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Abstract

Linear demand systems and quasi-linear quadratic utility models are widely used in industrial
economics. We clarify the link between the two settings and explain their exact origin as it seems
to be little known by practitioners. We offer practical recommendations to achieve consistency,
tractability and a reasonable degree of generality when using the linear demand framework. We
show that all tractable versions of the model used in practice are (almost) identical and have a
mean-variance structure. We provide concise, ready-to-use formulae for the symmetric model.
Finally, we revisit and extend the asymmetric model of Shubik and Levitan.
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1 Introduction
The usage of a Linear Demand System for differentiated goods (henceforth LDS) is widespread in
oligopoly theory, especially when closed-form solutions are needed. Historically, the micro-foundation
of an LDS has been the Quasilinear Quadratic Utility Model (hereafter QQUM).

As Amir, Erickson, and Jin (2017) point out, “this framework has become so widely invoked that
virtually no author nowadays cites any of the(se) early works when adopting this convenient setting.”
This lack of reference is not new, however. Some researchers find it so natural to use linear (direct or
inverse) demands (and to derive them from a QQUM) that they do not try to give a source.1 This
lack of reference, however, can confuse other economists who try to cite a source but have difficulties
coördinating on the correct one. Whereas users can also be disoriented by the various existing ways
to write an LDS and/or a QQUM, we show that models presented as different are in fact isomorphic.

The goal of this paper is to help IO economists find their way into the intricacies of these models.
For that purpose, we structured the paper as follows. In section 2, we start by briefly recounting how
LDS and QQUM were introduced and extensively used by Richard E. Levitan and Martin Shubik2

in the 1960s and we show these pioneers deserve credit for having paved the way. In fact, by analogy
with the Cobb-Douglas utility function, it would not be farfetched to name QQUM after Levitan
and Shubik. Next, in section 3, we introduce a general LDS and explain its relation to QQUM. We
then survey the main properties of an oligopoly game based on such linear demands. In section 4
we explain the ins and outs of a simple yet rich enough symmetric model. We provide concise
ready-to-use formulae and emphasize the mean-variance structure of the model. Finally, in section 5,
we extend the symmetric model to a richer asymmetric set-up (revisiting the asymmetric model of
chapter 9 of Shubik and Levitan (1980)). Closed-forms formulae can still be obtained and could be
of more use in future research to emphasize results absent in the symmetric context.

2 Genesis of LDS and QQUM
Martin (2002) states that part of QQUM originates in Bowley (1924) (see section 3.6 of Martin’s
book).3 However, a close look at page 56 of Bowley’s book shows that it is farfetched as, actually, this
author did not make the quasi-linearity assumption. Bowley, indeed, considered, for two commodities,
a consumer with a general quadratic utility (as later would Dixit (1979) and Singh and Vives (1984))
but the derived demands are very different from QQUM, in particular, they are not linear in prices.

After an extensive search, we traced back the usage of LDS to the 1960s and to the collaboration
between Richard E. Levitan and Martin Shubik.

Fact 1 (Dawn of LDS). Martin Shubik introduced a linear demand system to model a differentiated
good oligopoly game in the early 1960s. In 1961, he joined forces with Richard E. Levitan at I.B.M..

The following quote is of particular interest:

“I went to IBM in October 1961 and started to work with Dick Levitan to move my game
from an IBM 650 to a bigger, better machine-also to add any new features to it. (Our
first game used a template as we had no way to print out the format. We could only print
numbers.) Levitan did his thesis with Dorfmann and me on a quadratic programming
method for allocating demand among oligopolistic firms with product differentiation.”
Martin Shubik (see Smith (1992), page 252)

1By analogy, no sane economist would look for a reference when using a linear demand like Dppq � a�bp. Although,
Cournot (1838) might be a decent try.

2March 24, 1926 – August 22, 2018. He had a long and productive career. See the Special Issue in his Honor
published by Games and Economic Behavior (Volume 65, Issue 1, Pages 1-288, January 2009).

3In the 1993 first edition there is no such reference to Bowley and only a slight reference to Levitan and Shubik.
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From Vernon Smith’s perspective the work of Levitan and Shubik is one of the first laboratory
experiment in oligopoly theory. Shubik (1961),4 describes a more general demand function which is
then simplified5 into a linear one à la LDS. That is (again changing the notations):

qi � 1
n

�
a� b

�
1� σ � σ

n

	
pi � b

σ

n

�¸
j�i

pj

��
� 1
n
ra� bpi � bσ pp� piqs

where p � 1
n

°
pi is the average price. Note that throughout our paper, whenever there is no

ambiguity the subscript is skipped in the sum terms. That is the lengthy
°n
i�1 xi is simply written°

xi. Shubik placed a factor 1{n in front of the demand expression so that total demand
°
qi � a�bp,

is independent of n when all prices are equal. This point is made in Martin’s book and we further
discuss it in section 4.2.

Levitan’s name soon appeared. First, in two IBM research reports describing the same busi-
ness/experimental game: Levitan and Shubik (1962a) and Levitan and Shubik (1962b). Next, in
Shubik (1964) the collaboration with Levitan is also made clear: “This paper is part of a continuing
study done by the author in coöperation with Richard Levitan of the IBM corporation.” The content
of the missing IBM reports is probably used in the Cowles Foundation research papers published
later, in particular: Levitan and Shubik (1967a) (part of which is published as Levitan and Shubik
(1971b)) and Levitan and Shubik (1967b).

Fact 2 (QQUM). From the mid 1960s, Levitan and Shubik founded their LDS on a quasilinear
quadratic utility. Moreover, they started to study both price and quantity competition.

Indeed, the understanding of QQUM by Levitan and Shubik had evolved from the astute but
ad hoc linear demands to a more structural model with a representative consumer. “We assume
that consumer preferences can be represented by a general quadratic utility function. Our somewhat
strong special assumption is that to a first approximation there is no income effect between this class
of goods and the remainder of the consumer’s purchases.” (Levitan and Shubik (1967b), page 2).
They also refer to the PhD thesis Levitan (1966) for a detailed analysis. They write:6

U � a
¸
qi � 1

2β

�
2σ
¸
i

¸
j¡i

qiqj �
¸�

σ � 1� σ

wi



q2
i

�
�
¸
piqi (1)

where they call wi a weight reflecting the size of firm i, for all i, 0   wi   1 and
°
wi � 1. Notice

that in both Levitan and Shubik (1967a) and Levitan and Shubik (1967b) matrix notations are used
to solve for the Nash equilibrium of both the price and quantity games.7

Fact 3 (Book and slow diffusion). In 1980, Levitan and Shubik gathered their previous work on LDS
and QQUM in Shubik and Levitan (1980). The reception of the book in the academic arena was cold
and it was not mentioned in the main IO surveys which flourished at the end of the 1980s.

The first five chapters of the book Shubik and Levitan (1980) can be seen as an update of the
book Shubik (1959). Chapter 6 introduces QQUM for a symmetric duopoly, chapter 7 extends it to a

4In the book Shubik (1959) no LDS is mentioned.
5The whole framework is fairly complicated and business oriented as it aims to incorporate the effect of advertising

on demand, inventory constraints, and financial variables like loans, and dividends.
6Again, adjusting the notations to keep formulae homogeneous throughout this paper. From their formula page 2,

the following notational changes have been made: V Ñ a and γ Ñ σ
1�σ .

7After Levitan and Shubik have been less involved with QQUM. They have another working paper together (duopoly
model) Levitan and Shubik (1969) (published in the Journal of Economic Theory: Levitan and Shubik (1971a)). A
duopoly variant of (1) is used in Shapley and Shubik (1969) where they do not cite Levitan and Shubik (1967a) nor
Levitan and Shubik (1967b). Levitan and Shubik published several articles on related topics (always in a duopoly
setting): Levitan and Shubik (1971b), Levitan and Shubik (1972), and Levitan and Shubik (1978).
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n firm symmetric oligopoly, and chapter 9 to an asymmetric oligopoly where their chosen quadratic
utility (9.5) page 132 is a slight modification of (1).

Despite their thorough work, Levitan and Shubik’s approach was not immediately popular. In
particular, their 1980 book Market structure and behavior, which from today’s perspective has cer-
tainly been a success (most academic libraries hold the book and it is still in print), received mixed
reviews to say the least. It is almost painful to read some reviews. Rothschild (1982) in the Journal
of Economic Literature is unmerciful: “Much of the book is devoted to computing the solutions of
different variants of a single model. Although it is interesting and important to know that this can
be done, it is difficult to stay awake while watching the process. I found it hard to make anything of
the many numerical results that are presented and so, I suspect, did the authors. The results of an
attempt to apply the oligopoly model to a real problem can charitably be described as eccentric.” In
the Journal of Political Economy, Telser (1982) is not enthusiastic either: “A mere catalog of some
models of oligopoly does not constitute a useful contribution to economics. Readers deserve a coher-
ent set of principles that can relate the theories, a demonstration of their explanatory power, if any,
and a statement of which survives these tests.” Telser is also quite harsh on the empirical part: “The
book also contains a section purporting to apply the theories to the study of the automobile industry,
but it does not pass even the loosest standards of econometric rigor.” In the Economic Journal, Reid
(1982) is more positive and spends more space than the previous two reviews on praising the book,
concluding “On balance, however, the reading of the book is a tonic. It stimulates, fascinates and
informs, and will repay frequent re-reading.” Chapter 9 is praised (both Reid and Telser find chapter
9 the most ambitious) but also criticized: “. . . but the great weight of attention is still given to pure
theory and occasionally, as in chapter 9, to one of its least attractive varieties, namely the intricate
manipulation of specialized functional forms.” Similarly, Pagoulatos (1983) in Southern Economic
Journal writes “Finally, the mathematical manipulations of different linear functions presented in
Chapter 9 leave the reader in strong doubt about the usefulness of following every step of the various
exercises. Relegating the nonessential manipulations to an appendix would have added considerably
to the enjoyment of the book.”

Later the IO Bible, Tirole (1988), put forward the address models, Hotelling and Salop, (see chap.
7 of Tirole’s book) to deal with product differentiation. Similarly, in the “Product Differentiation”
chapter of the Handbook of Industrial Organization (vol. 1, chap. 12) Eaton and Lipsey (1989) focus
on address models and when briefly discussing the representative consumer approach they do not
mention Levitan and Shubik (see also their Figure 12.4. “Historical perspective”, page 762). They
only refer to the seminal papers on monopolistic competition: Spence (1976a), Spence (1976b) and
Dixit and Stiglitz (1977). Finally, in Anderson, De Palma, and Thisse (1992) there is no reference to
QQUM and (therefore) no reference to Levitan and Shubik.

How to explain the relative lack of success of Levitan and Shubik’s work on QQUM? First, as
shown by the surveys by Tirole and Eaton and Lipsey, by the end of the 1980s the representative
consumer approach was not seen as having appropriate microeconomic foundations. Consumers have
different tastes and each individual buys only a tiny subset of all available varieties (see Section 3.1
below for more on this point). Second, as the monopolistic competition literature (Dixit and Stiglitz
(1977)) finally made the representative consumer approach popular, most researchers (e.g. in trade)
adopted the constant elasticity of substitution (CES) utility function rather than the QQUM.

Regarding specifically the use of LDS in industrial economics, some confusion might come from
the fact that QQUM was independently introduced by Spence (1976a) and Dixit (1979). In Spence
(1976a) there is no representative consumer. A n goods, completely symmetric LDS is assumed (see
(2) page 411) and Spence derives (footnote 6, page 412) consumers’ surplus (which takes a QQUM
form). In Dixit (1979), a general (two-good) quasi-linear utility function is introduced (see (1) page
21) and used to derive inverse demands (see (2) page 22). In order to derive comparative statics
results, Dixit assumes a quadratic form (see (4) page 26). He gives the precise conditions under which
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the utility is concave. It is Spence (1976a) which is referred to in the seminal work of Singh and
Vives (1984) (they also cite Shubik and Levitan (1980), but they do not present it as a predecessor).

Fact 4 (QQUM usage in IO). From the 1980s up until today, QQUM has been used in IO, typically
when closed-form formulae are needed.

Despite the dominant view that address models were sounder, and the competing references of
Dixit and Spence, the spirit of QQUM endured and proved itself useful in IO. Some authors started
to cite the book Shubik and Levitan (1980) and also, but to a lesser extend, the chapter Levitan and
Shubik (1971b). Prominent examples are Deneckere and Davidson (1985),8 Vives (1985),9 Shaked
and Sutton (1990), Bagwell and Ramey (1991), Shaffer (1991), Dobson and Waterson (1997), and
Sutton (1997). In, Motta (2004), influential book “Competition Policy: Theory and Practice”, the
Levitan and Shubik’s model is used (in particular in chapter 5 on horizontal mergers) to illustrate
some properties with a closed-form model.

Among the articles relying on QQUM, there is a literature on comparing prices, quantities, profits,
welfare, between Bertrand and Cournot competition. Levitan and Shubik themselves have compared
prices when all goods are substitutes, see Levitan and Shubik (1967b) page 7, but this strand of
literature really started with Singh and Vives (1984) and Vives (1985), the main reference remaining
Amir and Jin (2001).10

Table 1 lists a sample of articles, on various topics, that (by and large) adopt a similar modeling
strategy. A general product differentiation oligopoly framework is used at the start of the paper,
some results are derived, and at the end the QQUM is introduced in order to derive more specific
results which are unclear in the general framework. In almost all these examples only a symmetric
QQUM is used.

QQUM is not particularly popular among econometricians probably because in its general form
it involves too many coefficients to estimate. Pinkse, Slade, and Brett (2002) is an exception. There
QQUM is presented as a second order approximation of a general demand model. This is a clever
remark which could very well explain the success of QQUM in practice when a result cannot be
shown with a general (nonlinear) demand function.

8They give Shubik as the sole author of the book because on the book cover, of the first editions, the author is
“Martin Shubik with Richard Levitan”. Many authors give credit to both authors and we follow this tradition here.

9There Levitan and Shubik’s book is cited although the publication year is wrong: 1971 instead of 1980. The same
mistake is made in Vives (2001). Maybe a confusion between the 1980 book and the 1971 chapter. In Vives (2008) the
year is correct but the QQUM origin is attributed to Shapley and Shubik (1969). Theilen (2012) also cites this article.

10Häckner (2000) presents new results, in particular for σ   0. See Chang and Peng (2012) for a survey.

4



Table 1: Sample of articles using QQUM

Article Journal year Nb firms Type of B Hetero. L&S
a or c

Spence AER 1976 n Symmetric No No
Dixit BJE 1979 2 General Yes No

Friedman BJE 1983 n Symmetric Yes Yes
Singh and Vives RJE 1984 2 General Yes Yes

Deneckere and Davidson RJE 1985 n Symmetric No Yes
Vives JET 1985 n Symmetric No Yes

Shaked and Sutton RJE 1990 n Symmetric No Yes
Bagwell and Ramey RJE 1991 n Symmetric No Yes

Shaffer RJE 1991 2 Symmetric No Yes
Besanko and Perry RJE 1993 3 Symmetric No Yes
Röller and Tombak MS 1993 n Symmetric No Yes

Raju, Sethuraman, and Dhar MS 1995 n Symmetric No Yes
Raith JET 1996 n Symmetric Yes No

Dobson and Waterson JINDEC 1997 n Symmetric Yes No
Sutton RJE 1997 n Symmetric No Yes

Sayman, Hoch, and Raju MkS 2002 3 Asymmetric Yes Yes
Pinkse and Slade EER 2004 n Symmetric Yes No
Marx and Shaffer IJIO 2004 2 Symmetric Yes No

Motta Book 2004 n Symmetric No Yes
Chen and Gayle IJIO 2007 2 Symmetric No No

Daughety and Reinganum RJE 2008 n Symmetric Yes No
Fumagalli and Motta EJ 2008 n Symmetric No Yes

Vives JINDEC 2008 n Symmetric Yes Yes
Abito and Wright IJIO 2008 2 Symmetric Yes Yes

Foros, Hagen, and Kind MS 2009 n Symmetric No Yes
Kind, Nilssen, and Sørgard MkS 2009 n Symmetric No Yes

Lu and Wright IJIO 2010 2 Symmetric No No
Rey and Vergé JINDEC 2010 4 General Yes No

Subramanian, Raju, Dhar, and Wang MS 2010 2 Symmetric Yes Yes
Bourreau, Hombert, Pouyet, and Schutz JINDEC 2011 3 Symmetric Yes No

Inderst and Valletti EER 2011 n Symmetric No Yes
Calzolari and Denicolo AER 2015 2 Symmetric No Yes
Edelman and Wright QJE 2015 n Symmetric No Yes

Abhishek, Jerath, and Zhang MS 2016 2 Symmetric No Yes
Allain, Henry, and Kyle MS 2016 n Symmetric No Yes

Cho and Wang MS 2016 n Symmetric No Yes
Herweg and Müller IJIO 2016 2 Symmetric Yes No

Ulsaker IJIO 2020 2 Symmetric Yes No
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3 Foundation of LDS and QQUM: an interlocking relationship?
In this section, we first discuss necessary properties of LDS, their micro-foundations from individual
preferences with no income effect, and the conditions for integrability. Next, focusing on the main
case where integrability into a QQUM is guaranteed, we show how various oligopoly games can be
solved with arbitrary many products and various market structures.

Notations Mostly for compactness in presentation, it is convenient to use the following notations.
Let x (bold font) denote a vector of size n: x � px1, � � � , xnq1 where the 1 stands for transposition. A
capital bold letter, as X, denotes a n�n matrix which elements are xij . Levitan and Shubik already
resorted to matrix notations but mostly for their proofs. As IO economists are not always at ease
with matrix notations, standard expressions are (most of the time) also given throughout this paper.
Let qi denote the quantity of good i, i � 1 to n, and let q � pq1, � � � , qnq1 denote the column vector
of such quantities. Let pi denote the price of good i, i � 1 to n, and let p � pp1, � � � , pnq1 denote the
column vector of prices.11

3.1 Linear Demand Systems

Ideally, an LDS would be micro-founded, i.e. consistent with a detailed description of the market
under study: a population of individual consumers with possibly heterogeneous preferences over the
set of differentiated goods, including possible search or transportation costs, as well as any property
of the underlying environment. Then aggregation of individual demands would lead to an LDS, that
is n relationships of the form

for each product i, qi � di �
¸
j

hijpj .

Throughout the paper we assume that prices are such that all qi are positive.12 These expressions
can be gathered in matrix form:

q ppq � d�Hp . (2)
First and foremost the domains of d and H have to be restricted to make it a meaningful demand
system. Assuming d ¡ 0 and hii ¡ 0 is a first step but it is not enough. It also has to satisfy the law
of demand, which extends to the multiproduct case the idea that demand decreases with price:13

for any pair of prices p1, p2,
�
p1 � p2�1 �q �p1�� q

�
p2�� ¤ 0 .

In the linear case, the above condition boils down to the matrix H being positive semi-definite. That
is, symmetric and for any p ¡ 0, the scalar p1Hp should be nonnegative. If p1Hp is never zero, H
is positive definite.

Even for a micro-founded LDS, a natural question is whether or not it can be derived from the
utility function of a representative consumer. Formally, following definition 3 of Nocke and Schutz
(2017), an LDS is quasi-linearly integrable if there exists a function Upqq such that the LDS is the
unique solution to maxq0,q Upqq�q0 s.t. q0�p1q � m, wherem denotes the wealth of the consumer.
Fact 5 (Law of demand and integrability). An LDS, q � d�Hp, satisfies the law of demand if and
only if matrix H is positive semi-definite, and in that case it is quasi-linearly integrable. Moreover,
it is quasi-linearly integrable into a QQUM if and only if matrix H is positive definite.14

11It goes without saying that throughout prices and quantities are nonnegative.
12The logic behind this usual approach is to neglect these positivity constraints, solve for a unique Nash equilibrium

and verify that the constraints are satisfied for the equilibrium values.
13See Lemma 1 of Amir, Erickson, and Jin (2017) and the discussion above, and Theorem 1 of Nocke and Schutz

(2017).
14The proof can be found (under slightly different forms) in LaFrance (1985), Amir, Erickson, and Jin (2017), and

Nocke and Schutz (2017).
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The Hotelling line model illustrates that an LDS can be micro-founded, satisfy the low of demand,
be quasi-linearly integrable but not into a QQUM. Slightly generalizing the textbook two-good ex-
ample, assume that consumers are described by their location x P r0, 1s. If consumer x buys good 1
(located a zero) at price p1, s/he has a surplus u1 � p1 � tx where t is a transportation cost. Buying
good 2 (located at one) at price p2 leads to a surplus u2 � p2 � tp1 � xq. Not buying (i.e. the
outside option) gives a surplus normalized at zero. For prices such that the demand of both goods
are positive, the corresponding LDS is:�

q1
q2



� 1

2t

�
t� u1 � u2
t� u2 � u1



� 1

2t

�
1 �1

�1 1


�
p1
p2



.

The matrix pp1,�1q, p�1, 1qq is positive semi-definite but not positive definite. Therefore it is a
well defined, quasi-linearly integrable LDS but it is not quasi-linearly integrable into a QQUM. The
price competition duopoly game has a unique Nash equilibrium and consumers’ surplus can be easily
computed. One could not, however, define a quantity competition duopoly.

The above Hotelling example brings us naturally to a negative result provided by Jaffe and Weyl
(2010). They show that a linear demand system cannot be generated from continuous discrete choice
foundations when there are at least two products and buyers can consume an outside option. This
seems at odds with the basic Hotelling and Salop models, however. Armstrong and Vickers (2015)
generalize Jaffe and Weyl and show, in particular, that linear demand can be consistent with a
discrete choice model in which the support of valuations does not have full dimension. And, indeed,
let θ1 � u1 � tx and θ2 � u2 � tp1 � xq then pθ1, θ2q P Θ � ru1 � t, u1s � ru2 � t, u2s. A pair pθ1, θ2q
characterizes a consumer but consumers are not continuously distributed over Θ as they are all on
the line θ2 � θ1 � u1 � u2 � t.

Fact 6 (Micro foundation of an LDS). An LDS q � d�Hp with for all i,
°
j hij ¡ 0 can be micro

founded by heterogeneous consumers distributed along the lines and at the nodes of a n node complete
graph with Hotelling-like utility functions for each pair of goods.

In the spirit of the spokes model of Chen and Riordan (2007) (see also section 4.3 of Amir, Jin,
Pech, and Tröge (2016)) and also building on the duopoly example given in the working paper Bos
and Vermeulen (2019),15 one can proceed as follows. Let µii be the mass of consumers interested
uniquely in brand i, i � 1 to n and µij the mass of consumers potentially interested in both brand i
and j � i with µij � µji.16 Notice that good i and j � i could be substitute or complement. Local
demands are derived as in the Hotelling line example and take the form:

qii � xii � τii pi and qij �
"
xij � τij ppj � piq if hij   0
xij � τij ppj � piq if hij ¡ 0

where τij � τji � 1{tij is the inverse of the transportation cost on the line between i and j. When
hij   0 then τij ¡ 0 and 0   xij   1 is the demand for good i when pi � pj , with xji � 1 � xij .
Whereas when hij ¡ 0 then τij   0 and 0   xij � xji is the demand for both good i and j when
pi � pj � 0.17 In Chen and Riordan, two goods are always substitute, qii � N�n

N�1
2
N pv � piq if

0 ¤ v � pi ¤ 1 and qii � N�n
N�1

2
N otherwise, and qij � 1

NpN�1q p1� pj � piq.
15We are grateful to a referee for pointing out this contribution.
16Products are located at n different nodes and there is complete graph linking these nodes. Consumers are located

along the graph lines and at the nodes.
17In the case n � 2, the Hotelling graph model can be seen as a search model à la Rosenthal (1980) Varian (1980)

with a fraction of consumers loyal to good 1 (say, coffee), another loyal to good 2 (say, tea), and a fraction of shoppers
who could buy one or the other. In these two seminal models, shoppers would all buy from the cheapest brand leading
to a mixed strategy equilibrium. Here shoppers are heterogenous.
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Then total demand for brand i (assuming that all local demands are positive) writes:

qi �
¸
j

µijqij �
�¸

j

µijxij

�
�
�¸

j

µijτij

�
pi �

¸
j�i

µijτijpj

which could be matched with
qi � di � hiipi �

¸
j�i

hijpj

Therefore, for i � j, one should have µijτij � �hij . Then the equation
°
j µijτij � hii writes

µiiτii �
°
j�i hij � hii and here the only issue is the constraint µiiτii ¡ 0. That is, the matrix H

should be such that for all i, hii �
°
j�i hij ¡ 0 which is true by assumption. This condition is fairly

natural as it means that if the prices of all goods are increased by the same amount then the demands
of all goods decrease. It is, however, more restrictive than the Law of demand.

3.2 Quasilinear Quadratic Utility Model

As explained at the end of Section 2, when studying an economic question in a general product
differentiation oligopoly, the need of a tractable demand system arises in order to have closed-form
solutions. The natural choice is an LDS. In order to have a foundation, most papers choose to derive
this LDS from a QQUM (see Table 1 for articles on various topics where this modeling strategy is
followed). Formally, the assumption is made to restrict the attention to the family of positive definite
H matrices in (2). Thus excluding from the analysis the singular positive semi-definite matrices. As
generically a positive semi-definite matrix is positive definite, this choice makes sense. Another
advantage of this choice is that both Bertrand and Cournot competition can be studied and that
their equilibria can be expressed in a symmetric way.

If QQUM started with Levitan and Shubik, several academics have, since then, generalized it. In
this section, we use a general framework to introduce formally QQUM and derive its main properties.
This section (and the next where oligopoly games are solved) builds on previous articles which can
be divided into two groups. First, Economics oriented articles: Jin (1997), Amir and Jin (2001),
Bernstein and Federgruen (2004), Choné and Linnemer (2008), Chang and Peng (2012), and Amir,
Erickson, and Jin (2017). Second, Operation Research oriented ones: Farahat and Perakis (2009),
Farahat and Perakis (2011a), Farahat and Perakis (2011b), Kluberg and Perakis (2012). Cross-
citations between the two groups tend to be rare.

Quasi-linear Quadratic utility The quasi-linear quadratic utility model (QQUM) first assumes
quasi-linearity. That is, there is a numéraire good q0 which price is normalized to 1 and the utility
function (of the representative consumer) writes Upqq � q0. The maximization problem of the con-
sumer writes: maxq0,q Upqq � q0 s.t. q0 � p1q � m where m denotes the wealth of the consumer.
Eliminating18 q0 and dropping the constant term m, leads to maxq Upqq�p1q. Assuming a quadratic
form for Up.q allows to write the maximization problem as

max
q

Upqq � p1q � max
q

pa � pq1 q � 1
2q1Bq (3)

where a is the column vector of the (marginal) quality (or utility) indexes, ai, one for each variety i,
and B is a n� n positive definite matrix a necessary condition for U to be strictly concave. The B
matrix captures the complementarity/substitution patterns. The diagonal terms, bii � bi, correspond
to �B2U{B2qi and capture the concavity of U with respect to qi (or how quickly is the marginal utility

18This cannot be done for all values of m. If m is too small the constraint q0 ¥ 0 could be binding and the optimal
quantities would depend on m. See Varian (1992) (chapter 10 section 3) and Amir, Erickson, and Jin (2017).
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of good i decreases). The off-diagonal terms, bij i � j, correspond to �B2U{BqiBqj and capture the
(possibly rich) pattern of complementarity and substitutability among the goods.19

Without matrix notations, the objective function of (3) writes (noting bii � bi):

Upqq � p1q �
¸

pai � piq qi �
¸
i

¸
j¡i

bijqiqj � 1
2
¸
biq

2
i . (3 bis)

Some authors normalize the bi to one. This is possible (by changing the units with which each
quantity is measured, i.e. using xi �

?
biqi). Very often it would be useless because the bij terms

would not be made simpler. In practice, one chooses a specific model (i.e. B) for tractability. So it
is more a question of choice than one of normalization. Sometimes, however, a (re)normalization is
useful to show that two models are isomorphic (see section 4.1 and section 5).

Fact 7 (Limiting cases where B becomes singular). The utility function Upqq can be rewritten in or-
der to emphasize two limiting cases: perfect substitutes and perfect complements. In the neighborhood
of perfect complements, the no-income-effect assumption (i.e. q0 ¡ 0) cannot hold.

Indeed, (3 bis) can be rewritten as

Upqq �
¸
aiqi �

¸
i

¸
j¡i

�
bij �

a
bibj

	
qiqj � 1

2

�¸a
bi qi

	2
.

Now, if for all i, j, bi � bij � b ¡ 0, then U � ° piqi �
°pai � piqqi� b

2 p
°
qiq2. This utility is

maximized by buying all units from the seller offering the largest surplus ai � pi (Bertrand compe-
tition for vertically differentiated goods). The case ai � a ¡ 0 being Bertrand competition for an
homogeneous good where only the

°
qi is relevant and it corresponds to the perfect substitutes case.

The polar case is when all goods are perfect complements. Formally, this case corresponds to a
Leontief utility function (which is concave but not strictly concave), for example, q0�amin tq1, � � � , qnu
with a ¡ 1 then maximizing under a budget constraint q0 �

°
piqi ¤ m leads to q0 � 0 and, for

all i, qi � m{° pi. Quantities cannot be independent of income. It means that this model does
not capture fully the economic environment of the consumer. Indeed, the choice of m should be
modelled. QQUM can “in spirit” replicate this case (with the same drawback). Indeed, rewriting (3
bis) as

Upqq �
¸
aiqi �

¸
i

¸
j¡i

�
bij �

a
bibj

n� 1

�
qiqj � 1

2pn� 1q
¸
i

¸
j¡i

�a
bi qi �

a
bj qj

	2
.

If for all i, ai � a ¡ 1, bi � b ¡ 0 and for j � i, bij � �b
n�1 , then U � a

°
qi� b

2pn�1q
°
i

°
j¡i pqi � qjq2.

Maximizing Upqq � q0 under a budget constraint q0 �
°
piqi ¤ m also leads to q0 � 0 and, for all i,

qi � m{° pi.
More generally, as discussed by Varian (1992) (chapter 10 section 3), for a quasi-linear utility

function, the available income should be large enough in order to have demand functions which
are independent of income. This assumption can be mild for substitutes but, as pointed out by
Amir, Erickson, and Jin (2017) (see their Proposition 14), it is, indeed, incompatible with perfect
complements.

19Some authors, while working within the general framework, assume that all elements of B are positive and that
B is diagonal dominant: Bernstein and Federgruen (2004), Farahat and Perakis (2009), Farahat and Perakis (2010),
Farahat and Perakis (2011b), and Kluberg and Perakis (2012). Diagonal dominance implis that B is nonsingular. Also
some authors start with U � pa � pq1 q� 1

2 q1B�1q inverting (in the notation only) the role played by B and B�1. This
is a question of taste but this can be slightly confusing as the off-diagonal elements of B�1 are negative when those of
B are positive.
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A similar problem could arise for independent goods. That is, assuming for all i, j, j � i, bij � 0.
If each variant i is sold by a monopoly (it would not really change the problem if goods were sold
at marginal cost) and denoting ci the constant marginal cost, demand is qi � pai � piq{bi, price
pi � pai � ciq{2, and the expenditure of the consumer would be

°
piqi �

°�
a2
i � c2

i

� {p4biq. Clearly,
without restricting further the values of ai, ci, and bi this sum would diverge when the number of
good, n, tends to infinity, and the budget constraint cannot be satisfied.

Demand and inverse demand functions The first-order condition of the maximization of U
with respect to q provides immediately the expression of inverse demand:

Bq � a � p i.e. p pqq � a �Bq . (4)

Without matrix notations, it writes:

for all i, pi � ai � biqi �
¸
j�i

bijqj (4 bis)

which shows that, up to this point, matrix notations do not particularly simplify the writing of the
model. However, to characterize direct demand, one needs B�1 the inverse of B, and here matrix
notations are useful.20 Inverting (4) gives direct demand:

qppq � B�1 pa � pq (5)

which can be linked to (2) with H � B�1 and d � B�1a. To avoid matrix notations, let βij denote
the elements21 of B�1, and using βi � βii, we can write

for all i, qi �
¸
j

βijpaj � pjq � βipai � piq �
¸
j�i

βijpaj � pjq . (5 bis)

Three observations are in order here. First, if pi � 0 and all pj � aj , then qi � βiai. Second, if all
prices are set to zero, then qi �

°
j βijaj   βiai. Third, a comparative static on bij is different from

a comparative static on βij as a variation of bij typically implies a variation of several βk`.22

In Appendix , the expressions of consumers’ surplus, V , aggregate profits Π, and welfare W are
derived (repectively (A.1), (A.2), and (A.3)) as functions of prices, that is, independently of the type
of competition, or the ownership structure of firms, for any positive definite matrix B.

3.3 Oligopoly games

Firms To complete the description of the oligopoly two elements are needed. First, production costs
have to be introduced and, most of the time, they are assumed to be linear. Let ci denote the marginal
cost of production of firm i and let c � pc1, . . . , cnq1 denote the column vector of these marginal costs.
Assuming convex costs is usually problematic when looking for closed-form expressions. See, however,
Bernstein and Federgruen (2004) for existence and uniqueness of equilibrium with convex costs, and
various comparative statics results. Second, an ownership structure has to be specified.

Fact 8 (Ownership structure). While most existing studies consider oligopolies with single-product
firms, the model naturally extends to multi-product competition, delivering simple expressions for
first-order conditions at Cournot-Nash and Bertrand-Nash equilibria.

20Recall here that as B is positive definite it has an inverse and B�1 is also positive definite.
21Formally, let Bij be the matrix where lign j and column i are deleted from B then βij � p�1qi�jdet

�
Bij

�
{det pBq.

22See Kopel, Ressi, and Lambertini (2017) for this point being made in the case of a duopoly.
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This question appears naturally in the context of mergers, see Choné and Linnemer (2008) for
example. It is also considered in Farahat and Perakis (2009), Farahat and Perakis (2010), and Farahat
and Perakis (2011b). Let N � t1, . . . , nu denote the set of all brands. The structure of the industry
is described by a partition of N into r subsets: tI1, � � � , Iru where Ik denotes the set of brands owned
by firm k.

More generally, one could assume cross-ownership. In that case, let αkj P r0, 1s denote the share
of profit generated by the sales of good j owned by firm k, with for all j,

°
k αkj � 1. One would

also need to specify how the price (or quantity) of a multi-owned good is chosen. For example, it
could be chosen by the firm with the largest share but when this share is less than 0.5 there might
be no obvious choice.

Parameter space For the model to have economic sense, its parameters have to be further con-
strained and two assumptions are often made: a � c ¡ 0 (Positive primary markups) and qpcq ¥ 0
(Positive primary outputs, i.e. all varieties are produced when all prices are set at marginal costs).
Both terms were introduced by Amir and Jin (2001), see Chang and Peng (2012) for a discussion.
Although these assumptions are quite natural, in equilibrium prices are larger than marginal costs,
and a variety can be profitable even if it would not be sold at the first best.23 In both types of
competition, price margins p� c and quantities q depend only on the marginal surpluses a � c. It
is, therefore, useful to introduce a new notation for these marginal surpluses:

let vi � ai � ci , or in matrix form v � a � c .

Equilibrium The purpose of establishing direct and inverse demand functions is to use them to
find the Nash equilibrium of an oligopoly game where each product is produced by one firm. As firms
either compete in prices or quantities there are two games: a Bertrand-like one (i.e. competition in
prices) and a Cournot-like one (i.e. competition in quantities).

Although in this section matrix B is assumed to be invertible, most of the computations carry out
to an LDS given by (2) with H being singular. What would be lost is the possibility to replace prices
by quantities in the f.o.c. to maintain a symmetry between the Cournot and Bertrand formulae.
Before turning to oligopoly games, we present briefly two benchmarks: first-best and monopoly.

First-best Obviously, to maximize welfare, each good should be priced at marginal cost and the
first-best quantities, using (4), are given by

Bq� � a � p � a � c � v (6)

using (A.3), we have W � � 1
2v1B�1v.

Monopoly It can be useful (e.g. to study collusion,24 or merger to monopoly) to characterize the
quantities that a monopoly controlling all goods would choose.25 Its profit is

Π �
¸
πi � pp� cq1 q � pa � cq1 q � q1B q

which is maximized here with respect to q and the f.o.c. writes in matrix notations

2Bqm � a � c � v .
23See Zanchettin (2006) for a detailed comparison of Betrand and Cournot competition in a duopoly setting.
24See Deneckere (1983) for n � 2, Deneckere (1984) for a key correction, and Majerus (1988) for n firms.
25One such application is undertook by Amir, Jin, Pech, and Tröge (2016) who study prices and deadweight loss in

multiproduct monopoly.
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Fact 9 (Monopoly). Monopoly quantities are half first-best quantities. Monopoly prices are invariant
with B, they are pm � 1

2 pa � cq. Or equivalently, pm � c � 1
2v. Moreover

Πm � 1
4v1B�1v , and Wm � 3

8v1B�1v � 3
4W

� . (7)

Cournot competition: f.o.c. Following Jin (1997) and Amir and Jin (2001),26 one can elegantly
write the f.o.c. of the maximization of the profit of firm i quite generally (i.e. for an arbitrary positive
definite B matrix). Indeed, the profit of firm i being

πi � ppi � ciqqi �
�
ai � ci �

¸
j

bijqj

�
qi

which is maximized with respect to qi. The f.o.c. (the s.o.c. is satisfied as bi is positive) writes

pi � ci � Bppi � ciq
Bqi qi � pi � ci � biqi � 0

or in matrix form
p� c � diagpbqq

where diagpbq is a diagonal matrix which elements are the diagonal elements of B (i.e. the bi). Now,
using p� c � a � c�Bq the f.o.c. collected in matrix form are

pB� diagpbqqqC � a � c � v . (8)
Equation (8) is helpful to study the existence and uniqueness of Cournot equilibria. The answer is
simple. As the matrices B and diagpbq are both positive definite so is the sum B� diagpbq, hence
the existence and uniqueness of a Cournot equilibrium. In Appendix B, f.o.c. are similarly computed
for the case where firms are multi-products.

Bertrand competition: f.o.c. Again following Jin (1997) and Amir and Jin (2001), one can
write the f.o.c. of the maximization of the profit of firm i with respect to price quite generally, i.e.
for an arbitrary positive definite B matrix. Indeed, the profit of firm i being

πi � ppi � ciqqi � ppi � ciq
�
βipai � piq �

¸
j�i

βijpaj � pjq
�

is maximized here with respect to pi. The f.o.c. (the s.o.c. is satisfied as βi is positive) writes

qi � Bqi
Bpi ppi � ciq � qi � βippi � ciq � 0

or in matrix form
q � diagpβqpp� cq

where diagpβq is a diagonal matrix which elements are the diagonal elements of B�1 (i.e. the βi).
Now, using p� c � a � c�Bq the f.o.c. collected in matrix form are27�

B� diagpβq�1
	

qB � a � c � v . (9)

26In Levitan and Shubik (1967b), the same derivation is done, for a particular, B matrix. The writing is slightly
messy but the idea is sound.

27If one can only use an LDS given by (2) with a singular matrix, then a similar computation would lead to the
characterization of equilibrium prices as p� c � pH� diagphqq�1 pd�Hcq, under the assumption that H � diagphq
is non singular.
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Prices have been eliminated in order to show the similarity of the Bertrand and Cournot characteri-
zation. Here also as B and diagpβq�1 are both positive definite (as the βi are positive), also is their
sum B�diagpβq�1 and thus invertible. Hence the existence of a unique equilibrium. In Appendix B,
f.o.c. are similarly computed for multi-product firms. To move from the Cournot characterization to
the Bertrand one, the diagpbq matrix has to be replaced by diagpβq�1. In Jin (1997) (see Appendix
A), it is shown that bi ¡ 1{βi, that is the elements of the diagpbq matrix are larger than those of
diagpβq�1. In that sense, the intuition is that the Bertrand quantities should be larger than the
Cournot ones. However, this is not mechanical and counterexamples exist.

To summarize:

Fact 10 (Equilibrium quantities). Let

q� pXq � q� pX; B,vq � pB�Xq�1 v (10)

where X is a positive definite matrix. Then the First-best, Monopoly, Cournot, and Bertrand equi-
librium quantities are respectively given by

q� � q� p0q , qm � q� pBq , qC � q� pdiagpbqq , and qB � q�
�

diagpβq�1
	
.

For example, in the case of Cournot (resp. Bertrand), as the matrix X is diagonal, it is particularly
easy to move from the expression of the first-best quantity q�i to the expression of qCi . One has to
change all the bj in 2bj , j � 1 to n. In Appendix A, we show how consumers’ surplus, total profit,
and welfare can be written in this general framework. For example, the equilibrium welfare is

2W � pXq � v1
�
pB�Xq�1 pB� 2 Xq pB�Xq�1

�
v .

4 A user’s guide
To the puzzled researcher considering the many variants of LDS, we would suggest to start with
the symmetric QQUM introduced by Spence (1976a). This simple version, indeed, encompasses all
other symmetric variants encountered in the literature. If the researcher needs to vary the number of
product n, she may check the Levitan and Shubik formulation (see our discussion in section 4.2), and
should, in any case, cite Shubik and Levitan (1980). We would like to emphasize two points. First,
there is no need to restrict to a duopoly framework as dealing with n firms rather than two hardly
increases the computational complexity. Second, there is no difficulty allowing for heterogeneous
(inverse) demand intercepts a and marginal costs c. The formulation is

U �
¸
piqi �

¸
pai � piq qi � σ

¸
i

¸
j¡i

qiqj � b

2
¸
q2
i . (11)

Moreover, this model seems to be the most popular. For example, Majerus (1988) and later Häckner
(2000) (see also Hsu and Wang (2005), and many others) who all “simplify” further by assuming
b � 1. However, we do not recommend this as it simplifies very little the expressions and makes
the results harder to read. For the corresponding matrix B to be definite positive, a sufficient and
necessary condition is σ P

�
�b
n�1 , b

�
. The set of all these matrices can be represented in the pσ, bq

plan as in Figure 1. Each pair pσ0, b0q such that σ0 P
�
�b0
n�1 , b0

�
(in the graph they are above the two

darkblue lines) correspond to a positive definite matrix. Figure 1 also highlights how natural is the
comparative statics on σ (or b) in this model. The usual one is the horizontal change of σ for a given
b. If a matrix is above the line b � pn� 1qσ, then it is diagonally dominant. Matrix pσ0, b0q satisfies
this condition.
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σ

b

0

b = σ

b = −σ

b = −(n− 1)σ b = (n− 1)σ

+

σ0

b0 (σ0, b0)

Figure 1: Matrix space, and comparative statics

As the first step is always to establish the relevant equilibrium entities (quantities, prices, profits,
surplus, welfare) and as this could be cumbersome (even exhausting), we have collected all the needed
results in Table 2 (proofs are in Appendix C). The Table also gives these results for the symmetric
Levitan-Shubik’s formulation. The aggregate values exhibit a mean-variance structure. Using, for
any vectors x, y the notation x � 1

n

°
xi for the mean and Varpxq � 1

n

°pxi � xq2 for the variance
and Covpx,yq � 1

n

°pxi � xqpyi � yq for the covariance.

Fact 11 (Main property of the Spence’s formulation). When B is the Spence’s matrix, for any
vectors x and y:

x1B�1y � n

pb� σqCovpx,yq �
n

pb� pn� 1qσqx y (12)

using (A.1) and (A.2), for any p such that qppq ¡ 0, consumers’ surplus and total profit are

• 2V ppq � n
pb�σqVarpa � pq � n

pb�pn�1qσqa � p2

• Πppq � n
pb�σqCovpp� c,a � pq � n

pb�pn�1qσq pp� cq pa � pq.
For all type T of competition, T � First-best, Monopoly, Cournot, or Bertrand, equilibrium quantities
take the form

qT
i � λT pvi � vq � µT v

and all aggregate quantities Y � S(urplus), Π(rofit), and W (elfare) take the form

Y T � ΓT
YVarpvq �ΥT

Y v2

See Table 2 for Cournot and Bertrand. A direct inspection of the coefficients of the mean and
variance terms shows that V B ¡ V C and WB ¡ WC . For the First-best, λ� � 1

b�σ , µ
� � 1

b�pn�1qσ ,
and S� � W � � n

2pb�σqVarpvq � n
2pb�pn�1qσqv

2. For the monopoly, λm � λ�{2, µm � µ�{2, and
Sm �W �{4, Πm �W �{2, and Wm � 3W �{4.
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Because of this property, the formulae are more intuitive with heterogenous rather than homoge-
nous vi. This mean-variance property was first noticed for the Cournot model, where it holds even for
a general demand, by Linnemer (2003) and Valletti (2003). Valletti also gives the result for QQUM,
in a variant close to symmetric formulation (using b � σ instead of b). It can be used to study the
effects of shocks on vi in the spirit of Zhao (2001) and Février and Linnemer (2004).

4.1 Levitan and Shubik’s and Sutton’s forms

As a symmetric QQUM has only two parameters: b and σ, (11) covers all cases. Yet, the imagination
of economists is such that at least two models have been proposed for particular values of these two
terms. Figure 3 summarizes the links between the various QQUM encountered in practice. First,
there is the Levitan and Shubik’s formulation.28 The general case given by (1) can be written, using
σLS � σ{β to allow a better comparison with (11):

ULS �
¸
piqi �

¸
pa� piq qi � σLS

¸
i

¸
j¡i

qiqj � 1
2
¸�

σLS � 1{β � σLS

wi



q2
i

with, for all i, 0   wi   1 and
°
wi � 1, in addition marginal costs are heterogeneous (chapter 9 of

their book). The symmetric case being wi � 1{n for all i (see chapter 7 of their book where marginal
costs are homogeneous). The symmetric Levitan and Shubik’s formulation is used, for example, by
Motta (2004) and Wang and Zhao (2007). For the symmetric case, bLS � n{β�pn�1qσLS a peculiar
option. Nevertheless, as shown in Figure 2, varying σLS and β allows to describe the same space
as (11). Of course, n is given. Then for a given β, when σLS varies, bLS varies along the maroon

σ

b

0

b = σ

b = −σ

b = −(n− 1)σ

+

σ0

b0
(σ0, b0)

1/β

n/β

1/β′

Figure 2: Matrix space, and comparative statics in Levitan and Shubik

line. Changing β to β1 allows to move to the (parallel) line bLS � n{β1 � pn � 1qσLS. Usually the
parameter β is fixed (to one) which means that only one line is described. Yet β is crucial in order to
describe the space of all definite positive matrices (of our symmetric type). The comparative static

28It dates back to Levitan and Shubik (1967a) (part of which is published as Levitan and Shubik (1971b)) and Levitan
and Shubik (1967b) and the chapter 9 of their 1980 book.
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in σLS (along the maroon line of Figure 2) is not as natural as in Figure 1.29 Misunderstanding the
relationship between σ and b can lead to confusing statements about the effects of σ.

Second, and visually more different, there is the formulation of Sutton (1997) (see also Sutton
(1996) but the working paper of the 1997 RAND article pre-dates the 1996 EER article):

USu �
¸
p̃ixi �

¸
p1� p̃iqxi � σ

¸
i

¸
j¡i

xi
ui

xj
uj

� 1
2
¸
i

x2
i

u2
i

with ui ¡ 0 and where (for convenience) the factor 1{2 is introduced before the squared terms,
an innocuous modification of Sutton’s formula. See also Symeonidis (1999), Symeonidis (2003b)
(duopoly), and Symeonidis (2003a). To see that (11) encompasses Sutton’s case, just write qi � xi

ui

and pi � uip̃i (the marginal cost should also be normalized)30 it comes that Sutton’s expression
writes:

USu �
¸

pui � piq qi � σ
¸
i

¸
j¡i

qiqj � 1
2
¸
i

q2
i

which is exactly the Spence’s formulation with ai � ui and b � 1.

A last model is presented in Amir, Erickson, and Jin (2017) (see their section 7) where it is
attributed to Bresnahan (1987). They assume that the matrix B is such that bij � σ|i�j|. They call
it “a linear demand with local interaction” or the KMS model.31 They show that, in addition to its
own price, the demand of firm i, 2 ¤ i ¤ n� 1 only depends on the prices of i� 1 and i� 1, whereas
the demand for firm 1 (resp. n) depends only on its price and the price of firm 2 (resp. n � 1).
Formally,

UKMS �
¸

pai � piq qi �
¸
i

¸
j¡i

σ|i�j|qiqj � 1
2
¸
i

q2
i , and

p1� σ2qq1 � a1 � p1 � σpa2 � p2q
p1� σ2qqi � �σpai�1 � pi�1q � p1� σ2qpai � piq � σpai�1 � pi�1q for 2 ¤ i ¤ n� 1
p1� σ2qqn � �σpan�1 � pn�1q � an � pn

The local interaction property would disappear if bii � b � 1, however.

4.2 Dealing with a variation of n

This is an important research question and we touch only lightly on the subject here. When one
product variety is added, there are two main effects. First, there is a variety effect: the utility tends
to increase with one more product. Second, there is a competition effect: prices tend to decrease
with the arrival of a new competitor. A priori, it is not easy to disentangle them. One can start to
look at total demand for a given list of prices. Using the expression of the direct demands given in
Table 2, total demand Q � °i qi is:

QLS � β pa � pq and Q � n

b� pn� 1qσ pa � pq

29Levitan and Shubik always considered σLS ¡ 0 but with their symmetric specification, the matrix B is positive
definite for any σLS P s�8, 1{βr. In fact, they use a parameter γ which correspond to σLS{p1�σLSq and they (implicitly)
assume γ between 0 and �8. The model allows γ between �1 and and �8.

30The normalization is innocuous. For example, if xi is measured in grams, and ui � 1000, then qi is measured in
kilograms. For the price, if p̃i is the price for one gram, then 1000p̃i is indeed the price for one kilogram.

31Kac–Murdock–Szegö matrices are asymmetric n-Toeplitz matrices.
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General utility

U(q)− p′q =
∑

(ai − pi) qi −
∑

i

∑
j>i bijqiqj − 1

2

∑
biq

2
i

ai → a

bi → (σ + (1− σ)/wi) /β

bij → σ/β

bij → σ

bi → (σ + (1− σ)/wi) /β
σ → σ/β

Levitan and Shubik’s nonsymmetric utility

ULS −∑
piqi =

∑
(a− pi) qi − 1

2β

[
2σ

∑
i

∑
j>i qiqj +

∑(
σ + 1−σ

wi

)
q2i

]

with for all i, 0 < wi < 1 and
∑

wi = 1

wi → 1/n

Levitan and Shubik’s symmetric utility

∑
(a− pi) qi − 1

2β

[
2σ

∑
i

∑
j>i qiqj + (n− (n− 1)σ)

∑
q2i

]

Flexible nonsymmetric utility

Ub −∑
piqi =

∑
(ai − pi) qi − σ

∑
i

∑
j>i qiqj − 1

2

∑
biq

2
i

ai → a

bi → b

Spence’s utility

USp −∑
piqi =

∑
(a− pi) qi − σ

∑
i

∑
j>i qiqj − b

2

∑
q2i

σ → σ
β

and b → n−(n−1)σ
β

b → 1

∑
(a− pi) qi − σ

∑
i

∑
j>i qiqj − 1

2

∑
q2i

bi → 1
ai → ui and normalization:

qi =
xi

ui
and pi = uip̃i

Sutton’s utility

USu −∑
piqi =

∑
(1− p̃i)xi − σ

∑
i

∑
j>i

xi

ui

xj

uj
− 1

2

∑
i

x2
i

u2
i

Figure 3: Links between the various formulations

respectively for Levitan-Shubik’s and Spence’s formulation. As long as β is independent of n, adding
a new variety such that an�1 � pn�1 � pa � pq would not change QLS but would increase Q by

b�σ
pb�pn�1qσqpb�nσq pa � pq, admittedly a small amount when n is large (it goes to zero at a rate of
1{n2). In Levitan-Shubik’s formulation the parameter b increases with n, which decreases the utility,
and offsets the positive effect of an additional variety. Also notice that QLS does not vary with σ.

In Levitan-Shubik’s formulation consumers’ surplus is β
p1�σqVarpa � pq�β a � p2, the coefficients

do not vary with n (but the variance coefficient does vary with σ). Yet, the introduction of a pn�1q-th
variety would not leave in general both the variance and the mean constant. So even if total quantity
is unchanged, the surplus could change. The only case where the surplus is unaffected happens when
for all i, vi � v as then there is no variance term. Therefore in this no-variance case, the entry of an
additional variety such that an�1�pn�1 � pa � pq would not change consumers’ surplus unless prices
are changed by the entry. Then if an increase of n decreases prices, the surplus would increase and
this increase would come exclusively from a competition effect. Is it a desirable property? Even in the
no-variance case, the introduction of a new variety could (or even should) create a market expansion
effect. This is captured by Spence’s formulation where total quantity and surplus would grow at a
rate n

b�pn�1qσ . Whereas this effect is shutdown by Levitan and Shubik. Outside the no-variance case,
an additional variety (or a change of σ) modifies consumers’ surplus even in the Levitan and Shubik
case.
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Table 2: The two commonly used models with heterogenous a and c

Levitan and Shubik Spence

Inverse demands:

pi � ai � 1
β

�
pσ � np1� σqqqi � σ

°
j�i qj

	
� ai � n

β pp1� σqqi � σqq
pi � ai � bqi � σ

°
j�i qj

� ai � pb� σqqi � nσq

Direct demands:

qi � β
n2p1�σq

�
pn� σqpai � piq � σ

°
j�ipaj � pjq

�
� β

np1�σq rpai � piq � σ pa � pqs
qi � pb�pn�2qσqpai�piq�σ

°
j�ipaj�pjq

pb�σqpb�pn�1qσq

� 1
b�σ

�
pai � piq � nσ

b�pn�1qσ pa � pq
�

Equilibrium quantities and prices under Cournot competition:

qCi � β
2n�p2n�1qσ

�
vi � nσ

2n�pn�1qσv
�

� β
2n�p2n�1qσ

�
pvi � vq � 2n�p2n�1qσ

2n�pn�1qσ v
�

pCi � ci � n�pn�1qσ
β qCi

qCi � 1
2b�σ

�
vi � nσ

2b�pn�1qσv
�

� 1
2b�σ

�
pvi � vq � 2b�σ

2b�pn�1qσv
�

pCi � ci � bqCi

Equilibrium quantities and prices under Bertrand competition:

Let Ψ � pn�1qσ2

n�σ Let Φ � pn�1qσ2

b�pn�2qσ

qBi � β
2n�p2n�1qσ�Ψ

�
vi � nσ

2n�pn�1qσ�Ψv
�

� β
2n�p2n�1qσ�Ψ

�
pvi � vq � 2n�p2n�1qσ�Ψ

2n�pn�1qσ�Ψ v
�

pBi � ci � n�pn�1qσ�Ψ
β qBi

qBi � 1
2b�σ�Φ

�
vi � nσ

2b�pn�1qσ�Φv
�

� 1
2b�σ�Φ

�
pvi � vq � 2b�σ�Φ

2b�pn�1qσ�Φv
�

pBi � ci � pb� Φqqbi
Equilibrium surplus under Cournot and Bertrand competition:

2VC � n2p1�σqβ
p2n�p2n�1qσq2Var pvq � n2

p2n�pn�1qσq2 v2 2VC � npb�σq
p2b�σq2Var pvq � npb�pn�1qσq

p2b�pn�1qσq2 v2

2VB � n2p1�σqβ
p2n�p2n�1qσ�Ψq2Var pvq � n2

p2n�pn�1qσ�Ψq2 v2 2VB � npb�σq
p2b�σ�Φq2Var pvq � npb�pn�1qσq

p2b�pn�1qσ�Φq2 v2

Equilibrium aggregate profit under Cournot and Bertrand competition:

ΠC � npn�pn�1qσqβ
p2n�p2n�1qσq2

�
Var pvq � p2n�p2n�1qσq2v2

p2n�pn�1qσq2

�
ΠC � nb

p2b�σq2

�
Var pvq � p2b�σq2v2

p2b�pn�1qσq2

�
ΠB � npn�pn�1qσ�Ψqβ

p2n�p2n�1qσ�Ψq2

�
Var pvq � p2n�p2n�1qσ�Ψq2v2

p2n�pn�1qσ�Ψq2

�
ΠB � npb�Φq

p2b�σ�Φq2

�
Var pvq � p2b�σ�Φq2v2

p2b�pn�1qσ�Φq2

�
Equilibrium welfare under Cournot and Bertrand competition:

2WC � nβp3n�p3n�2qσq
p2n�p2n�1qσq2 Var pvq � nβp3n�2pn�1qσq

p2n�pn�1qσq2 v2 2WC � np3b�σq
p2b�σq2 Var pvq � np3b�pn�1qσq

p2b�pn�1qσq2 v2

2WB � nβp3n�p3n�2qσ�2Ψq
p2n�p2n�1qσ�Ψq2 Var pvq � nβp3n�2pn�1qσ�2Ψq

p2n�pn�1qσ�Ψq2 v2 2WB � np3b�σ�2Φq
p2b�σ�Φq2 Var pvq � np3b�pn�1qσ�2Φq

p2b�pn�1qσ�Φq2 v2
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5 Asymmetric formulation: more flexible substitution patterns
In this section, we compute the Bertrand and Cournot Nash equilibria of the “Flexible nonsymmetric
utility” (see Figure 3). We extend, and hopefully clarify, the seminal work of Levitan and Shubik:
Levitan and Shubik (1967a) (part of which is published as Levitan and Shubik (1971b)) and Levitan
and Shubik (1967b) and the chapter 9 of their 1980 book. The maximization program (3) is modified
to:

Upqq � p1q �
¸

pai � piq qi � σ
¸
i

¸
j¡i

qiqj � 1
2
¸
biq

2
i (3 ter)

A larger bi implies that additional units of good i are less valued which limits consumption. The
most popular products are those with large vi � ai � ci and low bi. Another interpretation of the
asymmetric model is available. Normalizing the bi to one:

Upxq � p̂1x �
¸

pâi � p̂iqxi � σ
¸
i

¸
j¡i

xixj � 1
2
¸
bix

2
i

�
¸�

âi?
bi
� p̂i?

bi



p
a
bixiq �

¸
i

¸
j¡i

?
σ?
bi

?
σ?
bi
p
a
bixiqp

a
bjxjq � 1

2
¸
p
a
bixiq2

�
¸

pai � piq qi �
¸
i

¸
j¡i

σiσjqiqj � 1
2
¸
q2
i

where σi �
a
σ{bi, qi �

?
σxi{σi, ai � σiâi{

?
σ, and pi � σip̂i{

?
σ. This interpretation highlights the

differentiation parameters bij � σiσj , an environment richer than the symmetric case where for all i
and j, bij � σ. See Appendix D for how to move from one model to the other. The model has not
been used in IO applications because computations are more involved. Yet, closed-form expressions
can be derived and their interpretation remains intuitive.

Notation We introduce wi � 1{pbi � σq, i � 1 to n. We denote W the diagonal matrix where the
diagonal terms are these wi.

Inverse demands When B � W�1 � σJ, the inverse demand functions are

p � a �Bq � a � diagpb� σqq � nσq e (13)

where q � 1
n

°
qi is the arithmetic mean and e is the unitary vector, e � p1, � � � , 1q1. In extended

form, for all i,

pi � ai � pbi � σqqi � nσq

Direct demands When B � W�1 � σJ, the direct demand functions are

q � B�1pa � pq � W
�

a � p� σ
°
wjpaj � pjq

1� σ
°
wj

e



(14)

In extended form:

qi � wi

�
pai � piq � σ

°
wjpaj � pjq

1� σ
°
wj

�

19



Weighted mean and variance For any vector x, and positive diagonal matrix �W � diagpw̃q,
with diagonal elements rwi ¡ 0, let rn � ° rwi the weighted average be

rx �
° rwixirn � 1rne1�Wx . (15)

Similarly, let the weighted variance be

�Var pxq � 1rn¸ rwi pxi � rxq2 � 1rn px � rx eq1 �W px � rx eq . (16)

If, for all i, rwi � w, then rx and �Var pxq are the usual mean and variance.

Fact 12 (Equilibrium quantities). When B � W�1 � σJ, there exist weights �W specific to each
type of competition such that equilibrium quantities take the form

q � �W �
v� rnσ

1� rnσ rv e
�
� �W �

pv� rv eq � rv e
1� rnσ

�
(17)

In extended form:

qi � rwi �vi � rnσ
1� rnσ rv

�
� rwi �pvi � rvq � rv

1� rnσ
�

(17 bis)

One can move from one expression to another by changing the weights. More precisely: First-best
weights are rwi � wi � 1{pbi � σq. Monopoly quantities are qmi � q�i {2. Cournot weights are rwi �
1{p2bi� σq. Bertrand weights are rwi � 1{p2bi�Φi� σq where Φi �

�
σ2°

j�iwj

	
{
�

1� σ
°
j�iwj

	
.

A detailed proof is given in Appendix D.1. In terms of normalization, a different one would be
suitable for each type of competition. Indeed, one would like to have

° rwj � 1 but these weights
depend on the type of competition. If, however, one is interested in only one type of competition,
then the normalization would certainly be useful. The formulae of Fact 12 are easily comparable
with their counterparts in Table 2. The standard averages present in Table 2 have been replaced
by weighted averages and the (somehow) mysterious coefficients have been replaced by symmetric
expressions.

To complete the characterization of the equilibrium we now give the equilibrium prices. They are
directly inferred from the equilibrium quantities and from the f.o.c.

Fact 13 (Equilibrium prices and profits). When B � W�1 � σJ, First-best prices are p�i � ci
and profits are zero. Monopoly prices are pmi � pai � ciq{2 and profits are πmi � viq

m
i {2. Cournot

prices are such that pCi � ci � biq
C
i . Hence Cournot profits are πCi � bi

�
qCi
�2. Bertrand prices are

such that pBi � ci � 1
βi
qBi . Hence Bertrand profits are πBi � 1

βi

�
qBi
�2 where βi is the ith diagonal

term of the B�1 matrix.

The computation of consumers’ surplus follows. The surplus keeps a mean-variance structure but
it is a weighted variance and also two different weighted means are involved.

Fact 14 (Equilibrium surplus). When B � W�1�σJ, there exist weights �W specific to each type
of competition and weights xW � �WW�1�W such that equilibrium quantities take the following form:

2V � pn�yVar pvq � �pv� rnσ
1� rnσ rv


2
�
� σ

� rnrv
1� rnσ


2
(18)

where pn � °xwi, pv and yVar pvq are respectively the weighted average and variance associated to the
weights pwj, and rv is the weighted average associated to the weights rwj.
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• First-best weights are rwi � wi � 1{pbi � σq. Hence pwi � wi, and (18) takes a simpler form

2V � � rn ��Var pvq � rv2

1� rnσ
�

• Monopoly: V m � V �{4.
• Cournot weights are rwi � 1{p2bi � σq. Hence pwi � pbi � σq{p2bi � σq2.

• Bertrand weights are rwi � 1{p2bi�Φi�σq where Φi �
�
σ2°

j�iwj

	
{
�

1� σ
°
j�iwj

	
. Hencepwi � pbi � σq{p2bi � Φi � σq2.

The proofs are in Appendix D.2. Similar computations lead to the expression of total profit.

Fact 15 (Aggregate equilibrium profit). When B � W�1 � σJ,

• First-best profits are null.

• Monopoly profits are Πm � V �{2.
For Cournot and Bertrand, there exist weights �W, a matrix X, and weights |W � �WX�W all three
specific to each type of competition such that equilibrium quantities take the following form:

Π � qn�}Var pvq � �qv� rnσ
1� rnσ rv


2
�

(19)

where qn � °|wi, qv and }Var pvq are respectively the weighted average and variance associated to the
weights pwj, andwhere rv is the weighted average associated to the weights rwj.

• Cournot weights are rwi � 1{p2bi � σq and X � diagpbq. Hence qwi � bi{p2bi � σq2.

• Bertrand weights are rwi � 1{p2bi � Φi � σq where Φi �
�
σ2°

j�iwj

	
{
�

1� σ
°
j�iwj

	
and

X � diagpβq�1. Hence qwi � pbi � Φiq{p2bi � Φi � σq2.
The proof is in Appendix D.3.

Welfare The expression of welfare in equilibrium is obtained by summation from the expression
given in Facts 14 and 15. The sum takes a simple form in the case of the first-best and of the
monopoly but, unfortunately, there is no obvious simplification in the case of Cournot and Bertrand.
This is because the weights which are useful for the computation of the surplus are different from
the weights used in the total profit expression.

6 Conclusion
In this paper, we hope to have clarified recurring questions that IO economists face when dealing
with linear demand systems. Our analysis delivers the following takeaway points. For a simple
application (i.e. symmetric model in terms of second derivatives of U) the burden of keeping n
firms, heterogenous valuations a � pa1, � � � , anq, and heterogenous marginal costs c � pc1 � � � , cnq is
minimal. It has the advantage of highlighting the Mean-Variance structure of the symmetric model.
Although we have emphasized the seminal work of Levitan and Shubik, we would not recommend
the use of their astute symmetric model where the parameter b depends on σ and n (and also their
parameter β). Formally, their modelling is not restrictive and can be used to describe the same set
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of models. We tend to prefer the Spence formulation (see Figure 3), which leads to more intuitive
comparative static exercises. The gain of keeping consumers’ surplus constant after the introduction
of a new variety (before prices adjust to a new equilibrium) only exists for marginal costs and inverse
demand intercepts that are uniform across products, that is, when the model is the least attractive
to describe differentiated products. We have provided concise, closed-form expressions for the First-
best, the monopoly, Cournot and Bertrand outcomes, so future users do not bother with cumbersome
equations. We have also explained how to compute the equilibria for general ownership structures.
Finally, we have provided closed-form expressions for a tractable asymmetric model which should
allow future users to venture into richer environments.
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Appendix
A Surplus, profit, welfare
Consumers’ surplus, Aggregate profits, and Welfare Using (5), the indirect utility function
as a function of prices.

V ppq � max
q

Upqq � p1q � 1
2 pa � pq1 B�1 pa � pq � 1

2 pqppqq
1 B pqppqq (A.1)

As B�1 is also a n� n positive definite matrix, V ppq is a quadratic form in a � p.
Aggregate profit (i.e. the sum of all profits) is:

Πppq � pp� cq1 B�1 pa � pq � pa � cq1 qppq � qppq1B qppq (A.2)
and therefore welfare writes:

W ppq � 1
2 pa � c� p� cq1 B�1 pa � pq � pa � cq1 qppq � 1

2qppq1B qppq (A.3)

These expressions (A.1), (A.2), and (A.3) hold independently of the type of competition, or the
ownership structure of firms, for any positive definite matrix B.

Consumers’ surplus, Aggregate profits, and Welfare in equilibrium First, combining (A.1)
with (8) and (9) leads to (using the fact that for a symmetric matrix M1 � M)

2V C � v1 pB� diagpbqq�1 B pB� diagpbqq�1 v (A.4)

2V B � v1
�

B� diagpβq�1
	�1

B
�

B� diagpβq�1
	�1

v (A.5)

Next, combining (A.1) with (8) and (9) leads to

ΠC � v1
�
pB� diagpbqq�1 � pB� diagpbqq�1 B pB� diagpbqq�1

�
v

(A.6)
� v1

�
pB� diagpbqq�1 diagpbq pB� diagpbqq�1

�
v

ΠB � v1
��

B� diagpβq�1
	�1

�
�

B� diagpβq�1
	�1

B
�

B� diagpβq�1
	�1

�
v

(A.7)

� v1
��

B� diagpβq�1
	�1

diagpβq�1
�

B� diagpβq�1
	�1

�
v

Finally, combining (A.1) with (8) and (9) leads to

WC � v1
�
pB� diagpbqq�1 � 1

2 pB� diagpbqq�1 B pB� diagpbqq�1
�

v

(A.8)
2WC � v1

�
pB� diagpbqq�1 pB� 2 diagpbqq pB� diagpbqq�1

�
v

WB � v1
��

B� diagpβq�1
	�1

� 1
2

�
B� diagpβq�1

	�1
B
�

B� diagpβq�1
	�1

�
v

(A.9)

2WB � v1
��

B� diagpβq�1
	�1 �

B� 2 diagpβq�1
	�

B� diagpβq�1
	�1

�
v
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B F.o.c. with multi-product firms
Cournot competition Recall that Ik is the set of product under the control of firm k. We
introduce the following r matrices. For all k, 1 ¤ k ¤ r, let Bk � pbijqi,jPIk . That is, Bk is a square
matrix of size #Ik the number of varieties under the control of firm k. If each firm owns only one
good, Bk is simply bkk � bk. Next, let diagpB1, . . . ,Brq denote the block diagonal matrix, whose
blocks are Bk, k � 1, � � � , r. The matrix diagpB1, . . . ,Brq is positive definite. Computations similar
to the ones leading to (8) now gives:

p� c � diagpB1, . . . ,Brqq
and therefore, using p� c � a � c�Bq,

pB� diagpB1, . . . ,Brqqq � a � c � v (B.1)

Bertrand competition Recall that Ik is the set of product under the control of firm k. We
introduce the following r matrices. For all k, 1 ¤ k ¤ r, let Bk � pβijqi,jPIk where the βij are the
elements of matrix B�1. That is, Bk is a square matrix of size #Ik the number of varieties under the
control of firm k. If each firm owns only one good, Bk is simply βkk � βk. Next, let diagpB1, . . . ,Brq
denote the block diagonal matrix, whose blocks are Bk, k � 1, � � � , r. The matrix diagpB1, . . . ,Brq
is positive definite. Computations similar to the ones leading to (8) now gives:

q � diagpB1, . . . ,Brqpp� cq
and therefore, using p� c � a � c�Bq,�

B� diagpB1, . . . ,Brq�1
	

q � a � c � v (B.2)

where, as in the text, prices have been eliminated in order to show the similarity of the Bertrand
and Cournot characterization. The only difference from the Cournot f.o.c. is that diagpB1, . . . ,Brq
as been replaced by diagpB1, . . . ,Brq�1.

C Common symmetric model
In section 3, we have shown how to find the Cournot-Nash or Bertrand-Nash equilibrium of QQUM.
So here we only have to compute the relevant matrices. First, notice that

B �

���������

b σ � � � � � � σ

σ
. . . . . . ...

... . . . b
. . . ...

... . . . . . . σ
σ � � � � � � σ b

��������
using I �

���������

1 0 � � � � � � 0
0 . . . . . . ...
... . . . 1 . . . ...
... . . . . . . 0
0 � � � � � � 0 1

��������
and J �

���������

1 1 � � � � � � 1
1 . . . . . . ...
... . . . 1 . . . ...
... . . . . . . 1
1 � � � � � � 1 1

��������
one can write

B � pb� σqI� σJ

It is important to emphasize, here, a convenient property of the matrix J, namely that it is a sum
or, if one divides by n, a mean operator. This property plays a key role in the analysis. Indeed, let
e1 � p1, � � � , 1q, then for any vector x,

1
n

Jx � x e and 1
n

e1 Jx � x and x1Jy � n2x y
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Direct and inverse demands The expression of the inverse demand functions given at the top
of Table 2:

p � a �Bq � a � ppb� σqI� σJqq � a � pb� σqq � nσx e

It is readily confirmed (one can simply verify it by computing BB�1, using J2 � nJ) that

B�1 � 1
b� σ

�
I� σ

b� pn� 1qσJ



this gives the demand functions given at the top of Table 2:

q � B�1pa � pq � 1
b� σ

�
I� σ

b� pn� 1qσJ


pa � pq � 1

b� σ

�
pa � pq � nσ

b� pn� 1qσ pa � pq



We can also compute x1B�1y to prove Fact 11. Using x1y � nCov px,yq � nx y.

x1B�1y � 1
b� σ

�
x1y� σ

b� pn� 1qσx1Jy



� 1
b� σ

�
nCov px,yq � nx y� n2σ

b� pn� 1qσx y



� 1
b� σ

�
nCov px,yq �

�
1� nσ

b� pn� 1qσ


nx y



� n

b� σ
Cov px,yq � n

b� pn� 1qσx y

Cournot equilibrium prices and quantities As shown by (8), one only needs to compute the
inverse of B� diagpbq in order to compute the equilibrium quantities in the Cournot game. This is
straightforward,

pB� diagpbqq�1 � pp2b� σqI� σJq�1 � 1
2b� σ

�
I� σ

2b� pn� 1qσJ



hence
qC � 1

2b� σ

�
I� σ

2b� pn� 1qσJ



v � 1
2b� σ

�
v� nσ

2b� pn� 1qσve



and
pC � c � diagpbqqC � b

2b� σ

�
v� nσ

2b� pn� 1qσve



Bertrand equilibrium prices and quantities As shown by (9), one only needs to compute the
inverse of B�diagpβq�1 in order to compute the equilibrium quantities in the Bertrand game. This
is again straightforward (although a little bit cumbersome),�

B� diagpβq�1
	�1

�
�pb� σqp2b� p2n� 3qσq

b� pn� 2qσ I� σJ

�1

� pp2b� σ � Φq I� σJq�1

� 1
2b� σ � Φ

�
I� σ

2b� pn� 1qσ � ΦJ



where
Φ � pn� 1qσ2

b� pn� 2qσ
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hence

qB � 1
2b� σ � Φ

�
I� σ

2b� pn� 1qσ � ΦJ



v � 1
2b� σ � Φ

�
v� nσ

2b� pn� 1qσ � Φve



and
pB � c � diagpB�1q�1qB � b� Φ

2b� σ � Φ

�
v� nσ

2b� pn� 1qσ � Φve



Cournot and Bertrand equilibrium consumers’ surplus One can either use (A.1) and replace
q by qC and qB respectively, using the expressions

qC � 1
2b� σ

�
pv� veq � 2b� σ

2b� pn� 1qσve
�

qB � 1
2b� σ � Φ

�
pv� veq � 2b� σ � Φ

2b� pn� 1qσ � Φve
�

which are the most convenient to see the variance terms. Or, more directly (but with slightly more
matrix computations), one can use (A.4). For example, in the case of Cournot (the computations for
Bertrand are almost exactly the same), we start from

2V C � v1 pB� diagpbqq�1 B pB� diagpbqq�1 v

so we have to compute the matrix which is between v1 and v, we do it in two steps. First (using
again J2 � nJ),

pB� diagpbqq�1 B � 1
2b� σ

�
I� σ

2b� pn� 1qσJ
�
rpb� σqI� σJs

� b� σ

2b� σ

�
I� σ

2b� pn� 1qσJ
� �

I� σ

b� σ
J
�

� b� σ

2b� σ

�
I�

�
σ

b� σ
� σ

2b� pn� 1qσ



J� σ2

p2b� pn� 1qσqpb� σqJ
2
�

� b� σ

2b� σ

�
I� σb

p2b� pn� 1qσqpb� σqJ
�

Now, we compute M � pB� diagpbqq�1 B pB� diagpbqq�1

M � pb� σq
p2b� σq2

�
I� σb

p2b� pn� 1qσqpb� σqJ
� �

I� σ

2b� pn� 1qσJ
�

� pb� σq
p2b� σq2

�
I�

�
bp2b� pn� 1qσq � p2b� pn� 1qσqpb� σq � nσbq

p2b� pn� 1qσqpb� σq



σ

2b� pn� 1qσJ
�

� pb� σq
p2b� σq2

�
I�

�
σ2 ppn� 2qb� pn� 1qσq
p2b� pn� 1qσq2pb� σq



J
�

Finally, using
Var pvq � 1

n
v1v� v2 and v1 Jv � n2v2
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2V C � v1Mv

� pb� σq
p2b� σq2 v1

�
I�

�
σ2 ppn� 2qb� pn� 1qσq
p2b� pn� 1qσq2pb� σq



J
�

v

� npb� σq
p2b� σq2

�
Var pvq �

�
1� nσ2 ppn� 2qb� pn� 1qσq

p2b� pn� 1qσq2pb� σq


v2
�

� npb� σq
p2b� σq2Var pvq �

n

p2b� σq2
�
pb� σq � nσ2 ppn� 2qb� pn� 1qσq

p2b� pn� 1qσq2


v2

� npb� σq
p2b� σq2Var pvq �

npb� pn� 1qσq
p2b� pn� 1qσq2v

2

which is the formula given in Table 2. One can check that if n � 1 it is the consumers’ surplus of the
linear demand monopoly, i.e. 2V � pa�cq2

4b . If σ � 0 the formula becomes 2V � n
4b
�
Var pvq � v2�.

More generally, it increases with the variance of v because consumers enjoy diversity and it increases
with the average marginal surplus v.

Cournot and Bertrand firms’ profits Individual profits (again we show the computation for
Cournot as the Bertrand ones are similar) are immediately given deduced from the expressions of qCi
and pCi � ci. One can either sum these individual profits or directly use the equilibrium expression
for total profit given by (A.6). That is,

ΠC � v1
�
pB� diagpbqq�1 � pB� diagpbqq�1 B pB� diagpbqq�1

�
v

we need to compute the matrix between v1 and v which is

1
2b� σ

�
I� σ

2b� pn� 1qσJ
�
� pb� σq
p2b� σq2

�
I�

�
σ2 ppn� 2qb� pn� 1qσq
p2b� pn� 1qσq2pb� σq



J
�

and simplifies into
b

p2b� σq2
�
I� σp4b� pn� 2qσq

p2b� pn� 1qσq2 J
�

and finally

ΠC � nb

p2b� σq2
�
Var pvq � p2b� σq2

p2b� pn� 1qσq2v
2
�

D Proofs of section 5
Thus, the matrix B of this asymmetric model is:

B �

���������

b1 σ � � � � � � σ

σ
. . . . . . ...

... . . . bi
. . . ...

... . . . . . . σ
σ � � � � � � σ bn

��������
�

���������

1 σ1σ2 � � � � � � σ1σn

σ2σ1
. . . . . . ...

... . . . 1 . . . ...

... . . . . . . σn�1σn
σnσ1 � � � � � � σnσn�1 1

��������
When n � 2, all definite positive matrix are covered by this description. For n ¥ 3, the fact that

all the cross-derivative terms bij , i � j, are all equal to σ is obviously restrictive.
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The change of variables to move from the bi and σ model to the 1, σiσj model is

qi Ñ σiqi?
σ

vi p resp. ai, ci, piq Ñ
?
σvi
σi

p resp. � � � q

the other terms should adjust automatically. For example direct demand in the bi and σ model writes

qi � wi

�
pai � piq � σ

°
wjpaj � pjq

1� σ
°
wj

�
with wi � 1{pbi � σq. Therefore the demand in the 1, σiσj model writes (after some elementary
rearranging)

σiqi � wi

�
ai � pi
σi

�
°
wj

aj�pj
σj

1�°wj

�
with wi � σ2

i {p1� σ2
i q.

Determinant of the B matrix

det pBq � σ
¸
i

¹
j�i

pbj � σq �
¹

pbi � σq

See Bernstein (2009) page 141-142 Fact 2.13.12.
This determinant is strictly positive as we have assumed that B is positive definite. So the values

of the elements of b are restricted. As B is symmetric if it were diagonal dominant (i.e. assuming
b1 ¡ pn � 1qσ), it would automatically be positive definite. We cannot compute the eigenvalues of
B but for our computations, it is enough to assume that B is positive definite and that b1 ¡ σ.32

Under this assumption (recall that b1 ¤ b2 ¤ � � � ¤ bn)

det pBq �
¹

pbi � σq
�

1� σ
¸ 1

bi � σ



(D.1)

Decomposition of the B matrix It is useful to introduce the following matrix:

W � diagpb� σq�1 �

���������

w1 0 � � � � � � 0
0 . . . . . . ...
... . . . wi

. . . ...
... . . . . . . 0
0 � � � � � � 0 wn

��������
�

���������

1
b1�σ

0 � � � � � � 0

0 . . . . . . ...
... . . . 1

bi�σ

. . . ...
... . . . . . . 0
0 � � � � � � 0 1

bn�σ

��������
We can then rewrite matrix B as,

B � diagpb� σq � σJ � W�1 � σJ (D.2)

and (D.1) can be rewritten
det pBq � det

�
W�1� �1� σ

¸
wi

	
32The B matrix could still be positive definite in the case b1 � σ but the expression of the B�1 would be different.
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Inverse of B When B � W�1 � σJ, then

B�1 � W� σ

1� σ
°
wi

WJ W (D.3)

That is, in extended form,

B�1 �

���������

w1 0 � � � � � � 0
0 . . . . . . ...
... . . . wi

. . . ...
... . . . . . . 0
0 � � � � � � 0 wn

��������
� σ

1� σ
°
wi

���������

w2
1 w1w2 � � � � � � w1wn

w1w2
. . . . . . ...

... . . . w2
i

. . . ...
... . . . . . . wn�1wn

wnw1 � � � � � � wnwn�1 w2
n

��������
notice that 1� σ

°
wi � det pWq det pBq. One can directly verify that BB�1 � I. Indeed,�

W�1 � σJ
� �

W� σ p1� σδq�1 WJ W
	

� I� σ p1� σδq�1 J W� σJ W� σ2 p1� σδq�1 J WJ W

now it is easy to check that J WJ W � δ J W therefore

BB�1 � I� σ

�
1� 1� σδ � σδ

1� σδ

�
J W � I

D.1 Quantities

Using Fact 10, the First-best, Monopoly, Cournot, and Bertrand equilibrium quantities are respec-
tively given by

q� � q� p0q , qm � q� pBq , qC � q� pdiagpbqq , and qB � q�
�

diagpβq�1
	
.

Proof of Fact 12 In the first-best case, X � 0 and q� � B�1v that is the same expression as for
demand (14) except that p has been replaced by c. Hence the result. For the monopoly, we have
qm � 2B�1v, hence qm � q�{2.

In the cases of Cournot, and Bertrand, X is a diagonal matrix, therefore B�X � �W�1 �X
��σJ

which can be written B�X � �W�1 � σJ with�W � �W�1 �X
��1

Using that W�1 � diag ppbi � σqq, and that in the Cournot case X � diagpbq
�W � pdiag ppbi � σqq � diagpbqq�1 � diag

�
p 1
2bi � σ

q



In the Bertrand case X � diagpβq�1 � diag
�
ppbi � σq 1�σ

°
wj

1�σ
°
j�i wj

q
	
, so

pβiq�1 � pbi � σq
�

1� σ
°
wj

1� σ
°
j�iwj

�
� pbi � σq

�
1� σwi

1� σ
°
j�iwj

�

� bi � σ � σ

1� σ
°
j�iwj

� bi �
σ2°

j�iwj

1� σj�i
°
wj

� bi � Φi

where Φi �
σ2°

j�iwj

1� σj�i
°
wj

and therefore

p rwiq�1 � pbi � σq � 1{βi � 2bi � Φi � σ or rwi � 1
2bi � Φi � σ
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D.2 Equilibrium Surplus

Proof of Fact 14 Consumers’ surplus is given by 2V � pqq1 B pqq where q are the equilibrium
quantities given in Fact 12. Therefore using B � W�1 � σJ, one can write q � �Wz with z �
v�

�
σ
° rwj

1�σ
° rwj

	 rv e

2V � pqq1 �W�1 � σJ
� pqq � z1

��WW�1�W	
z� σ z1�WJ�Wz

Now, by definition of the weighted variance the first term is

z1
��WW�1�W	

z � pn �yVar pzq � ppzq2�
then using the value of z

z1
��WW�1�W	

z � pn�yVar pvq � �pv� rnσ
1� rnσ rv


2
�

and the second term is

z1�WJ�Wz �
�¸ rwi	2

przq2 � rn2
�rv� rnσ

1� rnσ rv

2

�
� rnrv

1� rnσ

2

thus finally (18).

D.3 Total profit

Proof of Fact 15 The result for the first-best and the monopoly are straightforward (they are true
in general, not only for the specific B matrix considered in this paper). In any case, total profits are

Π � q1pp� cq where q and p are the equilibrium quantities and prices

For Cournot and Bertrand, the relationship between q and p� c is given by the f.o.c. which have
the form p� c � Xq where X � diagpbq for Cournot and X � diagpβq�1 for Bertrand. Hence,
using Fact 12 one can write q � �Wz with z � v�

�
σ
° rwj

1�σ
° rwj

	 rv e, we have

Π � z1�WX�Wz � z1|Wz

and as |W is a positive diagonal matrix, we can use the variance formula:

Π � qn �}Var pzq � pqzq2�
hence (19).
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