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A survey and new results
on Banach algebras of ultrametric continuous functions
by Monique Chicourrat, Bertin Diarra and Alain Escassut

Abstract Let IK be an ultrametric complete valued field and IE be an ultrametric space.
We examine some Banach algebras S of bounded continuous functions from IE to IK with
the use of ultrafilters, particularly the relation of stickness. We recall and deepen results
obtained in a previous paper by N. Mainetti and the third author concerning the whole
algebra A of all bounded continuous functions from IE to IK. We show that every maximal
ideal of finite codimension of A is of codimension 1. Moreover, that property holds for
every algebra S, provided IK is perfect. If S admits the uniform norm on IE as its spec-
tral norm, then every maximal ideal is the kernel of only one multiplicative semi-norm,
the Shilov boundary is equal to the whole multiplicative spectrum and the Banaschewski
compactifiaction of IE is homeomorphic to the multiplicative spectrum of S.

1. Introduction and basic results in topology

Let IK be an ultrametric complete valued field and IE be an ultrametric space. It is well
known that the set of maximal ideals of a Banach IK-algebra is not sufficient to describe its
spectral properties: we have to consider the set of continuous multiplicative semi-norms
often called the multiplicative spectrum [2], [8], [11], [12], [14], [16]. In this paper, we
generalize some of the results obtained in [15] to some Banach algebras of continuous
bounded functions that we call semi-admissible algebras which concern maximal ideals,
multiplicative spectrum, Shilov boundary and the Stone space of the Boolean ring of the
clopen subsets of IE. The relation of stickness on ultrafilters, already considered in [14],
here plays an important role.

Notations and definitions: Let IK be a complete valued field with respect to an ultra-
metric absolute value | . | and let IE denote a metric space whose distance § is ultrametric.
Given a € IE and r > 0, we denote by dg(a,r) the open ball {x € IE | §(a,z) < r} and
particularly in IK we denote by d(a,r~) the open disk {z € IK | |z — a|] < r}. In the same
way, in IE, we denote by dg(a,r) the closed ball {x € IE | §(a,z) < r} and we denote by
d(a,r) the closed disk {x € K | |x — a] < r}. Moreover, in IK, we denote by C(a,r) the
set {r e K| |x—a|l="1}.

We denote by | . | the Archimedean absolute value of IR.
Given a subset H of IE, we denote by H the closure of H in IE and the function u

defined on IE by u(z) = 1 if z € H and u(x) = 0 otherwise is called the characteristic
function of H.

We will denote by IB(IE) the Boolean ring of clopen subsets of IE with respect to the
two classical laws A and N.



Let us recall this obvious lemma:

Lemma 1.1: Let F be a subset of IE and let u be its characteristic function. Then u is
continuous if and only if F' is clopen.

The following lemma is also clear since each ball of IK is clopen.

Lemma 1.2: Let f be a continuous function from IE to IK and let M > 0. Given M > 0,
the sets By ={x € IE |f(x)| > M} and Ey ={x € E |f(z)| < M} are clopen.

Corollary 1.2.a: Let f be a continuous function from It to IK, let M > 0 and let h > 0.
Then {z € IE | ‘]f(x)| — M’ < h} is clopen.

Given a normed IK-algebra whose norm is || . ||, we denote by || . ||sp the spectral
1
semi-norm that is associated and defined as || f||sp, = lirf (Hf"H) "
n—-roo

The Banach IK-algebra A of all bounded continuous functions from IE to IK is provided
with the norm || . ||p that we will call the uniform norm and which is defined as ||f||o =

sup{[f(z)| | = € IE}.

Recall the following:

Proposition 1.3: Let T be a commutative unital Banach IK-algebra of bounded continu-
ous functions defined from IE to IK. Then || fllo < ||fllsp < ||fl] Yf € T. Moreover, given
f €T satisfying || fllsp < 1, then lirf || = 0.

Proof: The norm || . ||p is power multiplicative and classically it is bounded by the norm
| . || of T, it is then bounded by || . ||sp. The last claim is immediate.

Definition. Let S be a IK-subalgebra of A. We say that (S, || .|) is semi-admissible if it
is a Banach algebra satisfying the following two properties:

1) For every O € IB(IE), the characteristic function of O belongs to S.

2) For every f € S such that inf{|f(z)| |z € IE} > 0, f is invertible in S.
Moreover the semi-admissible algebra S will be called admissible if || f|lo = || fl|sp Vf € S.

Given a subset X of S, we call spectral closure of X denoted by X the closure of X
with respect to the semi-norm || . ||s, and X will be said to be spectrally closed if X = X.
Moreover, X will be said to be uniformly closed if it is closed with respect to the uniform
norm and we call uniform closure of X the closure of X with respect to the semi-norm

I tlo-

Throughout the paper the algebra S will be supposed to be semi-admissible.

1
Let f € A be such that inf{ |f(x)| | z € IE} > 0, it is clear that 7 belongs to A.

On the other hand, A is complete with respect to the uniform norm, then we have the
following statement:



Proposition 1.4: The Banach IK-algebra A is admissible.

The following theorem 1.6 shows another example of admissible algebra which is a bit

less immediate. In Theorem 1.8, we can see that in various cases, this algebra is strictly
included in A.

Lemma 1.5. Let (O;)i=1,..n be a finite cover of IE with clopen sets. Then there exists
a finite cover (Bj);j=1,..p of IE where the sets B; are not empty, clopen, pairwise disjoint
and such that every B; is contained in some O;.

Proof. To the system (O;)i=1,... n, associate the system (O;);=1,... 2, where O] = 0, if 1 <
i <n and O, = X\O,_,, otherwise. For every z € IE define I, = {i € {1,...n} : 2z € O}}
and consider the following equivalence relation on IE: z(R)y if and only if I, = I,,. For
any x € IE the equivalence class of z is equal to N;er, O) and it is clopen since so are the
O}. Then the equivalence classes (Bj),;=1.... , satisfy the expected properties.

Theorem 1.6. Let T be the IK-subalgebra of A generated by the characteristic functions
of all clopen sets of IE and let G be its closure in A (for the uniform convergence || . ||o on

IE). Then G is admissible.
Proof. One just has to prove Property 2) in the definition of a semi-admissible algebra.
1
First we check that if g € 7 is such that inf{|g(z)| : © € IE} = m > 0 then — € 7.
g

Since g € 7T there exists a finite cover (0;);=1,..n of IE with clopen sets and scalars
n

(Ai)1<i<n in IK such that g = Z Aiu; where u; is the characteristic function of the clopen
i=1

O;. Using the preceding lemma we get a finite cover (Bj);=1,. , of IE where the sets

B; are not empty, clopen, pairwise disjoint and such that every B; is contained in some

P

O;. Then there exist scalars (3;)1<;j<p in IK such that g = Zﬁjej where e; is the
=1

characteristic function of the clopen B;. For every j we get |3;| > m > 0, then it is clear

I 1
that — = Z—ej and — € 7.

Now consider any f € G such that inf{|f(z)|: x € IE} = m > 0. For every € > 0 such
that € < - we have em? < m and we can consider some g € 7 such that [|f — g0 < em?.
Since em? < m, we get |f(x)| = |g(z)] for every z € IE and then inf{|g(z)| : x € IE} = m.

1 L _ @) —g@)] _ [If = gllo

1
Next — € 7 and we have for every x € IE: — <e

g , fl@) gl |flz)g(x)] = m2  ~
This proves that ? € G, which ends the proof.

The following proposition is Example 3E, chap.3 in [19].

Proposition 1.7:  The algebra G is the IK-algebra of the continuous functions from IE to
K such that the closure of f(IE) in IK is compact. In particular when IK is locally compact
or IE is compact then G = A.



In order to prove Theorem 1.9, we must recall the following classical proposition:

Proposition 1.8 : The field IK is locally compact if and only if its valuation group is
discrete and its residue class field is finite. [1], (Proposition 2.3.3) .

Theorem 1.9: Suppose that IE contains a sequence (an)new Such that
inf,, 2 (6(an, am)) > 0 and that IK is not locally compact. Then G is strictly included in
A.

Proof: We put s = inf,, 4, (6(an, ayn,)). Suppose first that the valuation group of IK is
dense. We can consider a partition of IE by an infinite family of balls dg(b;, s™).

Suppose first that the valuation group of IK is dense. Then we can define a bounded
mapping ¢ from IE into IK such that ¢ (z) is constant in each ball d(b;, s™), such that
|(an) —(am)| > 1 and such that |¢(x)| > 1 Va € IE. Particularly, |¢(z)| takes infinitely
many values. Suppose that 7 is dense in A. Following the same process as in the proof of
Theorem 1.6 above, we can construct a function g € 7 such that |¢(x)| = |g(z)| = A\, Vz €
IE. But |[¢)(x)| then only takes finitely many values, a contradiction.

Similarly, suppose now that the residue class field of IK is infinite. Let us consider a
sequence of distinct disks (d(pn,17))nen in the unit circle and and put B,, = d(up,17).
Now, consider a sequence of balls dg(a,,s™) in IE and an element f of A constant in
di(an, s) and such that f(a,) belongs to B,,. Suppose that f is in the closure of 7. Then
there exists g € 7 such that |f(z) — g(x)| < 1 for any € IE. In particular, we get that
g(an) € B, for every n. Thus, g should take infinitely many values, a contradiction.

Definition: Recall that an element = of a normed IK-algebra A is called a topological

divisor of zero if inf zy|| = 0.
/ yeaTh sy 29l

Theorem 1.10: Suppose that IE has no isolated points. Let T be an admissible Banach
K-algebra complete with respect to the norm || . ||o. An element of T is a topological divisor
of zero if and only if it is not invertible.

Proof: It is obvious that an invertible element of T is not a topological divisor of zero.
Now, consider an element f € T that is not invertible. Then inIfE |f(z)] = 0. Therefore,
Te

there exists a sequence of disks (dg(an,7))nenw with lim 7, =0, such that |f(z)| <
n—oo
1

—, Va € dg(an,r,), Yn € IN*. For each n € IN, let h,, be the characteristic function of
n
di(an, ). Then h, belongs to T' and satisfies ||hy|lo = 1 ¥n € IN". On the other hand,

we have ||fhy|lo < —, hence lir+n fh, =0.
n n—-—1+00

More notations and definitions: Let F be a filter on IE. Given a function f from IE
to IK admitting a limit along F, we will denote by li}n f(x) this limit.

Given a filter F on IE, we will denote by Z(F,S) the ideal of the f € S such that
li;n f(x) = 0. Notice that the unity does not belong to Z(F,5), so Z(F,S) # S.
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Given a € IE, we will denote by Z(a, S) the ideal of the f € S such that f(a) =0 and
by Z'(a, S) the ideal of the f € S such that there exists an open neighborhood L of a such
that f(x) =0 Vx € L.

We will denote by Max(S) the set of maximal ideals of S and by Maxg(S) the set
of maximal ideals of S of the form Z(a, S), a € IE.

Given a set F', we will denote by U(F') the set of ultrafilters on F.

Two ultrafilters ¢, V on IE will be said to be sticked if for every closed subsets H €
U, GeV, wehave HNG # 0.

We will denote by (R) the relation defined on U(IE) as U(R)V if U and V are sticked
[14].

Remark 1: Relation (R) is not the equality between ultrafilters, even when the ultra-
filters are not convergent. In [17], Labib Haddad introduced the following equivalence
relation (H) on ultrafilters. Given two ultrafilters U, V we write U(H)V if there exists an
ultrafilter W such that every closed set L lying in W also lies in U and similarly, every
closed set L lying in W also lies in V. So, Relation (H) is clearly thinner than Relation
(R). However, it is shown that two ultrafilters U, V satisfying U(H)V may be distinct
without converging.

The following lemma is classical [7]:

Lemma 1.11: GivenU € U(IE) and a subset X of IE, then either X € U or (IE\X) e U

Theorem 1.12:

1) if F and G are disjoint closed subsets of & then there exists a clopen O such that
FCOand GC (E\O,).

This is the case when §(F,G) >0

2) If U and V are ultrafilters on IE then they are sticked if and only if they contain
the same clopen sets.

In particular if U, V are not sticked, there exist disjoint clopen subsets H and L of
E such that HeU, H¢V and L€V, L¢U.

Proof:
1) For each x € F take r, > 0 such that d(z,r;) N G = () and define the open set
0= U d(z . We clearly have FF C O and G C IE\O. Let us prove that O is closed.
zel

Let y € O. For every n € IN*, there exists z,, € F such that d(y, = ) Nd(zp,ry ) # 0,

then let y, € d(y, ~ ) Nd(zn, 7y ).

First assume that mf{rw in € IN*} =m > 0 Take n € IN* such that £ < m. Since
the distance is ultrametric we then have: d(y,2 ) = d(y,, = ) C d(yn,r :Cn) =d(zn,7; ).
Finally y € O.

Assume now that inf{r, :n € IN"} = 0. There exists a subsequence (x,, ), such that
(Ta:nk )i tends to 0. Then we immediately get that (z,, )r tends to y since (yn, )r tends to

y. Soy € F = F and again y € O.



2) If U and V are sticked then for every clopen O € U we necessarily have O € V.
Otherwise using the preceding lemma the clopen IE \ O is in V so U and V cannot be
sticked. Conversely, if &/ and V contain the same clopen sets then using the preceding
property 1), for every closed sets F € U and G € V we necessarily get FF NG # 0,
otherwise taking a clopen O such in 1) we have O € Y and O ¢ V since IE\ O € V.

In particular if &/ and V are not sticked then taking some clopen H in U which is not
in V, we have (IE\ H) € V and putting L = I[E\ H, H and L are clopen sets satisfying the
expected property.

Corollary 1.12.a: Let U, V be two ultrafilters on E that are not sticked. There exist
clopen subsets H e U, L €V and f € S such that f(x) =1VYx € H, f(x) =0Vx € L.
Lemma 1.13 is classical:

Lemma 1.13: Let U be an ultrafilter on IE. Let f be a bounded function from IE to
K. The function |f| from IE to Ry defined as |f|(z) = |f(x)| admits a limit along U.
Moreover, if IK is locally compact, then f(x) admits a limit along U.

Recall that for any normed IK-algebra (G, || . |), the closure of an ideal of G is an ideal
of G. Lemmas 1.14 and 1.15 are immediate:

Lemma 1.14: The spectral closure of an ideal of S is an ideal of S.

Lemma 1.15: Let X C S be spectrally closed. Then X is closed with respect to the norm
of S. Let Y C S be uniformly closed. Then it is spectrally closed.

Now we can recall a classical result known in ultrametric analysis as in Archimedean
analysis.
Proposition 1.16: FEvery maximal ideal M of S is spectrally closed.

Proof: By Lemma 1.14 the spectral closure M of M is an ideal. If M is not spectrally
closed, then M = S, hence there exists ¢ € S such that 1 —¢t € M and [t||s, < 1.

Consequently, by Proposition 1.3 lirf |t"]| = 0, therefore the series (Z t") converges
n—-+:oo

n=0

and (Z t")(1 —t) = 1 and hence the unity belongs to M, a contradiction.

n=0

Proposition 1.17 now is easy:

Proposition 1.17: Given an ultrafilter U on 1E, Z(U,S) is a prime ideal. Moreover,
ZU,S) is uniformly closed and hence is spectrally closed and closed for the topology of S.

Proof: Since U is an ultrafilter, it is obvious that Z (U, S) is prime. Indeed, given f € S,
by Lemma 1.13, |f(z)| admits a limit along & and hence, if f, g € S are such that
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lign f(x)g(x) = 0, then either lizﬁn f(z) =0 or liLEn g(z) = 0, hence either f or g belongs to

u,s).
Let us now check that Z(U, S) is uniformly closed. Indeed let g in the closure of Z(U, 5)
with respect to || . ||o, let b = liLIln |g(x)| and suppose b > 0. There exists f € Z(U, S) such

that || f — gllo < b and then
b= [tim |(@)] ~lim lg(a)| . <l |(z) — 9(a)| < | — gllo < b

a contradiction showing that Z(U, S) is uniformly closed. Therefore, it is spectrally closed
and closed for the topology of S.

The following Theorem 1.18 is proved in [14].

Theorem 1.18: Let U, V be two ultrafilters on IE. Then Z(U,S) =Z(V,S5) if and only
if U and V are sticked.

Proof: First, if U/ and V are not sticked, by Corollary 1.12.a we have Z(U, S) # Z(V, S).
Now, suppose that U, V are sticked. By Theorem 1.12, then they contain the same clopen
sets. But for every f € S and € > 0 the set L. = {z € IE : |f(x)| < €} is clopen and we
have: f € Z(U,S) <= Ve > 0, L. € U and hence L. € V. Consequently, Ve > 0, L. € V
and hence f belongs to Z(V, S). Thus Z(U, S) C Z(V, S) and similarly, Z(V, S) C Z(U, S),
therefore Z(V,S) =I(U, S)

Corollary 1.18.a: Relation (R) is an equivalence relation on U (IE).

Theorem 1.19 looks like certain Bezout-Corona statements [18]:

Theorem 1.19: Let fi,..., fy € S satisfy inf ( max |f;(x)|) > 0. Then there exist
z€lE 1<j<q

q
g1,y 9q € S such that ij(x)gj(x) =1Ve elE.

j=1
Proof: Let M = inf,em(maxi<j<q|fi(x)]). Let E; ={x € E | |f;(z)| > M}, j=1,...q
J
1
and let FJ = U Em; j = 1,...,(]. Let g1($) = mvx € E1 and gl(l') =0Vx e ]E\El
1\T

m=1
Since |fi(x)| > M Vz € Ey, |g1(x)] is clearly bounded. By Lemma 1.2 each E; is obviously
clopen and so is each F;. And since f; is continuous g¢; is continuous, hence belongs to S.

k
Suppose now we have constructed g¢i,...,gx € S satisfying ijgj(:c) =1Vx e Fy
j=1
u 1
and Z fjgi(x) =0Vx € IE\ Fj. Let gx+1 be defined on IE by git1(z) = Vo €
— frr1()

j_
Fipiq \ F, and gg4q1(x) = 0 Vo € IE\ (Fgq1 \ Fr). Since Fj and Fyy1 are clopens,
so is IE \ (Fx+1 \ Fx) and consequently, gxi1 is continuous. Similarly as for g;, since

7



|fer1(z)| > M Va € Exiq, |gr+1(x)| is clearly bounded, hence gri1 belongs to S. Now
k+1 k

we can check that ijgj(:c) =1Vx € Fxy1 and ijgj(m) =0Vzx €IE\ Fiy1. So, by
j=1 Jj=1

q

a finite induction, we get functions g1, ..., g4 € S such that Z fijgj(x) =1 Va € IE, which
j=1

ends the proof.

Notation: Let f € .S and let € > 0. We set D(f,e) ={z € E | |f(z)| < €}.

Corollary 1.19.a: Let I be an ideal of S different from S. The family of sets
{D(f,€), fel, e>0} generates a filter Fr s on IE such that I C Z(Fr,s,5).

2. Maximal and prime ideals of §

Except Theorem 2.4 and its corollaries, most of the results of this paragraph were
given in [14] for the algebra A.

Theorem 2.1: Let M be a mazimal ideal of S. There exists an ultrafilter U on IE such
that M = Z(U,S). Moreover, M is of codimension 1 if and only if every element of S
converges along U. In particular if U is convergent, then M is of codimension 1.

Proof: Indeed, by Corollary 1.19.a, we can consider the filter Fq s and we have M C
I(Fm,s,S). Let U be an ultrafilter thinner than Fq s. So, we have M C Z(Fpa.5,5) C
Z(U,S). But since M is a maximal ideal, either M = Z(U,S), or Z(U,S) = S. But
obviously, Z(U, S) # S, hence M =Z(U,S5).

Now assume that M is of codimension 1 and let x be the IK-algebra homomorphism
from S to IK admitting M for kernel. Let f € S and let b = x(f). Then f — b belongs to
the kernel of M, hence hbltm f(x) —b=0 that is li&n f(x) = b therefore every element of S

converges along U.

Conversely if every element of S admits a limit along ¢ then the mapping x which
associates to each f € S its limit along U is a IK-algebra homomorphism from S to IK
admitting M for kernel, therefore M is of codimension 1.

In particular if U converges to a point a, then each f in S converges to f(a) along U.

By Lemma 1.13 and Theorem 2.1, the following corollary is immediate:
Corollary 2.1.a: Let IK be a locally compact field. Then every maximal ideal of S is of

codimension 1.

Remark 3: If IK is locally compact, a maximal ideal of codimension 1 of S is not
necessarily of the form Z(U,S) where U is a Cauchy ultrafilter. Suppose that IE admits
a sequence (a,)nen such that either it satisfies |a,, — a,,| = r ¥n # m, or the sequence
|@y 41 —ay| is strictly increasing. Let U be an ultrafilter thinner than the sequence (@, )neN-

8



Consider now a function f € S. Since IK is locally compact, f(x) does converge along
U to a point b € IK. In that way, we can define a homomorphism y from S onto IK as

. So Z(U,S) is a maximal ideal

S
x(g) = limy, g(z) and therefore K is the quotient Ker(y)

of codimension 1.

Notation: Following notations of [14], we will denote by Y(z)(IE) the set of equivalence
classes on U(IE) with respect to Relation (R).

By Theorem 1.18, we can get Corollary 2.1.b:

Corollary 2.1.b: Let M be a mazimal ideal of S. There exists a unique H € Y(x)(IE)
such that M =TI(U,S) for every U € H.

Conversely, Theorem 2.2 now characterizes all maximal ideals of S.
Theorem 2.2: Let U be an ultrafilter on IE. Then Z(U,S) is a mazimal ideal of S.

Proof: Let I = Z(U,S) and let M be a maximal ideal of S containing I. Then by
Theorem 2.1 there exists an ultrafilter V such that M =Z(V, S). Suppose now Z(U, S) #
Z(V,S). Then, U and V are not sticked. Consequently, by Theorem 1.12 there exists a
clopen subset F' € V that does not belong to & and hence its characteristic function u € S
belongs to Z(U,S) but does not belong to Z(V,S). Thus, u belongs to I but does not
belong to M, a contradiction to the hypothesis.

By Corollary 2.1.b and Theorem 2.2, we can derive the following Corollary 2.2.a:

Corollary 2.2.a: The mapping that associates to each mazximal ideal M of S the class
with respect to (R) of ultrafilters U, such that M = I(U,S), is a bijection from Maz(S)
onto Y(gr)(IE).

Remark 4: Let F be a Cauchy filter on IE admitting a limit limit a € IE and let
M =ZI(F,S). Then every function f € S converges to a limit 0(f) along F and M is
a maximal ideal of codimension 1. Indeed, let f € S. Since f is continuous, then f(x)
converges to a point 0(f) = f(a) in IK. Consider now the mapping 6 from S into IK: it is

S
an algebra morphism whose kernel is M and whose image is IK. Consequently, Mo K,

therefore M is a maximal ideal of codimension 1.

Notation: For any subset F' of IE, we denote by ug its characteristic function. Let M
be a maximal ideal of S and let & € U(IE) be such that M =Z(U, S). By Theorems 1.18
we can define the set O of all clopen subsets of IE which belong to /. We then denote
by Caq the set {umy\r | L € Oaq} and by Jaq the set of all functions f € S which are equal
to 0 on some L € O .

Given a € IE, we will denote by Z’(a, S) the ideal of the functions f € S equal to 0 on
an open subset of IE containing a.

Theorem 2.3: Let M be a mazimal ideal of S.

9



1) Im is an ideal of S containing Cg,

2) Im is the ideal of S generated by Caq and Jpm = {fu | f €S, u € Cpm},
3) If P is a prime ideal of S contained in M, then Jyp C P.

4) if M =1(a,S), then I'(a,S) = Tnm.

Proof: 1) Let us check that Jr is an ideal of S. Let f, g € Japm. So, there exist
F, G € Opqsuch that f(x) =0Vz € F, g(z) =0Vz € G, hence f(x)—g(z) = 0Vz € FNG.
Since F' N G belongs to Oxq, f — g lies in Jxq. And obviously, for every h € S, we have
h(z)f(z) =0 Vz € F, hence fh lies in Jp.

Next, Ja contains Cyq because given L € Oxy, the set IE\ L is clopen, then ump\ r,
belongs to S and is equal to 0 on L.

2) Notice that if f € S and u € Cpq, then by 1) fu belongs to Jyq. Conversely, if
f € Im and L € Oy are such that f(z) is equal to 0 on L, then ump\ 7 belongs to Cay
and f = fumg\r. This proves that Ty = {fu | f € S, u € Cp} and that Jpq is the ideal
generated by Cug.

3) It is sufficient to prove that Cp is included in P. Indeed, let U € U(IE) be such that
M=ZU,S) and let L € Opq. Then L € U and ur, ¢ M. So, ur ¢ P. But up.up\r, = 0.
Thus u\ 1, belongs to P since P is prime.

4) Just notice that Juq is the set of all functions in S which are equal to 0 on some
clopen containing a and that each open neighborhood of a contains a disk d(a, ™), which
is clopen.

Corollary 2.3.a: Let U be an ultrafilter on IE and let P be a prime ideal included in
ZU,S). Let L € U be clopen and let H =1E\ L. Then the characteristic function u of H
belongs to P.

Theorem 2.4: Let M be a maximal ideal of S. The uniform closure of Jaq is equal to
M.

Proof: Let f € M =Z(U,S). Then for every e > 0 the set L = D(f,€) belongs to U/ and
L is clopen. Therefore L belongs to O and the characteristic function u of IE\ L lies in C 4,
so that fu € Jum. But f(z) —uf(x) =0Ve ¢ L and |f(x) —uf(x)| = |f(z)| < eVx € L,
so || f —uf|lo < e. Hence M is the uniform closure of Jy since, by Proposition 1.16, M
is uniformly closed.

Corollary 2.4.a: Let P be a prime ideal contained in a maximal ideal M. Then M is
the uniform closure of P.

Corollary 2.4.b: The uniform closure of a prime ideal of S is a maximal ideal of S and
a prime ideal of S is contained in a unique maximal ideal of S.

Corollary 2.4.c: A prime ideal of S is a maximal ideal if and only if it is uniformly
closed.

Using property 4 of theorem 2.3 we get Corollary 2.4.d:
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Corollary 2.4.d:  The uniform closure of Z'(a, S) is Z(a,S).

Corollary 2.4.e:  Let M be a mazximal ideal of S. If S is admissible then:
1) M s the spectral closure of Jn and the spectral closure of any prime ideal contained
mn M;

2) a prime ideal is maximal if and only if it is spectrally closed.

3 Maximal ideals of finite codimension

The main results of this paragraph were allready obtained in [5]. We recall them with
all proofs in order to make easy the conclusions of this article.

Notation: Let IL be a finite algebraic extension of IK provided with the absolute value
which extends that of IK and let ¢t = [IL : IK]. Let .A° be equal to the IL-algebra of the

bounded continuous functions of IE into IL and A = IL® A. §ince IL is of finite dimension
over IK, one obtains an immediate identification of A° with A

The following Theorem 3.2 holds on all complete valued fields and is proven in [6]
(Lemma 7.2). First we must state Lemma 3.1.

Lemma 3.1:  Let IL be of the form I = Kla]. Let f € A°. Then f is of the form
t—1

> alfy, j=0,...t—1, with f; € A.

§=0

Theorem 3.2:  Let T' = A. Suppose there exists a morphism of IK-algebra, x_from T
onto IL. Then x has continuation to a surjective morphism of IL-algebra X from T to L.

Proof: Suppose first that IL is of the form K[a]. Let f, g € T. Then by Lemma 3.1, f
t—1

t—1 _
is of the form Zajfj, j=0,....,t—1and g is of the form Zajgj, j=0,...,t—1, where
j=0 §=0
the f; and the g; are functions from IE to K.
t—1
We can now define ¥ on 7' as X(f) = Z a’x(f;). Then obviously, X is IK-linear. On
§=0

the other hand, for each ¢ € IN, a? is of the form P,(a) where P, € KK[z], deg(F,) <t—1.
Then X(a?) = X(P,(a)) = P;(X(a)) = P;(a) = a?. Next,

>z<fg>=>z(<§affj><§aﬂ‘gj>) =x( > @ fgn)
j=0 j=0

0<m<t—1
0<n<t—1

= 3 o) = (e @x(e) = X(Pxlo)

11



Thus, the extension of x is proved whenever IL is of the form IK[a]. It is then immediate
to check that X is surjective: since T is a IL-algebra, it contains the field IL and every
morphism X from T obviously satisfies x(c) = ¢ Ve € IL.

Consider now the general case. We can obviously write IL in the form Kby, ..., b,].
Writing IL; for the extension IK[b, ..., b;] we have IL; = IL;_1[b;].

By induction on j, using the preceding just proved result, we get that for each j =
1,...,q, x has continuation to a surjective morphism of IL;-algebra, X;, from IL; ® T" onto
IL;. Taking j = g ends the proof.

We are now able to prove that maximal ideals of finite codimension of S are of codi-
mension 1 in two cases: when S = A and when the field IK is perfect.

Theorem 3.3: FEvery mazximal ideal M of finite codimension of A is of codimension 1.

Proof: Let S = A, let IL be the field % and let S’ be the IL-algebra of bounded

continuous functions from IE to IL. Then S’ is semi-admissible. Now, let x be the IK-
algebra morphism from S onto Il whose kernel is M. Let g € S and let b = x(g) € L.
By Theorem 3.2 x admits an extension to a morphism X from S’ to IL. Now, since S’
is semi-admissible and since the kernel of X is a maximal ideal M of ', there exists an
ultrafilter U on IE such that M = Z(U,S"). Then we have X(g—b) = 0, hence g—b belongs

to M, therefore lig{ng(ac) —b=0ie. lilgng(x) = b. But since g € S, g(z) belongs to IK
for all x € IE. Therefore, since IK is complete, b belongs to IK. But by definition y is a

surjection from S onto IL, hence every value b of IL is the image of some f € S and hence
it lies in IK, therefore IL = IK.

Theorem 3.3 can be generalized to all semi-admissible algebras provided IK is a perfect
field [5].

Henceforth, for the rest of this Paragraph 3, the field IK is supposed to be
perfect.

Proposition 3.4: Let IL = K[a] be a finite extension of IK of degree t, provided with the
unique absolute value extending that of IK and let as, ..., ar be the conjugates of a over IK,
with a1 =a. Let S =L ®K S and let g = Z;;é a’ f;, f; € S be such that inf |g(z)| > 0.

t t
For every k = 1,...,t, let g = Z;;(l) a‘,ifj, f;i € S. Then Hgk belongs to S and Hgk

R k=1 k=2
belongs to S.

Proof: Since I = IK[a;]| and since IK is perfect, the extension N = KJaq,........ ,ya] is
of the form
N = Kla1][az, ....... yar] = ILjag, ......... , 4y
and N is a normal extension of IK and of IL respectively.
Thus, assuming that aq,......... ,as belong to IL, we have I = KJaq,........ ,as] and
N =K[a1..c.o) g, Qs g1y ennene. yar] = Klaq, ........ s Q) [Asg1y eeeenn yar) = Wlasiq, ... , 4.
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Let G be the Gallois group of N over IK and put G' = {0 € G : o(z) = z,Vz € IL}
where the extension N over IL is Galoisian, whose Galois group G(N|IL)= is G’. The sub-
field IL of N then corresponds to the subgroup G’ of G through the Galois correspondance.

t—1 t
Now, given o € G, set o(g) = Z(a(a))jfj. Let F = Hgk = H o(g). Then F
j=0 k=1 oG

belongs to S if and only if for every 7 € G, 7(F) = F. Now, we have

T(F)=][]recl9)=]]¢w=F

ceG Ced

therefore F' belongs to S.
On the other hand the roots a;, for s + 1 < i < t, are conjugate over IL. Therefore if

s+ 1 <i <t, there exists 6 € G’ such that a; = 0(asy1). It follows that g; = Etil ajfj =

. 7=0 "%
S O0as ) f; = 0 g al 1 f5) = 0(gesn)

t
Let H = H gi = H 0(gss1). Then H belongs to S if and only if 7(H) = H Vr €
i=s+1 0eG’
G/.ANOW, we have 7(H) = [y 70 0(gs41) = ngG' ((gs+1) = H, therefore H belongs
to S. Consequently, since [[7_, g; belongs to S, one gets that ([[7_, i) - H = [['_y g: is
an element of S.

We can now establish the following Proposition 3.5:

Proposition 3.5:  Let I = IK[a] be a finite extension of IK of degree t, provided with
the unique absolute value extending that of IK and let az, ..., at be the conjugates of a over
K, with a1 = a. Let S =L ®K S and let g € S be such that infy |g(x)| > 0. Then g is
invertible in S.

Proof: Let g = z;zo a’ fj, f; € S and for every k =1, ...,t, let gy = Zﬁ:o aifj, fi€eS.
t t
Then, by Proposition 3.4, H gr. belongs to S and in the same way, H gr. belongs to S.

k=1 k=2
t

Now, since infg [g(z)| is a number m > 0, we have | H gr| > m' because in IL, we have

k=1
t

lgr ()| = |g1(z)| Yk = 1,2,...,t, Vo € IE. Consequently, H gk is invertible in S. Thus,

k=1
t t

there exists f € S such that H gr-f = 1. But since, by Proposition 3.4, H gi. belongs to

t

S , one sees that H gr-f is an element of S. Hence g = g; is invertible in S with inverse
k=2

t
g =1 ot
k=2
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Definition and notation: In the following Proposition 3.7 and in the theorems we
will have to consider the tensor product norm. We remind here some general facts (for
completeness one can see [19]). Let IL be a complete valued field extension of IK and A be
a unital, ultrametric IK-Banach algebra. Given z € IL ® A, we put

|zl = inf{max |b;|.||z;| | Zbi QK T; = z, I finite}.
icl el
This norm || . ||g will be called the (projective) tensor product norm. It is an ultrametric
norm.

In any unital IK-algebra B, let 15 be the unity of B. Then for b € IL. and x € B, one
has ||b® z||g = |b].||x||. In particular for any b € I, (resp. « € B), one has |[b® 15|/ = |b|
(resp. ||k ® z||g = ||=||.) Hence one has an isometric identification of IL (resp. B) with
L®klp (resp. 1, ®k B).

Furthermore, one verifies that with the tensor norm, the tensor product IL QK B,
of the two unital IK-algebras IL and B is a normed unital IK-algebra. It is also a unital
IL-algebra (obtained by extension of scalars). The completion L&k B of IL ®k B with
respect to the tensor product norm || . ||g (called the topological tensor product) is a
unital IK-Banach algebra as well as a IL-Banach algebra.

Now assume that IL is of finite dimension d over IK. Fix a IK-basis (e;)1<;<q of IL.

d
It is readily seen that any z € IL ®x B can be written in the unique form z = Z e; ® y;
j=1

d
and ||z[g = | Zlej ®yjlle < max lej| [ly;ll-
J:
d
On the other hand, given b = Zﬁjej € IL, let us consider the norm ||b]; =
j=1
max 15;.lej|. One has |[b| < ||b]|1 and since IL is finite dimensional, there exists o > 0
<<
such that alrgaécd|ﬁj|.|ej| < |b] £ max |B)].|ej|. Considering the dual basis (e})1<;j<a of
j

<< 1<j<d
(€j)1<j<a and the continuous linear operators e; ®1dp of IL @K B into IK ®x B = B, one
proves that o max el sl < Izl < masx. lej} sl = Izl
This means that the norms || . ||g and || . |1 of L®K B are equivalent. One immediately

sees that IL&K B equiped with the norm ||z||; = max, lej|]ly;] is isomorphic to the product
<j<

IK-Banach space B and then it is complete. It follows that (IL ®x B, || . ||g) is complete

One then has the following Theorem 3.6 contained in [19] (Chapter 4).

Theorem 3.6: If IL is a finite extension of IK and B is a commutative unital IK-
Banach algebra, then with the tensor product norm || . ||g, the tensor product I @ B of
the IK-algebras IL and B is a IK-Banach algebra as well as a Banach algebra over IL.

Taking B = S, we can now conclude.
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Proposition 3.7 :  Let IL = K|a] be a finite extension of IK of degree t, provided with

the unique absolute value extending that of IK. Then the algebra S=1 QKK S provided
with the tensor product norm || ||g, is complete.

Moreover, S can be identified with the Banach IL-algebra of functions f from IE to IL

t—1
of the form f = Zajfj with f; € S and S is a semi-admissible IL-algebra.
j=0
t—1
Proof: By construction, S is the set of functions f= Zaj f; with f; € S. Since each
j=0

f; is continuous, so is f. By Theorem 3.6, S is a Banach IL-algebra. Next, given a clopen
subset D of IE, the characteristic function u of D exists in S and hence it belongs to
S. Finally, given an element g € S such that infyep lg(x)| > 0, by Proposition 3.5, g is

invertible in S Therefore, S is semi-admissible.

Theorem 3.8:  Let IL be a finite extension of IK of degree t, provided with the unique
absolute value extending that of IK and let S = IL®Kk S be provided with the tensor product
norm. Then S is a semi-admissible Banach IL-algebra.

Proof: By definition, IL is of the form KJby, ..., b,] with IK[by, ..., b;] strictly included in
K[by1,....,bj1], = 1,.,¢ — 1. Put I; = I[by,...,b;], 5 =1,..,¢ and §; = IL; @ S.
Suppose we have proved that §j is semi-admissible for some j < ¢q. Next, since IL;j;; =
IL;[bj+1], by Proposition 3.7, §j+1 is semi-admissible. Therefore, by induction, §q =S is
a semi-admissible Banach IL-algebra.

Theorem 3.9:  Let M be a maximal ideal of finite codimension of S. Then M is of
codimension 1.

Proof: Let IL be the field % and let S = IL ®K S be provided with the tensor product

norm. By Theorem 3.8, S is semi-admissible. Now, let x be the morphism from S onto
IL whose kernel is M. Let g € S and let b = x(g) € IL. By Theorem 3.5 y admits an
extension to a morphism X from | S to IL. But since S is semi-admissible and since the
kernel of X is a maximal ideal M of S by Theorem 2.1 there exists an ultrafilter ¢ on
IE such that M = u, S) Take g € S and let b = x(g). Then we have X(g — b) = 0,

hence g — b belongs to M therefore libr[ng(x) —b=0i.e. li&ng(x) = b. But since g € S,

g(x) belongs to IK for all x € IE. Therefore, since IK is complete, b belongs to IK. But by
definition x is a surjection from S onto IL, hence every value b of ILi actually lies in IK and
hence IL = IK.

4. Multiplicative spectrum

The multiplicative spectrum of a Banach IK-algebra was first introduced by B. Guen-
nebaud [16] and was at the basis of Berkovich’s analytic space theory [2]. It was also much
used in [12], [14], [15].
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Notations and definitions: Let 7" be a normed IK-algebra. We denote by Mult(T, || . ||)
the set of continuous multiplicative algebra semi-norms of T provided with the topol-
ogy of pointwise convergence [3], which means that a basic neighborhood of some ¢ €
Mult(T, | . ||) is a set of the form W (¢, fi,..., fg,€), with f; € T and € > 0 and this is
the set of ¢ € Mult(T, | . ||) such that [ (f;) — &(fj)|e < € Vj=1,...,q. The topological
space Mult(T,|| . ||) is then compact (see [2], or Theorem 6.2 in [10]).

Given ¢ € Mult(T, || . ||), we call kernel of ¢ the set of the € T such that ¢(z) =0
and we denote it by Ker(¢). It is a prime closed ideal of T" with respect to the norm || . ||
[10].

We denote by Mult,,(T, || . ||) the set of continuous multiplicative semi-norms of T
whose kernel is a maximal ideal and by Mult; (T, || . ||) the set of continuous multiplicative
semi-norms of 7" whose kernel is a maximal ideal of codimension 1. Particularly, considering
the algebra S, we denote by Mult (S, || . ||) the set of continuous multiplicative semi-norms
of S whose kernel is a maximal ideal of the form Z(a, S), a € IE.

We denote by Y(T') the set of IK-algebra homomorphisms from S to K.

Let us recall that in S, we have || . |[o < || . ||sp and that if S is admissible, then
|- llo=1 - |lsp- Theorem 4.1 is classical [10], [11]:

Theorem 4.1: Let T be a unital commutative ultrametric Banach IK-algebra. For each
FeT, |[fllsp =sup{o(f) | ¢ € Mult(T,|| . [|)}. For every x € T(T), we have [x(f)| <
1 fllsp Vf €T

More notations: For any ultrafilter &/ € U(IE) and any f € S, |f(x)| has a limit along
U since f is bounded. Given a € IE we denote by ¢, the mapping from S to IR defined by
va(f) = |f(a)| and for any ultrafilter 4 € U(IE), we denote by s the mapping from S to
IR defined by ¢y (f) = liLr{n |f(x)| (see Lemma 1.13). These maps belong to Mult(S, | . ||)

since || . o < || - |lsp < || - || Particularly, the elements of Multy(S,|| . ||) are the

Ya, a € IE.

Proposition 4.2: Let a € IE. Then I(a,S) is a mazimal ideal of S of codimension 1
and @, belongs to Mult1(S,|| . ||). Conversely, for every algebra homomorophism x from
S to K, its kernel is a maximal ideal of the form I(a,S) with a € IE and x is defined as

x(f) = f(a), while oo (f) = [x(f)]-

Theorem 4.3: Let U be an ultrafilter on IE. Then @y belongs to the closure of
Multi (S, || . ||), with respect to the topology of Mult(S,|| . ||)-

Proof: Let ¢ = ¢y, take € > 0 and let fi,..., f; € S. There exists L € U such that
V(f;) = 1fj(@)| |oo < €Vx e L, Vj=1,..,q. Therefore, taking a € L, we have |, (f;) —
Y(fj)loo < €Vj=1,...,q which shows that ¢, belongs to the neighborhood W of v of the
form {¢ [¥(f;) — ¢(fj)|eo < € V5 =1,...,q} and this proves the claim.

Remark 5: In the field IK, we call monotonous distances sequence a sequence (ay,)neN
of IE such that the sequence 6(ay,an+1)nen is strictly monotonous. We call constant
distances sequence a sequence (a,)nen of IE such that d(ay,a,,) is constant when n, m
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are big enough and n # m. According to Remark 3, if IK is locally compact and IE
admits monotonous distances sequences or constant distances sequences, we can define
wu € Mult,(S, || . ||) which does not belong to Multg(S,|| . ||).

Theorem 4.4: For each ¢ € Mult(S,||. ||), Ker(¢) is a prime spectrally closed ideal.

Proof: Let ¢ € Mult(S,|. ||) and let f belong to the spectral closure of Ker(¢). There
exists a sequence (f,)new of Ker(¢) such that lim, ., || fn, — f|lsp = 0. By Theorem 4.1,
since ¢(g) < ||lgllsp Vg € S, we have lim ¢(f, — f) =0. But ¢(f,,) =0 Vn € N, hence it

follows that ¢(f) = 111}_1 &(fn — f) =0 . Therefore, f belongs to Ker(¢), which means

that Ker(¢) = Ker(¢).

By Theorem 4.4 and Corollary 2.4.e, we have the following Corollary 4.4.a:
Corollary 4.4.a: Suppose S is admissible. Then Mult(S,| . ||) = Mult,,(S,] . |)-

Theorem 4.5 is classical (Theorem 6.15 in [10]).

Theorem 4.5: Let T be a commutative unital ultrametric Banach IK-algebra. For every
mazximal ideal M of T, there exists ¢ € Mult,,(S,| . ||) such that M = Ker(p).

Recall that a unital commutative Banach K-algebra is said to be multbijective if every
maximal ideal is the kernel of only one continuous multiplicative semi-norm.

Remark 6: There exist some rare cases of ultrametric Banach algebras that are not
multbijective [8], [9].

Theorem 4.6: Suppose S is admissible. Then S is multbijective. Precisely if 1 €
Mult(S,| . ||) and Ker(yp) = M then o = @y for every ultrafilter U such that M =
u,s).

Proof: Let ¢ € Mult,,(S,| . ||), let M = Ker(¢)) and U be an ultrafilter such that
M=ZIU,S).

Let f € S. Notice that if f € M then ¥(f) = pu(f) = 0. Now we assume that
f & M. So(f) and ¢y (f) are both strictly positive. We prove that they are equal.

First let € > 0 and consider the set L = {x € IE : | f(x)| < vy (f)+€}. This set belongs
to U and by Lemma 1.2, it is clopen. Therefore its characteristic function u lies in S. We
have ¢y (u) = 1. Consequently, we can derive that ¢(u) = 1 because u is idempotent and
does not belong to M. Therefore ¥ (uf) = ¥(f) and ¢y (uf) = vu(f). By Theorem 4.1,
we have ¢ (f) = Y (uf) < ||ufl|lsp = ||uf]lo because S is admissible. But by definition of L
we have: ||uf|lo < pu(f) + €. Therefore, ¥(f) < @y (f) + €. This holds for every € > 0.
Consequently we may conclude that ¥(f) < ¢y/(f) for every f € S.

We prove now the inverse inequality. We have ¢y (f) > 0, so consider the set W = {x €
E:|f(z) > qu(f)} This is a clopen set which belongs to U. Let w be the characteristic
function of W and put ¢ = wf 4+ (1 — w). We have ¢y (w) = 1 and ¢y (1 — w) = 0 so
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w¢ Mand 1 —w e M. Since M = Ker(y) we then have ¢(1 — w) = 0 and (w) =1
because w is idempotent. Finally ¥(g) = ¥ (f) and ¢y (g9) = pu(f)-
On the other hand, we can check that |g(x)| > min (1, ‘p“T(f)) for all = € IE, hence g

1
is invertible in S. Putting h = —, using the first inequality yet proved, we have
g

That concludes the proof.
Remark 7: Thus, if S is admissible, Mult(S, || . ||) can be identified to Mult(S,| . |lo)

Corollary 4.6.a: Suppose S is admissible. For every ¢ € Mult(S,|| . ||) there exists a
unique H € Y(r)(IE) such that ¢(f) = er{n|f(a;)] VfelS, YU eH.

Moreover, the mapping V that associates to each ¢ € Mult(S,|| . ||) the unique H €
YR(IE) such that ¢(f) = h&n|f(x)| Vf e S, YU € H, is a bijection from Mult(S,| . ||)
onto Y(r)(IE).

Assuming that S is admissible, since by Theorem 4.6 each element ¢ € Mult(S, || . ||)
is of the form ¢, Corollary 4.6.b is immediate from theorem 4.3:

Corollary 4.6.b: If S is admissible, then Multi (S, | . ||) is dense in Mult(S,] . ||).

Theorem 4.7: The topological space IE, provided with its distance §, is homeomorphic
to Multw(S, || . ||) provided with the restricted topology from that of Mult(S,| . ||)

Proof: For every a € IE, put A(a) = ¢,, take fi,....f;, € S and € > 0. We set
W' (@as fisees fqr €) = W(pa, f1, .., fq.€) N Multi(S, | . ||). Considering the natural topol-
ogy on IE, the filter of neighborhoods of a admits for basis the family of disks d(a, ™), r >
0. We will show that it is induced through the mapping A by the filter admitting for ba-
sis the family of neighborhoods of ¢, in Mult(S,| . ||). Indeed, take r €]0,1] and let u
be the characteristic function of dg(a,r~). Then W'(pq4,u,r) is the set of ¢, such that

1
lpa(t) — @p(U)]eo < 2 i.e. the A(b) such that b € dg(a,r~). Therefore the topology

induced on IE by Mult(S, | . ||) is thinner than its metric topology.
Conversely, take some neighborhood W' (¢, f1, ..., fg, €) of ¢q in Multg(S,| . ||). For
each j =1,...,¢, the set of the x € IE such that |p,(f;) — ©a(fj)]|eo < € is the set of the x

such that ‘|f]($)| —|f;(a)]

< €. But now, since each f; is continuous, the set of the x
o

such that ’|fj(x)| - |fj(a)|‘ <eVj=1,..,q is a neighborhood of a in IE. Consequently,

the metric topology of IE is thinner than the topolgy induced by Multg (S, || . ||) and that
finishes proving that the two topological spaces are homeomorphic.

Corollary 4.7.a: Mult(S,|| . ||) is a compactification of the topological space IE.
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Theorem 4.8: Let ¢ = ¢y € Mult,,(S, || . ||), with U an ultrafilter on IE, let T' be the

S
field Ker()
defined on T by [|0(f)|]' = o(f) Vf € S, is the quotient norm || . ||" of || . |lo defined on T
and is an absolute value on I'. Moreover, if Ker(¢) is of codimension 1, then this absolute
value is the one defined on IK and coincides with the quotient norm of the norm || . || of

S.

Proof: Let M = Ker(gy). Let t € T and let f € S be such that 6(f) = t. So,
1e|l" > libr(n]f(s)\. Conversely, take ¢ > 0 and let V = {z € IE : |f(z)| < liLr{n]f(s)\ + €}.

By Lemma 1.2, the set V is clopen and belongs to . The characteristic function u of
IE \ V belongs to M and so does uf. But by construction, (f —uf)(z) =0Vx € IE\V
and (f —uf)(z) = f(z) Vo € V. Consequently, ||f —uf|lo < liz/r{n |f(s)| + € and therefore

Nt < IIf —ufllo < hgln|f(s)| + €. This finishes proving the equality ||0(f)|| = er{n|f(s)|

and hence the mapping defined by |0(f)| = ¢(f), f € S is the quotient norm || . || of
| . [lo- Then it is multiplicative, hence it is an absolute value on T'.

Now, suppose that M is of codimension 1. Then I' is isomorphic to IK and its absolute
value || . ||" is continuous with respect to the topology of IK, hence it is equal to the absolute
value of IK. Finally consider the quotient norm || . ||, of the norm || . || of S: that quotient
norm of course bounds the quotient norm || . ||” which is the absolute value of IK. If f € §
and b = 0(f), we have f — b e M and |8(f)lly < [Ib] = o] = [6(F)| = [|9/)II", which ends
the proof.

and let 0 be the canonical surjection from S onto I'. Then, the mapping || . ||’

Corollary 4.8.a: Suppose that S is admissible. Let ¢ € Mult(S,| . ||), let T be the field

K—@) and let 0 be the canonical surjection from S onto I'. Then, the mapping defined
er

onT by |0(f)| = o(f),Yf €S is the quotient norm || . ||" of || . |lo on T’ and is an absolute

value on I'. Moreover, if Ker(¢) is of codimension 1, then this absolute value is the one

defined on IK and coincides with the quotient norm of the norm || . || of S.

Remark 9: It is not clear whether an algebra S admits a prime closed ideal P (with
respect to the norm || . ||) which is not a maximal ideal. If it admits such a prime closed
ideal, then it is not the kernel of a continuous multiplicative semi-norm. In such a case,
the quotient algebra by P has no continuous absolute value extending that of IK, although
it has no divisors of zero. Such a situation can happen in certain Banach algebras [4].

Definition and notation: Given a IK-normed algebra G, we call Shilov boundary of G
a closed subset F' of Mult(G,| . ||) that is minimum with respect to inclusion, such that,
for every x € G, there exists ¢ € F such that ¢(x) = ||z||sp [12], [13].

Let us recall the following Theorem 4.9 given in [10] and [12]:

Theorem 4.9: Fvery normed IK-algebra admits a Shilov boundary.

Notation: Given a normed IK-algebra G, we denote by Shil(G) the Shilov boundary of
G.
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Lemma 4.10: Let us fix a € IE. For every r > 0, let Z(a,r) be the set of multiplicative
semi-norms ypy, withUU € U(IE), such that dg(a,r) belongs to U. The family {Z(a,r) |r €
10, 1[} forms a basis of the filter of neighborhoods of .

Proof: Let W(pqa, fi,-.., fq,€) be a neighborhood of ¢, in Mult(S,|| . ||). There exists
r > 0 such that, whenever §(a, z) < r we have |f;(z)—f;(a)| < eVj =1, ..., ¢ and therefore,
clearly, |ou(f;) — ©a(fj)loo < €Vj =1,...q for every U containing dg(a,r). Thus Z(a,r)
is included in W (pq, fi, ..., fq, €).

Conversely, consider a set Z(a,r) with r €]0, 1], let u be the characteristic function of
di(a,r) and consider W (@q, u, 7). Given v = @y € W(pq,u, 1), we have [1)(u) —pq(1)|co <
r. But |[¢¥(u) — pa(t)|ee = |[¥(u) — 1l = \hzﬁnlu(x)\ —1]oo. If dg(a,r) belongs to U,

then hLI{n|u(x)| =1 and therefore |11&n|u(m)| —1los = 0. But if dg(a,r) does not belong
to U, then libr{n lu(z)| = 0 and therefore ]h&n lu(z)| — 1|oo = 1. Consequently, since r < 1,

W (@a,u,r) is included in Z(a, r), which finishes proving that the family of Z(a,r), r €]0,1|
is a basis of the filter of neighborhoods of ¢,.

Theorem 4.11: Suppose S is admissible. The Shilov boundary of S is equal to
Mult(S,] - |)-

Proof: We will show that for every a € IE, ¢, belongs to Shil(S). So, let us fix a € IE
and suppose that ¢, does not belong to Shil(S). Since Shil(S) is a closed subset of
Mult(S, || . ||), there exists a neighborhood of ¢, that contains no element of Shil(S).
Therefore, by Lemma 4.10, there exists s > 0 such that Z(a,s) contains no element of
Shil(S). Now, let D = d(a,s) and let u be the characteristic function of D. Since any
¢ € Mult(S, | . ||) satisfies either ¢(u) =1 or ¢p(u) = 0, there exists 6 € Shil(S) such that
O(u) = [|ullsp = 1. Then, @ is of the form ¢y, with U € U(IE) and U does not contain
D. But since u(z) = 0 Vx € IE\ D, we have 0(u) = 0, a contradiction. Consequently, for
every a € IE, ¢, belongs to Shil(S) which is a closed subset of Mult(S,|| . ||) and since,
by Corollary 4.6.b, Multg(S,|| . ||) is dense in Mult(S,|| . ||), then Shil(S) is equal to
Mult(S, || . |)-

5. The Stone space of IB(IE).

It was proved in [14] that for the algebra A of continuous bounded functions from IE
to IK, the Banaschewski compactification of IE is homeomorphic to Mult(A,| . ||o). Here
we get the same result for admissible algebras.

We denote by IB(IE) the Boolean ring of clopen subsets of IE provided with the laws
A for the addition and N for the multiplication. As usually called the Stone space of the
Boolean ring IB(IE) is the space X (IE) of non-zero ring homomorphisms from IB(IE) onto
IF5, provided with the topology of pointwise convergence. This space is a compactification
of IE and is called the Banaschewski compactification of IE (see for example [19] for further
details).
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For every U € U(IE), we denote by (4 the ring homomorphism from IB(IE) onto IFy
defined by ((O) = 1 for every O € IB(IE) that belongs to U and (;,(O) = 0 for every
O € IB(IE) that does not belong to U.

Particularly, given a € IE, we denote by (, the ring homomorphism from IB(IE) onto
IFy defined by (,(O) = 1 for every O € IBB(IE) that contains a and (,(O) = 0 for every
O € IB(IE) that does not contain a.

Throughout Paragraph 5, we suppose that S is an admissible algebra.

Remark 10: Let ¥/(IE) be the set of (,, a € IE. The mapping that associates (, € IE
to a € IE defines a surjective mapping from IE onto ¥'(IE). That mapping is also injective
because given a, b € IE, there exists a clopen subset F' such that a € F and b ¢ F.

By Corollary 4.6.a, we have a bijection W from Mult(S, || . ||) onto Y{z)(IE) associating
to each ¢ € Mult(S, | .||) the unique H € Yz)(IE) such that ¢(f) = ligln f(z)], U eH, fe

S, ie. ¢ =y for every U € H.

On the other hand, let us take some H € Y()(IE) and ultrafilters ¢, V in H. Since
U,V own the same clopen subsets of IE, we have (;; = () and hence we can define a mapping
E from Yz (IE) into ¥(FE) which associates to each H € Y (IE) the boolean homomorphism
(y independant from U € H

Lemma 5.1: Z is a bijection from Yr(IE) onto L(IE).

Proof: Indeed, let H,K € Y(z)(IE) and suppose that H # K. Take ultrafilters U« € H
and V € K. They are not sticked, therefore by Theorem 1.12, there exists clopens L €
H, M € K such that H N K = (. Then, Z(H) # Z(K), which proves the injectivity.

Now, let us check that E is surjective. Let § € X(IE). Since 6 is a ring homomorphism
for the Boolean laws, the family of clopen sets X satisfying 0(X) = 1 generates a filter F.
Let U € U(IE) be thinner than F and let H be the class of & with respect to (R). We
will check that § = Z(H) = (. Let O be a clopen subset that belongs to &. Then IE\ O
does not belong to U and therefore it does not belong to F, so §(IE\ O) = 0, consequently
6(0) = 1. And now, let O be a clopen subset that does not belong to &. Then O does not
belong to F, hence 6(0) = 0, which ends the proof.

We put ® = Z o ¥ and hence ® is a bijection from Mult(S,|| . ||) onto X(IE). Notice
that for every ultrafilter U, W(yy) is the class H of U with respect to (R) and Z(H) = (i

so ®(py) = (u-

Theorem 5.2: @ is a homeomorphism once X(IE) and Mult(S, || . ||) are provided with
topologies of pointwise convergence.

Proof: Recall that for any U € U(IE), a neighborhoods basis of ¢y, in Mult(S,] . ||) is
given by the family of sets of the form W (yuy, fi, ..., fg,€) with fi,..., f € S, € > 0 and

Wlew, fis s for€) = {ov | | lim | f;(z)] = 1i]5ﬂ|fj(90)| _Sej=l..q }
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On the other hand, for any U € U(IE), a neighborhood basis for (;; in X(IE) is given by
the family of sets V(({y, O1, ..., O4) where Oy, ...,O, belong to B(E) and

V(s O1,.,0q) ={& | Qu(0;) = w(0;5),5 =1,....q}.

Notice also that if F' belongs to IB(IE) and if u is its characteristic function, then for
any U € U(IE), we have (;(F) = 1 if and only if F € U, i.e. if and only if ligl lu(x)| = 1.

Otherwise, both (,(F') and liz/r{n |u(x)| are equal to 0. Therefore, the relation

1
lin [u(e)| — tinu(e)]| <5

holds if and only if ¢/ (F') = ¢y (F). Recall that for every U € U(IE) we have ®(¢y) = (-
We will show that ® is continuous. Consider Oy,...,0, € B(IE), # € U(IE) and
the neighborhood V((y, 041, ...,04) of (. From the preceding remark, ¢y belongs to
V(Cu,O1,...,0q) if and only if for every j = 1,...,q, (u(O;) = (v(0,), i.e. if for every
j = 17 "'7Q7 1
lim Ju;(2)] = lim |u;(2)]| <5
1
i.e. if ¢y belongs to W gy, u1, ..., uq, =). Consequently, this proves that ® is continuous.

We can now deduce that ® is a homeomorphism because it is a continuous bijection between
compact spaces (Corollaire 2 of Theoreme 2 in [3]).

Corollary 5.2.a:  The space X(IE) is a compactification of IE which is equivalent to the
compactification Mult(S, || . ||)-

Remark 11: For an admissible algebra S, the Banaschewski compactification 3(IE)
coincides with the Guennebaud-Berkovich multiplicative spectrum.
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