
Submitted to IEEE Transactions on Control System Technology
1

pNMPC - A Code Generation Software Tool for
Implementation of Derivative Free Parameterized
NMPC Scheme for Embedded Control Systems

Karthik Murali Madhavan Rathai, Mazen Alamir and Olivier Sename

Abstract—In this paper, we propose a derivative free pa-
rameterized Nonlinear Model Predictive Control (pNMPC) code
generation software (S/W) tool for embedded control systems.
The proposed S/W tool serves two purposes a) Modeling and
specification of the optimal control problem (OCP) and b) C
code generation of a highly optimized, portable and efficient
pNMPC controller suited for real time (RT) control of fast
sampled systems. The underlying optimization module for the
pNMPC controller is a SQP based black box optimization
(BBO) solver which is specifically tailored to handle inequality
constraints specified by the OCP. The S/W tool was completely
programmed in C++ programming language and provides inter-
face to MATLAB/Simulink environment with the help of MEX
and C MEX-S function wrappers. Two benchmark problems were
considered namely, Cart-pole stabilization problem and PVTOL
probem and tests were conducted using the proposed S/W tool
and also, compared against the ACADO toolkit to assess the
performance, efficiency and evaluate the computation time and
validate the proposed S/W in-spite of black box models. In total,
the proposed S/W tool fares well and looks promising for practical
RT embedded control.

Index Terms—Nonlinear model predictive control, Derivative
free optimization, Embedded control systems, Software engineer-
ing.

I. INTRODUCTION

MODEL predictive control (MPC) is one of the most
efficient and powerful control methodologies and over

the last few years, MPC has become commonplace both in
industry and academia due its performance and optimality.
Initially, MPC (also known as dynamic matrix control) was
restricted to chemical engineering with application for petro-
chemical industries, however comprehending it’s potential and
performance benefits, the method has gradually pervaded into
other streams of engineering such as automotive, aerospace,
biomedical, etc. Concomitantly, this has attracted several re-
searchers from different engineering domains and this has pos-
itively ensued in multitude of its variants, methods, techniques
and theory. Hitherto, some of the well-known extensions of the
MPC [1] include (to name a few) explicit MPC [2] (EMPC),
nonlinear MPC [3] (NMPC), stochastic MPC [4] (SMPC), tube
based MPC [5] (TMPC), learning based MPC [6] (LMPC),
economic MPC [7] (eMPC), adaptive MPC [8] (AMPC) etc.

*This work was supported by the ITEA3 European project,
15016 EMPHYSIS (Embedded systems with physical models in the
production code software). The authors are with Univ. Grenoble
Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France,
{karthik.murali-madhavan-rathai, mazen.alamir,
olivier.sename}@grenoble-inp.fr

and more exciting extensions to be engendered in years to
come and this trend seems to be growing unabatedly.

The main reason for this popularity and rapid adoption
stems from the idea of receding horizon control, the fact that
an online optimization problem is solved at every sampling
period to obtain the optimal control inputs for the current
state of the system. This provides the necessary leeway for
the control engineer either to statically or dynamically include
the required objectives and system constraints into the opti-
mization problem for control. Thus, the entire edifice of MPC
controller reposes on the underpinning optimization problem.
Typically, any state of the art optimization problem can be
broadly classified into three types i) Zero order methods,
ii) First order methods and iii) Second order methods. The
order determines the type of information that the optimization
solver can query to determine the solution, i.e. for zero order
methods, only the function value can be obtained, for first
order methods, the function value and it’s first order derivatives
(Jacobian) can be obtained and for second order methods, the
function value, the first (Jacobian) and second order derivatives
(Hessian) can be obtained or approximated. In optimization
parlance, this is demarcated by classifying zero-order methods
as derivative free methods or black box optimization (BBO)
problem and the rest as derivative based methods. The focus
of this paper circles around implementation of MPC controller
using derivative free methods. Some of the compelling reasons
for a need of a BBO based MPC are

• It is not uncommon in the real world industrial appli-
cation, the plant model and parameters are secured due
to intellectual property (IP) rights and perhaps this sen-
sitive information is never divulged even to the internal
engineers working with the system. Thus, the knowledge
of the system is completely obscured from the control
engineer and renders nearly impossible to design a MPC
controller that predominantly relies upon the derivative
information.

• In cases where the model of system exists only as
computer codes or in binary format (executable files), it
becomes very cumbersome to obtain accurate derivatives
by numerical methods. To exacerbate, if the code involves
several break, if-else or goto statements, it is highly
impractical to obtain the derivatives. Case in point, this
is common in the functional mock-up interface (FMI)
standard [9], which is used for model exchange and co-
simulation purposes. Also, this is the main framework of

Submitted to IEEE Transactions on Control System Technology
2

the EMPHYSIS project [10].
• Even when the functional form is available to the control

engineer, at times, computation of derivatives can be
computationally too expensive and this could preclude
from practical implementation of MPC controller for fast
sampled systems. Also, in cases where the function is
discontinuous and not differentiable, the derivative based
methods can lead to undefined behavior.

• In today’s world, with availability of deluge of data
and increased computation power, data-driven modeling
has challenged the pre-existing notions of first principles
modeling and perhaps it wouldn’t be too much of a
stretch to consider the former superseding the latter in a
few decades now. Machine learning models such as neu-
ral networks, Gaussian processes etc. provide excellent
empirical approximations of the underlying dynamical
systems and typically one can right away utilize these
models for control design.

As per the cited reasons, it is certainly not an unreasonable
requirement but, also, a matter of paramount importance to ad-
dress the control problem by designing a derivative free MPC
scheme. In this paper, we propose a BBO based parameterized
NMPC (pNMPC) S/W tool to circumvent the aforementioned
issues. The term parameterized refers to the parameterization
of the control input [11]. The parameterization serves two pur-
poses a) reduces the computational burden for the optimization
solver and b) design of a parsimonious control input profile.
It is also important to note that the potential of the pNMPC
method relies upon the astuteness of the control engineer to
model the input profile with efficient, effective and economical
parameterization.

The key features and contributions of the pNMPC S/W are

1) The pNMPC S/W was completely programmed in C++
environment. The S/W by it’s inbuilt design provides an
OCP modeling framework, where the user can provide
the objectives, constraints, differential equations, solver
parameters, OCP parameters in a hassle-free way.

2) A one-stop control solution is provided to the end user
for generation of portable, efficient, optimized and em-
beddable C code of the pNMPC controller. Extensions
to MATLAB/Simulink environment are also provided.

3) The toolbox is independent of any external libraries such
as BLAS, LAPACK, etc. and consumes less memory.

4) Additional to the inbuilt modeling framework, the S/W
also provides the flexibility to include and call external
functions (black box functions) which can be in the form
of either source code or static/dynamic libraries.

It is also important to note that there are already several
linear and nonlinear MPC off the shelf toolboxes (with code
generation feature) for embedded systems such as ACADO
[12], CasADi [13], VIATOC [14], FiOrdOs [15], CVXGEN
[16], FORCES [17], DuQuad [18], GRAMPC [19], OSQP
[20], SPLIT [21], MPT (for explicit MPC) [22]. A detailed
exposition into several derivative based embedded optimal
control methods is presented in [23]. Insofar, most of these
toolboxes presumes that the knowledge of the model, objec-
tive and constraints are completely known and the functions

involved are twice differentiable and the Jacobians/Hessians
are either computable or available to the optimization solver.
Thus, the MPC solver utilizes this information and exploits
the structure of the system to compute the solution.

As of today, the only derivative free NMPC toolbox avail-
able on market is the PDF-MPC package [24] which uses
MATLAB as the front end and MATLAB coder on top to
deploy the code into embedded devices. The pNMPC code
generation software tool presented in this paper is highly influ-
enced from the aforementioned tool with improved support and
features to cater the open source community and embedded
control programmers. The pNMPC S/W is available in GitHub
repository [25].

The paper is organized as follows : Section II discusses the
pNMPC problem formulation. In Section III, the SQP-BBO
optimization module for the pNMPC controller is discussed
in detail. Section IV briefly discusses about the S/W syntax,
structure and grammar and Section V discusses the code
generation module in detail. In Section VI, simulation results
are provided for two applications namely cart-pole swing up
problem and PVTOL stabilization problem. Finally, the paper
is concluded with future works and conclusions in Section VII.

II. PNMPC PROBLEM FORMULATION

The goal of the pNMPC toolbox is to solve the following
OCP problem at every sampling period.

min
x(.),p(.)

∫ T

0

l(x,u(x,p,κ),κ) dt+ ψ(x(T),κ(T))

subject to ẋ = f(x,u(x,p,κ),κ, t), ∀t ∈ [0, T]

u(x,p,κ) ∈ U , x ∈ X , p ∈ P ,∀t ∈ [0, T]

x(0) = x0, x(T) ∈ XT

(1)

where, x ∈ Rnx , u ∈ Rnu , p ∈ Rnp and κ ∈ Rnκ
represents the state vector, input vector, input parameterization
vector and external parameters (i.e. model parameters, set
point for tracking or measured disturbances) vector respec-
tively. The input map u : Rnx ×Rnp ×Rnκ → Rnu maps the
states, input parameterization vector and external parameters to
actual input for the system. The sets X , U , P and XT denote
the state constraint, input constraint, input parameterization
constraint and the terminal state constraint respectively. The
OCP is subjected to a set of differential equations denoted with
f : Rnx × Rnp × Rnκ × R+ → Rnx and the Lagrangian cost
(stage cost) and Mayer’s cost (terminal cost) are denoted with
l : Rnx × Rnp × Rnκ → R and ψ : Rnx × Rnp × Rnκ → R
respectively. It is important to note that the cost terms can
be economic and no stipulations are enforced such as non-
negativity or convexity. It is also important to note that
handling the impact of the objectives or constraints design
on the closed loop behavior is left to the user.

The pNMPC S/W transcribes the above OCP formulation
(1) into a generic constrained optimization problem. The OCP
transcription is implemented by discretizing the problem in
time with a finite time step of ∆t. Thus, the states of the
system are eliminated from the problem by simulating the
differential equation over time (direct single shooting method),

Submitted to IEEE Transactions on Control System Technology
3

the integral objective is numerically approximated (Riemann
sum) and the constraints are quantified at every discretized
time step. Let J and hi, ∀i ∈ {1 . . . nc} denote the transcribed
objective and inequality constraints (nc inequality constraints).
The transcribed constrained optimization problem is described
by the following form

min
p∈Rnp

J(p)

s.t. hi(p) ≤ 0, ∀i ∈ {1, . . . , nc}
(2)

where p ∈ Rnp is the optimization vector or decision
variables which is also the input parameterization vector.
Let the solution of the above problem (2) be denoted with
p∗. Utilizing the optimized input parameterization vector,
the optimal input u(x∗(τ),p∗(τ),κ(τ)) is injected into the
system over the time period τ ∈ [0,∆t]. Henceforth, by
marching forward in time and with receipt of new state vector,
this process is repeated in receding horizon manner.

III. OPTIMIZATION MODULE

In this section, the underlying BBO module for the proposed
pNMPC controller is discussed in detail. The content and core
results summarized in this section is based on the SQP-BBO
method proposed in [24], [26], [27]. The method is based
on the technique of sequentially approximating the cost and
constraint functions by means of quadratic functions and at
successive iterations the optimal solution is computed based
on multiple trust region switch conditions. In the subsection
III-B, uni-variate case of the optimization problem is discussed
in detail and in subsection III-C, the method is extended for
the multi-variate case.

A. Constraint reformulation (Scalarization)

Consider an optimization problem as defined below

min
p∈Rnp

J(p)

s.t. g(p) ≤ 0
(3)

where p ∈ Rnp is the vector of optimization variables and
J and g represents the scalar cost and scalar constraint of
the optimization problem respectively. In cases where there
exists several inequality constraints, then all the constraints
are scalarized by either of the two following forms.

Consider there exists nc constraints acting upon the opti-
mization problem, i.e.

hi(p) ≤ 0, ∀i = {1, . . . nc} (4)

The two forms of constraint scalarization are
• Form 1 - The scalar function g can be expressed as a sum

over all the maximum of inequality violating constraints
(if any) i.e.

g(p) :=

nc∑
i=1

max{hi(p), 0} (5)

• Form 2 - The scalar function g can be expressed as
maximum over all the inequality constraints, i.e.

g(p) := max
i∈{1,2,...nc}

{hi(p), 0} (6)

B. SQP based BBO (Uni-variate case)

Consider the optimization problem defined in (3) for an uni-
variate case, then the optimization problem is defined with

min
p∈[pmin, pmax]

J(p) s.t. g(p) ≤ 0 (7)

where the optimization variable p ∈ R belongs to a bounded
interval [pmin, pmax] with pmax ≥ pmin. In order to define a
local quadratic approximation of a function f (f is a generic
representation of a function which can be either J or g) over
an interval I , consider a variable α > 0 with respect to a point
p such that the interval I is defined with

I := [p− α, p+ α] ∩ [pmin, pmax] (8)

p− α pc p + αpmaxpmin

2β

p

f (p)

p

f (pmin)

f (pmax)

pmin pmax

f (pc)
f (p)

Fig. 1: Graphical interpretation of the terms used in SQP BBO
method

Reformulating this interval with respect to the center of
interval pc between the extreme bounds pmin and pmax yields

I := [pc − β, pc + β] (9)

where pc, pmin, pmax and β (semi-length of the interval I)
are defined as follows

pmin = max{pmin, p− α}
pmax = min{pmax, p+ α}

pc =
1

2
[pmin + pmax]

β =
1

2
[pmax + pmin]

(10)

Illustration Fig. 1 lucidly presents the defined reformulation.
In order to fit a local quadratic function qf (p), three function
points are considered {f(pmin), f(pc), f(pmax)}. The above
points are equivalently represented with {f−, f0, f+} respec-
tively. The locally approximated quadratic function qf (p) can
be expressed using a parabolic parameteric form with

qf (p) = af

(
p− pc
β

)2

+ bf

(
p− pc
β

)
+ cf (11)

where af , bf , cf define the coefficients of the approximated
quadratic function. As there exists three unknown coefficients
and three sets of equations defined for the functions values
{f−, f0, f+}, the coefficients can be computed by solving
the following linear algebra problem.

Submitted to IEEE Transactions on Control System Technology
4

1 −1 1
0 0 1
1 1 1

afbf
cf

 =

f−f0
f+

 (12)

The solution for the above problem (12) yields the results

af =
1

2
[f− + f+]− f0

bf =
1

2
[f+ − f−]

cf = f0

(13)

In order to compute the local minimizer for the approx-
imated quadratic function (11), it is of high importance to
consider the parameter af to determine the existence of
minimizer, i.e. when af 6= 0, finite value for the minimizer
exists and when af = 0, the solution can be either at −∞
(when sign(bf) > 0) or +∞ (when sign(bf) < 0). Thus, the
solution p(f)s is expressed with

p(f)s =

pc −

βbf
2af

, if af 6= 0

+∞, if af = 0 and bf ≤ 0

−∞, if af = 0 and bf > 0

(14)

In order to confine the solution (14) obtained from the local
quadratic approximation within the interval I defined in (9),
the solution is projected onto the interval I and the projected
solution is defined with

p(f,∗)s := min
{
pmax,max

{
pmin, p(f)s

}}
(15)

The optimal function value of the locally approximated
quadratic function at the projected solution (15) is defined
with

q∗f = af

(
p
(f,∗)
s − pc

β

)2

+ bf

(
p
(f,∗)
s − pc

β

)
+ cf (16)

Using the computed q∗f value from (16) the extreme values
of parabola qf (.) over the interval of interest I are obtained.
These extreme values are defined with

qmin
f := min

{
f−, f+, q∗f

}
qmax
f := max

{
f−, f+, q∗f

} (17)

The values of p at these extreme values are denoted with
pmin
f and pmax

f and are defined with

pmin
f :=

pmin, if qmin

f = f−

pmax, if qmin
f = f+

p
(f,∗)
s , if qmin

f = q∗f

pmax
f :=

pmin, if qmax

f = f−

pmax, if qmax
f = f+

p
(f,∗)
s , if qmax

f = q∗f

(18)

When the generic function (f) is the inequality constraint
function i.e. f = g, special cases arises for the local quadratic

function (qg(p)) approximation over the interval I . The pos-
sible cases are

1) qg(p) is non-negative for all p ∈ I and this applies when
qmin
g > 0. In this case, g is non-negative in the interval
I This means that the inequality constraint is violated
over the entire interval I .

2) qg(p) is negative for all p ∈ I and this applies when
qmax
g ≤ 0. This means that the inequality constraint is

admissible over the entire interval I .
3) qg(p) is negative on a strict subset of the interval I and

this occurs when qmin
g × qmax

g < 0.
In the last case, there could be either one or two values

of p that belong to the interval I and this occurs only when
qg(p) = 0 and these value can be obtained by analyzing the
discriminant ∆ := b2g−4agcg and when ∆ ≥ 0 (non-negative)
there is at least one real solution. Thus, the possible candidate
solutions are

p(0,+)
g := pc + βmax

{−bg ±√∆

2ag

}
p(0,−)g := pc + βmin

{−bg ±√∆

2ag

} (19)

Let Z−g ⊂ I denote the subset of values of p that belong to
I where qg(.) is negative. The set Zg is computed with

Z−g :=

[pmin, p
(0,−)
g], if p(0,−)g < pmin & g− ≤ 0

[p
(0,+)
g , pmax], if p(0,−)g < pmin & g+ ≤ 0

[pmin, p
(0,−)
g], if p(0,+)

g > pmax & g− ≤ 0

[p
(0,−)
g , pmax], if p(0,+)

g > pmax & g+ ≤ 0

[p
(0,−)
g , p

(0,+)
g], if [p

(0,−)
g , p

(0,+)
g] ⊂ I & ag > 0

A ∪ B, if [p
(0,−)
g , p

(0,+)
g] ⊂ I & ag < 0

(20)
where, A = [pmin, p

(0,−)
g] and B = [p

(0,+)
g , pmax]. It is

important to note that the set Zg is either an interval or a
union of two intervals and this difference is demarcated with
nzg ∈ {1, 2} which corresponds to an interval I(1)g or union of
intervals I(2)g . All the terminologies used are summarized and
tabulated in Table I.

TABLE I: Notation and meaning

Notation Meaning
pc Center I = [p− α, p+ α] ∩ [pmin, pmax]
β Semi-length of I

qf (.) Local quadratic approximation of f over I
af , bf , cf Coefficients of parabola qf (.), f ∈ {J, g}
p
(f)
s Position of singular point qf (.)

p
(f,∗)
s Projection of p(f)s over I
q∗f The value of parabola qf (.) at p(f,∗)s

qmin
f Minimum value of qf (.) on I
qmax
f Maximum value of qf (.) on I
pmin
f Location of minimum value of qf (.) on I
pmax
f Location of maximum value of qf (.) on I

p
(0,+)
g , p(0,−)

g Solution of qg(p) = 0

Z−
g Subset of I where qg(.) ≤ 0

nz
g Number of intervals in Z−

g

I
(1)
g , I(2)g Interval defining Z−

g

Submitted to IEEE Transactions on Control System Technology
5

The BBO algorithm is completely premised upon the previ-
ously defined three cases. The algorithm for the next iteration
p(i+1) and trust region update size α(i+1) are given by the
following steps

1) When qmax
g ≤ 0, then the whole interval I is the search

space and the function J is minimized over the whole
interval I . The candidate value of the update p(i+1) is
given by

pcand ← pmin
J (21)

The minimizer in the above equation (21) is obtained
from equation (18) where the function f is replaced with
J . This computation is based on the assumption that
the quadratic approximation is appropriate. The logical
condition to verify this assumption and also, to update
the trust region size is given by C ← C1

∨
C2 where,

C1 ←
(
J(pcand) < J(p(i))

) ∧ (
g(pcand) ≤ 0

)
C2 ←

(
J(pcand) ≤ J(p(i))

) ∧ (
g(pcand) < 0

) (22)

2) When qmax
g > 0, which means that the constraints are

strictly non-negative which tantamount to constraint vio-
lation and the priority ought to be given to minimization
of the inequality constraint g. In this case, the candidate
value of the update p(i+1) is given by

pcand ← pmin
g (23)

and the trust region update condition is given with

C ←
(
g(pcand) < g(p(i))

)
(24)

3) When qmax
g ≥ 0 and qmin

g ≤ 0, which means that there
exists a subset in I where there exists a solution. In
this case, the integer nzg and the corresponding intervals
I
(1)
g and I(2)g are computed. Utilizing these intervals, the

potential candidate for p(i+1) update is computed by

pcand ← arg min
p∈{p(min,l)

J }
nzg
l=1

J(p) (25)

where p
(min,1)
J and p

(min,2)
J are optimal solutions that

minimize J over the intervals I(1)g and I(2)g respectively.
The trust region update condition is given by

C ←

(
g(pcand) < g(p(i))

)
, if g(p(i)) > 0(

J(pcand) < J(p(i))
) ∧ (

g(pcand)
)
≤ 0, else

(26)
The update of next iterate p(i+1) and α(i+1) is imple-
mented according to following rules.
• If C is true, then

– p(i+1) is assigned to the computed candidate
value pcand.

– The trust region parameter α(i) is increased ac-
cording to

α(i+1) ← β+ · α(i); β+ > 1 (27)

• Otherwise, the current value p(i+1) ← p(i) is used
and the trust region size is decreased according to

α(i+1) ← max
{
αmin, β− · α(i)

}
; 0 < β− < 1

(28)
Let Niter represent the number of iterations the above algo-

rithm is repeated, then the total number of function evaluations
of the objective and constraint functions (J, g) is

Neval = 4Niter + 1 (29)

C. SQP based BBO (Multi-variate case)

The multi-variate case is an extension to the uni-variate case,
where an uni-variate optimization problem is solved over each
component of the decision variables while the rest of the values
are maintained constant. Consider the decision variables to be
p ∈ Rnp and let the list of decision variables be indexed with
l ∈ {1, 2, . . . , np}. Let η ∈ R denote the scalar variable over
which the uni-variate optimization is performed. In notational
form, this is expressed with p(η,l) and an element in Rnp is
defined as

p(η,l)
j :=

{
pj if j 6= l

η if j = l
(30)

The formulation (30) is extended for ∀j ∈ {1, 2, . . . , np}.
The total number of loop count to visit all the np components
for Niter iterations and Neval is given by

Nloop =

⌈
Neval − 1

4np ×Niter

⌉
(31)

It is important to note that a feasible choice of pair
(Neval, Niter) and must satisfy the inequality

Neval ≥ 4npNiter + 1 (32)

For convergence results for the SQP-BBO algorithm, refer
[26][27].

IV. PNMPC S/W STRUCTURE

In this section, the pNMPC S/W structure, syntax and
features are discussed in a bird’s eye view level. It is important
to note that a complete coverage of all the features of the
S/W is not feasible within the scope of this paper. The goal
of this section is to point out the crucial elements of the S/W
along with it’s use case. The core components of the S/W can
be broadly categorized into five parts which are a) Symbolic
classes, b) OCP design classes, c) Real/Symbolic classes,
d) Control parameterization classes and e) Code generation
classes.

A. Symbolic classes

The symbolic classes of the pNMPC S/W are
• HyperStates - This serves as the base class for other

derived symbolic classes. HyperStates can also be
used as a substitution or an intermediate variable.
Usage: HyperStates H = 2*x1*k1+u1*x2+F;.

Submitted to IEEE Transactions on Control System Technology
6

• States - This symbolic class is used to define the states
for the system.
Usage: States x1,x2;.

• Inputs - This symbolic class is used to define the inputs
for the system.
Usage: Inputs u1;.

• Params - This symbolic class is used to define the
parameters for the system.
Usage: Params k1;.

• External - This symbolic class is used to define ex-
ternal variables which invokes function calls from source
files or libraries. The below example links the symbolic
object/variable to a function named NeuralNet.
Usage: External F = "NeuralNet";.

B. OCP design classes

The OCP design classes of the pNMPC S/W are
• ParameterizationMap - This OCP class maps the

input parameterization vector to the actual input for
the system. The parameterization map must be defined
within the begin and end guards. Usage:

BEGIN_PARAMETERIZATION_MAP
ParameterizationMap u1 = p1*x1+p2;
ParameterizationMap u2 = p3*x2+p4;

END_PARAMETERIZATION_MAP

where p1,p2,p3,p4 denote the input parameterized
variables, x1,x2 denote the states of the system and
u1,u2 denote the actual input to the system.

• DiffEquation - This OCP object is used to define
the underlying differential equation of the system. The
differential equations must be defined within the begin
and end guards. Usage:

BEGIN_DIFFERENTIAL
DiffEquation x1d = -x1*x2+u1;
DiffEquation x2d = -x2+u2;

END_DIFFERENTIAL

• ScalarConstraint - This OCP class is used to
define the scalar constraints for the system. The scalar
constraint class can be classified into two types which
are a) Regular constraints and b) Terminal constraints
and these are defined within the respective begin and
end guards. Usage:

BEGIN_CONSTRAINTS
BEGIN_REGULAR_CONSTRAINTS
ScalarConstraint GR1 = {-5<=x1<=5};
ScalarConstraint GR2 = {-5<=x2<=5};
ScalarConstraint GR3 = {-1<=u1<=1};
ScalarConstraint GR4 = {-1<=u2<=1};
END_REGULAR_CONSTRAINTS
BEGIN_TERMINAL_CONSTRAINTS
ScalarConstraint GT1 = {-1<=x1<=1};

ScalarConstraint GT2 = {-1<=x2<=1};
ScalarConstraint GT3 = {-1<=u1<=1};
ScalarConstraint GT4 = {-1<=u2<=1};
END_TERMINAL_CONSTRAINTS
END_CONSTRAINTS

• ScalarObjective - This OCP class is used to define
the scalar objectives for the system. The scalar objective
class can be classified into two types which are a)
Lagrangian (stage cost) and b) Mayer (terminal cost)
and these are defined within the respective begin and
end guards. Multiple definition of objectives within each
guard will be scalarized by addition. Usage:

BEGIN_OBJECTIVES
BEGIN_LAGRANGIAN
ScalarObjective L1 = x1*x1+x2*x2;
ScalarObjective L2 = u1*u1+u2*u2;
END_LAGRANGIAN
BEGIN_MAYER
ScalarObjective M1 = 5*x1*x1+5*x2*x2;
ScalarObjective M2 = 2*u1*u1+2*u2*u2;
END_MAYER
END_OBJECTIVES

C. Control parameterization classes

The pNMPC S/W has two control parameterization features
namely a) Piecewise parameterization and b) Linear parame-
terization. The definitions for the classes are given below
• ControlParamZ<Piecewise> - This class

parameterizes the input in a piecewise fashion over
the prediction horizon. There are multiple constructor
overloads for this class, however in the interest of
brevity, only the simplest case is presented here. Usage:

ControlParamZ<Piecewise> {5,p1,-1,1};

where, the first argument defines the number of
piecewise parameterization placed equidistantly over the
prediction horizon, the second argument p1 represents
the input object from the Inputs class, so the specified
parameterization is latched to this input and the last
two arguments represents the minimum and maximum
bounds over the input p1 respectively.

• ControlParamZ<Linear> - This class parameterizes
the input in a linear fashion over the prediction horizon.
The other specifications follow suit as the piecewise
parameterization. Usage:

ControlParamZ<Linear> {2,p2,-1,1};

D. Real/Symbolic classes

The pNMPC software supports several functions and
operation between real numbers and as well as symbolic

Submitted to IEEE Transactions on Control System Technology
7

objects. The list of supported functions are {sin, cos, tan,
sinh, cosh, tanh, exp, log, abs, asin, acos, atan,
asinh, acosh, atanh, minimum, maximum, sign}.
The list of supported numerical operations are {+, −, ∗, \,
∧, ≥, ≤, &&, ||}, where the last two are logical AND and
OR operations, which is used to couple multiple constraints
to one (Example - blocking constraints in state space region).
The scalar real numbers are declared with Real keyword and
real valued matrices are declared with MATReal keyword.
Symbolic matrices are declared with MATHyperStates
keyword. Usage:

MATHyperStates A(2,2); MATReal B(2,2);
// Populate symbolic matrix
A[0][0] = x1; A[0][1] = x1+sin(x2);
A[1][0] = u1; A[1][1] = u1*x2;
// Populate real matrix
B[0][0] = 2; B[0][1] = -1;
B[1][0] = 5; B[1][1] = 3;
// Symbolic Matrix - Real Matrix multiplication
MATHyperStates C = A*B;

There are several in-build matrix operations such as matrix-
vector operations, matrix-matrix operations etc. packaged
along with the S/W.

E. Code generation classes

The code generation classes are formed by a composition of
three classes which are a) INTEGRATOR, b) CONST_FORM
and c) PNMPCGEN. The definitions of the classes are given
below.
• INTEGRATOR - This enum class specifies the integrator

to be used to simulate the underlying differential
equations. It is important to note that the S/W for now
has support only for explicit solvers. Usage:

INTEGRATOR iODE = INTEGRATOR::RK45;

• CONST_FORM - This enum class specifies the method
for constraint scalarization either using Form 1 or Form
2 technique as mentioned in Section III-A. Usage:

CONST_FORM cF = CONST_FORM::FORM_1;

• PNMPCGEN - This class is used to create the instance
of the OCP with all the aforementioned classes and
functions. The class follows singleton design pattern,
thereby only one instance of the controller can be
generated. The setting function calls are initial and final
time of the OCP, step-size for the embedded integrator,
SQP solver parameters, constraint form, integrator object
and a Boolean flag to toggle between parameter data at
current time step or over the prediction horizon. Finally,
the method genCCode() is invoked to generate the
respective C files. Usage:

PNMPCGEN* pNMPC = PNMPCGEN::getSton();

pNMPC->setInitialTime(0);
pNMPC->setFinalTime(2);
pNMPC->setStepSize(0.1);
pNMPC->getSolver()->setNiter(4);
pNMPC->setConstForm(cF);
pNMPC->setIntegrator(iODE);
// Generate C codes
pNMPC->genCCode();

V. PNMPC CODE GENERATION MODULE

The pNMPC code generation module is not dissimilar to
any compiler design paradigm [28] at the same time the steps
involved are not as extensive as for compilation process of any
programming language. The motivation for adopting a scheme
as such are two folds which are:

1) The ingredients of the OCP problem (objectives, con-
straints, dynamics etc.) fed by the user are broken
down into fundamental elements and then modeled in an
appropriate way to suit the optimization module. Case
in point, the inequality constraints ought to be aligned
in a non-positive formulation as described in (3).

2) By breaking down the OCP into it’s fundamental ele-
ments, code optimization can be performed efficiently
which in turn benefits in reducing the memory footprint
(space complexity) and burning less computer clock
cycles (time complexity). This feature has high practical
importance, especially for low-end embedded devices.

Lexical analyzer Syntax analyzer
(Tokenizer) (Parser)

Intermediate
code generation

Code

Target C code
generation

OCP

Simulink
S-function

optimizationC++

Embedded
system

Fig. 2: pNMPC code generation process

The pNMPC code generation process is illustrated as a process
flow diagram in Fig. 2. The key stages involved in the process
are briefed below:
• OCP design and specification: The OCP’s design and

specification are programmed by the user using C++ as
a front-end modeling language.

• Lexical analyzer: Lexical analyzer or tokenizer takes the
user’s OCP design and specification and breaks down the
entries into separate characters or special tokens such as
the states, inputs, parameters, math operations etc.

• Syntax analyzer: Syntax analyzer or parser scans
through these tokens and contrives a relational tree or
parse tree. Consider an example y = x1x2 + sin(x1x2),
then the computed parse tree for this relation is illustrated
in Fig. 3.

• Intermediate code generation: In this stage, the parse
tree is stored as Three-address code (3AC) and stored in

Submitted to IEEE Transactions on Control System Technology
8

x1 x2 x1 x2

∗ ∗

Sin

+

Fig. 3: Parse tree structure

a stack data structure. Additional variables x3, x4, x5 and
x6 are induced in the due process. It is important to note
that the code is unoptimized at this stage.

• Code optimization: The code optimization stage is a
crucial stage of the code generation module. Typically, the
code optimization module obliterates redundant relations,
self negation operations, identity and inverse relations for
addition, subtraction, multiplication and division opera-
tions such as (to list a few) 0∗x, x+0 etc. In the above
example, it is clearly evident that the term x1 ∗ x2 is
computed twice. After code optimization, this redundancy
is removed and the stack is updated.

• Target C code generation: In this stage, the embedded
C files are exported by using the file stream operations.
Under circumstances of securing the generated source
code, either a static or dynamic library can be created.
However, this has to be done manually by the user.

• Simulink S-function: This stage is optional, however in
today’s world, embedded control has virtually become
MATLAB/Simulink’s fiefdom and it plays a dominant
role in design, development and deployment of produc-
tion code to embedded systems both in industry and
academia. The pNMPC S/W provides the flexibility to
provide Simulink compliant C codes and this can be
included into Simulink by availing MEX wrappers in
MATLAB or C-MEX S-functions features from Simulink.

• Embedded system: Finally, the generated code is de-
ployed into the embedded system either through Simulink
or manually by the user.

VI. RESULTS AND SIMULATIONS

The pNMPC S/W was tested for several examples and the
simulation results looks promising and viable for RT imple-
mentation. In this section, in the interest of space, the results
and simulation of two examples are described in detail which
are a) Cart-pole swing up problem and b) PVTOL stabilization
problem. The outputs were compared against ACADO toolkit
[12] as a benchmark S/W to study the performance and
computation time of the two examples. The examples were
simulated in MATLAB/Simulink on a Intel Core i7, 16GB
RAM PC. The pNMPC C++ codes for the respective examples
are listed in Appendix A and B.

A. Cart-pole swing up problem

The task of the cart-pole swing up problem [29] is to
stabilize a pole in an upright direction (typically starting from
downward position) which is attached to a movable cart by
means of a revolute joint. The control input to this system is
the horizontal force applied to the cart and system is bounded
by physical constraints which are the length of cart travel and
the input force. The nonlinear state space equations of the
system are given below

ẋ = v

v̇ =
−m2lsin(θ)θ̇2 + u+m2gcos(θ)sin(θ)

m1 +m2(1− cos2(θ))

θ̇ = ω

ω̇ =
−m2lcos(θ)sin(θ)θ̇2 + ucos(θ) + (m1 +m2)gsin(θ)

l(m1 +m2(1− cos2(θ)))
(33)

where m1,m2, l, g represents the mass of the cart, mass of
the pole, length of the pole and acceleration due to gravity
respectively. The values for the parameters are listed in Ap-
pendix A. The state vector of the system are x = [x, v, θ, ω],
which are the cart position, cart velocity, pole angle and pole
angular velocity respectively and input to the system is u,
which represents the force acting on the cart. The constraints
acting on the system are

−xmax ≤ x ≤ xmax
−umax ≤ u ≤ umax

(34)

where xmax and umax represents the maximum bounds of
the cart position and cart force respectively. The OCP for the
system is given as

min
x(.),p(.)

x(tf)
T
Qfx(tf) +

∫ tf

0

(x
T
Qx + uTRu) dt

subject to (33), (34), x(0) = {[0, 0, π, 0], [0, 0,
π

2
, 0]}

u(p,x) = p1x+ p2v + p3θ + p4ω + p5
(35)

where tf , Qf , Q, R and Ts represents the look ahead
period, quadratic terminal state cost, quadratic stage state cost,
quadratic input cost and sampling period respectively. The
input parameterization is an affine state feedback policy where
the parameterization vector is p = [p1, p2, p3, p4, p5] which
is modeled a constant over the horizon. Once the OCP is
solved for p∗, the input u(p∗,x(0)) is injected into the system
over the period Ts and this process is repeated in a receding
horizon fashion. To compare against the ACADO controller,
an un-parameterized version of the NMPC problem (35) was
implemented with the following settings - Integrator - 4th
order Implicit Runge Kutta integrator, QP solver - qpOASES,
Hessian approximation - Gauss-Newton, Discretization -
Multiple shooting, Discretization intervals - 30 and for
the rest, default parameters were utilized. The study was
conducted in two parts with two initial conditions which are
x(0) = [0, 0, π2 , 0] and x(0) = [0, 0, π, 0].

Fig. 4 illustrates the cart force, cart position and the pole
angle of the system for pNMPC and ACADO controller for the
first case respectively. The computation time of the pNMPC

Submitted to IEEE Transactions on Control System Technology
9

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-2

-1

0

1

2
C

a
rt

 p
o
s
it
io

n
 (

m
)

pNMPC

ACADO

Min/Max constraints

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-10

-5

0

5

10

C
a
rt

 f
o
rc

e
 (

N
)

pNMPC

ACADO

Min/Max constraints

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-5

0

5

P
o
le

 a
n
g
le

 (
ra

d
)

pNMPC

ACADO

Min/Max constraints

Fig. 4: Cart position, cart force and the pole angle of the
system for initial condition x(0) = [0, 0, π2 , 0]

0 2 4 6 8 10 12 14 16 18 20

Simulation time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
)

10
-3

pNMPC

ACADO

Fig. 5: Cart-pole system computation time

and ACADO controller for the first case is plotted in Fig. 5.
The mean computation time of ACADO hovers around 185.57
ms and 205.05 µs for the pNMPC controller.

Fig. 6 illustrates the cart force, cart position and the pole
angle of the system for pNMPC and ACADO controller for the
second case respectively. From the plots, it is evident that the
ACADO controller crashes, however, despite the numerical
ill-conditioning of model, the pNMPC controller fares well
with state feedback parameterization and at the same time,
the system is stabilized. Fig. 7 illustrates the parameterization
values for the second case.

B. PVTOL stabilization problem

The task of the PVTOL (planar vertical takeoff and landing
aircraft) [30] stabilization problem is to regulate the states

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-2

-1

0

1

2

C
a
rt

 p
o
si

tio
n
 (

m
)

pNMPC

ACADO

Min/Max constraints

0 5 10 15

Time (s)

-10

-5

0

5

10

C
a
rt

 f
o
rc

e
 (

N
)

pNMPC

ACADO

Min/Max constraints

0 5 10 15

Time (s)

-6

-4

-2

0

2

4

6

P
o
le

 a
n
g
le

 (
ra

d
)

pNMPC

ACADO

Min/Max constraints

Fig. 6: Cart position, cart force and the pole angle of the
system for initial condition x(0) = [0, 0, π, 0]

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-60

-50

-40

-30

-20

-10

0

10

20
P

a
ra

m
e

te
ri
z
a

ti
o

n

p1

p2

p3

p4

p5

Fig. 7: Parameterization p1, p2, p3, p4, p5

of the system to the origin given an initial perturbation. The
nonlinear state space equations of the system are given below

ẏ = vy

v̇y = ψBBy (x,u,p)

ż = vz

v̇z = ψBBz (x,u,p)

θ̇ = ω

ω̇ = u2

(36)

where, the state vector is x = [y, vy, z, vz, θ, θ̇] which repre-
sents the vertical position, vertical velocity, horizontal position,
horizontal velocity, roll angle and roll rate respectively, the in-
put vector is u = [u1, u2] which represents the lift acceleration
and angular acceleration respectively and the parameter vector
is p = [σ] which represents the coupling between roll and lift
effects. The variables ψBBy (x,u,p) = −u1sin(θ)+σu2cos(θ)

Submitted to IEEE Transactions on Control System Technology
10

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-3

-2

-1

0

1

2

3

Y
-p

o
s
it
io

n
 (

m
) pNMPC

ACADO

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-3

-2

-1

0

1

2

3

Z
-p

o
s
it
io

n
 (

m
) pNMPC

ACADO

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

R
o
ll
 a

n
g
le

 (
ra

d
)

pNMPC

ACADO

Min/Max constraints

Fig. 8: PVTOL Y-position, Z-position, Roll angle (θ)

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-0.5

0

0.5

1

1.5

2

2.5

L
if
t
a
c
c
e
le

ra
ti
o
n
 u

1
 (

m
/s

2
)

pNMPC

ACADO

Min/Max constraints

0 2 4 6 8 10 12 14 16 18 20

Time (s)

-2

-1

0

1

2

A
n
g
u
la

r
a
c
c
e
le

ra
ti
o
n
 u

2
 (

m
/s

2
)

pNMPC

ACADO

Min/Max constraints

Fig. 9: PVTOL inputs (u1, u2)

and ψBBz (x,u,p) = u1cos(θ) + σu2sin(θ) − 1 represents
the dynamics of the system which are deliberately modeled
as a black-box model and invoked using the function calls
"ModelY" and "ModelZ" respectively. The input arguments
for these functions are the state vector, input vector and
parameter vector and the output is the respective dynamics of
system. The source codes for these functions were compiled
to a dynamic library file and linked during the compilation
process of the pNMPC controller. This example serves as an
use case of the pNMPC S/W, where external black box models
can be linked with the S/W’s inbuilt symbolic variables.

The constraints acting on the system are

0 ≤ u1 ≤ umax1

−umax2 ≤ u2 ≤ umax2

−θmax ≤ θ ≤ θmax
(37)

where umax1 , umax2 , θmax represents the maximum bounds
over the inputs u1 and u2 and the roll angle state θ. The OCP
for the stabilization problem is defined as

min
x(.),p(.)

x(tf)
T
Qfx(tf) +

∫ tf

0

(x
T
Qx + uTRu) dt

subject to (36), (37), x(0) = [1,−1, 2, 1, −14π10 ,−0.1]

u(p) = p
(38)

0 2 4 6 8 10 12 14 16 18 20

Simulation time (s)

0

0.5

1

1.5

2

2.5

3

3.5

4

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
)

10
-4

pNMPC

ACADO

Fig. 10: PVTOL computation time

where tf , Q, R and Ts represents the look ahead period,
quadratic stage state cost, input cost and sampling period
respectively. The input parameterization is p = [p1, p2] where
each parameter has two control points placed equidistantly
over the prediction horizon and follows a linear profile. Once
the OCP is solved for p∗, the input u(p∗) is injected into
the system over the period Ts and this process is repeated
in a receding horizon fashion. The following setting was
chosen for the ACADO controller, Integrator - 4th order
Runge Kutta integrator, QP solver - qpOASES, Hessian
approximation - Gauss-Newton, Discretization - Multiple
shooting, Discretization intervals - 5 and for the rest, default
parameters were utilized. Also, for simulation of ACADO
controller, the whole dynamics of the system was presumed to
known already as ACADO toolkit has no feature to incorporate
external function calls into it’s symbolic framework.

Fig. 8 and Fig. 9 illustrates the Y-position, Z-position and
roll angle (θ) and the inputs u1 and u2 of the system for
the pNMPC and ACADO NMPC controller respectively. The
computation time of the pNMPC and ACADO controller is
plotted in Fig. 10. The mean computation time of ACADO
hovers around 41.50 µs and 44.7 µs for the pNMPC controller.
The comparison highlights the fact that in-spite of incorporat-
ing black box models, the performance and computation time
is nearly on par with the ACADO toolkit.

Submitted to IEEE Transactions on Control System Technology
11

VII. FUTURE WORKS AND CONCLUSIONS

The crux of this paper is to present a derivative free pNMPC
code generation S/W and to validate its performance by means
of simulation on multiple examples. From the simulation study
conducted, it is certainly evident that the proposed S/W has
applications for several engineering systems, where the model
exists either as computer codes or as a data driven model.
Despite the S/W is suffice for several real world applications,
there are certain directions for improvement. The future line
of work can be stratified into three parts a) Technical chal-
lenges, b) Hardware challenges and c) Software challenges. A
detailed examination of the aforementioned division of work
is expounded below

A. Technical challenges

1) Smart parameterization: As mentioned in the Section I
and to re-emphasize the fact again that the potential of the
method solely depends upon the parameterization technique
adopted by the control engineer. However, in cases when this
becomes intricate in nature, the onus of determining an optimal
parameterization is substantially increased. In such a situation,
it would be remiss of not utilizing tools from the machine
learning community. Methods developed in reinforcement
learning (RL) [31] zones in parallel to the proposed approach
and by availing tools and methods from RL community a
smart parameterization technique for pNMPC controller can
be developed.

2) Implicit solvers: As of now, the proposed S/W provides
only explicit ODE solvers for the pNMPC controller. However,
in many applications where the system is intrinsically stiff in
nature, one is obliged to use implicit solvers for numerical
stability. The future version of the S/W would encompass
support for several implicit solvers.

3) Equality constraints: In the future, the S/W would
include support for equality constraints, which is important for
control of periodic systems or to enforce time point constraints
on the system.

4) PDEs, DAEs and Hybrid systems: In the future, the
S/W would include support for control of partial differential
equations (PDEs), differential algebraic equations (DAEs) and
hybrid systems. The overarching goal is to widen the scope
of the S/W and provide a one-stop shop pNMPC solution.

B. Hardware challenges

The SQP-BBO optimization module presented in Section
III clearly provides room for implementation on multi-core
processors. As for the multi-variate case of the SQP-BBO
method, several threads can be spawned in parallel for ev-
ery component of the parameterization vector. This would
downsize the computation time for large parameterization
vectors. In the future, the method would be extended to GPUs
and CPU multi-core processors by using the CUDA/OpenMP
frameworks.

C. S/W challenges

The current S/W provides a primitive interface to MAT-
LAB/Simulink. In the future, it is planned to provide better
interfaces to MATLAB/Simulink, Python and Julia to benefit
all the embedded programmers across the board.

APPENDIX A
PNMPC OCP C++ CODE FOR CART-POLE SWING UP

PROBLEM

#include "pNMPC_headers.hpp"
#define PI 3.1416
using namespace pNMPC;
int main()
{
// States
States p, theta, pd, thetad;
// Inputs
Inputs p1, p2, p3, p4, p5;
// Constant parameters
Real m1 = 1, m2 = 0.1;
Real g = 9.81, l = 0.5;
// Bounds
Real pmax = 2, umax = 10;
Real thetamax = 2*PI;
// OCP data
MATHyperStates Xs(4,1);
Xs = {p,theta,pd,thetad};
MATReal Q = diag({5,10,1,1});
MATReal Qf = diag({10,20,1,1});
Real R = 0.1;

// Input parameterization
BEGIN_PARAMETERIZATION_MAP
ParameterizationMap u = p1*p +
p2*theta + p3*pd + p4*thetad + p5;
END_PARAMETERIZATION_MAP

// Differential equations
BEGIN_DIFFERENTIAL
DiffEquation d1 = pd;
DiffEquation d2 = thetad;
DiffEquation d3 =
(-l*m2*sin(theta)*((thetad)ˆ2)
+u+m2*g*cos(theta)*sin(theta))/
(m1+m2*(1-(cos(theta))ˆ2));
DiffEquation d4 =
(-l*m2*cos(theta)*sin(theta)

*((thetad)ˆ2)+ u*cos(theta)+
(m1+m2)*g*sin(theta))/
(l*m1+l*m2*(1-(cos(theta))ˆ2));
END_DIFFERENTIAL

// Constraints
BEGIN_CONSTRAINTS
BEGIN_REGULAR_CONSTRAINTS
ScalarConstraint G1 =
{-umax <= u <= umax};

Submitted to IEEE Transactions on Control System Technology
12

ScalarConstraint G2 =
{-pmax <= p <= pmax};
ScalarConstraint G3 =
{-thetamax <= theta <= thetamax};

END_REGULAR_CONSTRAINTS
END_CONSTRAINTS

// Lagrangian and Mayer Cost
BEGIN_OBJECTIVES
// Lagrangian Cost
BEGIN_LAGRANGIAN
ScalarObjective LC1 =
{transpose(Xs)*Q*(Xs)};
ScalarObjective LC2 =
{R*((u)ˆ2)};

END_LAGRANGIAN
// Mayer Cost
BEGIN_MAYER
ScalarObjective MC1 =
{transpose(Xs)*Qf*(Xs)};

END_MAYER
END_OBJECTIVES

// Input parameterization
ControlParamZ<Linear>{1,p1};
ControlParamZ<Linear>{1,p2};
ControlParamZ<Linear>{1,p3};
ControlParamZ<Linear>{1,p4};
ControlParamZ<Linear>{1,p5};

// PNMPCGEN singleton object
PNMPCGEN* pNMPC = PNMPCGEN::getSton();
pNMPC->setInitialTime(0);
pNMPC->setFinalTime(1);
pNMPC->setStepSize(0.05);
pNMPC->getSolver()->setNiter(4);
pNMPC->setConstForm(CONST_FORM::FORM_1);
pNMPC->setIntegrator(INTEGRATOR::RK45);

// Generate C code
pNMPC->genCCode();

// Free allocated memory
pNMPC_free();
return 0;
}

APPENDIX B
PNMPC OCP C++ CODE FOR PVTOL STABILIZATION

PROBLEM

#include "pNMPC_headers.hpp"
using namespace pNMPC;
int main()
{
// States
States x1, x2, x3, x4, x5, x6;
// Inputs

Inputs p1, p2;
// External variables
External psi_y = "ModelY";
External psi_z = "ModelZ";
// Constant parameters
Real a_l = 0, a_u = 2;
Real alp_l = -2, alp_u = 2;
// OCP data
MATHyperStates Xs(4,1), Us(2,1);
Xs = {x1,x2,x3,x4,x5,x6};
MATReal Q = 5*eye(6);
MATReal Qf = 10*eye(6);
Real R = 0.01*eye(2);

// Input parameterization
BEGIN_PARAMETERIZATION_MAP
ParameterizationMap a = p1;
ParameterizationMap alp = p2;
END_PARAMETERIZATION_MAP
Us = {a,alp};

// Differential equations
BEGIN_DIFFERENTIAL
DiffEquation d1 = x2;
DiffEquation d2 = psi_y;
DiffEquation d3 = x4;
DiffEquation d4 = psi_z;
DiffEquation d5 = x6;
DiffEquation d6 = alp;
END_DIFFERENTIAL

// Constraints
BEGIN_CONSTRAINTS
BEGIN_REGULAR_CONSTRAINTS
ScalarConstraint G1 =
{a_l <= a <= a_u};
ScalarConstraint G2 =
{alp_l <= alp <= alp_u};
ScalarConstraint G3 =
{-15*PI/180 <= x5 <= 15*PI/180};

END_REGULAR_CONSTRAINTS
END_CONSTRAINTS

// Lagrangian and Mayer Cost
BEGIN_OBJECTIVES
// Lagrangian Cost
BEGIN_LAGRANGIAN
ScalarObjective LC1 =
{transpose(Xs)*Q*(Xs)};
ScalarObjective LC2 =
{transpose(Us)*R*(Us)};

END_LAGRANGIAN
// Mayer Cost
BEGIN_MAYER
ScalarObjective MC1 =
{transpose(Xs)*Qf*(Xs)};

END_MAYER
END_OBJECTIVES

Submitted to IEEE Transactions on Control System Technology
13

// Input parameterization
ControlParamZ<Linear>{2,p1,a_l,a_u};
ControlParamZ<Linear>{2,p2,alp_l,alp_u};

// PNMPCGEN singleton object
PNMPCGEN* pNMPC = PNMPCGEN::getSton();
pNMPC->setInitialTime(0);
pNMPC->setFinalTime(2);
pNMPC->setStepSize(0.1);
pNMPC->getSolver()->setNiter(4);
pNMPC->setConstForm(CONST_FORM::FORM_1);
pNMPC->setIntegrator(INTEGRATOR::RK45);

// Generate C code
pNMPC->genCCode();

// Free allocated memory
pNMPC_free();
return 0;
}

REFERENCES

[1] S. V. Raković and W. S. Levine, Handbook of model predictive control.
Springer, 2018.

[2] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit
linear quadratic regulator for constrained systems,” Automatica, vol. 38,
no. 1, pp. 3–20, 2002.

[3] J. B. Rawlings, E. S. Meadows, and K. R. Muske, “Nonlinear model
predictive control: A tutorial and survey,” IFAC Proceedings Volumes,
vol. 27, no. 2, pp. 185–197, 1994.

[4] A. Mesbah, “Stochastic model predictive control: An overview and
perspectives for future research,” IEEE Control Systems Magazine,
vol. 36, no. 6, pp. 30–44, 2016.

[5] D. Q. Mayne, M. M. Seron, and S. Raković, “Robust model predic-
tive control of constrained linear systems with bounded disturbances,”
Automatica, vol. 41, no. 2, pp. 219–224, 2005.

[6] A. Aswani, H. Gonzalez, S. S. Sastry, and C. Tomlin, “Provably safe
and robust learning-based model predictive control,” Automatica, vol. 49,
no. 5, pp. 1216–1226, 2013.

[7] M. Ellis, H. Durand, and P. D. Christofides, “A tutorial review of eco-
nomic model predictive control methods,” Journal of Process Control,
vol. 24, no. 8, pp. 1156–1178, 2014.

[8] M. Bujarbaruah, X. Zhang, U. Rosolia, and F. Borrelli, “Adaptive mpc
for iterative tasks,” in 2018 IEEE Conference on Decision and Control
(CDC). IEEE, 2018, pp. 6322–6327.

[9] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, H. Elmqvist, A. Jung-
hanns, J. Mauß, M. Monteiro, T. Neidhold, D. Neumerkel et al., “The
functional mockup interface for tool independent exchange of simulation
models,” in Proceedings of the 8th International Modelica Conference;
March 20th-22nd; Technical Univeristy; Dresden; Germany, no. 063.
Linköping University Electronic Press, 2011, pp. 105–114.

[10] “EMPHYSIS: Embedded systems with physical models in the produc-
tion code software,” https://itea3.org/project/emphysis.html.

[11] M. Alamir, Stabilization of nonlinear systems using receding-horizon
control schemes: a parametrized approach for fast systems. Springer,
2006, vol. 339.

[12] B. Houska, H. J. Ferreau, and M. Diehl, “An auto-generated real-
time iteration algorithm for nonlinear mpc in the microsecond range,”
Automatica, vol. 47, no. 10, pp. 2279–2285, 2011.

[13] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and opti-
mal control,” Mathematical Programming Computation, vol. 11, no. 1,
pp. 1–36, 2019.

[14] J. Kalmari, J. Backman, and A. Visala, “A toolkit for nonlinear model
predictive control using gradient projection and code generation,” Con-
trol Engineering Practice, vol. 39, pp. 56–66, 2015.

[15] F. Ullmann, “Fiordos: A matlab toolbox for c-code generation for first
order methods,” MS thesis, 2011.

[16] J. Mattingley and S. Boyd, “Cvxgen: A code generator for embedded
convex optimization,” Optimization and Engineering, vol. 13, no. 1, pp.
1–27, 2012.

[17] A. Zanelli, A. Domahidi, J. Jerez, and M. Morari, “Forces nlp: an effi-
cient implementation of interior-point methods for multistage nonlinear
nonconvex programs,” International Journal of Control, vol. 93, no. 1,
pp. 13–29, 2020.

[18] I. Necoara and A. Patrascu, “Duquad: an inexact (augmented) dual
first order algorithm for quadratic programming,” arXiv preprint
arXiv:1504.05708, 2015.

[19] T. Englert, A. Völz, F. Mesmer, S. Rhein, and K. Graichen, “A software
framework for embedded nonlinear model predictive control using a
gradient-based augmented lagrangian approach (grampc),” Optimization
and Engineering, vol. 20, no. 3, pp. 769–809, 2019.

[20] G. Banjac, B. Stellato, N. Moehle, P. Goulart, A. Bemporad, and
S. Boyd, “Embedded code generation using the OSQP solver,” in IEEE
Conference on Decision and Control (CDC), 2017. [Online]. Available:
https://doi.org/10.1109/CDC.2017.8263928

[21] H. A. Shukla, B. Khusainov, E. C. Kerrigan, and C. N. Jones, “Software
and hardware code generation for predictive control using splitting
methods,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 14 386–14 391, 2017.

[22] M. Kvasnica, P. Grieder, M. Baotić, and M. Morari, “Multi-parametric
toolbox (mpt),” in International Workshop on Hybrid Systems: Compu-
tation and Control. Springer, 2004, pp. 448–462.

[23] H. J. Ferreau, S. Almér, R. Verschueren, M. Diehl, D. Frick, A. Dom-
ahidi, J. L. Jerez, G. Stathopoulos, and C. Jones, “Embedded opti-
mization methods for industrial automatic control,” IFAC-PapersOnLine,
vol. 50, no. 1, pp. 13 194–13 209, 2017.

[24] M. Alamir, “The pdf-mpc package: A free-matlab-coder package
for real-time nonlinear model predictive control,” arXiv preprint
arXiv:1703.08255, 2017.

[25] K. M. M. Rathai, “pNMPC: A code generation tool for implemen-
tation of pnmpc controller for embedded control systems,” https://
github.com/Kartz4code/pNMPC CODEGEN, 2020, [Online; accessed
22-June-2020].

[26] M. Alamir, A pragmatic story of model predictive control: self-contained
algorithms and case-studies. CreateSpace Independent Publishing
Platform, 2013.

[27] ——, “A framework for real-time implementation of low-dimensional
parameterized nmpc,” Automatica, vol. 48, no. 1, pp. 198–204, 2012.

[28] A. V. Aho, R. Sethi, and J. D. Ullman, “Compilers, principles, tech-
niques,” Addison wesley, vol. 7, no. 8, p. 9, 1986.

[29] A. Mills, A. Wills, and B. Ninness, “Nonlinear model predictive control
of an inverted pendulum,” in 2009 American control conference. IEEE,
2009, pp. 2335–2340.

[30] P. Martin, S. Devasia, and B. Paden, “A different look at output tracking:
control of a vtol aircraft,” Automatica, vol. 32, no. 1, pp. 101–107, 1996.

[31] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

