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The system is coupled to a nonlinear energy sink. • Fast and slow dynamics are revealed. Nonlinear passive tremor control of human arm

Keywords: 

An academic model for passive vibration control of human arm suffering from essential tremors is proposed. The nonlinear uncontrolled system equations are linearised around arbitrary postural positions showing variations of linear natural frequencies as functions of postural positions. The coupled system, i.e. the model of the arm with the attached nonlinear absorber, is treated via a time multiple scale method leading to detection of fast and slow systems dynamics. These dynamics provide design tools for tuning parameters of the nonlinear absorber.

Introduction

The unwanted or large amplitude vibrations of systems seek for appropriate control devices to be able to reduce oscillation levels corresponding to comfort and undamaged states for systems. The control solutions cover large spectrum of categories expanding from active to passive solutions [START_REF] Housner | Structural control: Past, present, and future[END_REF]. The active category of absorbers demand injected (at least initial) energies for their activation while passive systems exploit direct linear or nonlinear interactions between oscillators for reducing energies of main systems. [START_REF] Roberson | Synthesis of a nonlinear dynamic vibration absorber[END_REF] illustrated that via supplementing the linear restoring forcing function of an absorber by a cubic term, the suppression width of the absorber would increase. Since then different types of nonlinear absorbers are developed exploiting different sources of nonlinearities. One of such absorbers is named as nonlinear energy sink (NES) [START_REF] Vakakis | Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems[END_REF] which in its early developments possessed pure cubic nonlinearity, i.e. with no linear part [START_REF] Vakakis | Inducing Passive Nonlinear Energy Sinks in Vibrating Systems[END_REF][START_REF] Vakakis | Energy Pumping in Nonlinear Mechanical Oscillators: Part II-Resonance Capture[END_REF]. The control process by NES is accomplished via nonlinear energy exchanges between oscillators leading to periodic or non periodic regimes (Starosvetsky and Gendelman, 2008b;[START_REF] Savadkoohi | Analysis of the 1:1 resonant energy exchanges between coupled oscillators with rheologies[END_REF]. The NES and its derived technologies are applied to different engineering systems such as acoustics [START_REF] Cochelin | Experimental evidence of energy pumping in acoustics[END_REF], aero-elastic effects on wings [START_REF] Hubbard | Targeted energy transfer between a model flexible wing and nonlinear energy sink[END_REF], chatter instabilities [START_REF] Gourc | Quenching chatter instability in turning process with a vibro-impact nonlinear energy sink[END_REF], buildings [START_REF] Gourdon | Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: Theoretical and experimental results[END_REF][START_REF] Savadkoohi | Targeted energy transfer with parallel nonlinear energy sinks, part ii: theory and experiments[END_REF][START_REF] Wierschem | Experimental testing and numerical simulation of a six-story structure incorporating two-degree-of-freedom nonlinear energy sink[END_REF], cables [START_REF] Weiss | Control of vertical oscillations of a cable by a piecewise linear absorber[END_REF], etc. The idea of the current paper is "passive control" of tremors of human arm due to some disorders such as essential tremors, i.e. action and postural tremor, that is the most frequent movement problems and difficulties which affects daily life patients [START_REF] Espay | Essential pitfalls in "essential" tremor[END_REF]. There are several works and patents which aim at mitigation of the pathological tremors with "active" systems. From them we can name patents of Rosen which all of them incorporate velocity dependent forces in an active manner: for example, inducing linear velocity dependent forces (viscous damping) in two [START_REF] Rosen | Tremor suppressing hand control[END_REF] and four (three translation and one angular movement) degrees-of-freedom (dof) [START_REF] Rosen | Multiple degree of freedom damped hand controls[END_REF]. The device consists of a chamber filled with a viscous fluid and a positioned rotation-sensing actuators for sensing the positions and angles and generating electrical signals accordingly. Later on, a four-dof orthosis was invented which permits the patient to move the midpoint of the forearm in a horizontal plane and to rotate the forearm out of the plane via several rotational joints [START_REF] Rosen | Whole-arm orthosis for steadying limb motion[END_REF]. The orthosis could apply linear (viscous) and square-velocity dependent forces [START_REF] Arnold | Evaluation of a controlled-energy-dissipation orthosis for tremor suppression[END_REF]. [START_REF] Rocon | Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression[END_REF] presented a robotic exoskeleton which exploits two control techniques based on biomechanical loading, namely tremor reduction by impedance control and notch filtering at tremor frequency [START_REF] Rocon | Biomechanical loading as an alternative treatment for tremor: a review of two approaches[END_REF]. [START_REF] Lora-Millán | Mechanical vibration does not systematically reduce the tremor in essential tremor patients[END_REF] studied effects of mechanical vibrations on tremors of the arm and forearm. They used some piezoelectric actuators in order to provide stimuli to the arm and forearm and monitoring tremors by sensors. They spotted that the mechanical vibration sometime could increase amplitudes of tremors. A literature review about different devices for tremor control is reported by [START_REF] Castrillo-Fraile | Tremor control devices for essential tremor: A systematic literature review[END_REF]. The linear passive control of tremors are already studied (see for example [START_REF] Hashemi | Tuned vibration absorber for suppression of rest tremor in parkinson's disease[END_REF]). Our paper exploits the NES technology for passive control of tremors of a simplified model of human arm. The paper is organised as it follows: the simplified nonlinear mathematical model of the locomotion of human arm and detection of its linear natural frequencies are presented in Sect. 2. In Sect. 3 the system is coupled to a NES and its fast and slow dynamics are clarified. Application of the proposed system in passive control of human arm due to essential tremors is provided in Sect. 4. Finally, the paper is concluded in Sect. 5.

The mathematical model of the upper limb and linearisation about a postural potion

The simplified academic model of the locomotion of human arm is illustrated in Fig. 1. In this model some biomechanical effects such as • the elbow locking [START_REF] Jackson | A mathematical model of arm swing during human locomotion[END_REF], i.e. limitation of extension of human arm at elbow joint when arm and forearm are at the same line;

• the elastic activities of muscles;

• three-dimensional movement of the arm, are ignored. Moreover, we neglect the movement of hand via assuming that the forearm and the hand constitute a single piece with the equivalent mass of both pieces which is situated at the centre of their masses. Let us define following parameters and variables:

• and : developed angles in arm and forearm, respectively;

• 1 and 2 : the mass of the arm and the equivalent mass of the forearm and the hand, respectively;

• 1 : length of the arm;

• 2 : distance of the equivalent mass 2 from the elbow joint;

• 1 : distance of the center of the mass of the arm to the glenohumeral joint;

• : the moment of inertia of the upper arm with respect to the glenohumeral joint;

• ′ and ′ : applied torques about the glenohumeral and the elbow joints, respectively.

We use the developed model by [START_REF] Jackson | A mathematical model of arm swing during human locomotion[END_REF] for representing locomotion of human upper limb; it reads:

⎧ ⎪ ⎨ ⎪ ⎩ 11 ̈ + 12 ̈ + 13 -+ = ′ 21 ̈ + 22 ̈ + 23 - + = ′ (1) 
Different parameters of Eq. 1 are reported in Appendix A. It should be mentioned that other models exist which take into account more complete factors of the locomotion such as detailed bones and joints behaviours [START_REF] Barhorst | A neuro-muscular elasto-dynamic model of the human arm part 1: Model development[END_REF][START_REF] Moody | A neuro-muscular elasto-dynamic model of the human arm part 2: Musculotendon dynamics and related stress effects[END_REF] or pennate [START_REF] Wojnicz | A two dimensional approach for modelling of pennate muscle behaviour[END_REF] and mono-and bi-articular muscles [START_REF] Zagrodny | Cooperation of mono-and bi-articular muscles: human lower limb[END_REF]. Let us linearise system equations around a provided postural positions represented by 0 and 0 ; i.e.

= 0 + = 0 + (2)
Following system is obtained:

⎧ ⎪ ⎨ ⎪ ⎩ 11 ̈ + 12 ̈ + 11 + 12 + 1 = ′ 21 ̈ + 22 ̈ + 21 + 22 + 2 = ′ (3) θ φ m 1 m 2 l 1 d 1 l 2
Elbow joint

Glenohumeral joint

Figure 1: The simplified academic model of the locomotion of human arm.

All variables of the Eq. 3 are clarified in Appendix B.

The parameters 1 and 2 are fact the the resistive moments in order to maintain the postural position. Therefore, the total excitation due to tremor, ext , is summarised as:

ext = ′ -1 ′ -2 (4) 
We assume that ext can be decomposed in the form of Fourier series on the basis of the frequency Ω. To simplify the study, we take the first harmonics of the series and we consider a mono-frequency excitation; we can suppose:

ext = 1 sin(Ω ) 2 sin(Ω ) (5) 
Equation 3 can be written as:

⎛ ⎜ ⎜ ⎝ 11 12 21 22 ⎞ ⎟ ⎟ ⎠ ⏟⏞⏞⏞⏞⏞⏞ ⏟⏞⏞⏞⏞⏞⏞ ⏟ ⎛ ⎜ ⎜ ⎝ ̈ ̈ ⎞ ⎟ ⎟ ⎠ + ⎛ ⎜ ⎜ ⎝ 11 12 21 22 ⎞ ⎟ ⎟ ⎠ ⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟ ⎛ ⎜ ⎜ ⎝ ⎞ ⎟ ⎟ ⎠ = 1 sin(Ω ) 2 sin(Ω ) (6) 
Variation of natural frequencies of the linear system of Eq. 6 with respect to different postures are illustrated in Fig. 2. The system parameters are reported in Table 1. These figures show that system frequencies are sensitive to initial postural positions. This means that classical linear absorbers, i.e. tuned mass dampers [START_REF] Frahm | Device for damping vibrations of bodies[END_REF], can not be efficient for passive control of tremors due to variations of natural frequencies according to different initial postural positions.

In the next section the two degrees of freedom pendulum will be coupled to a NES and different dynamics of the system will be clarified.

Table 1 System parameters of the arm [START_REF] Drillis | Body segment parameters; a survey of measurement techniques[END_REF] (m.sec -2 )

1 (m) 2 (m) 1 (m) 1 (kg) 2 (kg) (kg.m 2 )
9.81 0.364 0.293 0.155 2.07 1.7 0.076

The mathematical model of the upper limb coupled to a NES

Let us consider a simplified model of the upper limb which is coupled to a NES with the distance of 3 from the elbow joint (see Fig. 3). We assign and as the mass and the generalised displacement of the NES which possesses a general nonlinear restoring forcing function as NES ( ), e.g. NES ( ) =

3 . The damping scenario of the NES is supposed to be linear and its coefficient is represented by . Governing equations of the three-dof systems is written as:

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 11 ̈ + 12 ̈ + 13 ̈ + 14 -1 + 1 = ′ 21 ̈ + 22 ̈ + 23 ̈ + 24 -2 + 2 = ′ 31 ̈ + 32 ̈ + 33 ̈ + 34 -3 + 3 + ̇ = 0 (7) 
Appendix C describes all variables of Eq. 7. Let us also assume that:

′ = 1 sin(Ω ) ′ = 2 sin(Ω ) (8) 
We can perform linearisation of system equations around a postural position described in Eq. 2. Introducing the parameter = 2 and assuming ≪ 1, following system is obtained:

′ ⎛ ⎜ ⎜ ⎝ ̈ ̈ ̈ ⎞ ⎟ ⎟ ⎠ + ′ ⎛ ⎜ ⎜ ⎝ ⎞ ⎟ ⎟ ⎠ + ′ + ′ + ′ = ⎛ ⎜ ⎜ ⎝ 1 sin(Ω ) 2 sin(Ω ) 0 ⎞ ⎟ ⎟ ⎠ (9) 
with variables which are defined in Appendix D.

Let us suppose that = nint( 2 ( 0 , 0 ) 1 ( 0 , 0 )

), ∈ ℕ * , where nint(… ) stands for the nearest integer function. Moreover, we assume that:

1 = Ω + 1 2 = 1 + ̃ 2 = Ω + 2 (10) 
In the modal coordinate, we apply following change of variables:

⎛ ⎜ ⎜ ⎝ ⎞ ⎟ ⎟ ⎠ = ⎛ ⎜ ⎜ ⎝ 1 2 3 ⎞ ⎟ ⎟ ⎠ , with = ⎛ ⎜ ⎜ ⎝ 11 12 0 21 22 0 0 0 1 ⎞ ⎟ ⎟ ⎠ (11)
where is a matrix of eigenvectors of ′-1 ′ . To take into account dissipations of the main system, following damping matrix can be introduced to the system 9 as: Then, we set Considering explained change of variables in Eq. 9 following system is obtained:

′ = ⎛ ⎜ ⎜ ⎝ 11 12 0 21 22 0 0 0 0 ⎞ ⎟ ⎟ ⎠ (12) 
-1 ′-1 ′ = (13) with = ⎛ ⎜ ⎜ ⎝ 1 0 0 0 2 0 0 0 0 ⎞ ⎟ ⎟ ⎠ (14) θ φ m 1 m 2 l 1 d 1 l 2 Elbow joint Glenohumeral joint l 3 m N u
⎛ ⎜ ⎜ ⎝ ̈ 1 ̈ 2 ̈ 3 ⎞ ⎟ ⎟ ⎠ + ( + Λ) ⎛ ⎜ ⎜ ⎝ 1 2 3 ⎞ ⎟ ⎟ ⎠ + ⎛ ⎜ ⎜ ⎝ ̇ 1 ̇ 2 ̇ 3 ⎞ ⎟ ⎟ ⎠ + ̇ 3 ( + ) + 0 ( 3 )( + ) + ( + ) = (15) 
and Λ are 3 × 3 matrices, where , , , , , and are 3 × 1 vectors. All of these, are clarified in Appendix E. In the next section the complexified form of system equations are treated by a time multiple scale method for clarifying its different dynamics.

Complexification of the system and keeping its firs harmonics

Let us introduce complex variables of Manevitch [START_REF] Manevitch | The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables[END_REF]:

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ Ψ 1 exp( Ω ) = ̇ 1 + Ω 1 Ψ 2 exp( Ω ) = ̇ 2 + Ω 2 Ψ 3 exp( Ω ) = ̇ 3 + Ω 3 (16)
We are interested to keep first harmonic of the system (Ture [START_REF] Savadkoohi | Analysis of the 1:1 resonant energy exchanges between coupled oscillators with rheologies[END_REF]. Following equation is obtained:

⎛ ⎜ ⎜ ⎜ ⎝ Ψ1 + ( 1 -1 ) 2 Ψ 1 Ψ2 + ( 2 -2 ) 2 Ψ 2 Ψ3 + ( 1 -1 ) 2 Ψ 3 ⎞ ⎟ ⎟ ⎟ ⎠ + ( + Λ) ⎛ ⎜ ⎜ ⎜ ⎝ -2( 1 -1 ) Ψ 1 -2( 2 -2 ) Ψ 2 -2( 1 -1 ) Ψ 3 ⎞ ⎟ ⎟ ⎟ ⎠ + ⎛ ⎜ ⎜ ⎝ Ψ1 Ψ2 Ψ3 ⎞ ⎟ ⎟ ⎠ + Ψ 3 2 ( + )+( + ) (Ψ 3 , Ψ * 3 ) = ℍ (17)
where the function is defined as [START_REF] Gendelman | Targeted energy transfer in systems with non-polynomial nonlinearity[END_REF]:

(Ψ 3 , Ψ * 3 ) = Ω 2 ∫ 2 Ω 0 0 ( 3 ) exp(-Ω )d = - Ψ 3 2 (|Ψ 3 | 2 ) (18) 
where

(|Ψ 3 | 2 )
is a function which depends on the nonlinearity type of the NES. The . * stands for the complex conjugate of the variable. Definition of ℍ is provided in Appendix F.

Fast/slow dynamics of the system

To treat system equations, we use a perturbation technique namely, the multiple scale method [START_REF] Nayfeh | Perturbation Methods[END_REF]). Different scales of the time are defined as 0 = (fast scale), and = , ∈ ℕ + (slow scales). These time scales are coupled to each other via the physical parameter . To clarify different systems dynamics, different orders of the should be considered in Eq. 17.

Fast dynamics: 0 order of system equations

The 0 order of the system 17 leads to:

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ Ψ 1 0 = 0 Ψ 2 0 = 0 Ψ 3 0 + 1 2 Ψ 3 - 2 ( 31 1 Ψ 1 + 32 2 Ψ 2 ) + 0 Ψ 3 2 + = 0 (19) 
For a NES with cubic nonlinearity,

(|Ψ 3 | 2 ) = 3 4 3 1 |Ψ 3 | 2 , so = -2 Ψ 3 3 4 3 1 |Ψ 3 | 2 .
Fixed points of the system correspond to system behaviours when 0 → ∞, leading to

Ψ 3 0 → 0 or (Ψ 1 , Ψ * 1 , Ψ 2 , Ψ * 2 , Ψ 3 , Ψ * 3 ) = - 2 1 ( 31 Ψ 1 + 32 Ψ 2 ) + ( 1 2 + 0 2 )Ψ 3 + = 0 (20) 
If we write system variables in polar forms as Ψ = exp( ), = 1, 2, 3, then Eq. 20 reads:

2 0 + 2 1 + 2 ( 2 3 ) -2 1 ( 2 3 ) 2 3 = ( 31 1 ) 2 2 1 + ( 32 1 ) 2 2 2 + 2 31 32 2 1 cos( 1 -2 ) 1 2 (21) 
The complex function  or the real equation of the system 21 are a geometrical surface corresponding to final destinations of the system which is named as slow invariant manifold (SIM). It is seen that the four-dimensional SIM is a function of amplitudes , = 1, 2, 3 and phase lag between Ψ 1 and Ψ 2 represented by = 1 -2 . Different views of the four-dimensional SIM for some values of the are illustrated in Fig. 4. Some zones of the SIM are unstable.

A stability analysis can be carried out via linear perturbation of variables of the Eq. 20 or 21 for tracing stable and unstable zones of the SIM (see for example Lamarque et al. ( 2017); Hurel et al. ( 2019)). When the system reaches to boundaries of the unstable zones, it bifurcates to its another stable zone. Depending on the characteristics of external forcing terms, the system can be attracted by periodic or non periodic regimes [START_REF] Gendelman | Attractors of harmonically forced linear oscillator with attached nonlinear energy sink i: Description of response regimes[END_REF]Starosvetsky and Gendelman, 2008a). Different possible regimes can be revealed by studying slow dynamics of the system which is explained in the next section.

Slow dynamics: 1 order of system equations

The 1 order of first two equations of the system 17 reads:

⎧ ⎪ ⎨ ⎪ ⎩ Ψ 1 1 - 2 1 (Λ 11 + 2 1 1 )Ψ 1 + Λ 12 Ψ 2 + Λ 13 Ψ 3 + 1 2 Ψ 1 + 1 2 Ψ 3 + 1 = ℍ 1 Ψ 2 1 - 2 2 Λ 21 Ψ 1 + (Λ 22 + 2 2 2 ) Ψ 2 + Λ 23 Ψ 3 + 2 2 Ψ 2 + 2 2 Ψ 3 + 2 = ℍ 2 (22)
Which can be written in a compact form as:

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ Ψ 1 1 =  1 (Ψ 1 , Ψ * 1 , Ψ 2 , Ψ * 2 , Ψ 3 , Ψ * 3 ) Ψ 2 1 =  2 (Ψ 1 , Ψ * 1 , Ψ 2 , Ψ * 2 , Ψ 3 , Ψ * 3 ) (23) 
The evolution of the SIM (see Eq. 20) at 1 time scale yields to:

⎛ ⎜ ⎜ ⎜ ⎜ ⎝  Ψ 1  Ψ * 1  Ψ 2  Ψ * 2  Ψ 3  Ψ * 3  * Ψ 1  * Ψ * 1  * Ψ 2  * Ψ * 2  * Ψ 3  * Ψ * 3 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ Ψ 1 1 Ψ * 1 1 Ψ 2 1 Ψ * 2 1 Ψ 3 1 Ψ * 3 1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = 0 (24)
which can be reorganised as:

⎛ ⎜ ⎜ ⎜ ⎜ ⎝  Ψ 3  Ψ * 3  * Ψ 3  * Ψ * 3 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ ⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟  ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ Ψ 3 1 Ψ * 3 1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ = - ⎛ ⎜ ⎜ ⎜ ⎜ ⎝  Ψ 1  Ψ * 1  Ψ 2  Ψ * 2  * Ψ 1  * Ψ * 1  * Ψ 2  * Ψ * 2 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ Ψ 1 1 Ψ * 1 1 Ψ 2 1 Ψ * 2 1 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ ⏟⏞⏞ ⏟⏞⏞ ⏟  (25)
Looking at Eq. 23, we can write:

 =  1  * 1  2  * 2 (26)
Equilibrium points of the system (corresponding to periodic regimes of the initial system) are those which satisfy:

⎧ ⎪ ⎨ ⎪ ⎩ = 0  = 0 Det( ) ≠ 0 (27)
while singularities of the system (corresponding to non periodic regimes of the initial system) verify:

⎧ ⎪ ⎨ ⎪ ⎩ = 0  = 0 Det( ) = 0 (28)

A numerical example

Let us consider the parameters of the arm which are presented in Table 1. The system is coupled to a NES which its supplementary parameters are reported in Table 2. All possible equilibrium points of the system for sweeping 1 are presented in Figs. 567. As an example, let us take the case which correspond to 1 = 0.2. Equation 9 is integrated numerically by ode45 function of Matlab. Results for different system amplitudes are depicted in Figs. 8-10, showing that the system is being attracted by equilibrium points which are predicted in Figs. 567. Obtained numerical results are confronted with the three-dimensional view of the SIM in Fig. 11 for the section of = 0. It is seen that (after starting from initial conditions), the system oscillates around the SIM and finally is attracted by the equilibrium point which is already clarified in Figs. 567. Different two-dimensional views of this confrontation are presented in Figs.

12. 2 as a function of the detuning parameter: 1 vs. . Results are obtained by direct numerical integration of Eq. 9 for 1 = 0.2.

Application to passive control of the arm

In order to show the capability of the proposed device in tremor control of the arm, the undamped locomotion equations of human arm, i.e. Eq. 6, are integrated numerically (see Table 1 for parameters) and are compared with those which are equipped with the NES (see Table 3 for parameters). Results are shown in Figs. 13 and14 showing the capability of the NES in controlling the diverging response of the main system. 2 as a function of the detuning parameter: 2 vs. . Results are obtained by direct numerical integration of Eq. 9 for 1 = 0.2. 2 as a function of the detuning parameter: 3 vs. . Results are obtained by direct numerical integration of Eq. 9 for 1 = 0.2.

Conclusions

The mathematical model of the locomotion of human arm which has been developed by [START_REF] Jackson | A mathematical model of arm swing during human locomotion[END_REF] and represented by a simplified two degrees of freedom nonlinear pendulum, is investigated:

• After linearisation of nonlinear system equation about an arbitrary posture, it is spotted that linear natural frequencies vary with the change of the posture. This means that classical linear passive absorbers, which are tuned to a spacial linear frequency, can not be efficient in general for the tremor control.

• The simplified locomotion model of human arm is coupled to a nonlinear energy sink. Detection of fast and slow system dynamics revealed its slow invariant manifold and characteristic points. Then, application of the proposed system in passive control of an academic diverging system is illustrated. It is seen that the proposed absorber is able to control (mathematically) diverging responses of the arm.

Perspective of this work will be a collaboration with the neurological hospital and medicines for having a real data of patients which suffer from essential tremor and to prepare design tools for such data. C. Definition of different variables of Eq. 7

11 = + 2 ( 2 1 + 2 2 + 2 1 2 cos( )) + ( 2 1 + 2 3 + 2 + 2 1 3 cos( ) -2 1 sin( )) 12 = 2 [ 2 2 + 1 2 cos( )] + [ 2 3 + 2 + 1 3 cos( ) -1 sin( )] 13 = [ 1 cos( ) + 3 ] 14 = -2 1 2 (2 ̇ + ̇ ) ̇ sin( ) + [2 ̇ ( ̇ + ̇ ) -1 3 (2 ̇ + ̇ ) ̇ sin( ) -1 ̇ ̇ sin( ) -1 ̇ (2 ̇ + ̇ ) sin( ) -1 (2 ̇ + ̇ ) ̇ cos( )] 21 = 2 [ 2 2 + 1 2 cos( )] + [ 2 3 + 2 + 1 3 cos( ) -1 sin( )] 22 = 2 2 2 + ( 2 3 + 2 ) 23 = 3 24 = -2 ( 1 2 ̇ ̇ sin( )) + [2 ̇ ( ̇ + ̇ ) -1 3 ̇ ̇ sin( ) -1 ̇ ̇ sin( ) -1 ̇ ̇ cos( )] 31 = [ 1 cos( ) + 3 ] 32 = 3 33 = 34 = - 1 ̇ ̇ sin( ) (31) 
and 1 = 0 1 = 1 1 sin( ) + 2 ( 1 sin( ) + 2 sin( + )) + ( 1 sin( ) + 3 sin( + ) + cos( + )) 

2 = -[ 2 1 2 ( ̇ + ̇ ) ̇ sin( ) + ( 1 3 ( ̇ + ̇ ) ̇ sin( ) + 1 ( ̇ + ̇ ) ̇ cos( ) + 1 ̇ ̇ ( ))] 2 = 2 2 sin( + ) + ( 3 sin( + ) + cos( + )) 3 = [( ̇ + ̇ ) 2 -1 ( ̇ + ̇ ) ̇ sin( )] 3 = sin( + ) + NES ( ) (32 

D. Definition of different variables of Eq. 9

Let us define 2 = and 1 2 = .

′ = ⎛ ⎜ ⎜ ⎝ ′ 11 ′ 12 ′ 13 ′ 21 ′ 22 ′ 23 ′ 31 ′ 32 ′ 33 ⎞ ⎟ ⎟ ⎠ (33) ′ 11 = + ( 2 1 + 2 2 + 2 1 2 cos( 0 )) + ( 2 1 + 2 3 + 2 1 3 cos( 0 )) ′ 12 = 2 ( 2 + 1 cos( 0 )) + 3 (cos( 0 ) 1 + 3 ) ′ 13 = (cos( 0 ) 1 + 3 ) ′ 21 = 2 ( 2 + 1 cos( 0 )) + 3 (cos( 0 ) 1 + 3 ) ′ 22 = 2 2 + 2 3 ′ 23 = 3 ′ 31 = (cos( 0 ) 1 + 3 ) ′ 32 = 3 ′ 33 = (34) ′ = ⎛ ⎜ ⎜ ⎝ ′ 11 ′ 12 ′ 13 ′ 21 ′ 22 ′ 23 ′ 31 ′ 32 ′ 33 ⎞ ⎟ ⎟ ⎠ (35) ′ 11 = cos 0 + 0 2 + cos 0 + 0 3 + 1 cos 0 + cos 0 1 + cos 0 1 ′ 12 = cos 0 + 0 2 + 3 ′ 13 = cos 0 + 0 ′ 21 = 0 + 0 2 + 3 ′ 22 = cos 0 + 0 2 + 3 ′ 23 = cos 0 + 0 ′ 31 = cos 0 + 0 ′ 32 = cos 0 + 0 ′ 33 = 0 (36) ′ = ⎛ ⎜ ⎜ ⎝ 0 0 0 ( ) ⎞ ⎟ ⎟ ⎠ (37) with = 2 and 0 ( ) = 3 . ′ = ⎛ ⎜ ⎜ ⎝ 0 0 0 ̇ ⎞ ⎟ ⎟ ⎠ (38) with 0 = 2 . ′ = ⎛ ⎜ ⎜ ⎝ ′ 1 ′ 2 ′ 3 ⎞ ⎟ ⎟ ⎠ (39) 
′ 1 = 1 sin( 0 ) + ( 1 sin( 0 ) + 2 sin( 0 + 0 )) + ( 1 sin( 0 ) + 3 sin( 0 + 0 )) ′ 2 = 2 sin( 0 + 0 ) + 3 sin( 0 + 0 ) ′ 3 = sin( 0 + 0 )

(40) 1 = 1 2 2 = 2 2 (41)

E. Definition of different variables of Eq. 15

The non zero arrays of Matrices 3×3 and Λ 3×3 are:

11 = 2 1 22 = 2 2 31 = ( 11 + 21 ) 1 2 + cos( 0 + 0 )-cos( 0 ) cos( 0 ) 1 11 ( 1 + 1 ) ( 2 -3) 2 -(cos( 0 )) 2 1 2 + 1 2 + 32 = ( 12 + 22 ) 1 2 + cos( 0 + 0 )-cos( 0 ) cos( 0 ) 1 12 ( 1 + 1 ) ( 2 -3) 2 -(cos( 0 )) 2 1 2 + 1 2 + (42) 
Λ 11 = -(cos( 0 ) 12 1 + 2 ( 12 + 22 )) cos( 0 )( 11 + 21 ) cos( 0 + 0 )-cos( 0 ) 11 1 1 (cos( 0 )) 2 - , , , , , and read:

= ⎛ ⎜ ⎜ ⎜ ⎝ 0 0 0 ⎞ ⎟ ⎟ ⎟ ⎠ (44) = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ -(cos( 0 )) 2
12 1 2 2 -1 2 ( 12 + 22 )( 2 -3) cos( 0 )+ 3 12 1 2 + ( 11 22 -12 21 ) 2 2 -(cos( 0 )) 2 1 2 + 1 2 + --(cos( 0 )) 2 11 1 2 2 -1 2 ( 11 + 21 )( 2 -3) cos( 0 )+ 3 11 1 2 + ( 11 22 -12 21 ) 2 2 -(cos( 0 )) 2

1 2 + 1 2 + - 1 2 2 ( 2 -2 3)(cos( 0)) 2 + 3 2 1 2 + 2 2 (cos( 0 )) 2 1 2 -1 2 - ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ (45) = ⎛ ⎜ ⎜ ⎜ ⎝ 0 0 1 ⎞ ⎟ ⎟ ⎟ ⎠ (46) = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ -(cos( 0 )) 2
12 1 2 2 -1 2 ( 12 + 22 )( 2 -3) cos( 0 )+ 3 12 1 2 + ( 11 22 -12 21 ) 2 2 -(cos( 0 )) 2

1 2 + 1 2 + - -(cos( 0 )) 2
11 1 2 2 -1 2 ( 11 + 21 )( 2 -3) cos( 0 )+ 3 11 1 2 + ( 11 22 -12 21 ) 2 2 -(cos( 0 )) 2

1 2 + 1 2 + - 1 2 2 ( 2 -2 3 )(cos( 0 )) 2 + 3 2 1 2 + 2 2 (cos( 0 )) 2 1 2 -1 2 - ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ (47) = ⎛ ⎜ ⎜ ⎝ ′ 1 ′ 2 ′ 3 ⎞ ⎟ ⎟ ⎠ (48) = -1 ′-1 ⎛ ⎜ ⎜ ⎝ 1 sin(Ω ) 2 sin(Ω ) 0 ⎞ ⎟ ⎟ ⎠ (49) 
F. Definition of ℍ in Eq. 17 

ℍ = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ ∕2 -1 2 (( 1 -2 2 ) 12 -2 22 ) cos( 0)-( 12+ 
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 2 Figure 2: Variations of system linear frequencies with respect to initial postural positions 0 and 0 . a) 1 b) 2 .

Figure 3 :

 3 Figure 3: The academic model of the locomotion of human arm coupled with a NES with the mass and the generalised displacement as . The NES presents a nonlinear restoring forcing function and a linear damping scenario.

Figure 4 :

 4 Figure 4: Three-dimensional views of the four-dimensional SIM (see Eq. 21) for some fixed phase lag ( = 1 -2 ). System parameters are = 10, 0 = 1, 3 = 0.299, 0 = 0, 0 = 0.
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 5 Figure 5: Equilibrium points of the system of Table 2 as a function of the detuning parameter: 1 vs. 1

Figure 8 :

 8 Figure 8: Time history of the system of Table2as a function of the detuning parameter: 1 vs. . Results are obtained by direct numerical integration of Eq. 9 for 1 = 0.2.
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 9 Figure9: Time history of the system of Table2as a function of the detuning parameter: 2 vs. . Results are obtained by direct numerical integration of Eq. 9 for 1 = 0.2.

Figure 10 :

 10 Figure 10: Time history of the system of Table2as a function of the detuning parameter: 3 vs. . Results are obtained by direct numerical integration of Eq. 9 for 1 = 0.2.
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 1113 Figure 11: Three-dimensional view of the SIM of the system of Table 2 for = 0. The SIM is accompanied by corresponding results.

Figure 14 :

 14 Figure 14: Time history of the for the system without and with the coupled NES ( 1 = 0).
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Table 3

 3 The coupled system parameters

		0	3	1	2	0	0		1	2
	10 2	1	0.299	0	0	0	0	10 -2	0.1	0.1

  ) 12 1 + 2 ( 12 + 22 )) cos( 0 )( 12 + 22 ) cos( 0 + 0 )-cos( 0 ) 12 1 1 (cos( 0 )) 2 -1 1 +

						1 1 +	1
			( 11 22 -12 21 ) 2 -(cos( 0 )) 2	1	2 + 1	2 +	2
	Λ 12 = -	(cos( 0 1 ( 11 22 -12 21 ) 2 -(cos( 0 )) 2 1 2 + 1 2 + 2
	cos( 0 + 0 ) 2 -1 2 -( 11 22 -12 21 ) 2 -(cos( 0 )) 2 Λ 13 = 1 2 ( 12 + 22 ) cos( 0 )+ 12 1 2 + ( 11 22 -12 21 ) 2 2 (cos( 0 )) 2 1 Λ 21 = (cos( 0 ) 11 1 + 2 ( 11 + 21 )) cos( 0 )( 11 + 21 ) cos( 0 + 0 )-cos( 0 ) 11 1 1 (cos( 0 )) 2 -1 1 + 1 2 + 1 2 + 2	1	(43)
	Λ 22 =	(cos( 0 ) 11 1 + 2 ( 11 + 21 )) cos( 0 )( 12 + 22 ) cos( 0 + 0 )-cos( 0 ) 12 1 1 (cos( 0 )) 2 -1 1 + ( 11 22 -12 21 ) 2 -(cos( 0 )) 2 1 2 + 1 2 + 2	1
	Λ 23 = -1 2 ( 11 + 21 ) cos( 0 )+ 11 1 2 + ( 11 22 -12 21 ) 2 2 (cos( 0 )) 2	1	cos( 0 + 0 ) 2 -1 2 -

  22)( 1 -2 ) 2 2 + 2 12 1 2 + ( 11 22 -21 12 ) 2 2 -(cos( 0)) 2 (( 1 -2 2 ) 11 -2 21 ) 2 cos( 0 )-( 11 + 21 )( 1 -2 ) 2 2 + 2 11 1 2 + ( 11 22 -21 12 ) 2 2 -(cos( 0 )) 2

				⎞	
	1	2 + 1	2 +	⎟	
	-∕2 -1 1	2 + 1	2 +	⎟ ⎟ ⎟	(50)
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Figure 12: Different two-dimensional views of the SIM which is presented in Fig. 11 A. Definition of different variables of Eq. 1

B. Definition of different variables of Eq. 3

2 2 cos( 0 + 0 ) 21 = 2 2 cos( 0 + 0 ) 22 = 2 2 cos( 0 + 0 ) 1 = 1 1 sin( 0 ) + 2 ( 1 sin( 0 ) + 2 sin( 0 + 0 )) 2 = 2 2 sin( 0 + 0 ) (30)