging response of the main system.

Table 3
The coupled system parameters

kn c0 l3 c1 c2 �0 �0 � F1 F2
102 1 0.299 0 0 0 0 10−2 0.1 0.1
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Figure 9: Time history of the system of Table 2 as a function of the detuning parameter: N2 vs. t. Results are obtained
by direct numerical integration of Eq. 9 for �1 = 0.2.
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Figure 10: Time history of the system of Table 2 as a function of the detuning parameter: N3 vs. t. Results are obtained
by direct numerical integration of Eq. 9 for �1 = 0.2.

5. Conclusions
The mathematical model of the locomotion of human arm which has been developed by Jackson et al. (1978) and

represented by a simplified two degrees of freedom nonlinear pendulum, is investigated:
• After linearisation of nonlinear system equation about an arbitrary posture, it is spotted that linear natural fre-

quencies vary with the change of the posture. This means that classical linear passive absorbers, which are tuned
to a spacial linear frequency, can not be efficient in general for the tremor control.

• The simplified locomotion model of human arm is coupled to a nonlinear energy sink. Detection of fast and
slow system dynamics revealed its slow invariant manifold and characteristic points. Then, application of the
proposed system in passive control of an academic diverging system is illustrated. It is seen that the proposed
absorber is able to control (mathematically) diverging responses of the arm.

Perspective of this work will be a collaboration with the neurological hospital and medicines for having a real data of
patients which suffer from essential tremor and to prepare design tools for such data.
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Figure 11: Three-dimensional view of the SIM of the system of Table 2 for � = 0. The SIM is accompanied by corresponding
results.
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Figure 12: Different two-dimensional views of the SIM which is presented in Fig. 11

A. Definition of different variables of Eq. 1

�11 = I + m2(l21 + l
2
2 + 2l1l2 cos(�))

�12 = m2(l22 + l1l2 cos(�))
�13 = −m2l1l2(2�̇ + �̇)�̇ sin(�)
�21 = m2(l22 + l1l2 cos(�))
�22 = m2l22
�23 = −m2l1l2�̇�̇ sin(�)

(29)

B. Definition of different variables of Eq. 3

�11 = I + m2(l21 + l
2
2 + 2l1l2 cos(�0)

�12 = m2(l22 + l1l2 cos(�0))
�21 = m2(l22 + l1l2cos(�0))
�22 = m2l22
�11 = g(m1d1 cos(�0) + m2l1 cos(�0) + m2l2 cos(�0 + �0))
�12 = gm2l2 cos(�0 + �0)
�21 = m2gl2 cos(�0 + �0)
�22 = m2gl2 cos(�0 + �0)
C1 = gm1d1 sin(�0) + gm2(l1 sin(�0) + l2 sin(�0 + �0))
C2 = m2gl2 sin(�0 + �0)

(30)
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Figure 13: Time history of the � for the system without and with the coupled NES (�1 = 0).

C. Definition of different variables of Eq. 7

�11 = I + m2(l21 + l
2
2 + 2l1l2 cos(�)) + mN (l

2
1 + l

2
3 + u

2 + 2l1l3 cos(�) − 2l1u sin(�))
�12 = m2[l22 + l1l2 cos(�)] + mN [l

2
3 + u

2 + l1l3 cos(�) − l1u sin(�)]
�13 = mN [l1 cos(�) + l3]
�14 = −m2l1l2(2�̇ + �̇)�̇ sin(�)
+mN [2u̇u(�̇ + �̇) − l1l3(2�̇ + �̇)�̇ sin(�) − l1u̇�̇ sin(�) − l1u̇(2�̇ + �̇) sin(�) − l1u(2�̇ + �̇)�̇ cos(�)]
�21 = m2[l22 + l1l2 cos(�)] + mN [l

2
3 + u

2 + l1l3 cos(�) − l1u sin(�)]
�22 = m2l22 + mN (l

2
3 + u

2)
�23 = mN l3
�24 = −m2(l1l2�̇�̇ sin(�)) + mN [2u̇u(�̇ + �̇) − l1l3�̇�̇ sin(�) − l1u̇�̇ sin(�) − l1u�̇�̇ cos(�)]
�31 = mN [l1 cos(�) + l3]
�32 = mN l3
�33 = mN
�34 = −mN l1�̇�̇ sin(�)

(31)

and

T1 = 0
V1 = m1gd1 sin(�) + m2g(l1 sin(�) + l2 sin(� + �)) + mNg(l1 sin(�) + l3 sin(� + �) + u cos(� + �))

T2 = −[m2l1l2(�̇ + �̇)�̇ sin(�) + mN (l1l3(�̇ + �̇)�̇ sin(�) + l1u(�̇ + �̇)�̇ cos(�) + l1u̇�̇sin(�))]
V2 = m2gl2 sin(� + �) + mNg(l3 sin(� + �) + u cos(� + �))

T3 = mN [(�̇ + �̇)2u − l1(�̇ + �̇)�̇ sin(�)]
V3 = mNg sin(� + �) + fNES(u)

(32)
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Figure 14: Time history of the � for the system without and with the coupled NES (�1 = 0).

D. Definition of different variables of Eq. 9
Let us define I

m2
= � and m1

m2
= �.

M ′ =
⎛

⎜

⎜

⎝

�′11 �′12 �′13
�′21 �′22 �′23
�′31 �′32 �′33

⎞

⎟

⎟

⎠

(33)

�′11 = � + (l
2
1 + l

2
2 + 2l1l2 cos(�0)) + �(l

2
1 + l

2
3 + 2l1l3 cos(�0))

�′12 = l2(l2 + l1 cos(�0)) + �l3(cos(�0)l1 + l3)
�′13 = �(cos(�0)l1 + l3)
�′21 = l2(l2 + l1 cos(�0)) + �l3(cos(�0)l1 + l3)
�′22 = l

2
2 + �l

2
3

�′23 = �l3
�′31 = �(cos(�0)l1 + l3)
�′32 = �l3
�′33 = �

(34)

K ′ =
⎛

⎜

⎜

⎝

�′11 �′12 �′13
�′21 �′22 �′23
�′31 �′32 �′33

⎞

⎟

⎟

⎠

(35)
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�′11 = g
(

cos
(

�0 + �0
)

l2 + cos
(

�0 + �0
)

l3 � + � d1 cos
(

�0
)

+ cos
(

�0
)

l1 + cos
(

�0
)

l1 �
)

�′12 = cos
(

�0 + �0
)

g
(

l2 + � l3
)

�′13 = � g cos
(

�0 + �0
)

�′21 = cos
(

�0 + �0
)

g
(

l2 + � l3
)

�′22 = cos
(

�0 + �0
)

g
(

l2 + � l3
)

�′23 = � g cos
(

�0 + �0
)

�′31 = � g cos
(

�0 + �0
)

�′32 = � g cos
(

�0 + �0
)

�′33 = 0

(36)

N ′ =
⎛

⎜

⎜

⎝

0
0

�n0(u)

⎞

⎟

⎟

⎠

(37)

with �kn = KN
m2

and �n0(u) = �knu3.

A′ =
⎛

⎜

⎜

⎝

0
0
�c0u̇

⎞

⎟

⎟

⎠

(38)

with �c0 = cN
m2

.

C ′ =
⎛

⎜

⎜

⎝

C ′1
C ′2
C ′3

⎞

⎟

⎟

⎠

(39)

C ′1 = �gd1 sin(�0) + g(l1 sin(�0) + l2 sin(�0 + �0)) + �g(l1 sin(�0) + l3 sin(�0 + �0))
C ′2 = gl2 sin(�0 + �0) + �gl3 sin(�0 + �0)
C ′3 = �g sin(�0 + �0)

(40)

�F1 =
f1
m2

�F2 =
f2
m2

(41)

E. Definition of different variables of Eq. 15
The non zero arrays of Matrices D3×3 and Λ3×3 are:

D11 = !21

D22 = !22

D31 =
(

(V11+V21)
(

l12+�
)

cos(�0+�0)−cos(�0) cos(�0)l1 V11 (� d1+l1)
)

(l2−l3)g
l2
(

−(cos(�0))2l12+l12+�
)

D32 =
(

(V12+V22)
(

l12+�
)

cos(�0+�0)−cos(�0) cos(�0)l1 V12 (� d1+l1)
)

(l2−l3)g
l2
(

−(cos(�0))2l12+l12+�
)

(42)
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Λ11 = −
(cos(�0)V12l1+l2(V12+V22))g

(

� cos(�0)(V11+V21) cos(�0+�0)−cos(�0)V11
(

d1l1�(cos(�0))2−d1l1�+�
))

l1

(V11V22−V12V21)l2
(

−(cos(�0))2l12+l12+�
)2

Λ12 = −
(cos(�0)V12l1+l2(V12+V22))

(

� cos(�0)(V12+V22) cos(�0+�0)−cos(�0)V12
(

d1l1�(cos(�0))2−d1l1�+�
))

gl1

(V11V22−V12V21)l2
(

−(cos(�0))2l12+l12+�
)2

Λ13 =
(

l1l2(V12+V22) cos(�0)+V12
(

l12+�
))

g cos(�0+�0)
(V11V22−V12V21)l22

(

(cos(�0))2l12−l12−�
)

Λ21 =
(cos(�0)V11l1+l2(V11+V21))g

(

� cos(�0)(V11+V21) cos(�0+�0)−cos(�0)V11
(

d1l1�(cos(�0))2−d1l1�+�
))

l1

(V11V22−V12V21)l2
(

−(cos(�0))2l12+l12+�
)2

Λ22 =
(cos(�0)V11l1+l2(V11+V21))

(

� cos(�0)(V12+V22) cos(�0+�0)−cos(�0)V12
(

d1l1�(cos(�0))2−d1l1�+�
))

gl1

(V11V22−V12V21)l2
(

−(cos(�0))2l12+l12+�
)2

Λ23 = −
(

l1l2(V11+V21) cos(�0)+V11
(

l12+�
))

g cos(�0+�0)
(V11V22−V12V21)l22

(

(cos(�0))2l12−l12−�
)

(43)

T , U,X, Y , A, B andH read:

T =

⎛

⎜

⎜

⎜

⎝

0

0

c0

⎞

⎟

⎟

⎟

⎠

(44)

U =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

c
(

−(cos(�0))2V12 l12l2−l1 l2 (V12+V22)(l2−l3) cos(�0)+l3 V12
(

l12+�
)

)

(V11 V22−V12 V21)l22
(

−(cos(�0))2l12+l12+�
)

−

(

−(cos(�0))2V11 l12l2−l1 l2 (V11+V21)(l2−l3) cos(�0)+l3 V11
(

l12+�
)

)

c

(V11 V22−V12 V21)l22
(

−(cos(�0))2l12+l12+�
)

−

(

l12l2 (l2−2 l3)(cos(�0))2+l32
(

l12+�
)

)

c

l22
(

(cos(�0))2l12−l12−�
)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(45)

X =

⎛

⎜

⎜

⎜

⎝

0

0

1

⎞

⎟

⎟

⎟

⎠

(46)

Y =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(

−(cos(�0))2V12 l12l2−l1 l2 (V12+V22)(l2−l3) cos(�0)+l3 V12
(

l12+�
)

)

(V11 V22−V12 V21)l22
(

−(cos(�0))2l12+l12+�
)

−

(

−(cos(�0))2V11 l12l2−l1 l2 (V11+V21)(l2−l3) cos(�0)+l3 V11
(

l12+�
)

)

(V11 V22−V12 V21)l22
(

−(cos(�0))2l12+l12+�
)

−

(

l12l2 (l2−2 l3)(cos(�0))2+l32
(

l12+�
)

)

l22
(

(cos(�0))2l12−l12−�
)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(47)

A =
⎛

⎜

⎜

⎝

C ′1
C ′2
C ′3

⎞

⎟

⎟

⎠

(48)
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H = P−1M ′−1
⎛

⎜

⎜

⎝

F1 sin(Ωt)
F2 sin(Ωt)

0

⎞

⎟

⎟

⎠

(49)

F. Definition of ℍ in Eq. 17

ℍ =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

i∕2
(

−l1 l2 ((F1−2F2)V12−F2 V22) cos(�0)−(V 12+V 22)(F1−F2)l22+F2 V 12
(

l12+�
))

(V11 V22−V21 V12)l22
(

−(cos(�0))2l12+l12+�
)

−i∕2
(

−l1 ((F1−2F2)V11−F2 V21)l2 cos(�0)−(V11+V21)(F1−F2)l22+F2 V11
(

l12+�
))

(V11 V22−V21 V12)l22
(

−(cos(�0))2l12+l12+�
)

0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(50)

References
Arnold, A.S., Rosen, M.J., Aisen, M.L., 1993. Evaluation of a controlled-energy-dissipation orthosis for tremor suppression. Journal of Electromyo-

graphy and Kinesiology 3, 131 – 148.
Barhorst, A.A., Schovanec, L., 2009. A neuro-muscular elasto-dynamic model of the human arm part 1: Model development. Journal of Bionic

Engineering 6, 93 – 107.
Castrillo-Fraile, V., Peña, E.C., Gabriel Y Galán, J.M.T., Delgado-López, P.D., Collazo, C., Cubo, E., 2019. Tremor control devices for essential

tremor: A systematic literature review. Tremor and other hyperkinetic movements 9, 1–6.
Cochelin, B., Herzog, P., Mattei, P.O., 2006. Experimental evidence of energy pumping in acoustics. Comptes Rendus Mécanique 334, 639 – 644.
Drillis, R., Contini, R., Bluestein, M., 1964. Body segment parameters; a survey of measurement techniques. Artificial limbs 8, 44–66.
Espay, A.J., Lang, A.E., Erro, R., Merola, A., Fasano, A., Berardelli, A., Bhatia, K.P., 2017. Essential pitfalls in “essential" tremor. Movement

Disorders 32, 325–331.
Frahm, H., 1911. Device for damping vibrations of bodies. US Patent 989,958.
Gendelman, O.V., 2008. Targeted energy transfer in systems with non-polynomial nonlinearity. Journal of Sound and Vibration 315, 732 – 745.
Gendelman, O.V., Starosvetsky, Y., Feldman, M., 2008. Attractors of harmonically forced linear oscillator with attached nonlinear energy sink i:

Description of response regimes. Nonlinear Dynamics 51, 31–46.
Gourc, E., Seguy, S., Michon, G., Berlioz, A., Mann, B., 2015. Quenching chatter instability in turning process with a vibro-impact nonlinear

energy sink. Journal of Sound and Vibration 355, 392 – 406.
Gourdon, E., Alexander, N., Taylor, C., Lamarque, C., Pernot, S., 2007. Nonlinear energy pumping under transient forcing with strongly nonlinear

coupling: Theoretical and experimental results. Journal of Sound and Vibration 300, 522 – 551.
Hashemi, S.M., Golnaraghi, M.F., Patla, A.E., 2004. Tuned vibration absorber for suppression of rest tremor in parkinson’s disease. Medical and

Biological Engineering and Computing 42, 61–70.
Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T.T., Spencer, B.F., Yao, J.T.P.,

1997. Structural control: Past, present, and future. Journal of Engineering Mechanics 123, 897–971.
Hubbard, S.A., McFarland, D.M., Bergman, L.A., Vakakis, A.F., 2010. Targeted energy transfer between a model flexible wing and nonlinear

energy sink. Journal of Aircraft 47, 1918–1931.
Hurel, G., Ture Savadkoohi, A., Lamarque, C.H., 2019. Nonlinear vibratory energy exchanges between a two-degree-of-freedom pendulum and a

nonlinear absorber. Journal of Engineering Mechanics 145, 04019058.
Jackson, K., Joseph, J., Wyard, S., 1978. A mathematical model of arm swing during human locomotion. Journal of Biomechanics 11, 277 – 289.
Lamarque, C.H., Ture Savadkoohi, A., Charlemagne, S., Abdoulhadi, P., 2017. Nonlinear vibratory interactions between a linear and a non-smooth

forced oscillator in the gravitational field. Mechanical Systems and Signal Processing 89, 131 – 148.
Lora-Millán, J.S., López-Blanco, R., Gallego, J.A., Méndez-Guerrero, A., González de la Aleja, J., Rocon, E., 2019. Mechanical vibration does not

systematically reduce the tremor in essential tremor patients. Scientific Reports 9, 16476.
Manevitch, L.I., 2001. The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables. Nonlinear

Dynamics 25, 95–109.
Moody, C.B., Barhorst, A.A., Schovanec, L., 2009. A neuro-muscular elasto-dynamic model of the human arm part 2: Musculotendon dynamics

and related stress effects. Journal of Bionic Engineering 6, 108 – 119.
Nayfeh, A., 2004. Perturbation Methods. WILEY-VCH.
Roberson, R.E., 1952. Synthesis of a nonlinear dynamic vibration absorber. Journal of the Franklin Institute 254, 205–220.
Rocon, E., Belda-Lois, J.M., Ruiz, A.F., Manto, M., Moreno, J.C., Pons, J.L., 2007. Design and validation of a rehabilitation robotic exoskeleton

for tremor assessment and suppression. IEEE Transactions on Neural Systems and Rehabilitation Engineering 15, 367–378.
Rocon, E., Gallego, J.A., Belda-Lois, J.M., on, J.B.L., Luis Pons, J., 2012. Biomechanical loading as an alternative treatment for tremor: a review

of two approaches. Tremor and other hyperkinetic movements 2, 1–13.
Rosen, M.J., 1987. Tremor suppressing hand control. US Patent 4,689,449.
Rosen, M.J., 1992. Multiple degree of freedom damped hand controls. US Patent 5,107,080.

A. Ture Savadkoohi et al.: Preprint submitted to Elsevier Page 19 of 20



Nonlinear passive tremor control of human arm

Rosen, M.J., Baiges, I.J., 1993. Whole-arm orthosis for steadying limb motion. US Patent 5, 231, 998.
Starosvetsky, Y., Gendelman, O., 2008a. Response regimes of linear oscillator coupled to nonlinear energy sink with harmonic forcing and frequency

detuning. Journal of Sound and Vibration 315, 746 – 765.
Starosvetsky, Y., Gendelman, O.V., 2008b. Strongly modulated response in forced 2dof oscillatory system with essential mass and potential asym-

metry. Physica D: Nonlinear Phenomena 237, 1719–1733.
Ture Savadkoohi, A., Lamarque, C.H., Weiss, M., Vaurigaud, B., Charlemagne, S., 2016. Analysis of the 1:1 resonant energy exchanges between

coupled oscillators with rheologies. Nonlinear Dynamics 86, 2145–2159.
Ture Savadkoohi, A., Vaurigaud, B., Lamarque, C.H., Pernot, S., 2012. Targeted energy transfer with parallel nonlinear energy sinks, part ii: theory

and experiments. Nonlinear Dynamics 67, 37–46.
Vakakis, A., Gendelman, O., Bergman, L., McFarland, D., Kerschen, G., Lee, Y., 2008. Nonlinear Targeted Energy Transfer in Mechanical and

Structural Systems. Solid Mechanics and Its Applications, Springer Netherlands.
Vakakis, A.F., 2001. Inducing Passive Nonlinear Energy Sinks in Vibrating Systems . Journal of Vibration and Acoustics 123, 324–332.
Vakakis, A.F., Gendelman, O., 2000. Energy Pumping in Nonlinear Mechanical Oscillators: Part II–Resonance Capture . Journal of Applied

Mechanics 68, 42–48.
Weiss, M., Vaurigaud, B., Ture Savadkoohi, A., Lamarque, C.H., 2018. Control of vertical oscillations of a cable by a piecewise linear absorber.

Journal of Sound and Vibration 435, 281 – 300.
Wierschem, N.E., Luo, J., AL-Shudeifat, M., Hubbard, S., Ott, R., Fahnestock, L.A., Quinn, D.D., McFarland, D.M., Spencer, B.F., Vakakis, A.,

Bergman, L.A., 2014. Experimental testing and numerical simulation of a six-story structure incorporating two-degree-of-freedom nonlinear
energy sink. Journal of Structural Engineering 140, 04014027.

Wojnicz, W., Zagrodny, B., Ludwicki, M., Awrejcewicz, J., Wittbrodt, E., 2017. A two dimensional approach for modelling of pennate muscle
behaviour. Biocybernetics and Biomedical Engineering 37, 302 – 315.

Zagrodny, B., Ludwicki, M., Wojnicz, W., Awrejcewicz, J.M.J., 2018. Cooperation of mono- and bi-articular muscles: human lower limb. Biocy-
bernetics and Biomedical Engineering 18, 176–182.

A. Ture Savadkoohi et al.: Preprint submitted to Elsevier Page 20 of 20


