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Abstract 

Plasmids play important roles in microbial evolution and also in the spread of antibiotic resistance. 

20 Plasmid sequences are extensively studied from clinical isolates but rarely from the environment with 

a metagenomic approach focused on the plasmid fraction referred to as the plasmidome. A clear 

challenge in this context is to define a workflow for discriminating plasmids from chromosomal 

contaminants existing in the plasmidome. For this purpose, we benchmarked existing tools from 

assembly to detection of the plasmids by reference-free methods (cBar and PlasFlow) and database-

guided approaches. Our simulations took into account short-reads alone or combined with moderate 

long-reads like those actually generated in environmental genomics experiments. This benchmark 

allowed us to select the best tools for limiting false-positives associated to plasmid prediction tools 

and a combination of reference-guided methods based on plasmid and bacterial databases.

30 Keywords: plasmidome, high-throughput sequencing, assembly, plasmid prediction.
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INTRODUCTION

Plasmids play key roles in evolutionary events in all microbial communities. A large number of 

plasmid genes allow their survival, flexibility and adaptation to environmental change. Knowledge 

of their structure and dynamics (i.e. flux) at the individual and community levels is therefore essential. 

In 2018, there were around 11,000 plasmids sequenced in the NCBI Refseq database (release 86). 

Most belonged to the Proteobacteria, in particular to the class Gammaproteobacteria. Our knowledge 

of these mobile genetic elements (MGE) is biased by culture-dependent techniques and sample origin 

(cultures from clinical samples have been more extensively studied e.g. Escherichia coli or Klebsiella 

40 pneumoniae). Plasmids have also attracted attention because they are involved in the dissemination 

of antibiotic resistance and xenobiotic-degrading genes. Most potential hosts of plasmids have not 

been isolated and brought into culture, which has made it difficult to systematically study plasmids 

in an environmental context.

To circumvent these problems, some studies used culture-independent methods such as transposon-

aided capture (TRACA) [1] or high-throughput sequencing from DNA-plasmids. The TRACA 

approach suffers from certain limitations such as the capture of only small plasmids and the exclusion 

of linear ones [2]. The second approach seems currently to be the most promising and the resulting 

data are referred to in this paper as plasmidome. This term has been used with different meanings, for 

example to define the plasmids isolated from cultivable bacteria after selection in a specific 

50 environment by the addition of antibiotics [3]. In this study, in line with the definition of Kav et al. 

[4], the term has been extended to refer to the entire plasmid DNA of an environmental sample 

without cultivation or selection of microorganisms. This DNA fraction includes known plasmids from 

cultivated bacteria and unknown bacteria, as pointed out in the few studies on the topic. Previous 

research indicated that most plasmids from marine sediment microbial communities were novel and 

different from those of clinical isolates [5]. Annotations of plasmid contigs from activated sludge 

sample showed that most belonged to the bacterial kingdom, such as Achromobacter xylosoxidans, 

for example [6]. The plasmid harbored by this bacterium encodes enzymes required for 

(halo)aromatic compound degradation or heavy metal resistance determinants. Kav et al. [4] 

improved the DNA extraction protocol by including digestion of the linear contaminating 

60 chromosomal fragments with a plasmid-safe DNase and amplification of circular forms using Φ29 

DNA polymerase. Overall, the rumen plasmidome encodes more plasmid-specific functions and 

virulence factors than were previously detected in the metagenomes. However, whatever the protocol 

used in plasmidome studies, unavoidable contamination with chromosomal DNA can distort the final 

data. The “plasmidome” experiments included many contaminants since the plasmid to chromosome 
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ratios computed varied from 2.83 to 15.73 [7] and the detection of chromosomal contamination 

remains a challenge. The bioinformatics tools used are therefore a key factor in achieving reliable 

results. Initial bioinformatics workflows were dedicated to assemblies whose main biases are well-

documented. In these studies, assemblies were processed from short reads (454 or illumina). However, 

long reads, combined or not with short reads (hybrid assembly), now promise to revolutionize plasmid 

70 analysis [8]. Previous studies were based on a comparison with plasmids from RefSeq [5] or specific 

databases such as ARDB [9] and ACLAME [10]. The bioinformatics tools dedicated to 

plasmid/plasmidome analyses can be divided into three main categories (Table 1). The first is based 

on the search for marker genes [11–16]. Thus, specific tools like PlasmidFinder [14] and MOB-suite 

[15] identified the MGEs from specific proteins and replicon sequences. However, such procedures 

based only on public databases, sometimes restricted to the pathogens, are not able to identify new 

plasmids and this makes reference-free methods a promising alternative. The second category relies 

on the search for genomic signatures in the contigs [7, 17]. Thus, cBar [17] and PlasFlow [7], a more 

recent tool, are based on k-mer frequencies as features to train machine learning models. The first 

uses SMO-based models while the second is based on deep neural networks with predictions 

80 combining different k-mer lengths. The third category is based on the coverage difference or on the 

specific detection of circular contigs (i.e. “cyclocontig”) in the de Bruijn graph to attempt to 

reconstruct whole plasmid sequences [18–20].  

These tools were partially benchmarked on individual genomes (chromosome + plasmids from one 

species) [21,22] but never from complex communities (metagenomes/plasmidomes). In the present 

paper we propose a benchmark of a subset of methods by focusing preferentially on those dedicated 

to metagenomes (Table 1) and responding to the following criteria: i) process from an assembly ii) 

detection of linear and circular plasmids iii) use of a command line for dealing with big data iv) 

scalability. An assembly is able to predict genes and, for instance, antibiotic resistance genes harbored 

by plasmids with more reliability than directly from reads [23]. Scalability is essential for tuning 

90 workflows with new tools such as assemblers. Within these specifications, we have not included tools 

requiring manual curations [16] or processes from reads alone [11] and we only used the best 

assembler already benchmarked. The main aim was to select the combination of the best methods 

after identifying the main limitations of the computational tools in plasmidome analyses.
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MATERIALS AND METHODS 

Databases 

To simulate plasmidome sequencing, we used reference sequences from plasmids and sequences from 

100 chromosome databases to simulate contamination. Accessions of plasmids and chromosomal 

contaminants were used for building. We used 1828 plasmid sequences and 506 chromosome 

sequences. To construct the plasmid database, all the plasmid sequences from RefSeq (release 86) 

[24] were used, and one sequence per species referenced as complete was retained. The “contaminant 

database” (i.e. bacteria and archaea) used in the simulations was built from chromosome sequences 

from RefSeq: 1 genome per species was retained and 500 were randomly selected (Figures 1 and 2 

supplementary materials). These mock communities do not necessarily have to reflect the taxonomic 

composition of many real-world samples.

Sequencing simulation 

110

Short-read and long-read sequencing were simulated with Grinder v0.5.4 [25]. For short-read 

sequencing, 150 bp paired-end reads with an insert size of 350 bp were generated, and for long-read 

sequencing 6,000 bp single-end reads were produced. To simulate contamination events, contaminant 

reads were generated from chromosomal sequences and added to the plasmid reads. For example, a 

contamination named “20%” corresponded to an addition of 20% of the plasmid reads as 

chromosomal sequences. Several sequencing coverages were simulated: 1X, 2X, 5X, 10X and 20X 

for short-reads, and 0.5X, 1X and 5X for long-reads, associated with several contamination rates (0%, 

5%, 10% and 20%). The greatest coverages correspond to 25,228,218 short-reads (20X) and 157,677 

long-reads (5X). The abundances of the plasmids and contaminants follow a power law. The grinder 

120 parameters for the short-read simulations were -rd 150 -id 350 -fq 1 -ql 30 10 and-rd 6000 -fq 1 -ql 

30 10, respectively.

Assembly

Short-reads were assembled with Megahit v1.0.5, with parameter “–12” to give interleaved fastq 

paired-end file [26], SPAdes and MetaSPAdes (v3.9.0), with parameter “–12” to give interleaved 

fastq paired-end file, and only -assembler parameter “-meta” was used to launch MetaSPAdes [27]. 

Hybrid assemblies were tested with HybridSPAdes v3.9.0 using the same parameters as SPAdes with 
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“–PacBio” to launch hybrid assembly [28], Unicycler v0.4.4 [29], and a sequential assembly of short 

read assemblies (Megahit, MetaSPAdes and SPAdes) and long reads with CAP3 [30]. A more 

130 stringent procedure of this assembly was also performed with the following parameters: 95 for -p 

percent identity and 60 for -o overlap length. After assemblies, only contigs over 1 kbp were kept for 

further analysis. 

Plasmid prediction by reference-free tools

Plasmid prediction or decontamination was performed in two experiments using Megahit and 

MetaSPAdes short-read assemblies, defined as the best tools after the first benchmark (see results). 

Several methods for separate plasmid contigs and contaminant contigs were assessed. Two tools 

designed for this purpose, PlasFlow [7] and cBar [17], were first tested. PlasFlow was tested with 

140 different probability thresholds from 10 to 90%, with steps of 10. A combination of cBar and 

PlasFlow tools was tested. In the first step, cBar was used for identifying plasmids, and the sequences 

classified as chromosomes were checked by PlasFlow with various thresholds (70, 80 and 90%). The 

plasmid fraction was then defined as the sum of the plasmids detected by the two tools.

Plasmid prediction from specific markers

The aim was to look for known plasmid markers among the contigs, a method that corresponds to a 

reference-based approach. When a plasmid marker was found, the contig was then classified as a 

plasmid whatever the results given by the predictive tools described above. The markers used were 

150 those from the MOB-suite tool [15], which contains replicase DNA, origin of transfer (oriT) DNA, 

mobilization proteins and mate-pair formation proteins. For proteins, the search was performed with 

blastp v2.2.31+ [31] with an e-value at 1e-6 against contig predicted genes translated to proteins with 

Prodigal vV2.6.3 [32]. For DNA sequences, the search was performed with blastn against the contigs. 

The same treatment parameters as those of plasmidFinder were applied. A plasmid marker was found 

in a contig or predicted genes when the sequence had at least 80% identity and along at least 80% of 

its length (90 and 90% for oriT DNA). 

Detection of the chromosome contaminants
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160 Chromosome detection (i.e. contamination) was performed by aligning the contigs against a database 

with minimap2 v2.14-r883 [33] with the following parameters: -x asm5 (stringent parameter) and -N 

corresponding to the number of sequences in the database used. Sequences were considered to 

originate from chromosomes if they mapped with at least 80 % of coverage. The database of the 

chromosomes was RefSeq prokaryotic chromosomes, the same used for selecting contaminant 

genomes in the database construction (see Database paragraph). The contigs were aligned against this 

database and contaminant genomes were discarded. The results of the mapping made it possible to 

discriminate between chromosomes and plasmids. To assess the effect of the database composition 

and the reliability of mapping to identify contaminants the genomes were binned from their 16S rRNA 

identity. Clustering was processed with vsearch [34] (--usearch_global option) using contaminant 

170 SSU as seed and deleting chromosomes from the prokaryotic database according to 99, 97, 95 and 90% 

thresholds. For the real plasmidome analysis, another step was added based on the detection of the 

phylogenetic markers harbored by chromosomes [35].

Plasmidome analysis

The best bioinformatic workflow determined from the mock communities was used to analyze 

plasmidomes from hospital biofilm and a waste water treatment plant (WWTP).

Biofilm formed on glass slides in the sewer of the Gabriel Montpied teaching hospital (Clermont-

180 Ferrand, France) was scratched with a razor blade and sonicated for 5 min in saline medium with 

0.1% Na-pyrophosphate to disrupt the biofilm. Four liters of inlet water from the wastewater 

treatment plant were concentrated by centrifugation for 30 min at 8000 RPM at 4°C. Bacteria were 

re-suspended in DNA/RNA shield ™ (Zymo Research) to preserve the samples before extraction.  

Plasmid DNA was extracted by a modified alkaline lysis method [36]. DNA extraction was optimized 

to enrich fractions with plasmid DNA while conserving large plasmids. This is why we avoided 

vortex throughout the procedure, cut the tips of the pipettes and reduced the number of steps and 

pipetting of the fraction. Bacteria were centrifuged for 10 min at 8000g in Eppendorf tubes. The cells 

were then re-suspended in 200 µL ice-cold resuspension buffer [(50 mM glucose/10 mM EDTA/10 

mM Tris-Cl, pH 8.0) + 5 µL RNAse A/T + fresh lysozyme 4mg/ml, proteinase K 20 µg/ml] with a 

190 mini-potter and incubated 1h at 37°C. Bacterial cells were lysed with 400 µL of freshly made lysis 

solution (0.2 M NaOH/1% SDS) and the tubes mixed by gentle inversion. The tubes were incubated 

for 5 min at RT then neutralized by the addition of 300 µL of 7.5 M ammonium acetate followed 

quickly by 300 µl of chloroform, mixed by gentle inversion of the tube four or five times and then 
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chilled on ice for 10 min. After centrifugation at 4°C, 12 000 rpm for 10 min, the samples were 

cleaned up from residual proteins by a step of phenol: chloroform/ isoamyl alcohol (25:24:1) 

extraction and DNA were precipitated with isopropanol (0.7 vol.). After two washes with ethanol 70, 

the DNA was re-suspended in 100 µl of TE buffer then transferred to 200 µL of precipitation solution 

in a fresh tube (30% polyethylene glycol 8000/1.5 M NaCl), mixed by inversion and chilled on ice 

overnight to clean the DNA before centrifugation and resuspension in 5 mM Tris buffer.

200 After DNA fragmentation and adapter ligation, the DNA was size selected and amplified. The DNA 

was then sequenced by GATC Biotech using an Illumina platform (2 x 150 bp paired-end). The reads 

were deposited with the accession number PRJEB29943.

The reads were assembled with Megahit according to the simulations and PlasFlow was used at 70 % 

threshold. The presence of chromosomal sequences was checked by (i) alignment against the 

prokaryotic RefSeq database with minimap2 according to the method described above, (ii) detection 

of rRNA sequences with blastn v2.2.31+ against SILVA rRNA markers (SSU and LSU, version 132). 

rRNA was considered as present if it mapped on at least 1200 bp with an identity of 97%. To take 

into account the rRNA genes at the beginning or end of the contigs, the alignment must be at least 

300 bp long with a cut-off of 97%. and (iii) detection of phylogenetic markers included in 

210 chromosomes from micro-organisms. The search was conducted with hmmsearch v3.2.1 against 

HMM profile of bacteria and archaea phylogenetic markers [35] with an e-value of 1e-5. The presence 

of plasmids was checked by three methods: (i) search for plasmid markers (ii) detection of circular 

contigs and (iii) alignment against RefSeq plasmid database using minimap2 with the option -x asm5 

(stringent parameter) and a coverage of at least 80 %. 

Assessments of assembly and plasmid detection

Assembly was assessed with MetaQuast v5.0.0 [37]. Some traditional assembly parameters were 

measured (N50 and longest contigs) and some were defined as follows.

- Misassembled contigs: misassembled contigs represent contigs (bp) that can be chimeric (different 

220 parts of one contig map different plasmids), inverted (maps in two directions on the same plasmid) 

or relocalized (the left and right parts of the contig map the same plasmid with a gap or an overlap 

over 1 kbp) 

- Reference coverage: the reference coverage was the percentage of bases in the reference sequences 

(plasmids used to simulate sequencing) covered by correct contigs (misassembled contigs were 

discarded). 
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- Complete plasmids: a plasmid was defined as “complete” when at least 90% of its length was 

covered by only one contig. 

- Contaminated contigs: contigs that did not map with any reference plasmid and mapped against 

reference contaminants.

230

To assess the reliability of the plasmid prediction, the simulated contigs of a known origin (i.e. 

plasmid or non-plasmid origin) and predicted affectation were compared. On the basis of this 

comparison, we defined true positive, true negative, false positive and false negative contigs. 

- True positives (TP): contigs (bp) classified as plasmids that are actual plasmids 

- True negatives (TN): contigs (bp) classified as chromosomes that are actual chromosomes

- False positives (FP): contigs (bp) classified as plasmids but which are actually chromosomes

- False negatives (FN): contigs (bp) classified as chromosomes but which are actually plasmids. 

Using these parameters, we computed the following metrics. 

- Recall: TP / (TP + FN). Plasmids correctly predicted among all the plasmids. Reflects how many 

240 real plasmids were correctly predicted. 

- Precision: TP / (TP + FP). Plasmids predicted correctly among all contigs predicted as plasmids. 

Reflects how many predicted plasmids were real plasmids. 

- Accuracy: (TP+TN)/(TP+FP+FN+TN)

- F1-score: 2*(Recall * Precision) / (Recall + Precision)

A diagram combining the main bioinformatics tools used for producing contigs and sorting out 

plasmids from contaminants is presented in Figure 3 supplementary materials. All the scripts related 

250 to the simulations presented in this paper can be found in a repository at the following address: 

https://github.com/meb-team/PlasSuite. Briefly, this repository includes scripts involved in the 

database building, assembly, decontamination by reference-free tools and aligning against public 

databases (PlasSimul). The final workflow for detecting plasmids by the best methods described in 

this paper is PlasPredict. It can be associated with other workflows for i) predicting genes and 

processing a first functional annotation (PlasAnnot) ii) a taxonomic annotation of the predicted 

contigs (PlasTaxo) and iii) building gene tables (all predicted genes and more specifically antibiotic 

resistance genes) by mapping reads against clustered genes (PlasAbund).
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RESULTS  

260 Short read assemblies 

Megahit, SPAdes and MetaSPAdes were first used with several sequencing coverages. To assess 

assembly quality, we focused on N50, the longest contig, reference coverage and misassembled 

contigs (Table 2). The N50 parameter increased with sequencing depth, from an average of 1,410 bp 

for 1X to an average of 69,369 bp for 20X. For the lowest sequencing depth (1X and 2X), N50 was 

closely similar between the different assemblers. For the highest sequencing depth (10X and 20X), 

Megahit had the worst N50 and SPAdes or MetaSPAdes the best (82,150 bp for MetaSPAdes with 

20X depth) (Table 2a). The same conclusions can be drawn from the longest contig parameter with 

the best results being obtained from the SPAdes tools, around 1,777 kbp for 20X (Table 2a). The 

reference coverage increased with the sequencing depth and reached a plateau from 10X (Table 2, 

270 Figure 1). The misassembled contig rate decreased from sequencing depth of 1X to 10X with Megahit, 

from 7.1% for 1X to 0.82% for 10X. The results from SPAdes had the highest misassembly rates for 

low depths? (1X and 2X), up to 34.66% for 1X. With the same depth, MetaSPAdes obtained 2.9% of 

misassembled contigs with 2X (Table 2a). 

Hybrid assemblies 

Hybrid assemblies were tested from a short-read sequencing depth of 10X, which corresponded to 

the optimal value for the reference coverage parameter (Figure 1) and a long-read sequencing depth 

from 0.5X to 5X. Overall, the long-read sequencing depth of 1X did not significantly improve the 

assembly results compared to those with short reads (Table 2b). For example, N50 was similar to the 

280 best short-read assembly, 82,519 bp for Unicycler and 82,150 bp for MetaSPAdes with 20X short-

read depth. The best N50 and longest contig parameters were obtained with the Unicycler assembler, 

with 148,453 bp and 1,848,068 bp for the highest long-read sequencing depth (5X). 

However, these best values can be unfortunately associated with a high rate of misassembled contigs 

(12.49 to 20.89%) and a low coverage (72.10%). Taking into account the reliability of the assembly, 

the best results were obtained with the combination of Megahit and CAP3 (2.41%-6.18%), which 

outperformed HybriSPAdes (4.90 to 8.30%). In contrast, these assemblies did not improve those 

obtained with the short-read simulation. For example, the CAP3 approach gave a lower N50 than that 

associated with short-read assemblies, 33,227 bp for Megahit + CAP3 vs 35,107 bp for Megahit with 

the same short-read depth of 10X (Figure 1, Table 2b). The largest contig obtained with the CAP3 

290 approach (369,321 bp) was closely similar to those associated with short-read assemblies (369,321 to 

482,749 bp). The longest contigs from short-read assemblies were not improved by CAP3 hybrid 
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assembly (Figure 2, Table 2b) and even with more stringent parameters for overlapping with CAP3 

(98% identity on at least 60 bp) the misassembled contig rate of 2.41 % was still higher than that with 

Megahit used alone (Figure 2, Table 2). Finally, because of the computing resources required and as 

the statistics of assembly were not improved, we did not use this combination. Unicycler was also 

used only for assembled long reads. Nevertheless, with the coverages (0.5X to 5X) and the read length 

benchmarked, the results were the worst obtained in our simulations (Table 1 Supplementary 

materials)

Overall, these simulations showed that the hybrid assemblies improved the length of the contigs but 

300 diminished the reliability of the assemblies (i.e. proportions of misassembled contigs). 

Assemblies with contamination

An important step in this work was to simulate chromosomal contamination before assembly of the 

reads (Table 2c). The simulations were restricted to the optimal results obtained from the previous 

results (10X for the short reads and 1X for the long reads). The contaminant reads introduced into the 

simulated plasmidomes produced a small proportion of contaminant contigs > 1 kbp. Overall, the 

main statistics of the assemblies remained close to those obtained without contaminants and varied 

little with the increase in the reads from bacterial chromosomes. Unicycler produced the longest 

contigs with again the largest proportion of misassembled contigs whereas the short-read assemblers 

310 such as Megahit and MetaSPAdes minimized this proportion. 

Plasmid prediction and decontamination from simulated plasmidomes 

Various strategies were used to predict plasmids from the plasmidome simulations with bacterial 

contaminations: cBar, PlasFlow, Recycler, contig alignment against databases and detection of 

specific plasmid markers, cBar and PlasFlow were used alone or together. To use Recycler, the 

assembler must generate a file representing the Debruijn graph (FASTG format produced by 

metaSPAdes) with a specific simulation (see materials and methods). However, while this tool 

decreased contamination as expected, the coverage of the reference sequences remained extremely 

low (5.2%). Finally, the detection of the circular contigs after assembly can be an alternative that 

320 gives similar results (results not shown). 

The best decontaminated assembly (i.e. plasmidome) was defined as an assembly with the lowest 

contamination rate and the highest reference coverage rate (Figure 3, Table 2 Supplementary 

materials). For this part of this study, we chose the simulation results with the lowest contig 

misassemblies and the strongest contaminant reads (i.e. 20%). These contigs corresponded therefore 
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to those produced with Megahit and metaSPAdes (Table 1). The contaminants accounted for up to 

0.21% in bp and 2.51% in abundance of the contigs generated. Figures 3 and 4 show roughly three 

types of results discriminating between contig alignments, plasmid prediction and maker detection. 

The results did not differ with the assembler used. In Figure 4, the range variation of the recall 

parameter is greater than precision and the best recall values were obtained for the method based on 

330 the chromosome alignment. 

The best results, defined as the best compromise between residual contamination and coverage, were 

therefore obtained with contig alignments against the entire bacteria databases (0.15% contaminated 

contigs and a reference coverage equal to 84.8%) (Figure 3). However, when the chromosome 

databases were even slightly distant from the chromosomes present in the assembly (clustering 

between 99% and 90%), the method was no longer effective because contamination was equal to that 

of the control. 

An opposite result was obtained with the detection of the plasmid marker in the contigs since 

contamination was close to 0. However, the coverage rate was particularly low because not all contigs 

contained the markers sought for. Recall and reference coverage rates were low (0.2 and 16.99%, 

340 respectively) and many plasmids were not retrieved.

cBar and PlasFlow obtained intermediary results (Figures 3 and 4) compared to the two strategies 

described above. For cBar, recall and precision were slightly lower than those of PlasFlow60 (mean 

recall of 0.59 for cBar and 0.64 for PlasFlow). The combination of these two tools did not improve 

the results (Figure 4 supplementary materials). An increase in the threshold of PlasFlow led to a lower 

recall (from 0.71 to 0.50) that was reflected by a drop in the contamination rate (from 0.16 % to 0.13%) 

and the coverage rate (from 64.3 % to 44.8%). Finally, plasmid prediction was better but some 

plasmids were not detected. There was a gap between the thresholds of 50 and 60%. The 

contamination rate was too high for the threshold of 50% and lower. For purposes of the plasmidome 

study, precision is a more important parameter than recall as we prefer to lose true plasmids but to be 

350 sure of the correctness of the plasmids we will retain from a true plasmidome. PlasFlow with a cut-

off of 70% seems to be the best compromise between precision, coverage and residual chromosomal 

contaminants for studying a plasmidome in the environment. The accuracy and the F1-score after 

Megahit assembly were 0.55 and 0.71 respectively (Table 2 supplementary materials)

To deal with real data, we chose to combine the best bioinformatics methods described above. Our 

results showed that mapping on public databases is always the simplest and most reliable method for 

detecting the sequences of interest, at least, in a first step. Contig alignments against microbial 
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databases can decrease putative contaminations and can also be used as a first approach to remove 

clearly identified chromosomes. Hence, detection of the phylogenetic markers belonging to bacteria 

or Archaea can be included in this step. On the real data, looking for plasmid markers missed many 

360 plasmids, but it can be used as a first and reliable approach. This method can be combined with 

mapping against a plasmid database and the detection of circular contigs. From these results, we 

propose a workflow called PlasPredict, given in Figure 5 and available for downloading with all the 

simulations at the following address: https://github.com/meb-team/PlasSuite (more details are 

available in the materials and methods in the section “Plasmidome analysis”).

The analysis using this workflow of the simulated data (Megahit assembly of Illumina reads 10X with 

20% of chromosomal contaminants) shows that the taxonomic composition of the true positives was 

not significantly different from the reference database used (Chi-squared test at the genus level - 

Figure 5 Supplementary materials). Among GC% and contig length parameters, the less reliable 

predictions involved the shorter contigs (< 10 kb) since they represented the greater number of the 

370 FN (Figures 6 and 7 Supplementary materials). 

What is the proportion of plasmids in a “plasmidome”?

From the WWTP assembly, 6.5 % of contigs were identified as chromosomes with the database-

approach (chromosomes and phylogenetic markers) (Table 3). This proportion was not a simple 

addition of the contaminants since a contig can be detected as a contaminant by more than one method. 

The detection of plasmid markers, circular sequences and whole plasmid sequences identified 2.16 % 

of contigs considered to be “true” plasmids corresponding to plasmids referenced in public databases. 

We also considered circular contigs to be plasmids. From the biofilm assembly, 21.27 % of contigs 

380 were identified as chromosomes and 7.02 % of contigs as plasmids. After PlasFlow treatment, 4.9 % 

of the remaining contigs were defined as chromosomes for WWTP and 9.3 % for biofilm; 5.43 % of 

the remaining contigs were defined as plasmids from WWTP and 17.07 % from biofilm. PlasFlow 

decontaminated assemblies (decreased the chromosome rate) and increased the plasmid rate. The 

circular contigs accounted for a low proportion of the predicted plasmids and using a tool based on 

the cyclocontig detection such as MetaplasmidSPAdes did not improve significantly the results 

(Table 3 Supplementary materials). From the data published by Zhang et al. [6], any circular contigs 

were detected with a sequencing-depth lower than that of this study. 

DISCUSSION
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390

Analysis of plasmidomes, defined as entire plasmid DNA of an environmental sample is challenging 

because no laboratory experiment can today separate plasmids from chromosomes perfectly. In 

addition, bioinformatics approaches are not easily able to separate plasmids from host chromosomes 

satisfactorily because there are no clear signatures to differentiate these two classes computationally. 

There are therefore bottlenecks when analyzing metagenomes and plasmidomes at the same time 

since the assembly process is strongly dependent on sequencing platforms. Illumina processing uses 

short fragments that are smaller than many repetitive elements in bacterial chromosomes or plasmids 

and therefore produce a “puzzle of contigs”. In contrast, Pacific Biosciences and Oxford Nanopore 

Technologies platforms can sequence DNA fragments from 10 kbp to 40 kbp and are less dependent 

400 on this repetition. It has been shown that these long reads can improve metagenomic assemblies [38]. 

However, the extracted DNA quality from metagenomic experiments is not often sufficient to 

sequence long fragments. With the PacBio RS II system, Suzuki et al. [39] obtained therefore read 

lengths ranging from 4.4 to 9.8 kb from gut microbiomes. PacBio circular consensus sequencing was 

able to produce reads that averaged 1,319 bp in length and 99.7% accuracy from a biogas reactor 

microbiome sample [40]. In our simulation we chose a fragment length equal to 6 kb close to that 

obtained currently in environmental genomics [39–41]. In addition, because of the cost of long-read 

technologies, the sequencing process in environmental genomics is still a mix of short and long reads 

and, in this context, hybrid-assembly is then used. As expected, Unicycler and hybridSPAdes [28] 

produced the longest contigs. However, whatever the coverage depth, the results were hampered by 

410 the high level of contig misassemblies compared to that of short reads. Unlike these assemblers, there 

are few tools dedicated to hybrid assemblies and none to metagenomes/plasmidomes characterized 

by a high and uneven diversity. Thus, these tools were only benchmarked with one species and rarely 

with a microbial community. For our purpose, we considered the level of chimeric contigs as a critical 

criterion and so the hybrid-assembly was not used for the following simulations. In addition, with the 

sequencing depth and the long-read length chosen, the assembly of long-reads only did not improve 

the results. Finally, the development of the hybrid-assembly tools and/or the improvement of the 

long-read sequencing platform dedicated to the metagenomes are required. Among short-read 

assemblies, Megahit and metaSPAdes are designed for metagenomes, have been rated as the best 

assemblers by benchmark studies [26,27] and are considered as flexible and well documented. Contig 

420 misassemblies were also detected with these tools but were largely lower than those checked with the 

hybrid counterpart. Overall, Megahit minimized the misassemblies whatever the mock community 

built (with or without chromosomal contaminants) or the tool combination used (CAP3). 

Nevertheless, Megahit had generally the lowest N50 and “longest contig” values, leading to the most 
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fragmented assemblies. The SPAdes algorithms, also included in the hybrid assemblers used 

outperformed Megahit for these last statistics but gave slightly more chimeric contigs. A previous 

benchmark underlined the misassemblies errors made by MetaSPAdes, 50 times more than the most 

accurate assemblers such as Megahit, and the number of unaligned contigs with the reference 

community [42]. The recent study of Gupta et al. [43] recommended Megahit based on the best 

assembly statistic from two water plasmidomes and the few computing resources required. Finally, it 

430 is more reasonable to not detect some unresolved/fragmented plasmids (false negatives) than false 

positives, and simulations from Illumina platforms were kept for studying real plasmidomes. Hybrid 

assembly must be further improved to be used in the field of metagenomics, and long-read sequencing 

is still too expensive to reach a depth coverage in relation to the hybrid-assembly tools. 

The tools discussed above are not dedicated to plasmid assembly. Some methods are based on the 

detection of circular contigs within DeBruijn graphs, named cyclocontig by Antipov et al. [20]. These 

tools did not respond to all our specifications (i.e. detection of linear plasmids) but they can be 

included in a workflow to improve the detection of the circular forms. Recycler analyzes any 

DeBruijn graphs provided by a conventional de novo assembler to detect cyclic sequences (but 

440 requires a specific format as input) and can be associated with any tools in a workflow. However, the 

results obtained were not really different from those given by checking circular contigs after assembly 

by any tool. In a previous benchmark focused on one species, the authors [21], concluded that a high 

number of sequences predicted as plasmids originated from the chromosome. In addition, circular 

phage genomes can also be detected as plasmids [7]. In this study, plasmidSPAdes [18] was not 

benchmarked because the tool was based on the difference in coverage between plasmids and 

chromosomes and was dedicated to the assembly of one species. A recent version dedicated to the 

metagenome could solve this problem but the software was in an early preview version at the time of 

this work [20]. MetaplasmidSPAdes can be viewed as an option for the SPAdes-suite and can be used 

for the assembly of short-reads by focusing on the cyclic circular contigs. This detection was also 

450 associated with a reference-based approach. The results evidenced a low detection of plasmids in the 

biofilm or the WWTP compared to our workflow. Finally, the approach based on cyclocontig [18–

20] is strongly dependent on plasmid coverage and on sequencing depth. 

Thus, other methods that do not have such limitations are available for identifying plasmid contigs 

from plasmidomes and/or metagenomic experiments. PlasFlow [7] can detect circular and linear 

forms from environmental samples. According to its developers, this recent tool slightly 

outperformed cBar [17], with an outdated training dataset, on the basis of our criteria. Combined use 

of the two tools did not significantly improve plasmid detection and PlasFlow including a more recent 

Page 15 of 42

http://mc.manuscriptcentral.com/bib

Manuscripts submitted to Briefings in Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

training dataset was selected for dealing with real data. Although the public database gives a biased 

view of microbial genomes, including plasmids, in the environment our results show that these data 

460 can be used successfully to conserve at least the well-known plasmids and remove some contaminants. 

Predictive tools based on genomic signatures led to obviously contaminated plasmids being kept, as 

evidenced by the presence of phylogenetic markers (rRNA or proteins), and some plasmids were 

removed despite the presence of specific plasmid markers. This step, implemented in some software, 

is strongly linked to the database. The PLACNET web-based tool [16] requires manual pruning in 

Cytoscape software, a step that is incompatible with an automatic procedure. In our workflow, we 

propose an extended database of PlasmidFinder [14] dedicated to Enterobacteriaceae genomes with 

MOB-suite [15]. One example of the database effect (i.e. paucity) was the detection of contaminants 

by chromosome alignments with different clustering thresholds. With the total database (without the 

genomes used for generating contaminations), the cleaning effect was remarkable but became 

470 unreliable as soon as the closest genomes (clustering threshold of 99%) were removed. This procedure 

is likely unreliable for studying most environments with the exception of well-documented 

ecosystems such as the human gut. According to the authors of MOB-suite [15], these kinds of tools 

do not perform well on novel plasmids. The databases constructed from protein markers suffer from 

the same bias since few of the markers are studied directly by a metabarcoding approach (i.e. 

specifically amplified and high-throughput sequenced) and consequently such databases are also 

strongly dependent on genome sequencing. In contrast, rRNA databases (SSU and LSU) do not have 

such limitations but these short sequences (around 1.5 kbp) are not always in the fragmented 

contaminated chromosomes.

Our survey of bioinformatics tools confirms some findings from the study of Arredondo-Alonso [21] 

480 such as the general performance of cBar and Recycler. Finally, not any solution alone to be effective 

and their combination limits the presence of false positives in the sorted plasmid fraction. All the 

thresholds used in our workflow, called PlasPredict, were adjusted to minimize this major criterion. 

Briefly, a reference approach was used in parallel with a method based on the genomic signature 

(PlasFlow) to optimize the predicted plasmids. With this pipeline, we predicted plasmid contents of 

around 25 and 33%. Using the data of Zhang et al. [6] we improved the plasmid-chromosome ratio 

(in bp) from 2.12 in a previous study [7] to 8.57.

Few studies have investigated plasmid reconstruction in the environment. The present survey could 

provide some reasons why. Specific tools are developed mainly to assemble plasmids from individual 

genomes, and the use of long reads, which can give a solution to the treatment of the repeated 

490 sequences, is hampered by the overall low performances of hybrid assemblers in a metagenomic 
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context. A better understanding of gene flow in ecosystems and between biomes, mediated by 

plasmids, will be achieved by the development of specific tools together with improved plasmid DNA 

extraction.
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Key points

 A plasmidome approach associating DNA plasmid extraction and appropriate bioinformatics 

500 tools is the best method to study the dissemination of antibiotic resistance or xenobiotic-

degrading genes in biomes.

 Hybrid assemblies did not outperform short-read assemblies and generated the largest 

proportion of chimeric sequences from shot-gun simulations.

 Reference approaches for detecting plasmids gave the greatest precision but also the worst 

recall. These methods are ineffective for analyzing data from environments.

 The combined use of dedicated predicting tools did not increase plasmid prediction. PlasFlow 

software seemed to be the best compromise for minimizing false positives and maximizing 

plasmid coverage.
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510 Legends

Table 1: Main software dedicated to the analysis of the plasmids from genome or metagenome 

contents. In this paper the following tools were benchmarked at various steps: cBar, PlasFlow, 

Recycler and metaplasmidSPAdes.

Table 2: Main assembly statistics for the simulated plasmidomes. Total and misassembled lengths 

represent the sum length (bp) of all contigs above 1,000 bp. % Misassembled contigs represent the 

percentage of these contigs in assembly: misassembled length over total length. Reference coverage 

expressed in percentage is the number of bases in the reference database used for sequencing 

simulation covered by correct contigs (excluding misassembled contigs). The second reference 

520 coverage computed included all contigs (correct and misassembled contigs).  Complete plasmids 

correspond to plasmids covered by only one contig covered by more than 90 % of its length. 

Contaminated contigs in percentage is the length of chromosome contigs over total length. Worst 

values are shown in shades of red and the best in shades of blue (a, b and c).

Table 3: Plasmids and chromosome sequences detected in both plasmidomes. Raw assembly 

corresponds to contigs in bp with a minimal length of 1,000 bp. Referenced contaminants (%) are the 

percentage of contigs aligned against the prokaryotic chromosome database. rRNA (%) is the 

percentage of contigs that contain such sequences (SSU/LSU). Protein markers (%) are the percentage 

of contigs that contain such markers from bacteria or Archaea. Chromosomes (%) correspond to the 

percentage of contigs mapped against referenced prokaryotic chromosomes, rRNA and/or protein 

marker databases. Referenced plasmids (%) are the proportion of contigs aligned against the plasmid 

sequence database. Circular (%) are the circular contigs detected from the raw assemblies and plasmid 

markers are the percentage of contigs that contain a plasmid marker. Plasmids are the plasmids 

identified as “true” plasmids among the “plasmidome” inferred from the columns: referenced 

plasmids (%), circular (%) and plasmid markers. Predicted plasmids are the final results 

corresponding to the balance between the learning method and the reference based methods.

Figure 1: Reference coverage for short-read assemblies with sequencing coverage between 1X and 

20X

Figure 2: N50, largest contigs and misassembled contigs for assembly with short-read sequencing 

depth of 10X alone or in combination with long-read sequencing depth of 1X
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Figure 3: Plasmid reference coverages and contamination for Megahit and MetaSPAdes assemblies 

with various strategies for discriminating plasmids from chromosomes: cBar, PlasFlow, contig 

alignment against databases and detection of specific plasmid markers. PlasFlow10 to PlasFlow90 

represents the detected plasmid sequences with PlasFlow with a threshold varying from 10 % to 90 %. 

Chromosome alignment corresponds to the detection of the microbial (bacteria/Archaea) sequences 

(i.e. contaminants) excluded therefore from the final results. The microbial databases were clustered 

530 at various cut-offs to simulate a distance between the reference database and the environments studied. 

Plasmid markers correspond to the plasmid sequences detected by alignment against plasmid markers. 

Reference is the reference assembly without decontamination. The best decontaminated assembly (i.e. 

plasmidome) is an assembly with the lowest contamination rate and the highest reference coverage 

rate. 

Figure 4: Precision and recall for Megahit and MetaSPAdes assembly after all decontamination 

methods given in Figure 3. The best decontaminated assembly is an assembly with the highest recall 

and precision.

Figure 5: Workflow PlasPredict used for reconstructing plasmids from environmental DNA. In a first 

540 step (1), the database-guided and training (PlasFlow) approaches are used in parallel. The plasmid 

can be detected by similarity search (2) of specific markers and/or reference-free approach (3). The 

chromosomal contaminants are excluded from the final results (4). “+” means that contigs are 

identified as plasmids and added to the predicted plasmids pool whereas “-” means that the contig is 

considered as chromosomal contaminant and then removed from the final results.
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Figure 1: Reference coverage for short-read assemblies with sequencing coverage between 1X and 20X 
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Figure 2: N50, largest contigs and misassembled contigs for assembly with short-reads sequencing depth of 
10X alone or in combination with long-reads sequencing depth of 1X 

209x297mm (600 x 600 DPI) 

Page 25 of 42

http://mc.manuscriptcentral.com/bib

Manuscripts submitted to Briefings in Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

Figure 3: Plasmid reference coverages and contamination for Megahit and MetaSPAdes assemblies with 
various strategies for discriminating plasmids from chromosomes: cBar, PlasFlow, contig alignment against 

databases and detection of specific plasmid markers. PlasFlow10 to PlasFlow90 represents the detected 
plasmid sequences with PlasFlow with a threshold varying from 10 % to 90 %. Chromosome alignment 

corresponds to the detection of the microbial (bacteria/Archaea) sequences (i.e. contaminants) excluded 
therefore from the final results. The microbial databases were clustered at various cut-offs to simulate a 

distance between the reference database and the environments studied. Plasmid markers correspond to the 
plasmid sequences detected by alignment against plasmid markers. Reference is the reference assembly 
without decontamination. The best decontaminated assembly (i.e. plasmidome) is an assembly with the 

lowest contamination rate and the highest reference coverage rate. 
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Figure 4: Precision and recall for Megahit and MetaSPAdes assembly after all decontamination methods 
given in Fig. 3. The best decontaminated assembly is an assembly with the highest recall and precision. 
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Figure 5: Workflow for reconstructing plasmids from environmental DNA. In a first step (1), the database-
guided and training (PlasFlow) approaches are used in parallel. The plasmid can be detected by similarity 
search (2) of specific markers and/or reference-free approach (3). The chromosomal contaminants are 
excluded from the final results (4). “+” means that contigs are identified as plasmids and added to the 

predicted plasmids pool whereas “-” means that the contig is considered as chromosomal contaminant and 
then removed from the final results. 
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Web site Metagenomes*
Reference-

based
Linear and

circular plasmids
Command

line
Main

dependencies Input References

Plasmidseeker https://github.com/bioinfo-ut/PlasmidSeeker N Y Y Y Reads [11]
mlplasmid https://gitlab.com/sirarredondo/mlplasmids N Y Y Y Contigs [12]
HyAsP https://github.com/cchauve/HyAsP N Y Y Y Unicycler Reads [13]
PlasmidFinder https://cge.cbs.dtu.dk/services/PlasmidFinder/ N Y Y N Contigs/reads [14]
MOB-suite  https://github.com/phac-nml/mob-suite N Y Y Y Blast/Mash Contigs [15]
PLACNETw/PLACNET https://castillo.dicom.unican.es/upload/ N Y Y N/Y Blast Reads [16]
plasmidSPAdes http://spades.bioinf.spbau.ru/plasmidSPAdes/ N N Y Y SPAdes Reads [18]
cBar http://csbl.bmb.uga.edu/~ffzhou/cBar Y N Y Y Contigs [17]
PlasFlow https://github.com/smaegol/PlasFlow Y N Y Y Contigs [7]
Recycler  http://github.com/Shamir-Lab/Recycler Y N N Y Assembly graph [19]
metaplasmidSPAdes https://github.com/ablab/spades/releases Y Y N Y SPAdes Reads [20]

* « Y » means the tool was benchmarked with metagenomes in the original publication

Table 1 
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Assembly Short-reads
coverage

Long-reads
coverage

Contaminatio
n

Total
length (bp)

Misassemble
d length (bp)

Misassembled
contigs (%)

Longest
contigs (bp) N50

Reference
coverage

with correct
contigs (%)

Reference
coverage with
all contigs (%)

Plasmids
complete (%)

Contaminated
contigs (%)

a) From short reads simulations
megahit 1X - 0% 7754069 550925 7.10 20235 1440 7.22 7.65 0.00
metaspades 1X - 0% 9180006 445534 4.85 64558 1364 7.79 8.20 0.00
spades 1X - 0% 13834635 4794871 34.66 93999 1426 7.24 10.76 0.52
megahit 2X - 0% 45354852 1723221 3.80 36881 1540 24.99 25.82 0.03
metaspades 2X - 0% 55243004 1624307 2.94 47689 1522 28.43 29.41 0.02
spades 2X - 0% 64391949 17593195 27.32 63759 1590 23.82 33.04 0.02
megahit 5X - 0% 184331120 2068908 1.12 184557 4075 80.97 81.82 0.57
metaspades 5X - 0% 189634492 4169961 2.20 184228 4823 81.69 83.60 0.71
spades 5X - 0% 194159420 8605658 4.43 184789 4899 81.06 84.70 0.64
megahit 10X - 0% 204907565 1672279 0.82 369321 35107 89.32 89.97 4.06
metaspades 10X - 0% 206878234 7172134 3.47 423338 48043 87.98 91.00 6.07
spades 10X - 0% 209308318 9352071 4.47 482749 48638 87.71 91.49 6.69
megahit 20X - 0% 205727370 1970120 0.96 708657 50875 89.49 90.11 9.29
metaspades 20X - 0% 209576906 10149466 4.84 1770377 82150 87.57 91.85 18.03
spades 20X - 0% 210291727 8542764 4.06 1770377 75082 88.40 91.94 17.83
b) From short and long reads simulations
hybridspades 10X 0.5X 0% 209730275 10282930 4.90 536288 50331 86.77 91.16 7.03
unicycler 10X 0.5X 0% 208934694 26100159 12.49 577073 68225 78.62 89.70 8.98
hybridspades 10X 1X 0% 210377746 14367807 6.83 534238 53853 84.79 90.73 8.12
unicycler 10X 1X 0% 209774996 30316910 14.45 752078 82519 77.18 90.00 12.08
Megahit – Cap3 10X 1X 0% 249465543 7866908 3.15 369321 33227 87.70 92.49 4.61
Megahit - Cap3 - Stringent 10X 1X 0% 250142133 6016698 2.41 369321 32832 88.89 92.65 4.59
Metaspades – Cap3 10X 1X 0% 256083981 13965873 5.45 423338 38777 86.30 92.90 6.42
Spades – Cap3 10X 1X 0% 258846343 16001671 6.18 482749 39008 86.47 93.55 7.61
hybridspades 10X 5X 0% 213699173 17741861 8.30 737940 87465 83.71 91.42 13.25
unicycler 10X 5X 0% 211679873 44223580 20.89 1848068 148453 72.10 90.30 27.91
c) From short reads simulations with chromosomal contaminants
hybridspades 10X 1X 5% 210335012 14456376 6.87 534238 53636 84.74 90.70 7.72 0.01
megahit 10X - 5% 204919768 1670453 0.82 369321 35107 89.30 89.95 4.06 0.01
metaspades 10X - 5% 206899547 7186550 3.47 490307 47642 87.97 90.99 6.09 0.01
spades 10X - 5% 209321084 9653329 4.61 423183 48272 87.53 91.42 6.57 0.01
unicycler 10X 1X 5% 209448198 27524025 13.14 752099 86673 78.63 90.34 13.29 0.00
hybridspades 10X 1X 10% 210362788 14176203 6.74 534238 52433 84.92 90.75 7.59 0.07
megahit 10X - 10% 204981148 1581307 0.77 369321 35061 89.35 89.96 4.06 0.04
metaspades 10X - 10% 206970669 7003163 3.38 423338 47486 88.05 91.00 6.07 0.04
spades 10X - 10% 209468807 9473070 4.52 423183 48075 87.59 91.42 6.56 0.07
unicycler 10X 1X 10% 209513583 27536588 13.14 752099 87032 78.64 90.35 13.29 0.03
hybridspades 10X 1X 20% 211094213 13577116 6.43 483641 51623 85.06 90.93 7.26 0.57
megahit 10X - 20% 205323582 1618304 0.79 369321 34921 89.31 89.93 4.10 0.21
metaspades 10X - 20% 207330588 6911208 3.33 490307 46983 88.09 91.00 6.07 0.21
spades 10X - 20% 210561986 9273383 4.40 482749 48199 87.67 91.42 6.56 0.57
unicycler 10X 1X 20% 209671215 26008378 12.40 752099 86648 79.38 90.41 13.43 0.13
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Table 2
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Length (bp) Chromosomes(%)
 rRNA
(%)

Proteic
markers
(%)

Referenced
contaminants

(%)

Plasmids
(%)

Circular
(%)

Plasmids
markers
(%)

Referenced
Plasmids
(%)

Final
predicted
plasmids
(bp)

Final
predicted
plasmids
( %)

Biofilm Raw assembly 8.15E+07 21.27 0.07 4.22 21.27 7.02 1.72 3.05 7.02
After PlasFlow70 2.47E+07 9.33 0.04 0.49 9.33 17.07 3.96 8.35 17.07 2.37E+07 29.10

WWTP Raw assembly  3.89E+08 6.50 0.16 1.25 6.50 2.16 0.47 0.71 2.16
After PlasFlow70 9.93E+07 4.90 0.05 0.35 4.90 5.43 0.94 3.18 5.43 9.68E+07 24.91

WWTP [6] Raw assembly 5017040 3.96 0.23 3.48 0.24 0.32 0.00 0.07 0.25
After PlasFlow70 1739823 2.33 0.21 1.95 0.17 0.30 0.00 0.08 0.23 1704143 33.97

Table 3
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  Fig 1  Supplementary Materials: GC%, length (bp), identity between the plasmids (all vs all) and taxonomic 
composition for the reference plasmids 
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Fig 2  Supplementary Materials: GC%, length (bp) and taxonomic composition for the contaminants (i.e. 
chromosomes) introduced in the simulations. 
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Assembly : 

Megahit, Metaspades 
Spades

Hybrid assembly: 
HybridSpades, Unicycler

Megahit/Spades with Cap3

Long read assembly: 
Unicycler

Contigs

Long reads (6 Kb)
0.5X 1X 5X

Short reads (150 bp)
1X 2X 10X 20X

Plasmids
database

Chromosomes 
database

Table 2, Figures 1 and 2
Table 1 Sup. Mat.

Plasmid prediction: 
Recycler / Circular contigs

PlasFlow
cBar

Alignments vs plasmid markers
Alignments vs chromosomes

Figures 3 and 4
Figures 4 Sup. Mat.

Plasmids

Fig 3 supplementary materials : main bioinformatics tools used for producing contigs and sorting 
out plasmids from contaminants in the simulations conducted on the mock communities 
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Fig 4  supplementary materials: Plasmid reference coverages and contamination (A)  and precision and recall 

(B) for Megahit and MetaSPAdes assemblies. Various strategies were used for discriminating plasmids from 

chromosomes: cBar, PlasFlow, contig alignment against databases and detection of specific plasmid markers. 

PlasFlow10 to PlasFlow90 represents the detected plasmid sequences with PlasFlow with a threshold varying 

from 10 % to 90 %. cBar+PlasFlow70 to cBar+PlasFlow90 means that these two tools were used together 

with the thresholds 70 %, 80% and 90 % associated with PlasFlow. Chromosome alignment corresponds to 

the detection of the microbial (bacteria/Archaea) sequences (i.e. contaminants) excluded therefore from the 

final results. The microbial databases were clustered at various cut-offs to simulate a distance between the 

reference database and the environments studied. Plasmid markers correspond to the plasmid sequences 

detected by alignment against plasmid markers. Reference is the reference assembly without 

decontamination. The best decontaminated assembly (i.e. plasmidome) is an assembly with the lowest 

contamination rate and the highest reference coverage rate. 

A

B
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Fig 5  Supplementary Materials: taxonomic composition of the plasmids from the reference database (top) 
and from the true positive (TP) (bottom) inferred from the best workflow defined  (i.e. PlasPredict)
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Fig 6  Supplementary Materials: length of the contigs predicted (top) and non predicted (bottom) as plasmids 
after using the best workflow defined (i.e. PlasPredict)
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Fig 7  Supplementary Materials: GC % of the contigs predicted (top) and non predicted (bottom) as plasmids 
after using the best workflow defined (i.e. PlasPredict)
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Assembly Contamination Total length Longest contig N50

unicycler - 0.5X - 225825 48963 21.68 25317 11967 0,70 0
unicycler - 1X - 986299 379673 38.49 43851 12812 0,80 0
unicycler - 5X - 51962192 13860198 26.67 169615 10866 17,69 0,21

Short-reads 
coverage

Long-reads 
coverage

Misassembled 
length

%Misassembled 
contigs

%Reference 
coverage

%Plasmids 
complete

Table 1 supplementary materials: Main assembly statistics for the simulated plasmidomes with only long-reads
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Assembly Methods TP (bp) TN (bp) FP  (bp) FN  (bp) Accuracy Precision Recall F1-Score
Megahit Plasflow10 1,47E+08 1,91E+05 2,34E+05 5,81E+07 0.715939 0,998409 0,716492 0,834278
Megahit Plasflow20 1,48E+08 1,73E+05 2,52E+05 5,72E+07 0.720201 0.998297 0.720851 0.837186
Megahit Plasflow30 1,49E+08 1,38E+05 2,87E+05 5,60E+07 0.725593 0.998075 0.726426 0.840855
Megahit Plasflow40 1,49E+08 1,45E+05 2,80E+05 5,61E+07 0.725569 0.998121 0.726368 0.840832
Megahit Plasflow50 1,46E+08 1,70E+05 2,55E+05 5,86E+07 0.713512 0.998261 0.714162 0.832645
Megahit Plasflow60 1,30E+08 2,21E+05 2,04E+05 7,44E+07 0.636526 0.998442 0.636766 0.777606
Megahit Plasflow70 1,14E+08 2,80E+05 1,44E+05 9,13E+07 0.554406 0.998731 0.554187 0.712831
Megahit Plasflow80 9,26E+07 3,27E+05 9,76E+04 1,12E+08 0.45242 0.998946 0.451762 0.622159
Megahit Plasflow90 6,56E+07 3,64E+05 6,11E+04 1,39E+08 0.321547 0.99907 0.320439 0.485243
Megahit cBar + PlasFlow70 1,53E+08 1,73E+05 2,51E+05 5,20E+07 0.74568 0.998358 0.74638 0.854173
Megahit cBar + PlasFlow80 1,46E+08 1,89E+05 2,35E+05 5,93E+07 0.709986 0.998387 0.710533 0.830217
Megahit cBar + PlasFlow90 1,37E+08 2,04E+05 2,21E+05 6,78E+07 0.668586 0.998394 0.668976 0.801144
Megahit cBar 1,21E+08 2,27E+05 1,97E+05 8,43E+07 0.588312 0.998367 0.588421 0.740439
Megahit Chromosomes alignment 2,00E+08 1,19E+05 3,06E+05 5,30E+06 0.972675 0.99847 0.974111 0.98614
Megahit Chromosomes alignment 90 2,01E+08 8,90E+03 4,16E+05 3,49E+06 0.980967 0.99794 0.982957 0.990392
Megahit Chromosomes alignment 95 2,03E+08 7,29E+03 4,17E+05 1,78E+06 0.989299 0.997949 0.991314 0.99462
Megahit Chromosomes alignment 97 2,04E+08 7,29E+03 4,17E+05 1,09E+06 0.992643 0.997956 0.994665 0.996308
Megahit Chromosomes alignment 99 2,05E+08 0,00E+00 4,25E+05 1,95E+05 0.996982 0.997929 0.999049 0.998489
Megahit Plasmids markers 3,65E+07 4,23E+05 1,54E+03 1,68E+08 0.180024 0.999958 0.178331 0.302682
MetaSPAdes Plasflow10 1,49E+08 2,00E+05 2,38E+05 5,83E+07 0.717454 0.998401 0.718007 0.835301
MetaSPAdes Plasflow20 1,49E+08 1,78E+05 2,59E+05 5,76E+07 0.720957 0.998267 0.721619 0.837693
MetaSPAdes Plasflow30 1,50E+08 1,46E+05 2,91E+05 5,70E+07 0.72374 0.998061 0.724563 0.839601
MetaSPAdes Plasflow40 1,50E+08 1,46E+05 2,92E+05 5,68E+07 0.724628 0.99806 0.725456 0.840199
MetaSPAdes Plasflow50 1,48E+08 1,85E+05 2,52E+05 5,86E+07 0.715981 0.998303 0.716599 0.834313
MetaSPAdes Plasflow60 1,32E+08 2,35E+05 2,03E+05 7,52E+07 0.636197 0.998461 0.636409 0.777346
MetaSPAdes Plasflow70 1,14E+08 2,94E+05 1,43E+05 9,27E+07 0.552341 0.998745 0.552088 0.711095
MetaSPAdes Plasflow80 9,57E+07 3,25E+05 1,12E+05 1,11E+08 0.46305 0.998827 0.462457 0.632204
MetaSPAdes Plasflow90 6,74E+07 3,73E+05 6,42E+04 1,40E+08 0.326769 0.999048 0.325656 0.491198
MetaSPAdes cBar + PlasFlow70 1,55E+08 1,77E+05 2,61E+05 5,19E+07 0.748603 0.99832 0.749333 0.85609
MetaSPAdes cBar + PlasFlow80 1,49E+08 1,96E+05 2,42E+05 5,81E+07 0.718771 0.998377 0.719346 0.836198
MetaSPAdes cBar + PlasFlow90 1,40E+08 2,10E+05 2,28E+05 6,73E+07 0.674513 0.998371 0.674926 0.805388
MetaSPAdes cBar 1,23E+08 2,44E+05 1,94E+05 8,39E+07 0.594415 0.998428 0.594494 0.745246
MetaSPAdes Chromosomes alignment 2,02E+08 1,39E+05 2,98E+05 5,02E+06 0.974368 0.998526 0.975754 0.987009
MetaSPAdes Chromosomes alignment 90 2,04E+08 1,58E+04 4,22E+05 3,33E+06 0.981923 0.997933 0.983923 0.990878
MetaSPAdes Chromosomes alignment 95 2,05E+08 1,48E+04 4,23E+05 1,71E+06 0.989728 0.997944 0.991749 0.994837
MetaSPAdes Chromosomes alignment 97 2,06E+08 1,48E+04 4,23E+05 1,05E+06 0.992893 0.997951 0.994921 0.996434
MetaSPAdes Chromosomes alignment 99 2,07E+08 2,78E+03 4,35E+05 2,01E+05 0.996935 0.997901 0.999029 0.998465
MetaSPAdes Plasmids markers 4,54E+07 4,33E+05 4,31E+03 1,61E+08 0.221088 0.999905 0.219462 0.359926

Table 2 supplementary materials: main results obtained from simulations (10x Illumina + 20 % of contaminants)  with different tools 
(Assembly x methods)
- True positives (TP): Contigs  (bp) classified as plasmids that are actual plasmids 
- True negatives (TN): Contigs (bp) classified as chromosomes that are actual chromosomes
- False positives (FP): Contigs  (bp) classified as plasmids but which are actually chromosomes
- False negatives (FN): Contigs (bp)  classified as chromosomes but which are actually plasmids. 
Using these parameters, we computed the following metrics. 
- Recall: TP / (TP  + FN)
- Precision: TP  / (TP + FP )
- Accuracy:  (TP+TN)/(TP+FP+FN+TN)
- F1-score: 2*(Recall * Precision) / (Recall + Precision)
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For Peer Review

Assembly Contigs number Assembly length (bp) N50 (bp)

Biofilm Megahit (circular) 381 1726940 4831
MetaplasmidSPAdes 554 2014192 5410

WWTP Megahit (circular) 400 2161209 6540
MetaplasmidSPAdes 260 1767009 12026

WWTP Megahit (circular) 0
(Zhang et al. 2011) MetaplasmidSPAdes ND*

Table 3 supplementary materials: Comparison of the assembly statistics for circular contigs 
obtained with Megahit (partial results of the Table 3 presented in the body of the publication) 
and MetaplasmidsSPAdes with default options.
*MetaplasmidSPAdes did not work with the data downloaded from NCBI  (absence of paired-
end library) 
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