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A survey and new results

on Banach algebras of ultrametric continuous functions

by Monique Chicourrat, Bertin Diarra and Alain Escassut

Abstract Let IK be an ultrametric complete valued field and IE be an ultrametric space.
We examine some Banach algebras S of bounded continuous functions from IE to IK with
the use of ultrafilters, particularly the relation of stickness. We recall and deepen results
obtained in a previous paper by N. Mäınetti and the third author concerning the whole
algebra A of all bounded continuous functions from IE to IK. We show that every maximal
ideal of finite codimension of A is of codimension 1. Moreover, that property holds for
every algebra S, provided IK is perfect. If S admits the uniform norm on IE as its spec-
tral norm, then every maximal ideal is the kernel of only one multiplicative semi-norm,
the Shilov boundary is equal to the whole multiplicative spectrum and the Banaschewski
compactifiaction of IE is homeomorphic to the multiplicative spectrum of S.

1. Introduction and basic results in topology

Let IK be an ultrametric complete valued field and IE be an ultrametric space. It is well
known that the set of maximal ideals of a Banach IK-algebra is not sufficient to describe its
spectral properties: we have to consider the set of continuous multiplicative semi-norms
often called the multiplicative spectrum [2], [8], [11], [12], [14], [16]. In this paper, we
generalize some of the results obtained in [15] to some Banach algebras of continuous
bounded functions that we call semi-admissible algebras which concern maximal ideals,
multiplicative spectrum, Shilov boundary and the Stone space of the Boolean ring of the
clopen subsets of IE. The relation of stickness on ultrafilters, already considered in [14],
here plays an important role.

Notations and definitions: Let IK be a complete valued field with respect to an ultra-
metric absolute value | . | and let IE denote a metric space whose distance δ is ultrametric.
Given a ∈ IE and r > 0, we denote by dIE(a, r−) the open ball {x ∈ IE | δ(a, x) < r} and
particularly in IK we denote by d(a, r−) the open disk {x ∈ IK | |x− a| < r}. In the same
way, in IE, we denote by dIE(a, r) the closed ball {x ∈ IE | δ(a, x) ≤ r} and we denote by
d(a, r) the closed disk {x ∈ IK | |x − a| ≤ r}. Moreover, in IK, we denote by C(a, r) the
set {x ∈ IK | |x− a| = r}.

We denote by | . |∞ the Archimedean absolute value of IR.

Given a subset H of IE, we denote by H the closure of H in IE and the function u
defined on IE by u(x) = 1 if x ∈ H and u(x) = 0 otherwise is called the characteristic
function of H.

We will denote by IB(IE) the Boolean ring of clopen subsets of IE with respect to the
two classical laws ∆ and ∩.
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Let us recall this obvious lemma:

Lemma 1.1: Let F be a subset of IE and let u be its characteristic function. Then u is
continuous if and only if F is clopen.

The following lemma is also clear since each ball of IK is clopen.

Lemma 1.2: Let f be a continuous function from IE to IK and let M > 0. Given M > 0,
the sets E1 = {x ∈ IE |f(x)| ≥M} and E2 = {x ∈ IE |f(x)| ≤M} are clopen.

Corollary 1.2.a: Let f be a continuous function from IE to IK, let M > 0 and let h > 0.
Then {x ∈ IE |

∣∣∣|f(x)| −M
∣∣∣
∞
≤ h} is clopen.

Given a normed IK-algebra whose norm is ‖ . ‖, we denote by ‖ . ‖sp the spectral

semi-norm that is associated and defined as ‖f‖sp = lim
n→+∞

(
‖fn‖

) 1
n

.

The Banach IK-algebra A of all bounded continuous functions from IE to IK is provided
with the norm ‖ . ‖0 that we will call the uniform norm and which is defined as ‖f‖0 =
sup{|f(x)| | x ∈ IE}.

Recall the following:

Proposition 1.3: Let T be a commutative unital Banach IK-algebra of bounded continu-
ous functions defined from IE to IK. Then ‖f‖0 ≤ ‖f‖sp ≤ ‖f‖ ∀f ∈ T . Moreover, given
f ∈ T satisfying ‖f‖sp < 1, then lim

n→+∞
‖fn‖ = 0.

Proof: The norm ‖ . ‖0 is power multiplicative and classically it is bounded by the norm
‖ . ‖ of T , it is then bounded by ‖ . ‖sp. The last claim is immediate.

Definition. Let S be a IK-subalgebra of A. We say that (S, ‖ . ‖) is semi-admissible if it
is a Banach algebra satisfying the following two properties:

1) For every O ∈ IB(IE), the characteristic function of O belongs to S.
2) For every f ∈ S such that inf{|f(x)| |x ∈ IE} > 0, f is invertible in S.

Moreover the semi-admissible algebra S will be called admissible if ‖f‖0 = ‖f‖sp ∀f ∈ S.
Given a subset X of S, we call spectral closure of X denoted by X̃ the closure of X

with respect to the semi-norm ‖ . ‖sp and X will be said to be spectrally closed if X = X̃.
Moreover, X will be said to be uniformly closed if it is closed with respect to the uniform
norm and we call uniform closure of X the closure of X with respect to the semi-norm
‖ . ‖0.

Throughout the paper the algebra S will be supposed to be semi-admissible.

Let f ∈ A be such that inf{ |f(x)| | x ∈ IE} > 0, it is clear that
1
f

belongs to A.

On the other hand, A is complete with respect to the uniform norm, then we have the
following statement:
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Proposition 1.4: The Banach IK-algebra A is admissible.

The following theorem 1.6 shows another example of admissible algebra which is a bit
less immediate. In Theorem 1.8, we can see that in various cases, this algebra is strictly
included in A.

Lemma 1.5. Let (Oi)i=1,...,n be a finite cover of IE with clopen sets. Then there exists
a finite cover (Bj)j=1,...,p of IE where the sets Bj are not empty, clopen, pairwise disjoint
and such that every Bj is contained in some Oi.

Proof. To the system (Oi)i=1,...,n, associate the system (O′i)i=1,...,2n where O′i = Oi if 1 ≤
i ≤ n and O′i = X\Oi−n otherwise. For every x ∈ IE define Ix = {i ∈ {1, . . . n} : x ∈ O′i}
and consider the following equivalence relation on IE: x(R)y if and only if Ix = Iy. For
any x ∈ IE the equivalence class of x is equal to ∩i∈IxO

′
i and it is clopen since so are the

O′i. Then the equivalence classes (Bj)j=1,...,p satisfy the expected properties.

Theorem 1.6. Let T be the IK-subalgebra of A generated by the characteristic functions
of all clopen sets of IE and let G be its closure in A (for the uniform convergence ‖ . ‖0 on
IE). Then G is admissible.

Proof. One just has to prove Property 2) in the definition of a semi-admissible algebra.

First we check that if g ∈ T is such that inf{|g(x)| : x ∈ IE} = m > 0 then
1
g
∈ T .

Since g ∈ T there exists a finite cover (Oi)i=1,...,n of IE with clopen sets and scalars

(λi)1≤i≤n in IK such that g =
n∑
i=1

λiui where ui is the characteristic function of the clopen

Oi. Using the preceding lemma we get a finite cover (Bj)j=1,...,p of IE where the sets
Bj are not empty, clopen, pairwise disjoint and such that every Bj is contained in some

Oi. Then there exist scalars (βj)1≤j≤p in IK such that g =
p∑
j=1

βjej where ej is the

characteristic function of the clopen Bj . For every j we get |βj | ≥ m > 0, then it is clear

that
1
g

=
p∑
j=1

1
βj
ej and

1
g
∈ T .

Now consider any f ∈ G such that inf{|f(x)| : x ∈ IE} = m > 0. For every ε > 0 such
that ε < 1

m we have εm2 < m and we can consider some g ∈ T such that ‖f − g‖0 ≤ εm2.
Since εm2 < m, we get |f(x)| = |g(x)| for every x ∈ IE and then inf{|g(x)| : x ∈ IE} = m.

Next
1
g
∈ T and we have for every x ∈ IE:

∣∣∣ 1
f(x)

− 1
g(x)

∣∣∣ =
|f(x)− g(x)|
|f(x)g(x)|

≤ ‖f − g‖0
m2

≤ ε.

This proves that
1
f
∈ G, which ends the proof.

The following proposition is Example 3E, chap.3 in [19].

Proposition 1.7: The algebra G is the IK-algebra of the continuous functions from IE to
IK such that the closure of f(IE) in IK is compact. In particular when IK is locally compact
or IE is compact then G = A.
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In order to prove Theorem 1.9, we must recall the following classical proposition:

Proposition 1.8 : The field IK is locally compact if and only if its valuation group is
discrete and its residue class field is finite. [1], (Proposition 2.3.3) .

Theorem 1.9: Suppose that IE contains a sequence (an)n∈IN such that
infn 6=m(δ(an, am)) > 0 and that IK is not locally compact. Then G is strictly included in
A.

Proof: We put s = infn 6=m(δ(an, am)). Suppose first that the valuation group of IK is
dense. We can consider a partition of IE by an infinite family of balls dIE(bi, s−).

Suppose first that the valuation group of IK is dense. Then we can define a bounded
mapping ψ from IE into IK such that ψ(x) is constant in each ball dIE(bi, s−), such that
|ψ(an)−ψ(am)| ≥ 1 and such that |ψ(x)| ≥ 1 ∀x ∈ IE. Particularly, |ψ(x)| takes infinitely
many values. Suppose that T is dense in A. Following the same process as in the proof of
Theorem 1.6 above, we can construct a function g ∈ T such that |ψ(x)| = |g(x)| = λj ∀x ∈
IE. But |ψ(x)| then only takes finitely many values, a contradiction.

Similarly, suppose now that the residue class field of IK is infinite. Let us consider a
sequence of distinct disks (d(µn, 1−))n∈IN in the unit circle and and put Bn = d(µn, 1−).
Now, consider a sequence of balls dIE(an, s−) in IE and an element f of A constant in
dIE(an, s) and such that f(an) belongs to Bn. Suppose that f is in the closure of T . Then
there exists g ∈ T such that |f(x) − g(x)| < 1 for any x ∈ IE. In particular, we get that
g(an) ∈ Bn for every n. Thus, g should take infinitely many values, a contradiction.

Definition: Recall that an element x of a normed IK-algebra A is called a topological
divisor of zero if inf

y∈A,‖y‖≥1
‖xy‖ = 0.

Theorem 1.10: Suppose that IE has no isolated points. Let T be an admissible Banach
IK-algebra complete with respect to the norm ‖ . ‖0. An element of T is a topological divisor
of zero if and only if it is not invertible.

Proof: It is obvious that an invertible element of T is not a topological divisor of zero.
Now, consider an element f ∈ T that is not invertible. Then inf

x∈IE
|f(x)| = 0. Therefore,

there exists a sequence of disks (dIE(an, rn))n∈IN with lim
n→∞

rn = 0, such that |f(x)| ≤
1
n
, ∀x ∈ dIE(an, rn), ∀n ∈ IN∗. For each n ∈ IN, let hn be the characteristic function of

dIE(an, rn). Then hn belongs to T and satisfies ‖hn‖0 = 1 ∀n ∈ IN∗. On the other hand,

we have ‖fhn‖0 ≤
1
n

, hence lim
n→+∞

fhn = 0.

More notations and definitions: Let F be a filter on IE. Given a function f from IE
to IK admitting a limit along F , we will denote by lim

F
f(x) this limit.

Given a filter F on IE, we will denote by I(F , S) the ideal of the f ∈ S such that
lim
F
f(x) = 0. Notice that the unity does not belong to I(F , S), so I(F , S) 6= S.
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Given a ∈ IE, we will denote by I(a, S) the ideal of the f ∈ S such that f(a) = 0 and
by I ′(a, S) the ideal of the f ∈ S such that there exists an open neighborhood L of a such
that f(x) = 0 ∀x ∈ L.

We will denote by Max(S) the set of maximal ideals of S and by MaxIE(S) the set
of maximal ideals of S of the form I(a, S), a ∈ IE.

Given a set F , we will denote by U(F ) the set of ultrafilters on F .
Two ultrafilters U , V on IE will be said to be sticked if for every closed subsets H ∈

U , G ∈ V, we have H ∩G 6= ∅.
We will denote by (R) the relation defined on U(IE) as U(R)V if U and V are sticked

[14].

Remark 1: Relation (R) is not the equality between ultrafilters, even when the ultra-
filters are not convergent. In [17], Labib Haddad introduced the following equivalence
relation (H) on ultrafilters. Given two ultrafilters U , V we write U(H)V if there exists an
ultrafilter W such that every closed set L lying in W also lies in U and similarly, every
closed set L lying in W also lies in V. So, Relation (H) is clearly thinner than Relation
(R). However, it is shown that two ultrafilters U , V satisfying U(H)V may be distinct
without converging.

The following lemma is classical [7]:

Lemma 1.11: Given U ∈ U(IE) and a subset X of IE, then either X ∈ U or (IE\X) ∈ U .

Theorem 1.12:
1) if F and G are disjoint closed subsets of IE then there exists a clopen O such that

F ⊂ O and G ⊂ (IE \O).
This is the case when δ(F,G) > 0.
2) If U and V are ultrafilters on IE then they are sticked if and only if they contain

the same clopen sets.
In particular if U , V are not sticked, there exist disjoint clopen subsets H and L of

IE such that H ∈ U , H /∈ V and L ∈ V, L /∈ U .

Proof:
1) For each x ∈ F take rx > 0 such that d(x, r−x ) ∩ G = ∅ and define the open set
O =

⋃
x∈F

d(x, r−x ). We clearly have F ⊂ O and G ⊂ IE\O. Let us prove that O is closed.

Let y ∈ O. For every n ∈ IN∗, there exists xn ∈ F such that d(y, 1
n

−) ∩ d(xn, r−xn
) 6= ∅,

then let yn ∈ d(y, 1
n

−) ∩ d(xn, r−xn
).

First assume that inf{rxn : n ∈ IN∗} = m > 0. Take n ∈ IN∗ such that 1
n < m. Since

the distance is ultrametric we then have: d(y, 1
n

−) = d(yn, 1
n

−) ⊂ d(yn, r−xn
) = d(xn, r−xn

).
Finally y ∈ O.
Assume now that inf{rxn : n ∈ IN∗} = 0. There exists a subsequence (xnk

)k such that
(rxnk

)k tends to 0. Then we immediately get that (xnk
)k tends to y since (ynk

)k tends to
y. So y ∈ F = F and again y ∈ O.
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2) If U and V are sticked then for every clopen O ∈ U we necessarily have O ∈ V.
Otherwise using the preceding lemma the clopen IE \ O is in V so U and V cannot be
sticked. Conversely, if U and V contain the same clopen sets then using the preceding
property 1), for every closed sets F ∈ U and G ∈ V we necessarily get F ∩ G 6= ∅,
otherwise taking a clopen O such in 1) we have O ∈ U and O /∈ V since IE \O ∈ V.

In particular if U and V are not sticked then taking some clopen H in U which is not
in V, we have (IE \H) ∈ V and putting L = IE \H, H and L are clopen sets satisfying the
expected property.

Corollary 1.12.a: Let U , V be two ultrafilters on E that are not sticked. There exist
clopen subsets H ∈ U , L ∈ V and f ∈ S such that f(x) = 1 ∀x ∈ H, f(x) = 0 ∀x ∈ L.

Lemma 1.13 is classical:

Lemma 1.13: Let U be an ultrafilter on IE. Let f be a bounded function from IE to
IK. The function |f | from IE to IR+ defined as |f |(x) = |f(x)| admits a limit along U .
Moreover, if IK is locally compact, then f(x) admits a limit along U .

Recall that for any normed IK-algebra (G, ‖ . ‖), the closure of an ideal of G is an ideal
of G. Lemmas 1.14 and 1.15 are immediate:

Lemma 1.14: The spectral closure of an ideal of S is an ideal of S.

Lemma 1.15: Let X ⊂ S be spectrally closed. Then X is closed with respect to the norm
of S. Let Y ⊂ S be uniformly closed. Then it is spectrally closed.

Now we can recall a classical result known in ultrametric analysis as in Archimedean
analysis.

Proposition 1.16: Every maximal ideal M of S is spectrally closed.

Proof: By Lemma 1.14 the spectral closure M̃ of M is an ideal. If M is not spectrally
closed, then M̃ = S, hence there exists t ∈ S such that 1 − t ∈ M and ‖t‖sp < 1.

Consequently, by Proposition 1.3 lim
n→+∞

‖tn‖ = 0, therefore the series (
∞∑
n=0

tn) converges

and (
∞∑
n=0

tn)(1− t) = 1 and hence the unity belongs to M, a contradiction.

Proposition 1.17 now is easy:

Proposition 1.17: Given an ultrafilter U on IE, I(U , S) is a prime ideal. Moreover,
I(U , S) is uniformly closed and hence is spectrally closed and closed for the topology of S.

Proof: Since U is an ultrafilter, it is obvious that I(U , S) is prime. Indeed, given f ∈ S,
by Lemma 1.13, |f(x)| admits a limit along U and hence, if f, g ∈ S are such that
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lim
U
f(x)g(x) = 0, then either lim

U
f(x) = 0 or lim

U
g(x) = 0, hence either f or g belongs to

I(U , S).
Let us now check that I(U , S) is uniformly closed. Indeed let g in the closure of I(U , S)

with respect to ‖ . ‖0, let b = lim
U
|g(x)| and suppose b > 0. There exists f ∈ I(U , S) such

that ‖f − g‖0 < b and then

b =
∣∣ lim
U
|f(x)| − lim

U
|g(x)|

∣∣
∞ ≤ lim

U
|f(x)− g(x)| ≤ ‖f − g‖0 < b,

a contradiction showing that I(U , S) is uniformly closed. Therefore, it is spectrally closed
and closed for the topology of S.

The following Theorem 1.18 is proved in [14].

Theorem 1.18: Let U , V be two ultrafilters on IE. Then I(U , S) = I(V, S) if and only
if U and V are sticked.

Proof: First, if U and V are not sticked, by Corollary 1.12.a we have I(U , S) 6= I(V, S).
Now, suppose that U , V are sticked. By Theorem 1.12, then they contain the same clopen
sets. But for every f ∈ S and ε > 0 the set Lε = {x ∈ IE : |f(x)| ≤ ε} is clopen and we
have: f ∈ I(U , S) ⇐⇒ ∀ε > 0, Lε ∈ U and hence Lε ∈ V. Consequently, ∀ε > 0, Lε ∈ V
and hence f belongs to I(V, S). Thus I(U , S) ⊂ I(V, S) and similarly, I(V, S) ⊂ I(U , S),
therefore I(V, S) = I(U , S)

Corollary 1.18.a: Relation (R) is an equivalence relation on U(IE).

Theorem 1.19 looks like certain Bezout-Corona statements [18]:

Theorem 1.19: Let f1, ..., fq ∈ S satisfy inf
x∈IE

( max
1≤j≤q

|fj(x)|) > 0. Then there exist

g1, ..., gq ∈ S such that
q∑
j=1

fj(x)gj(x) = 1 ∀x ∈ IE.

Proof: Let M = infx∈IE(max1≤j≤q |fj(x)|). Let Ej = {x ∈ IE | |fj(x)| ≥M}, j = 1, ..., q

and let Fj =
j⋃

m=1

Em, j = 1, ..., q. Let g1(x) =
1

f1(x)
∀x ∈ E1 and g1(x) = 0 ∀x ∈ IE \ E1.

Since |f1(x)| ≥M ∀x ∈ E1, |g1(x)| is clearly bounded. By Lemma 1.2 each Ej is obviously
clopen and so is each Fj . And since f1 is continuous g1 is continuous, hence belongs to S.

Suppose now we have constructed g1, ..., gk ∈ S satisfying
k∑
j=1

fjgj(x) = 1 ∀x ∈ Fk

and
k∑
j=1

fjgj(x) = 0 ∀x ∈ IE \ Fk. Let gk+1 be defined on IE by gk+1(x) =
1

fk+1(x)
∀x ∈

Fk+1 \ Fk and gk+1(x) = 0 ∀x ∈ IE \ (Fk+1 \ Fk). Since Fk and Fk+1 are clopens,
so is IE \ (Fk+1 \ Fk) and consequently, gk+1 is continuous. Similarly as for g1, since
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|fk+1(x)| ≥ M ∀x ∈ Ek+1, |gk+1(x)| is clearly bounded, hence gk+1 belongs to S. Now

we can check that
k+1∑
j=1

fjgj(x) = 1 ∀x ∈ Fk+1 and
k∑
j=1

fjgj(x) = 0 ∀x ∈ IE \ Fk+1. So, by

a finite induction, we get functions g1, ..., gq ∈ S such that
q∑
j=1

fjgj(x) = 1 ∀x ∈ IE, which

ends the proof.

Notation: Let f ∈ S and let ε > 0. We set D(f, ε) = {x ∈ IE | |f(x)| ≤ ε}.

Corollary 1.19.a: Let I be an ideal of S different from S. The family of sets
{D(f, ε), f ∈ I, ε > 0} generates a filter FI,S on IE such that I ⊂ I(FI,S , S).

2. Maximal and prime ideals of S

Except Theorem 2.4 and its corollaries, most of the results of this paragraph were
given in [14] for the algebra A.

Theorem 2.1: Let M be a maximal ideal of S. There exists an ultrafilter U on IE such
that M = I(U , S). Moreover, M is of codimension 1 if and only if every element of S
converges along U . In particular if U is convergent, then M is of codimension 1.

Proof: Indeed, by Corollary 1.19.a, we can consider the filter FM,S and we have M ⊂
I(FM,S , S). Let U be an ultrafilter thinner than FM,S . So, we have M ⊂ I(FM,S , S) ⊂
I(U , S). But since M is a maximal ideal, either M = I(U , S), or I(U , S) = S. But
obviously, I(U , S) 6= S, hence M = I(U , S).

Now assume that M is of codimension 1 and let χ be the IK-algebra homomorphism
from S to IK admitting M for kernel. Let f ∈ S and let b = χ(f). Then f − b belongs to
the kernel of M, hence lim

U
f(x)− b = 0 that is lim

U
f(x) = b therefore every element of S

converges along U .
Conversely if every element of S admits a limit along U then the mapping χ which

associates to each f ∈ S its limit along U is a IK-algebra homomorphism from S to IK
admitting M for kernel, therefore M is of codimension 1.

In particular if U converges to a point a, then each f in S converges to f(a) along U .

By Lemma 1.13 and Theorem 2.1, the following corollary is immediate:

Corollary 2.1.a: Let IK be a locally compact field. Then every maximal ideal of S is of
codimension 1.

Remark 3: If IK is locally compact, a maximal ideal of codimension 1 of S is not
necessarily of the form I(U , S) where U is a Cauchy ultrafilter. Suppose that IE admits
a sequence (an)n∈IN such that either it satisfies |an − am| = r ∀n 6= m, or the sequence
|an+1−an| is strictly increasing. Let U be an ultrafilter thinner than the sequence (an)n∈IN.
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Consider now a function f ∈ S. Since IK is locally compact, f(x) does converge along
U to a point b ∈ IK. In that way, we can define a homomorphism χ from S onto IK as

χ(g) = limU g(x) and therefore IK is the quotient
S

Ker(χ)
. So I(U , S) is a maximal ideal

of codimension 1.

Notation: Following notations of [14], we will denote by Y(R)(IE) the set of equivalence
classes on U(IE) with respect to Relation (R).

By Theorem 1.18, we can get Corollary 2.1.b:

Corollary 2.1.b: Let M be a maximal ideal of S. There exists a unique H ∈ Y(R)(IE)
such that M = I(U , S) for every U ∈ H.

Conversely, Theorem 2.2 now characterizes all maximal ideals of S.

Theorem 2.2: Let U be an ultrafilter on IE. Then I(U , S) is a maximal ideal of S.

Proof: Let I = I(U , S) and let M be a maximal ideal of S containing I. Then by
Theorem 2.1 there exists an ultrafilter V such that M = I(V, S). Suppose now I(U , S) 6=
I(V, S). Then, U and V are not sticked. Consequently, by Theorem 1.12 there exists a
clopen subset F ∈ V that does not belong to U and hence its characteristic function u ∈ S
belongs to I(U , S) but does not belong to I(V, S). Thus, u belongs to I but does not
belong to M, a contradiction to the hypothesis.

By Corollary 2.1.b and Theorem 2.2, we can derive the following Corollary 2.2.a:

Corollary 2.2.a: The mapping that associates to each maximal ideal M of S the class
with respect to (R) of ultrafilters U , such that M = I(U , S), is a bijection from Max(S)
onto Y(R)(IE).

Remark 4: Let F be a Cauchy filter on IE admitting a limit limit a ∈ IE and let
M = I(F , S). Then every function f ∈ S converges to a limit θ(f) along F and M is
a maximal ideal of codimension 1. Indeed, let f ∈ S. Since f is continuous, then f(x)
converges to a point θ(f) = f(a) in IK. Consider now the mapping θ from S into IK: it is

an algebra morphism whose kernel is M and whose image is IK. Consequently,
S

M
= IK,

therefore M is a maximal ideal of codimension 1.

Notation: For any subset F of IE, we denote by uF its characteristic function. Let M
be a maximal ideal of S and let U ∈ U(IE) be such that M = I(U , S). By Theorems 1.18
we can define the set OM of all clopen subsets of IE which belong to U . We then denote
by CM the set {uIE\L | L ∈ OM} and by JM the set of all functions f ∈ S which are equal
to 0 on some L ∈ OM.

Given a ∈ IE, we will denote by I ′(a, S) the ideal of the functions f ∈ S equal to 0 on
an open subset of IE containing a.

Theorem 2.3: Let M be a maximal ideal of S.
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1) JM is an ideal of S containing CM,
2) JM is the ideal of S generated by CM and JM = {fu | f ∈ S, u ∈ CM},
3) If P is a prime ideal of S contained in M, then JM ⊂ P.
4) if M = I(a, S), then I ′(a, S) = JM.

Proof: 1) Let us check that JM is an ideal of S. Let f, g ∈ JM. So, there exist
F, G ∈ OM such that f(x) = 0 ∀x ∈ F, g(x) = 0 ∀x ∈ G, hence f(x)−g(x) = 0 ∀x ∈ F∩G.
Since F ∩ G belongs to OM, f − g lies in JM. And obviously, for every h ∈ S, we have
h(x)f(x) = 0 ∀x ∈ F , hence fh lies in JM.

Next, JM contains CM because given L ∈ OM, the set IE \ L is clopen, then uIE\L
belongs to S and is equal to 0 on L.

2) Notice that if f ∈ S and u ∈ CM, then by 1) fu belongs to JM. Conversely, if
f ∈ JM and L ∈ OM are such that f(x) is equal to 0 on L, then uIE\L belongs to CM
and f = fuIE\L. This proves that JM = {fu | f ∈ S, u ∈ CM} and that JM is the ideal
generated by CM.

3) It is sufficient to prove that CM is included in P. Indeed, let U ∈ U(IE) be such that
M = I(U , S) and let L ∈ OM. Then L ∈ U and uL /∈M. So, uL /∈ P. But uL.uIE\L = 0.
Thus uIE\L belongs to P since P is prime.

4) Just notice that JM is the set of all functions in S which are equal to 0 on some
clopen containing a and that each open neighborhood of a contains a disk dIE(a, r−), which
is clopen.

Corollary 2.3.a: Let U be an ultrafilter on IE and let P be a prime ideal included in
I(U , S). Let L ∈ U be clopen and let H = IE \L. Then the characteristic function u of H
belongs to P.

Theorem 2.4: Let M be a maximal ideal of S. The uniform closure of JM is equal to
M.

Proof: Let f ∈M = I(U , S). Then for every ε > 0 the set L = D(f, ε) belongs to U and
L is clopen. Therefore L belongs toOM and the characteristic function u of IE\L lies in CM,
so that fu ∈ JM. But f(x)− uf(x) = 0 ∀x /∈ L and |f(x)− uf(x)| = |f(x)| ≤ ε ∀x ∈ L,
so ‖f − uf‖0 ≤ ε. Hence M is the uniform closure of JM since, by Proposition 1.16, M
is uniformly closed.

Corollary 2.4.a: Let P be a prime ideal contained in a maximal ideal M. Then M is
the uniform closure of P.

Corollary 2.4.b: The uniform closure of a prime ideal of S is a maximal ideal of S and
a prime ideal of S is contained in a unique maximal ideal of S.

Corollary 2.4.c: A prime ideal of S is a maximal ideal if and only if it is uniformly
closed.

Using property 4 of theorem 2.3 we get Corollary 2.4.d:
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Corollary 2.4.d: The uniform closure of I ′(a, S) is I(a, S).

Corollary 2.4.e: Let M be a maximal ideal of S. If S is admissible then:
1) M is the spectral closure of JM and the spectral closure of any prime ideal contained
in M;
2) a prime ideal is maximal if and only if it is spectrally closed.

3 Maximal ideals of finite codimension

The main results of this paragraph were allready obtained in [5]. We recall them with
all proofs in order to make easy the conclusions of this article.

Notation: Let IL be a finite algebraic extension of IK provided with the absolute value
which extends that of IK and let t = [IL : IK]. Let Ae be equal to the IL-algebra of the
bounded continuous functions of IE into IL and Â = IL⊗IKA. Since IL is of finite dimension
over IK, one obtains an immediate identification of Ae with Â

The following Theorem 3.2 holds on all complete valued fields and is proven in [6]
(Lemma 7.2). First we must state Lemma 3.1.

Lemma 3.1: Let IL be of the form IL = IK[a]. Let f ∈ Ae. Then f is of the form
t−1∑
j=0

ajfj , j = 0, ..., t− 1, with fj ∈ A.

Theorem 3.2: Let T = A. Suppose there exists a morphism of IK-algebra, χ from T
onto IL. Then χ has continuation to a surjective morphism of IL-algebra χ̂ from T̂ to IL.

Proof: Suppose first that IL is of the form IK[a]. Let f, g ∈ T̂ . Then by Lemma 3.1, f

is of the form
t−1∑
j=0

ajfj , j = 0, ..., t− 1 and g is of the form
t−1∑
j=0

ajgj , j = 0, ..., t− 1, where

the fj and the gj are functions from IE to IK.

We can now define χ̂ on T̂ as χ̂(f) =
t−1∑
j=0

ajχ(fj). Then obviously, χ̂ is IK-linear. On

the other hand, for each q ∈ IN, aq is of the form Pq(a) where Pq ∈ IK[x], deg(Pq) ≤ t− 1.
Then χ̂(aq) = χ̂(Pq(a)) = Pq(χ̂(a)) = Pq(a) = aq. Next,

χ̂(fg) = χ̂
(

(
t−1∑
j=0

ajfj)(
t−1∑
j=0

ajgj)
)

= χ̂
( ∑

0≤m≤t−1
0≤n≤t−1

am+nfmgn

)

=
∑

0≤m≤t−1
0≤n≤t−1

am+nχ(fm)χ(gn) = (
t−1∑
j=0

ajχ(fj))(
t−1∑
j=0

ajχ(gj)) = χ(f)χ(g).

11



Thus, the extension of χ is proved whenever IL is of the form IK[a]. It is then immediate
to check that χ̂ is surjective: since T̂ is a IL-algebra, it contains the field IL and every
morphism χ̂ from T̂ obviously satisfies χ̂(c) = c ∀c ∈ IL.

Consider now the general case. We can obviously write IL in the form IK[b1, ..., bq].
Writing ILj for the extension IK[b1, ..., bj ] we have ILj = ILj−1[bj ].

By induction on j, using the preceding just proved result, we get that for each j =
1, ..., q, χ has continuation to a surjective morphism of ILj-algebra, χ̂j , from ILj ⊗ T onto
ILj . Taking j = q ends the proof.

We are now able to prove that maximal ideals of finite codimension of S are of codi-
mension 1 in two cases: when S = A and when the field IK is perfect.

Theorem 3.3: Every maximal ideal M of finite codimension of A is of codimension 1.

Proof: Let S = A, let IL be the field
S

M
and let S′ be the IL-algebra of bounded

continuous functions from IE to IL. Then S′ is semi-admissible. Now, let χ be the IK-
algebra morphism from S onto IL whose kernel is M. Let g ∈ S and let b = χ(g) ∈ IL.
By Theorem 3.2 χ admits an extension to a morphism χ̂ from S′ to IL. Now, since S′

is semi-admissible and since the kernel of χ̂ is a maximal ideal M̂ of S′, there exists an
ultrafilter U on IE such that M̂ = I(U , S′). Then we have χ̂(g−b) = 0, hence g−b belongs
to M̂, therefore lim

U
g(x)− b = 0 i.e. lim

U
g(x) = b. But since g ∈ S, g(x) belongs to IK

for all x ∈ IE. Therefore, since IK is complete, b belongs to IK. But by definition χ is a
surjection from S onto IL, hence every value b of IL is the image of some f ∈ S and hence
it lies in IK, therefore IL = IK.

Theorem 3.3 can be generalized to all semi-admissible algebras provided IK is a perfect
field [5].

Henceforth, for the rest of this Paragraph 3, the field IK is supposed to be
perfect.

Proposition 3.4: Let IL = IK[a] be a finite extension of IK of degree t, provided with the
unique absolute value extending that of IK and let a2, ..., at be the conjugates of a over IK,
with a1 = a. Let Ŝ = IL⊗IK S and let g =

∑t−1
j=0 a

jfj , fj ∈ S be such that infIE |g(x)| > 0.

For every k = 1, ..., t, let gk =
∑t−1
j=0 a

j
kfj , fj ∈ S. Then

t∏
k=1

gk belongs to S and
t∏

k=2

gk

belongs to Ŝ.

Proof: Since IL = IK[a1] and since IK is perfect, the extension N = IK[a1, ........, , at] is
of the form

N = IK[a1][a2, ........, at] = IL[a2, ........., at]

and N is a normal extension of IK and of IL respectively.
Thus, assuming that a1, ........., as belong to IL, we have IL = IK[a1, ........, as] and

N = IK[a1....., as, as+1, ......., at] = IK[a1, ........, as][as+1, ......., at] = IL[as+1, ......, at].
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Let G be the Gallois group of N over IK and put G′ = {σ ∈ G : σ(x) = x, ∀x ∈ IL}
where the extension N over IL is Galoisian, whose Galois group G(N |IL)= is G′. The sub-
field IL of N then corresponds to the subgroup G′ of G through the Galois correspondance.

Now, given σ ∈ G, set σ(g) =
t−1∑
j=0

(σ(a))jfj . Let F =
t∏

k=1

gk =
∏
σ∈G

σ(g). Then F

belongs to S if and only if for every τ ∈ G, τ(F ) = F . Now, we have

τ(F ) =
∏
σ∈G

τ ◦ σ(g) =
∏
ζ∈G

ζ(g) = F,

therefore F belongs to S.
On the other hand the roots ai, for s+ 1 ≤ i ≤ t, are conjugate over IL. Therefore if

s+ 1 ≤ i ≤ t, there exists θ ∈ G′ such that ai = θ(as+1). It follows that gi =
∑t−1
j=0 a

j
ifj =∑t−1

j=0 θ(as+1)jfj = θ(
∑t−1
j=0 a

j
s+1fj) = θ(gs+1)

Let H =
t∏

i=s+1

gi =
∏
θ∈G′

θ(gs+1). Then H belongs to Ŝ if and only if τ(H) = H ∀τ ∈

G′. Now, we have τ(H) =
∏
θ∈G′ τ ◦ θ(gs+1) =

∏
ζ∈G′ ζ(gs+1) = H, therefore H belongs

to Ŝ. Consequently, since
∏s
i=2 gi belongs to Ŝ, one gets that (

∏s
i=2 gi) ·H =

∏t
i=2 gi is

an element of Ŝ.

We can now establish the following Proposition 3.5:

Proposition 3.5: Let IL = IK[a] be a finite extension of IK of degree t, provided with
the unique absolute value extending that of IK and let a2, ..., at be the conjugates of a over
IK, with a1 = a. Let Ŝ = IL ⊗IK S and let g ∈ Ŝ be such that infIE |g(x)| > 0. Then g is
invertible in Ŝ.

Proof: Let g =
∑t
j=0 a

jfj , fj ∈ S and for every k = 1, ..., t, let gk =
∑t
j=0 a

j
kfj , fj ∈ S.

Then, by Proposition 3.4,
t∏

k=1

gk belongs to S and in the same way,
t∏

k=2

gk belongs to Ŝ.

Now, since infIE |g(x)| is a number m > 0, we have |
t∏

k=1

gk| ≥ mt because in IL, we have

|gk(x)| = |g1(x)| ∀k = 1, 2, ..., t, ∀x ∈ IE. Consequently,
t∏

k=1

gk is invertible in S. Thus,

there exists f ∈ S such that
t∏

k=1

gk.f = 1. But since, by Proposition 3.4,
t∏

k=2

gk belongs to

Ŝ, one sees that
t∏

k=2

gk.f is an element of Ŝ. Hence g = g1 is invertible in Ŝ with inverse

g−1 =
t∏

k=2

gk.f
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Definition and notation: In the following Proposition 3.7 and in the theorems we
will have to consider the tensor product norm. We remind here some general facts (for
completeness one can see [19]). Let IL be a complete valued field extension of IK and A be
a unital, ultrametric IK-Banach algebra. Given z ∈ IL⊗IK A, we put

‖z‖⊗ = inf{max
i∈I
|bi|.‖xi‖ |

∑
i∈I

bi ⊗IK xi = z, Ifinite}.

This norm ‖ . ‖⊗ will be called the (projective) tensor product norm. It is an ultrametric
norm.

In any unital IK-algebra B, let 1B be the unity of B. Then for b ∈ IL and x ∈ B, one
has ‖b⊗x‖⊗ = |b|.‖x‖. In particular for any b ∈ IL, (resp. x ∈ B), one has ‖b⊗1B‖⊗ = |b|
(resp. ‖1IK ⊗ x‖⊗ = ‖x‖.) Hence one has an isometric identification of IL (resp. B) with
IL⊗IK 1B (resp. 1IL ⊗IK B).

Furthermore, one verifies that with the tensor norm, the tensor product IL ⊗IK B,
of the two unital IK-algebras IL and B is a normed unital IK-algebra. It is also a unital
IL-algebra (obtained by extension of scalars). The completion IL⊗̂IKB of IL ⊗IK B with
respect to the tensor product norm ‖ . ‖⊗ (called the topological tensor product) is a
unital IK-Banach algebra as well as a IL-Banach algebra.

Now assume that IL is of finite dimension d over IK. Fix a IK-basis (ej)1≤j≤d of IL.

It is readily seen that any z ∈ IL⊗IK B can be written in the unique form z =
d∑
j=1

ej ⊗ yj

and ‖z‖⊗ = ‖
d∑
j=1

ej ⊗ yj‖⊗ ≤ max
1≤j≤d

|ej |.‖yj‖.

On the other hand, given b =
d∑
j=1

βjej ∈ IL, let us consider the norm ‖b‖1 =

max
1≤j≤d

|βj |.|ej |. One has |b| ≤ ‖b‖1 and since IL is finite dimensional, there exists α > 0

such that α max
1≤j≤d

|βj |.|ej | ≤ |b| ≤ max
1≤j≤d

|βj |.|ej |. Considering the dual basis (e′j)1≤j≤d of

(ej)1≤j≤d and the continuous linear operators e′j ⊗ idB of IL⊗IK B into IK⊗IK B = B, one
proves that α max

1≤j≤d
|ej |.‖yj‖ ≤ ‖z‖⊗ ≤ max

1≤j≤d
|ej |.‖yj‖ = ‖z‖1.

This means that the norms ‖ . ‖⊗ and ‖ . ‖1 of IL⊗IKB are equivalent. One immediately
sees that IL⊗IKB equiped with the norm ‖z‖1 = max

1≤j≤d
|ej |‖yj‖ is isomorphic to the product

IK-Banach space Bd and then it is complete. It follows that (IL⊗IK B, ‖ . ‖⊗) is complete
and IL⊗IK B = IL⊗̂IKB.

One then has the following Theorem 3.6 contained in [19] (Chapter 4).

Theorem 3.6: If IL is a finite extension of IK and B is a commutative unital IK-
Banach algebra, then with the tensor product norm ‖ . ‖⊗, the tensor product IL⊗IK B of
the IK-algebras IL and B is a IK-Banach algebra as well as a Banach algebra over IL.

Taking B = S, we can now conclude.
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Proposition 3.7 : Let IL = IK[a] be a finite extension of IK of degree t, provided with
the unique absolute value extending that of IK. Then the algebra Ŝ = IL ⊗IK S provided
with the tensor product norm ‖ ‖⊗, is complete.

Moreover, Ŝ can be identified with the Banach IL-algebra of functions f from IE to IL

of the form f =
t−1∑
j=0

ajfj with fj ∈ S and Ŝ is a semi-admissible IL-algebra.

Proof: By construction, Ŝ is the set of functions f =
t−1∑
j=0

ajfj with fj ∈ S. Since each

fj is continuous, so is f . By Theorem 3.6, Ŝ is a Banach IL-algebra. Next, given a clopen
subset D of IE, the characteristic function u of D exists in S and hence it belongs to
Ŝ. Finally, given an element g ∈ Ŝ such that infx∈IE |g(x)| > 0, by Proposition 3.5, g is
invertible in Ŝ. Therefore, Ŝ is semi-admissible.

Theorem 3.8: Let IL be a finite extension of IK of degree t, provided with the unique
absolute value extending that of IK and let Ŝ = IL⊗IKS be provided with the tensor product
norm. Then Ŝ is a semi-admissible Banach IL-algebra.

Proof: By definition, IL is of the form IK[b1, ..., bq] with IK[b1, ..., bj ] strictly included in
IK[b1, ..., bj+1], j = 1, ..., q − 1. Put ILj = IL[b1, ..., bj ], j = 1, ..., q and Ŝj = ILj ⊗IK S.
Suppose we have proved that Ŝj is semi-admissible for some j < q. Next, since ILj+1 =
ILj [bj+1], by Proposition 3.7, Ŝj+1 is semi-admissible. Therefore, by induction, Ŝq = Ŝ is
a semi-admissible Banach IL-algebra.

Theorem 3.9: Let M be a maximal ideal of finite codimension of S. Then M is of
codimension 1.

Proof: Let IL be the field
S

M
and let Ŝ = IL⊗IK S be provided with the tensor product

norm. By Theorem 3.8, Ŝ is semi-admissible. Now, let χ be the morphism from S onto
IL whose kernel is M. Let g ∈ S and let b = χ(g) ∈ IL. By Theorem 3.5 χ admits an
extension to a morphism χ̂ from Ŝ to IL. But since Ŝ is semi-admissible and since the
kernel of χ̂ is a maximal ideal M̂ of Ŝ, by Theorem 2.1 there exists an ultrafilter U on
IE such that M̂ = I(U , S). Take g ∈ S and let b = χ(g). Then we have χ̂(g − b) = 0,
hence g − b belongs to M̂, therefore lim

U
g(x)− b = 0 i.e. lim

U
g(x) = b. But since g ∈ S,

g(x) belongs to IK for all x ∈ IE. Therefore, since IK is complete, b belongs to IK. But by
definition χ is a surjection from S onto IL, hence every value b of IL actually lies in IK and
hence IL = IK.

4. Multiplicative spectrum
The multiplicative spectrum of a Banach IK-algebra was first introduced by B. Guen-

nebaud [16] and was at the basis of Berkovich’s analytic space theory [2]. It was also much
used in [12], [14], [15].
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Notations and definitions: Let T be a normed IK-algebra. We denote by Mult(T, ‖ . ‖)
the set of continuous multiplicative algebra semi-norms of T provided with the topol-
ogy of pointwise convergence [3], which means that a basic neighborhood of some ψ ∈
Mult(T, ‖ . ‖) is a set of the form W (ψ, f1, ..., fq, ε), with fj ∈ T and ε > 0 and this is
the set of φ ∈Mult(T, ‖ . ‖) such that |ψ(fj)− φ(fj)|∞ ≤ ε ∀j = 1, ..., q. The topological
space Mult(T, ‖ . ‖) is then compact (see [2], or Theorem 6.2 in [10]).

Given φ ∈Mult(T, ‖ . ‖), we call kernel of φ the set of the x ∈ T such that φ(x) = 0
and we denote it by Ker(φ). It is a prime closed ideal of T with respect to the norm ‖ . ‖
[10].

We denote by Multm(T, ‖ . ‖) the set of continuous multiplicative semi-norms of T
whose kernel is a maximal ideal and by Mult1(T, ‖ . ‖) the set of continuous multiplicative
semi-norms of T whose kernel is a maximal ideal of codimension 1. Particularly, considering
the algebra S, we denote by MultIE(S, ‖ . ‖) the set of continuous multiplicative semi-norms
of S whose kernel is a maximal ideal of the form I(a, S), a ∈ IE.

We denote by Υ(T ) the set of IK-algebra homomorphisms from S to IK.

Let us recall that in S, we have ‖ . ‖0 ≤ ‖ . ‖sp and that if S is admissible, then
‖ . ‖0 = ‖ . ‖sp. Theorem 4.1 is classical [10], [11]:

Theorem 4.1: Let T be a unital commutative ultrametric Banach IK-algebra. For each
f ∈ T , ‖f‖sp = sup{φ(f) | φ ∈ Mult(T, ‖ . ‖)}. For every χ ∈ Υ(T ), we have |χ(f)| ≤
‖f‖sp ∀f ∈ T .

More notations: For any ultrafilter U ∈ U(IE) and any f ∈ S, |f(x)| has a limit along
U since f is bounded. Given a ∈ IE we denote by ϕa the mapping from S to IR defined by
ϕa(f) = |f(a)| and for any ultrafilter U ∈ U(IE), we denote by ϕU the mapping from S to
IR defined by ϕU (f) = lim

U
|f(x)| (see Lemma 1.13). These maps belong to Mult(S, ‖ . ‖)

since ‖ . ‖0 ≤ ‖ . ‖sp ≤ ‖ . ‖. Particularly, the elements of MultIE(S, ‖ . ‖) are the
ϕa, a ∈ IE.

Proposition 4.2: Let a ∈ IE. Then I(a, S) is a maximal ideal of S of codimension 1
and ϕa belongs to Mult1(S, ‖ . ‖). Conversely, for every algebra homomorophism χ from
S to IK, its kernel is a maximal ideal of the form I(a, S) with a ∈ IE and χ is defined as
χ(f) = f(a), while ϕa(f) = |χ(f)|.

Theorem 4.3: Let U be an ultrafilter on IE. Then ϕU belongs to the closure of
MultIE(S, ‖ . ‖), with respect to the topology of Mult(S, ‖ . ‖).

Proof: Let ψ = ϕU , take ε > 0 and let f1, ..., fq ∈ S. There exists L ∈ U such that
|ψ(fj) − |fj(x)| |∞ ≤ ε ∀x ∈ L, ∀j = 1, ..., q. Therefore, taking a ∈ L, we have |ϕa(fj) −
ψ(fj)|∞ ≤ ε ∀j = 1, ..., q which shows that ϕa belongs to the neighborhood W of ψ of the
form {φ |ψ(fj)− φ(fj)|∞ ≤ ε ∀j = 1, ..., q} and this proves the claim.

Remark 5: In the field IK, we call monotonous distances sequence a sequence (an)n∈IN

of IE such that the sequence δ(an, an+1)n∈IN is strictly monotonous. We call constant
distances sequence a sequence (an)n∈IN of IE such that δ(an, am) is constant when n, m
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are big enough and n 6= m. According to Remark 3, if IK is locally compact and IE
admits monotonous distances sequences or constant distances sequences, we can define
ϕU ∈Mult1(S, ‖ . ‖) which does not belong to MultIE(S, ‖ . ‖).

Theorem 4.4: For each φ ∈Mult(S, ‖. ‖), Ker(φ) is a prime spectrally closed ideal.

Proof: Let φ ∈Mult(S, ‖. ‖) and let f belong to the spectral closure of Ker(φ). There
exists a sequence (fn)n∈IN of Ker(φ) such that limn→∞ ‖fn − f‖sp = 0. By Theorem 4.1,
since φ(g) ≤ ‖g‖sp ∀g ∈ S, we have lim

n→∞
φ(fn − f) = 0. But φ(fn) = 0 ∀n ∈ IN, hence it

follows that φ(f) = lim
n→+∞

φ(fn − f) = 0 . Therefore, f belongs to Ker(φ), which means

that ˜Ker(φ) = Ker(φ).

By Theorem 4.4 and Corollary 2.4.e, we have the following Corollary 4.4.a:

Corollary 4.4.a: Suppose S is admissible. Then Mult(S, ‖ . ‖) = Multm(S, ‖ . ‖).

Theorem 4.5 is classical (Theorem 6.15 in [10]).

Theorem 4.5: Let T be a commutative unital ultrametric Banach IK-algebra. For every
maximal ideal M of T , there exists φ ∈Multm(S, ‖ . ‖) such that M = Ker(φ).

Recall that a unital commutative Banach IK-algebra is said to be multbijective if every
maximal ideal is the kernel of only one continuous multiplicative semi-norm.

Remark 6: There exist some rare cases of ultrametric Banach algebras that are not
multbijective [8], [9].

Theorem 4.6: Suppose S is admissible. Then S is multbijective. Precisely if ψ ∈
Mult(S, ‖ . ‖) and Ker(ψ) = M then ψ = ϕU for every ultrafilter U such that M =
I(U , S).

Proof: Let ψ ∈ Multm(S, ‖ . ‖), let M = Ker(ψ) and U be an ultrafilter such that
M = I(U , S).

Let f ∈ S. Notice that if f ∈ M then ψ(f) = ϕU (f) = 0. Now we assume that
f /∈M. So ψ(f) and ϕU (f) are both strictly positive. We prove that they are equal.

First let ε > 0 and consider the set L = {x ∈ IE : |f(x)| ≤ ϕU (f)+ε}. This set belongs
to U and by Lemma 1.2, it is clopen. Therefore its characteristic function u lies in S. We
have ϕU (u) = 1. Consequently, we can derive that ψ(u) = 1 because u is idempotent and
does not belong to M. Therefore ψ(uf) = ψ(f) and ϕU (uf) = ϕU (f). By Theorem 4.1,
we have ψ(f) = ψ(uf) ≤ ‖uf‖sp = ‖uf‖0 because S is admissible. But by definition of L
we have: ‖uf‖0 ≤ ϕU (f) + ε. Therefore, ψ(f) ≤ ϕU (f) + ε. This holds for every ε > 0.
Consequently we may conclude that ψ(f) ≤ ϕU (f) for every f ∈ S.

We prove now the inverse inequality. We have ϕU (f) > 0, so consider the setW = {x ∈
IE : |f(x)| ≥ ϕU (f)

2 }. This is a clopen set which belongs to U . Let w be the characteristic
function of W and put g = wf + (1 − w). We have ϕU (w) = 1 and ϕU (1 − w) = 0 so
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w /∈ M and 1 − w ∈ M. Since M = Ker(ψ) we then have ψ(1 − w) = 0 and ψ(w) = 1
because w is idempotent. Finally ψ(g) = ψ(f) and ϕU (g) = ϕU (f).

On the other hand, we can check that |g(x)| ≥ min
(
1, ϕU (f)

2

)
for all x ∈ IE, hence g

is invertible in S. Putting h =
1
g

, using the first inequality yet proved, we have

ψ(f) = ψ(g) =
1

ψ(h)
≥ 1
ϕU (h)

= ϕU (g) = ϕU (f).

That concludes the proof.

Remark 7: Thus, if S is admissible, Mult(S, ‖ . ‖) can be identified to Mult(S, ‖ . ‖0)

Corollary 4.6.a: Suppose S is admissible. For every φ ∈ Mult(S, ‖ . ‖) there exists a
unique H ∈ Y(R)(IE) such that φ(f) = lim

U
|f(x)| ∀f ∈ S, ∀U ∈ H.

Moreover, the mapping Ψ that associates to each φ ∈ Mult(S, ‖ . ‖) the unique H ∈
YR(IE) such that φ(f) = lim

U
|f(x)| ∀f ∈ S, ∀U ∈ H, is a bijection from Mult(S, ‖ . ‖)

onto Y(R)(IE).

Assuming that S is admissible, since by Theorem 4.6 each element φ ∈Mult(S, ‖ . ‖)
is of the form ϕU , Corollary 4.6.b is immediate from theorem 4.3:

Corollary 4.6.b: If S is admissible, then MultIE(S, ‖ . ‖) is dense in Mult(S, ‖ . ‖).

Theorem 4.7: The topological space IE, provided with its distance δ, is homeomorphic
to MultIE(S, ‖ . ‖) provided with the restricted topology from that of Mult(S, ‖ . ‖) .

Proof: For every a ∈ IE, put Λ(a) = ϕa, take f1, ..., fq ∈ S and ε > 0. We set
W ′(ϕa, f1, ..., fq, ε) = W (ϕa, f1, ..., fq, ε)∩MultIE(S, ‖ . ‖). Considering the natural topol-
ogy on IE, the filter of neighborhoods of a admits for basis the family of disks dIE(a, r−), r >
0. We will show that it is induced through the mapping Λ by the filter admitting for ba-
sis the family of neighborhoods of ϕa in Mult(S, ‖ . ‖). Indeed, take r ∈]0, 1[ and let u
be the characteristic function of dIE(a, r−). Then W ′(ϕa, u, r) is the set of ϕb such that

|ϕa(u) − ϕb(u)|∞ <
1
2

, i.e. the Λ(b) such that b ∈ dIE(a, r−). Therefore the topology

induced on IE by Mult(S, ‖ . ‖) is thinner than its metric topology.
Conversely, take some neighborhood W ′(ϕa, f1, ..., fq, ε) of ϕa in MultIE(S, ‖ . ‖). For

each j = 1, ..., q, the set of the x ∈ IE such that |ϕx(fj)− ϕa(fj)|∞ ≤ ε is the set of the x

such that
∣∣∣|fj(x)| − |fj(a)|

∣∣∣
∞
≤ ε. But now, since each fj is continuous, the set of the x

such that
∣∣∣|fj(x)| − |fj(a)|

∣∣∣
∞
≤ ε ∀j = 1, ..., q is a neighborhood of a in IE. Consequently,

the metric topology of IE is thinner than the topolgy induced by MultIE(S, ‖ . ‖) and that
finishes proving that the two topological spaces are homeomorphic.

Corollary 4.7.a: Mult(S, ‖ . ‖) is a compactification of the topological space IE.
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Theorem 4.8: Let φ = ϕU ∈ Multm(S, ‖ . ‖), with U an ultrafilter on IE, let Γ be the

field
S

Ker(φ)
and let θ be the canonical surjection from S onto Γ. Then, the mapping ‖ . ‖′

defined on Γ by ‖θ(f)‖′ = φ(f) ∀f ∈ S, is the quotient norm ‖ . ‖′ of ‖ . ‖0 defined on Γ
and is an absolute value on Γ. Moreover, if Ker(φ) is of codimension 1, then this absolute
value is the one defined on IK and coincides with the quotient norm of the norm ‖ . ‖ of
S.

Proof: Let M = Ker(ϕU ). Let t ∈ Γ and let f ∈ S be such that θ(f) = t. So,
‖t‖′ ≥ lim

U
|f(s)|. Conversely, take ε > 0 and let V = {x ∈ IE : |f(x)| ≤ lim

U
|f(s)|+ ε}.

By Lemma 1.2, the set V is clopen and belongs to U . The characteristic function u of
IE \ V belongs to M and so does uf . But by construction, (f − uf)(x) = 0 ∀x ∈ IE \ V
and (f − uf)(x) = f(x) ∀x ∈ V . Consequently, ‖f − uf‖0 ≤ lim

U
|f(s)|+ ε and therefore

‖t‖′ ≤ ‖f − uf‖0 ≤ lim
U
|f(s)|+ ε. This finishes proving the equality ‖θ(f)‖′ = lim

U
|f(s)|

and hence the mapping defined by |θ(f)| = φ(f), f ∈ S is the quotient norm ‖ . ‖′ of
‖ . ‖0. Then it is multiplicative, hence it is an absolute value on Γ.

Now, suppose thatM is of codimension 1. Then Γ is isomorphic to IK and its absolute
value ‖ . ‖′ is continuous with respect to the topology of IK, hence it is equal to the absolute
value of IK. Finally consider the quotient norm ‖ . ‖q of the norm ‖ . ‖ of S: that quotient
norm of course bounds the quotient norm ‖ . ‖′ which is the absolute value of IK. If f ∈ S
and b = θ(f), we have f − b ∈ M and ‖θ(f)‖q ≤ ‖b‖ = |b| = |θ(f)| = ‖θ(f)‖′, which ends
the proof.

Corollary 4.8.a: Suppose that S is admissible. Let φ ∈Mult(S, ‖ . ‖), let Γ be the field
S

Ker(φ)
and let θ be the canonical surjection from S onto Γ. Then, the mapping defined

on Γ by |θ(f)| = φ(f),∀f ∈ S is the quotient norm ‖ . ‖′ of ‖ . ‖0 on Γ and is an absolute
value on Γ. Moreover, if Ker(φ) is of codimension 1, then this absolute value is the one
defined on IK and coincides with the quotient norm of the norm ‖ . ‖ of S.

Remark 9: It is not clear whether an algebra S admits a prime closed ideal P (with
respect to the norm ‖ . ‖) which is not a maximal ideal. If it admits such a prime closed
ideal, then it is not the kernel of a continuous multiplicative semi-norm. In such a case,
the quotient algebra by P has no continuous absolute value extending that of IK, although
it has no divisors of zero. Such a situation can happen in certain Banach algebras [4].

Definition and notation: Given a IK-normed algebra G, we call Shilov boundary of G
a closed subset F of Mult(G, ‖ . ‖) that is minimum with respect to inclusion, such that,
for every x ∈ G, there exists φ ∈ F such that φ(x) = ‖x‖sp [12], [13].

Let us recall the following Theorem 4.9 given in [10] and [12]:

Theorem 4.9: Every normed IK-algebra admits a Shilov boundary.

Notation: Given a normed IK-algebra G, we denote by Shil(G) the Shilov boundary of
G.
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Lemma 4.10: Let us fix a ∈ IE. For every r > 0, let Z(a, r) be the set of multiplicative
semi-norms ϕU , with U ∈ U(IE), such that dIE(a, r) belongs to U . The family {Z(a, r) |r ∈
]0, 1[} forms a basis of the filter of neighborhoods of ϕa.

Proof: Let W (ϕa, f1, ..., fq, ε) be a neighborhood of ϕa in Mult(S, ‖ . ‖). There exists
r > 0 such that, whenever δ(a, x) ≤ r we have |fj(x)−fj(a)| ≤ ε ∀j = 1, ..., q and therefore,
clearly, |ϕU (fj) − ϕa(fj)|∞ ≤ ε ∀j = 1, ...q for every U containing dIE(a, r). Thus Z(a, r)
is included in W (ϕa, f1, ..., fq, ε).

Conversely, consider a set Z(a, r) with r ∈]0, 1[, let u be the characteristic function of
dIE(a, r) and considerW (ϕa, u, r). Given ψ = ϕU ∈W (ϕa, u, r), we have |ψ(u)−ϕa(u)|∞ ≤
r. But |ψ(u) − ϕa(u)|∞ = |ψ(u) − 1|∞ = |lim

U
|u(x)| − 1|∞. If dIE(a, r) belongs to U ,

then lim
U
|u(x)| = 1 and therefore |lim

U
|u(x)| − 1|∞ = 0. But if dIE(a, r) does not belong

to U , then lim
U
|u(x)| = 0 and therefore |lim

U
|u(x)| − 1|∞ = 1. Consequently, since r < 1,

W (ϕa, u, r) is included in Z(a, r), which finishes proving that the family of Z(a, r), r ∈]0, 1[
is a basis of the filter of neighborhoods of ϕa.

Theorem 4.11: Suppose S is admissible. The Shilov boundary of S is equal to
Mult(S, ‖ . ‖).

Proof: We will show that for every a ∈ IE, ϕa belongs to Shil(S). So, let us fix a ∈ IE
and suppose that ϕa does not belong to Shil(S). Since Shil(S) is a closed subset of
Mult(S, ‖ . ‖), there exists a neighborhood of ϕa that contains no element of Shil(S).
Therefore, by Lemma 4.10, there exists s > 0 such that Z(a, s) contains no element of
Shil(S). Now, let D = dIE(a, s) and let u be the characteristic function of D. Since any
φ ∈Mult(S, ‖ . ‖) satisfies either φ(u) = 1 or φ(u) = 0, there exists θ ∈ Shil(S) such that
θ(u) = ‖u‖sp = 1. Then, θ is of the form ϕU , with U ∈ U(IE) and U does not contain
D. But since u(x) = 0 ∀x ∈ IE \D, we have θ(u) = 0, a contradiction. Consequently, for
every a ∈ IE, ϕa belongs to Shil(S) which is a closed subset of Mult(S, ‖ . ‖) and since,
by Corollary 4.6.b, MultIE(S, ‖ . ‖) is dense in Mult(S, ‖ . ‖), then Shil(S) is equal to
Mult(S, ‖ . ‖).

5. The Stone space of IB(IE).

It was proved in [14] that for the algebra A of continuous bounded functions from IE
to IK, the Banaschewski compactification of IE is homeomorphic to Mult(A, ‖ . ‖0). Here
we get the same result for admissible algebras.

We denote by IB(IE) the Boolean ring of clopen subsets of IE provided with the laws
∆ for the addition and ∩ for the multiplication. As usually called the Stone space of the
Boolean ring IB(IE) is the space Σ(IE) of non-zero ring homomorphisms from IB(IE) onto
IF2, provided with the topology of pointwise convergence. This space is a compactification
of IE and is called the Banaschewski compactification of IE (see for example [19] for further
details).
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For every U ∈ U(IE), we denote by ζU the ring homomorphism from IB(IE) onto IF2

defined by ζU (O) = 1 for every O ∈ IB(IE) that belongs to U and ζU (O) = 0 for every
O ∈ IB(IE) that does not belong to U .

Particularly, given a ∈ IE, we denote by ζa the ring homomorphism from IB(IE) onto
IF2 defined by ζa(O) = 1 for every O ∈ IB(IE) that contains a and ζa(O) = 0 for every
O ∈ IB(IE) that does not contain a.

Throughout Paragraph 5, we suppose that S is an admissible algebra.

Remark 10: Let Σ′(IE) be the set of ζa, a ∈ IE. The mapping that associates ζa ∈ IE
to a ∈ IE defines a surjective mapping from IE onto Σ′(IE). That mapping is also injective
because given a, b ∈ IE, there exists a clopen subset F such that a ∈ F and b /∈ F .

By Corollary 4.6.a, we have a bijection Ψ from Mult(S, ‖ . ‖) onto Y(R)(IE) associating
to each φ ∈Mult(S, ‖ . ‖) the uniqueH ∈ Y(R)(IE) such that φ(f) = lim

U
|f(x)|, U ∈ H, f ∈

S, i.e. φ = ϕU for every U ∈ H.
On the other hand, let us take some H ∈ Y(R)(IE) and ultrafilters U , V in H. Since

U ,V own the same clopen subsets of IE, we have ζU = ζV and hence we can define a mapping
Ξ from YR(IE) into Σ(E) which associates to each H ∈ YR(IE) the boolean homomorphism
ζU independant from U ∈ H

Lemma 5.1: Ξ is a bijection from YR(IE) onto Σ(IE).

Proof: Indeed, let H,K ∈ Y(R)(IE) and suppose that H 6= K. Take ultrafilters U ∈ H
and V ∈ K. They are not sticked, therefore by Theorem 1.12, there exists clopens L ∈
H, M ∈ K such that H ∩K = ∅. Then, Ξ(H) 6= Ξ(K), which proves the injectivity.

Now, let us check that Ξ is surjective. Let θ ∈ Σ(IE). Since θ is a ring homomorphism
for the Boolean laws, the family of clopen sets X satisfying θ(X) = 1 generates a filter F .
Let U ∈ U(IE) be thinner than F and let H be the class of U with respect to (R). We
will check that θ = Ξ(H) = ζU . Let O be a clopen subset that belongs to U . Then IE \O
does not belong to U and therefore it does not belong to F , so θ(IE \O) = 0, consequently
θ(O) = 1. And now, let O be a clopen subset that does not belong to U . Then O does not
belong to F , hence θ(O) = 0, which ends the proof.

We put Φ = Ξ ◦Ψ and hence Φ is a bijection from Mult(S, ‖ . ‖) onto Σ(IE). Notice
that for every ultrafilter U , Ψ(ϕU ) is the class H of U with respect to (R) and Ξ(H) = ζU
so Φ(ϕU ) = ζU .

Theorem 5.2: Φ is a homeomorphism once Σ(IE) and Mult(S, ‖ . ‖) are provided with
topologies of pointwise convergence.

Proof: Recall that for any U ∈ U(IE), a neighborhoods basis of ϕU in Mult(S, ‖ . ‖) is
given by the family of sets of the form W (ϕU , f1, ..., fq, ε) with f1, ..., fq ∈ S, ε > 0 and

W (ϕU , f1, ..., fq, ε) = {ϕV |
∣∣∣ lim
U
|fj(x)| − lim

V
|fj(x)|

∣∣∣
∞
≤ ε, j = 1, ..., q }.
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On the other hand, for any U ∈ U(IE), a neighborhood basis for ζU in Σ(IE) is given by
the family of sets V (ζU , O1, ..., Oq) where O1, ..., Oq belong to IB(E) and

V (ζU , O1, ..., Oq) = {ζV | ζU (Oj) = ζV(Oj), j = 1, ..., q}.

Notice also that if F belongs to IB(IE) and if u is its characteristic function, then for
any U ∈ U(IE), we have ζU (F ) = 1 if and only if F ∈ U , i.e. if and only if lim

U
|u(x)| = 1.

Otherwise, both ζU (F ) and lim
U
|u(x)| are equal to 0. Therefore, the relation

∣∣∣ lim
U
|u(x)| − lim

V
|u(x)|

∣∣∣
∞
≤ 1

2

holds if and only if ζU (F ) = ζV(F ). Recall that for every U ∈ U(IE) we have Φ(ϕU ) = ζU .
We will show that Φ is continuous. Consider O1, ..., Oq ∈ IB(IE), U ∈ U(IE) and

the neighborhood V (ζU , O1, ..., Oq) of ζU . From the preceding remark, ζV belongs to
V (ζU , O1, ..., Oq) if and only if for every j = 1, ..., q, ζU (Oj) = ζV(Oj), i.e. if for every
j = 1, ..., q, ∣∣∣ lim

U
|uj(x)| − lim

V
|uj(x)|

∣∣∣
∞
≤ 1

2

i.e. if ϕV belongs to W (ϕU , u1, ..., uq,
1
2

). Consequently, this proves that Φ is continuous.
We can now deduce that Φ is a homeomorphism because it is a continuous bijection between
compact spaces (Corollaire 2 of Theoreme 2 in [3]).

Corollary 5.2.a: The space Σ(IE) is a compactification of IE which is equivalent to the
compactification Mult(S, ‖ . ‖).

Remark 11: For an admissible algebra S, the Banaschewski compactification Σ(IE)
coincides with the Guennebaud-Berkovich multiplicative spectrum.
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