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1 Abstract 

Adhesive bonding modelling is often realised using cohesive zone models (CZM). For pure 

mode I loading, these laws represent the cohesive stress versus the interface displacement 

evolution designated as traction-separation laws (TSL). They enable the description of the 

interface irreversible phenomena such as damage and/or plasticity, while permitting a refined 

evaluation of the cohesive stress along the overlap. However, these laws are usually chosen a 

priori. For brittle and ductile adhesives the TSL shapes usually chosen are respectively 

bilinear softening and elasto-plastic. But the development of direct CZM measurements has 

highlighted that the law shapes can be more complex. The wrong initial choice of the TSL 

shape can then have an impact on the simulation results reliability. In this article, several 

methods used to evaluate CZM parameters are compared in terms of TSL shape robustness. 

Synthetic noisy data generated from a trapezoidal CZM are used for the inverse identification 

of a bilinear softening TSL. By applying this procedure on different type of synthetic 

measurements (respectively Force-displacement, J-integral, backface strain and DIC) the 

ability of these techniques to capture parameters for a chosen CZM shape that is not the right 

one enables a rigorous evaluation the robustness to the law shape. 
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2 Introduction 

Adhesive bonding is becoming an assembly technique appealing for the transport sectors 

especially for the aeronautic. As the need for a drastic reduction of the structures weight has 

led to a reassessment of the materials repartition and junction strategies. This positions the 

adhesive bonding as a viable competitor to the traditional bolting and riveting technics. As it 

has the capacity to assemble different materials such as metals and composites while needing 

less industrial stages and still retaining a competitive strength-to-mass ratio. However, the 

aeronautical sector is very demanding and severe for the qualification of the process. Yet, 

testing protocols currently used such as the single lap joint are also introducing variability in 

the adhesive strength. As they are not only dependent on the adhesive interface properties but 

also on the test conditions (i.e. loading rate) as well as the specimen geometry such as 

adherends and adhesive thickness and overlap length. This raises the issue on the validity of 

the testing protocols and then the reliability of the parameters determined which are used in 

numerical simulations. 

The modelling of adhesive bonding is most of the time realised using cohesive zone models 

(CZM). They were first developed by Barenblatt [1] and Dugdale [2] and are used to describe 

the interface behaviour. These phenomenological laws were used intensively for a wide range 

of materials such as concrete [3], metals and especially for the simulation of delamination 

process in composite laminates [4, 5]. These laws represent the cohesive stress versus the 

interface relative displacement evolution and have the advantage to enable the description of 

the interface irreversible phenomena such as damage and/or plasticity, while permitting a 

refined evaluation of the cohesive stress along the overlap during monotonous loading. It can 



also be used in more advanced models in order to describe the joint behaviour in fatigue [6, 

7], creep or aging damage [8].  

These models are extensively used in the literature in their theoretical and numerical aspects 

and many contributions have used then for pure mode as well as more complex loading 

solicitations [9]. For pure mode I loading, also known as peel solicitation, the cohesive zone 

models can also be designated as traction-separation (TS) laws. Their shape and 

corresponding parameters are usually determined empirically according to the expected 

behaviour of the adhesive. Indeed, it is widespread to use a bilinear softening (i.e. triangular) 

law shape for brittle adhesive and an elasto-plastic (i.e. trapezoidal) shape for ductile 

adhesive. Other law shapes has also been developed such as polynomial, exponential [10] or 

more sophisticated shapes such as polynomial [11] or interpolation based CZM [12]. The 

parameters are then identified using an iterative inverse identification method to obtain a good 

agreement between experimental data and analytical [13] or numerical model [14–16]. 

Many contributions have been made on the influence of the TS law shape on the predicted 

value for different specimen geometries and materials. For instance Song et al. showed that 

CZM softening shape influences numerical results considerably in the case of asphalt concrete 

disk-shaped compact tension test [17]. Similar results were obtained for butt-joints in shear 

[18], block peel tests [19] and thick DCB [20]. Moreover it was showed by Campilho et al. 

that the law shape also has an impact in SLJ test, especially for small overlap length [21, 22] 

and when the adhesive is highly ductile [23]. On the other hand, it appears that the DCB 

specimen with slim adherends is less sensitive to the TS law shape. Its global behaviour is 

mostly impacted by the critical energy release rate Gc [24]. However, as it was concluded by 

Chandra et al., the appropriate TS law shape is needed in order to correctly describe the 

inelastic micromechanical process and thus to obtain meaningful simulation results [25]. 



This is why many studies are now investigating the direct measurement of the CZM 

properties. The most widespread technic, initially developed by Sorensen et al. [26] in mode 

II testing, consists in the differentiation of the integral J [27]. This same method has been 

implemented for pure mode I testing [18-30] and can be carried out with the measurement of 

the adhesive elongation at crack tip. The development of digital image correlation (DIC) has 

also brought out a new range of measurable mechanical data such as the adherends deflection 

and rotation along the overlap which can also be used to measure the CZM. However, the 

direct determination of the TS law leads to the identification of very complex law shapes [31; 

32] that needs extensive data reduction scheme and that can then be difficult to implement and 

costly in computational time.  

An alternative to the direct method to identify the correct law shape would be to find an 

inverse identification method that is robust to the law shape. That is to say that the parameters 

resulting from the minimisation would only give coherent results if the correct law shape has 

been implemented a priori. As a first step toward this direction, this contribution aims at 

determining if the application of the inverse method on five different DCB mechanical 

responses can give robust results. It is chosen to investigate the force versus displacement 

(P(Δ)), the energy release rate versus displacement (J(θ,Δ)), the adherends deformation with 

the use of gauges and the deflection and rotation of the whole adherends using DIC. For each 

of these mechanical responses a numerical test campaign has been carried out. In order to 

reduce calculation time, an analytical model is used to simulate a DCB test and its mechanical 

fields. Synthetic experimental data are generated using a trapezoidal CZM. The inverse 

method is applied on it with a bilinear softening TS law. The robustness to the law shape can 

then be evaluated for each mechanical response. 



3 Modelling of DCB test with nonlinear interface behaviour 

Parameter estimation and robustness to the law shape determination for a model require 

numerous model calculation that can become quite time costly. In order to avoid too much 

calculation time, it appeared wiser to implement an analytical model rather than using finite 

element (FE) model that can quickly become time consuming in pre and post processing as 

well. The purpose of this analytical model is to simulate the mechanical response that could 

be measured during an experimental DCB test. That is to say that it needs to give access to all 

the specimen mechanical response enabling the determination of the load, the opening at 

loading point, the rotation at loading point, the adherends’ deformation along the overlap and 

the adherends’ rotation along the overlap. These responses can be determined with the 

mechanical fields computed during the crack propagation along the overlap for an adhesive 

having a bilinear softening or a trapezoidal CZM. Their calculation methodology is detailed 

below and validated by comparing calculation with more complete simulation using the 

macro-element technique in Appendix I. 

3.1 Model definition 

An analytical model of a DCB specimen has been developed considering adherends modelled 

as Timoshenko beams. The specimen geometrical properties are represented in Figure 1. The 

adherends are considered to have a rectangular cross section (width: w, thickness: t). They are 

bonded over a length L and the initial crack tip where the adherends are left unbonded has a 

length equal to a. The adhesive has a nonlinear behaviour, either bilinear softening or 

trapezoidal. The adhesive layer has a thickness corresponding to ta.  



 

Figure 1: DCB specimen geometrical data considered in the analytical model 

The specimen adherends are chosen to have the same material properties leading to a 

symmetric specimen. The loading conditions are also symmetric as it is applied on the upper 

and lower adherend extremities and with opposite sign. These conditions permit to only 

consider the upper adherend and the half adhesive thickness for the solving of the local beam 

equilibrium along the overlap, 𝑥:  

𝑑𝑀(𝑥)

𝑑𝑥
+ 𝑇(𝑥) = 0 (eq 1) 

𝑑𝑇(𝑥)

𝑑𝑥
− 𝑤𝜎(𝑥) = 0 (eq 2) 

Where M, T and 𝜎 respectively corresponds to the local bending moment, the shear force and 

the local peel stress. 

Timoshenko beam formulation leads to the following constitutive equations: 

𝑀(𝑥) = 𝐸𝐼
𝑑𝜑(𝑥)

𝑑𝑥
 (eq 3) 

(𝑥) = 𝜅𝐺𝑆 (
𝑑𝑣(𝑥)

𝑑𝑥
− 𝜑(𝑥)) (eq 4) 

Where 𝜑 and 𝑣 are the cross section rotation and the beam deflection. The adherends’ 



material parameters E and G are respectively the Young’s modulus and the shear modulus. 

𝑆 = 𝑤𝑡 corresponds to the beam cross section area. In case of a rectangular cross section the 

quadratic moment is computed as 𝐼 =
𝑤𝑡3

12
 and the shear correction coefficient is 

approximately 𝜅 =
5

6
. By combining (eq 1) to (eq 4), the following equation is found:  

𝑑4𝑣(𝑥)

𝑑𝑥4
−

1

𝜅𝐺𝑆

𝑑2𝜎(𝑥)

𝑑𝑥2
+

𝜎(𝑥)

𝐸𝐼
= 0 

(eq 5) 

The solution of this differential equation depends on the adhesive behaviour. In the present 

case, it will be solved for two nonlinear behaviour, bilinear softening and trapezoidal. As 

illustrated in Figure 2, both behaviours can be divided in two parts. The first one corresponds 

to an elastic behaviour and is identical for both. The second one is either a linear softening or 

a plastic behaviour. Thus, the differential equation will be solved for those three evolutions 

separately. 

 

Figure 2: Nonlinear traction-separation law: bilinear softening and perfectly plastic 

3.2 Elastic behaviour 

The elastic regime of the traction separation law is given by: 



𝜎 =
2𝐸𝑎

 ∗

𝑡𝑎
𝑣(𝑥) 𝑣 < 𝑡𝑎

𝜀𝑒

2
 (eq 6) 

Where 𝐸𝑎
 ∗ corresponds to the apparent Young’s Modulus of the adhesive. The differential 

equation (eq 5) which governs the evolution of the peel stress in the elastic regions then 

reduces to: 

𝑑4𝜎(𝑥)

𝑑𝑥4
−

𝑘𝑒

𝜅𝐺𝑆

𝑑2𝜎(𝑥)

𝑑𝑥2
+

𝑘𝑒

𝐸𝐼
𝜎(𝑥) = 0 (eq 7) 

With the tangent stiffness in the elastic bondline region given by: 

𝑘𝑒 = 𝑤
2𝐸𝑎

∗

𝑡𝑎
 (eq 8) 

The general expression for the peel stress evolution in the elastic region along the bondline 

can then be expressed as: 

𝜎(𝑥) = ∑ 𝐴𝑖𝑒
𝜆𝑒,𝑖𝑥 + 𝐵𝑖𝑒

−𝜆𝑒,𝑖(𝐿−𝑥)

2

𝑖=1

 (eq 9) 

with 

𝜆𝑒,𝑖 =  𝜆𝑒√𝜀𝑒 ± √𝜀𝑒
2 − 1 = 𝜆𝑒𝛼𝑖 i ∈ [1, 2] (eq 10) 

where 

𝜆𝑒 =
1

4
𝑘𝑒EI (eq 11) 

and 



𝜀𝑒 =
√𝑘𝑒𝐸𝐼

2𝜅𝐺𝑆
 (eq 12) 

The 𝐴𝑖 and 𝐵𝑖 are constants determined .using the boundary and continuity conditions. The 

other cohesive forces in the elastic region can then be obtained by integrating (eq 1) to (eq 4) 

and using the following boundary conditions: 

𝑀(𝑥 = 0) = 𝑎𝑃 (eq 13) 

𝑇(𝑥 = 0) = 𝑃 (eq 14) 

3.3 Bilinear softening behaviour 

The linear softening region is solved similarly as the elastic one. Its traction-separation 

equation is defined as: 

 =
𝜎𝑚𝑎𝑥

𝑣𝑒 − 𝑣𝑝
(𝑣𝑝 − 𝑣(𝑥)) 𝑡𝑎

𝜀𝑒

2
< 𝑣 < 𝑡𝑎

𝜀𝑝

2
 (eq 15) 

Where the peel stress depends on the maximal stress 𝜎𝑚𝑎𝑥 and 𝑣𝑒 − 𝑣𝑝. Once the crack begins 

to propagate the peel stress becomes: 

𝜎 = 0 𝑣 > 𝑡𝑎

𝜀𝑝

2
 (eq 16) 

The differential equation (eq 5) which governs the evolution of the peel stress in the elastic 

regions then reduces to: 

𝑑4𝜎(𝑥)

𝑑𝑥4
+

𝑘𝑠

𝜅𝐺𝑆

𝑑2𝜎(𝑥)

𝑑𝑥2
+

𝑘𝑠

𝐸𝐼
𝜎(𝑥) = 0 

(eq 17) 



Where the tangent stiffness in the softening bondline is: 

𝑘𝑠 =
𝑤𝜎𝑚𝑎𝑥

(𝑣𝑝 − 𝑣𝑒)
 (eq 18) 

The general expression of the peel stress evolution in the linear softening region along the 

bondline can then be expressed as: 

𝜎(𝑥) = ∑ 𝐴𝑖𝑒𝜆𝑠,𝑖𝑥 + 𝐵𝑖𝑒
−𝜆𝑠,𝑖(𝐿−𝑥)

2

𝑖=1

 (eq 19) 

with 

𝜆𝑠,𝑖 =  𝜆𝑠√𝜀𝑠 ± √𝜀𝑠
2 − 1 = 𝜆𝑠𝛼𝑖 i ∈ [1, 2] (eq 20) 

where  

𝜆𝑠 = (
𝑘𝑠

𝐸𝐼
)

1/4

 (eq 21) 

and 

𝜀𝑠 =
√𝑘𝑠𝐸𝐼

2𝜅𝐺𝑆
 (eq 22) 

The 𝐴𝑖 and 𝐵𝑖 are constants determined using the boundary and continuity conditions.  

All the other cohesive forces and displacement evolutions are obtained by integrating (eq 1) to 

(eq 4) and considering continuity in between the elastic and softening region. 



3.4 Plastic behaviour 

Unlike the two precedent methods, the general expression for the peel stress evolution in the 

plastic region along the bondline is known and constant (eq 23). The other mechanical fields 

along the overlap can then be determined directly by injecting in (eq 2) the traction-separation 

law given by: 

𝜎 = 𝜎𝑚𝑎𝑥 𝑡𝑎

𝜀𝑒

2
< 𝑣 < 𝑡𝑎

𝜀𝑝

2
 (eq 23) 

which first gives the shear force 

𝑇(𝑥) = 𝑤𝜎𝑚𝑎𝑥𝑥 + 𝑃 (eq 24) 

The following boundary conditions permit the determination of the integration constant: 

𝑇(−𝐿) = 0 (eq 25) 

𝑇(0) = 𝑃 (eq 26) 

The integration of (eq 24) in (eq 1) enables the determination of the bending moment along 

the bondline: 

𝑀(𝑥) = 𝑎𝑃 − 𝑃𝑥 −
1

2
 𝑤𝜎𝑚𝑎𝑥𝑥2 

(eq 27) 

Using the following boundary conditions to determine the integration constant: 

𝑀(−𝐿) = 0 (eq 28) 



𝑀(0) = 𝑎𝑃 (eq 29) 

The cross section rotation along the bondline is obtained when integrating the bending 

moment in (eq 3) which results in: 

𝜑(𝑥) =
1

𝐸𝐼
(𝑎𝑃𝑥 −

1

2
𝑃𝑥2 −

1

6
𝑤𝜎𝑚𝑎𝑥𝑥3) + 𝜑0 

(eq 30) 

Where 𝜑0 is an integration constants determined using the boundary and continuity 

conditions. Finally, the deflection along the bondline can be obtained when integrating the 

rotation and the bending moment as presented in (eq 4). It can then be expressed as: 

𝑣(𝑥) =
1

𝐸𝐼
(

1

2
𝑎𝑃𝑥2 −

1

6
𝑃𝑥3 −

1

24
𝑤𝜎𝑚𝑎𝑥𝑥4) + 𝜑0𝑥 +

1

𝜅𝐺𝑆
(𝑃𝑥 +

1

2
𝑤𝜎𝑚𝑎𝑥𝑥2)

+ 𝑣0 

(eq 31) 

Where 𝑣0 is an integration constants determined using the boundary and continuity 

conditions. 

3.5 Resolution methodology 

The simulation of crack initiation and propagation is a three-step process. First elastic 

calculations are realized considering that the adhesive layer is only in its elastic state. The end 

of elastic loading conditions is associated to the condition 𝑣(𝑥 = 0) = 𝑣𝑒 . Then, the crack 

initiation is simulated by considering fixed position of the crack tip while increasing the size 

of the softening or plastic regions until 𝑣(𝑥 = 0) = 𝑣𝑝. Finally, the crack propagation time 

period is simulated by considering increasing value of 𝑎 and by updating at each crack 

position the softening region length with an iterative process. The results of such calculation 



enable the display of the load displacement and J(θ,) curves during the whole test (Figure 3- 

a- b). Then, for a given opening (i.e. Δ=3mm) the shear forces (Figure 3-c), bending moment 

(Figure 3-d), and adherends deflection and rotation is obtained along the overlap (Figure 3-e-

f). The evolution of the crack tip and process zone position is also shown by Figure 3(g), 

  

(a) (b) 

  

(c) (d) 

 

 

 

(e) (f) 



 

(g) 

Figure 3: DCB specimen mechanical fields determined with the analytical model for a bilinear 

softening traction-separation law, curves function of the overlap length are given for a for a 

3mm-opening at loading point: (a) Load-displacement at loading point; (b) Energy release 

rate function of the opening at loading point; (c) Shear force along the overlap; (d) Bending 

moment along the overlap; (e) adherend deflection along the overlap; (f) adherend rotation 

along the overlap; (g) crack tip and process zone position along the overlap. 

In Figure 3(a) is represented the force versus opening displacement evolution, as predicted 

with the model. The initial specimen compliance is mainly governed by the flexibility of the 

cracked part of the adherend. The effect of the bondline compliance also leads to an increase 

of the overall compliance of the specimen. The crack propagation regime is governed by the 

interface critical strain energy release rate so that the force versus opening displacement 

evolution is given by relationship: 

𝑃 = (
4𝐸 𝐼 

9
)

1
4

(𝑤𝐺𝑐)
3
4(Δ)−

1
2 (eq 32) 

The transition between this two regimes depends on the TS law shape and can be theoretically 

identified directly from the P() evolution. Other techniques use the other measurable 

evolutions represented in Figure 3. Indeed, beam deflection and cross section rotation can be 



measured using DIC during the whole propagation step. The cohesive stresses in the adherend 

can be detected using strain gages bonded to the upper side (Bending Moment) or lateral side 

(Shear force). 

4 Direct and indirect TS law measurement technique. 

To illustrate the influence of the TS law shape, analytical DCB test simulations are carried out 

for a bilinear softening and a trapezoidal TS law which were identified experimentally on 

DCB test made using a structural methacrylate adhesive. Their characteristics are presented in 

Table 1. Both laws have the same adhesive effective modulus 𝐸𝑎
∗, maximum stress 𝜎𝑚𝑎𝑥, and 

the critical energy release rate 𝐺𝑐. This definition leads to a diminution of the propagation 

displacement jump at crack tip 𝒗𝒑 which is also illustrated in Figure 1.  

Table 1: Traction separation laws parameters 

 

𝒕𝒂  

(mm) 

𝑬𝒂 

(MPa) 

𝝈𝒎𝒂𝒙  

(MPa) 

𝒗𝒆 

(μm) 

𝒀𝟎𝑻 

(N/mm) 

𝑮𝑰𝒄 

(N/mm) 

𝒗𝒑  

(μm) 

Bilinear-softening 0.247 146 14 11.84 0.6712 1.4178 101.27 

Trapezoidal 0.247 146 14 11.84 0.6712 1.4178 56.56 

 

4.1 TS law evaluation from force versus displacement measurement 

The first method proposed to evaluate TS law from DCB experiment is based on the analysis 

of the force, P, versus opening displacement evolution, Δ. Since the original analysis of DCB 

test [33], these data are systematically measured as it enables the evaluation of the interface 

critical SERR which is based on compliance measurement evolution. Figure 4 illustrates the 

mechanical response for both law shapes and their quantitative load differences. As both the 



bilinear softening (i.e. Triangular) and elasto-plastic (i.e. Trapezoidal) laws have the same 

elastic properties as well as the same critical energy release rate, a similar behaviour in these 

phases of the test is expected. Indeed, it appears in Figure 4 that for an opening displacement 

inferior to 1mm, both curves are superposed. Likewise, when Δ > 1.7 mm, both curves are 

identical. Then, the shape of the TS law has an impact between these 2 phases. The 

trapezoidal law shape presents a very little nonlinear behaviour as it reaches the propagation 

phase with almost no curvature. This phenomenon leads to an increased maximum force. On 

the other hand, the triangular TS law shows a higher nonlinearity with a clearly visible 

curvature and a maximum force peak appearing eroded, with a lower maximum force. The 

latter is also reached for a higher value of opening displacement which is due to the higher 

value of opening displacement at crack tip needed for crack propagation. Thus the presence of 

a softening behaviour rather than a constant one leads to a higher nonlinearity of the force-

displacement curve previous to the crack propagation. This is due to a progressive diminution 

of the stress in the adhesive.  

  

(a) (b) 

Figure 4: (a) Load-displacement curves for triangular and Trapezoidal CZM; (b) Residual 

between the triangular and Trapezoidal CZM 



4.2 TS law evaluation from the J(,) measurement technique 

Gunderson and al. [34] proposed to evaluate the J integral evolution during the DCB test 

directly by measuring the specimen end rotation together with the applied load. In addition, 

Anderson et al proposed a solution for adherends having an Euler-Bernoulli behaviour [28]. 

But it can be extended to adherends behaving as Timoshenko beams as well. If the integral J 

evaluation is made by using the full specimen boundary as the contour, it can be expressed as: 

𝐽 =
1

𝑤
[𝑃𝜑 +

𝑃2

2𝜅𝐺𝑆
] (eq 33) 

Where P and 𝜑 are respectively the load and the rotation at loading point. The integral J can 

then be plotted as a function of the opening at loading point.  

  

(a) (b) 

Figure 5: (a) Integral J function of the opening at loading point for triangular and Trapezoidal 

CZM; (b) Residual between the triangular and Trapezoidal CZM 

According to Sorensen’s analysis [26], the J(,) evolution is related to the opening 

displacement at the crack tip through the relation: 

𝜎(𝛿) =
𝜕𝐽(𝜃, 𝛿)

𝜕𝛿
 (eq 34) 



So that assuming the TS law is given by relationships (eq 6) to (eq 16) the J(,) evolution 

reduces to three different regions, the elastic ad softening ones showing parabolic evolutions 

but with opposite curvature and the third one being constant when J remains stationary. 

These behaviours are illustrated in Figure 5.a where the J-integral is displayed for both law 

shapes. Figure 5.b represents the quantitative energy release rate differences between the 

laws. It appears that they are identical in the elastic and the propagation regions. In the 

nonlinear region, the response of the trapezoidal law reaches the propagation plateau faster 

than the other one. This is the result of a smaller process zone which is due to a smaller 𝑣𝑝. 

4.3 TS law evaluation from backface strain monitoring technique – BSM 

Resistive gauges can be placed on the adherend’s upper face. The measurement of the slabs 

deformation gives insight on the stress state of the adhesive bond directly underneath the 

gauges. They measure the local longitudinal strain, 𝜀𝑠, which is proportional to the local 

bending moment M: 

𝜀𝑠 =
𝑀

𝐸𝑠𝐼𝑛

𝑡

2
 (eq 35) 

It also depends on the adherends’ Young modulus E, their quadratic moment I and their 

thickness t. The gauge evolution can also be used for a direct evaluation of cohesive stresses 

evolution along the bondline by using the relationship:  

𝜎 = −2
𝐸𝐼

 𝑤𝑡  

𝜕2𝜀𝑠

𝜕𝑥2
 (eq 36) 

The gauges response is an indicator of the stress state of the adhesive directly underneath. It is 

worth noticing that the adherend deformation is maximal when the crack tip is close to the 



gauge. Figure 6.a illustrates the gauge response for a bilinear softening and a trapezoidal TS 

law. Their differences are presented in Figure 6.b. It appears that the variation between the 

two law shapes is quite small. Their maximal differences appear when the adherend begins to 

deform and when the crack tip is close to the gauge. 

  

(a) (b) 

Figure 6: (a) Gauges deformation function of the opening at loading point for triangular and 

Trapezoidal CZM; (b) Residual between the triangular and Trapezoidal CZM 

 

4.4 TS law evaluation from DIC monitoring technique in deflection and rotation 

During a DCB test digital image correlation (DIC) can be used to determine the deflection and 

rotation of the adherends along the bonded area. Experimentally, this requires the use of a 

speckle pattern and one or a couple of cameras. Numerically the adherends deflection and 

rotation are directly computed along the specimen. The latter has a different behaviour if the 

adhesive is in the elastic, the softening or the propagation phase of the CZM. In Figure 7, the 

deflection and rotation along the adherends are represented for an opening at loading point of 

1mm. Their differences are then computed for the whole test, that is to say from Δ=0mm to 

Δ=1mm with 201 steps in-between. Here, it appears that the deflection of the adherend is not 

sensitive to the law shape as the differences between both curves is at most 10μm (Figure 7.a 



and b). A similar result is found in the rotation case as it is illustrated in Figure 7.c and d, 

where the maximal deviation is approximately 5.10−4 𝑟𝑎𝑑. 

  

(a) (b) 

  

(c) (d) 

Figure 7: Digital image correlation results along the overlap during a DCB test (a) Impact of 

the TS law on the deflection response for an opening at loading point of 1mm; (b) Residual 

between the triangular and Trapezoidal CZM for an entire test; (c) Impact of the TS law on 

the rotation response for an opening at loading point of 1mm; (d) Residual between the 

triangular and Trapezoidal CZM for an entire test. 



5 Robustness analysis 

5.1 Model’s parameters 

The analytical model, presented earlier, is used to simulate a DCB specimen. Its geometrical 

and material characteristics are summarized in Table 2.  

Table 2: DCB specimen geometric and material characteristics 

Adherends 

Total length (mm) 180 

Overlap length (mm) 130 

Initial crack length (mm) 50 

Thickness (mm) 10 

Width (mm) 15 

Young modulus (GPa) 70 

Poisson ratio ( - ) 0.3 

The adhesive has a chosen thickness of 247µm and is implemented using a trapezoidal 

cohesive zone model. The parameters of interests are arbitrarily chosen: the initial modulus 

the maximum stress and the displacement jump at propagation: a = [Ea, σmax, vp]. Table 3 

includes the chosen nominal parameters and the associated critical energy release rate in mode 

I and surface area under the linear part, respectively Gc and Y0. 

Table 3: CZM properties 

Adhesive TS law 

𝐸𝑎 (MPa) 146 

𝜎𝑚𝑎𝑥(MPa) 14 

𝑣𝑝(µm) 56.56 

𝑌0 (N/mm) 0.67 



𝐺𝑐 (N/mm) 1.42 

Experimental data are generated from the known trapezoidal nominal response on which a 

normal noise is introduced. Every experimental curve comports 201 points taken for the same 

opening at loading point. This numerical noise represents the experimental data variations that 

are caused by errors in the measurement chain (i.e. Load captors, gauges, DIC...). For each 

mechanical response, a custom noise has been applied. It is generated as a normal distribution, 

the average of which is equal to zero and its standard deviation is approximately 0.5% of the 

maximal mechanical response. For each method, the tailored noise distributions are summed 

up in Table 4. 

Table 4: Synthetic Noise normal distribution for each mechanical response 

Method Units 𝝈𝒏𝒐𝒊𝒔𝒆 

P(Δ) N 3.3 

J(,) kJ/m² 7 

Gauges μdef 10 

DIC - deflection mm 0.005 

DIC – rotation rad 9.10−5 

The minimization of a bilinear softening TS law onto the synthetic data generated from the 

trapezoidal law was carried out for each mechanical response that can be obtained on a DCB 

test (i.e. P(Δ) , J(,), Gauges, DIC). However, for clarity purpose, the process will only be 

detailed for the force-displacement curve and the DIC. 

5.2 Methodology application to the Force-displacement curve 

The analytical model described in paragraph 2 is used to generate a nominal P(Δ) curves for 

the trapezoidal TS law. Synthetic experimental data which consists in the addition of a 



Gaussian noise as then generated and are illustrated in Figure 8.a. These data are then used for 

a minimization procedure using the χ² optimisation. Its general principle and equations are 

exposed in Appendix II. The objective is to apply the minimization to the parameters of the 

bilinear softening TS law. Figure 8.b displays the P(Δ) curve obtained from the optimized 

parameters. The residual between the synthetic experimental data and the optimisation results 

can then be calculated. It can also be extended to a comparison of the nominal trapezoidal law 

as it is showed in Figure 8.c.  

  

(a) (b) 

  

(c) (d) 

Figure 8: Load-displacement curves: (a) Synthetic measurements data for an trapezoidal TS 

law; (b) Synthetic measurements data with its optimisation result for a bilinear softening TS 



law; (c) Residuals between the minimized curve, the synthetic measurements and the nominal 

trapezoidal TS law; (d) Residual of the nominal and minimized triangular law. 

From this analysis, it appears that the minimization enables the determination of a parameter-

triplet that has a correlation to the synthetic data as good as the nominal trapezoidal TS law. 

Figure 8 also illustrates the difference between the nominal triangular law (that has the same 

Ea and σmaxthan the trapezoidal law). The variation of these two parameters enables a 

diminution of the highest peak at the cost of deviation in the elastic part. 

The computation of the correlation coefficient, R², between the experimental data and either 

the nominal trapezoidal law or the optimized bilinear softening law, shows that they are equal.  

Table 5: Correlation coefficient obtained for the synthetic experimental data 

 Nominal Trapezoidal Optimized bilinear softening 

R² 1 0.9999 

However, this correlation quality is obtained at the cost of the TS law parameters. As 

illustrated in Table 6, the parameters obtained by the minimisation are deviating significantly 

from the nominal values especially for Ea and σmax. Even so, the critical energy release rate 

computed is still close to the nominal one, which is coherent as the DCB test was originally 

made for its estimation. 

Table 6: Minimized bilinear softening TS law parameters compared to the nominal 

trapezoidal parameters. 

 
𝑬𝒂 (MPa) 𝝈𝒎𝒂𝒙(MPa) 𝒗𝒑(µm) 𝑮𝒄 (N/mm) 

Nominal trapezoidal 146 14 56.56 1.4178 

Minimized bilinear softening 114 19.4 72.98 1.4181 

Variations (%) 22 39 29 0.01 



Therefore, the use of inverse analysis on the P(Δ) data does not appear to be robust to the TS 

law shape. Indeed, for this mechanical response, it is possible to identify a bilinear softening 

parameters triplet that has a correlation coefficient as good as the nominal trapezoidal one 

used to generate the data. This leads to an erroneous estimation of the parameters. Thus, this 

mechanical response does not enable the discrimination of the law shape and must only be 

used when the TS law shape is known beforehand. 

5.3 Comparisons  

The methodology presented above was carried out for each mechanical response. The 

individual results and figures are given in Appendix III. It appears that the results of each 

mechanical response are similar to P(Δ). Indeed, the minimized curves obtained for a bilinear 

softening have a correlation coefficient equal to the one obtained for the nominal trapezoidal 

which was used to generate the experimental data as illustrated in Table 7. 

Table 7: R² evaluation between the experimental data and either the nominal trapezoidal or 

the minimized bilinear softening curve for each mechanical response 

 Nominal trapezoidal Optimized bilinear softening 

P(Δ) 1 0.9999 

J(,) 1 0.9999 

Gauges 0.9999 0.9999 

DIC - deflection 0.9999 0.9999 

DIC – rotation 0.9999 0.9999 

Moreover, no mechanical response enables a good estimation of the TS law parameters as it 

can be seen in Table 8. However, the critical energy release rate is well predicted which 

corroborates the good correlation between the experimental data and the optimised ones. 

Table 8: Minimized parameters for the bilinear softening TS law 



 𝑬𝒂 (MPa) 𝝈𝒎𝒂𝒙(MPa) 𝒗𝒑(µm) 𝑮𝒄 (N/mm) 

Nominal trapezoidal 146 14 56.56 1.4178 

P(Δ) 114 19.4 72.98 1.4181 

J(,) 98 20.46 69.33 1.4185 

Gauges 137 18.5 76.84 1.4211 

DIC - deflection 120 19.21 73.87 1.4189 

DIC – rotation 122 19.23 73.91 1.4214 

6 Conclusion 

An experimental campaign has been carried out based on an analytical model. It was used to 

determine whether or not the different mechanical fields measurable on a DCB test specimen 

are robust to the adhesive traction-separation law shape. To do so, a bilinear softening CZM 

was optimised on experimental data generated from a trapezoidal using the χ² minimisation. 

Their correlation coefficients as well as the parameters of the nominal and optimized TS law 

where then compared. 

To conclude, it appears that the noisy experimental data cannot be uniquely described by one 

TS law shape. Indeed, the inverse analysis on experimental data generated from a trapezoidal 

TS law gives a good correlation when identified with a bilinear softening law shape. This 

means that none of the mechanical response investigated here enables discrimination to the 

law shape. Moreover, this inverse identification enables the determination of a TS law 

parameter-triplet that are not equal to the nominal ones. That is to say that when the inverse 

identification is made with one of the techniques described in this paper, it is possible to 

identify cohesive properties. But if the TS law shape has been chosen arbitrarily rather than 

being measured, this means that these properties are likely to be incorrect. The only reliable 

parameter which can be used is the critical energy release rate. 



As a consequence the inverse identification method should be used with precautions 

concerning the mechanical phenomena arising within the adhesive bond. Indeed, it enables 

the determination of a law which will give correct macroscopic results and that could be 

sufficient when dimensioning parts. But, these results cannot be used as information on the 

inherent mechanical properties of the adhesive. 
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Appendix I. Analytic model validation with the Macro-element model 

1 Bilinear softening CZM 

In order to validate the analytic solution, a comparison has been made with the macro-element 

(ME) model developed by Paroissien et al [35]. It is based on simplified hypotheses to model 

the joint behaviour and uses the minimization of the potential energy for solving. Both the 

adhesive layer and the adherends are gathered in 4-node elements. The upper and lower 

adherends’ nodes at the extremity of the specimen are blocked in the normal and tangential 

direction as well as in rotation. The model dimensions are the same than the analytic ones. 

Adherends are modelled with a linear elastic behaviour with aluminium mechanical properties 

(i.e. E=70 GPa, υ=0.3). The adhesive behaviour has been implemented with a bilinear 

cohesive zone model. The traction separation law is defined by the initial adhesive modulus 

(Yt=146 MPa), the tensile stress at crack propagation (σmax=14 MPa) and the fracture energy 

(Gc=1.4178 N/mm). The parameters used are listed in table 1.  

A mesh convergence study has been realized in order to validate the model. The elements size 

is determined as a ratio of the process zone size 𝐿𝑐. Its size has been estimated using the Irwin 

equation: 

𝐿𝑐 =
2

𝜋

𝑌𝑡𝐺𝐼𝑐

𝜎𝑚𝑎𝑥
2

 (eq 37) 

Table 9 : FE model mesh size 

Lc ratio Element size (mm) 

𝐿𝑐 0.67 

𝐿𝑐

2
 0.34 

𝐿𝑐

4
 0.17 



𝐿𝑐

8
 0.08 

For each mechanical response the maximum load, the opening at maximum load and critical 

energy release rate are compared between the analytical model and the ME. It appears that 

from a density of 4 elements in 𝐿𝑐, the macroelements results converge to the analytical one 

for both the triangular and the trapezoidal law shape. 

  

(a) (b) 

 

(c) 

Figure 9: ME convergence study for a bilinear softening TS law: (a) Maximum load function 

of the ME number; (b) Maximum opening at loading point function of the ME number; (c) 

Critical energy release rate function of the ME number. 



  

(a) (b) 

 

(c) 

Figure 10: ME convergence study for a perfectly trapezoidal TS law: (a) Maximum load 

function of the ME number; (b) Maximum opening at loading point function of the ME 

number; (c) Critical energy release rate function of the ME number 

 

 

  



Appendix II. χ2 minimisation 

Obtaining model parameters from a set of experimental data can be achieved with different 

techniques. The most common technique consists in minimizing an error function which may 

exhibit significantly non-linear behaviour. In the following, least square minimization is 

realised considering the Chi square, 𝜒2, function defined with relation: 

𝜒2(𝑎) = ∑ [
𝑌(𝑡𝑖) − 𝑌̂(𝑎, 𝑡𝑖)

𝜎𝑌(𝑡𝑖)
]

2𝑛𝑑

𝑖=1

 (eq 38) 

In (eq 38) Y(ti), i={1,…,N} represent the N measured data used to identify the 𝑎𝑘 k={1,…,p} 

parameters. 𝑌̂ are the corresponding theoretical data obtained with the model. In (eq 38), the 

term in the sum are weighted by the measurement error on the experimental data. This 

function is minimized using steepest gradient technique such as Levenberg-Marquart 

algorithm until the minimum 𝜒2value is found and the corresponding optimum set of 

parameters is determined. The quality of the optimization process can then be evaluated using 

the R²-value (eq 39) and (eq 40). 

R² =
∑ (𝑌(𝑡𝑖) − 𝑌̂(𝑝, 𝑡𝑖))

2
nd
i=1

∑ (𝑌(𝑡𝑖) − Y̅(t𝑖))2nd

i=1

 
(eq 39) 

with 

Y̅(t𝑖) =
1

𝑛𝑑
∑ 𝑌(𝑡𝑖)

𝑛𝑑

𝑖=1

 (eq 40) 

The fit quality is assessed when the R2 value is as close to one as possible. 

From a technical standpoint, the curve fitting is performed using the lsqnonlin function 

implemented in Matlab using the Levenberg-Marquardt algorithm. In order to obtain a more 

accurate optimization, the gradients were estimated with central finite differences.  

  



Appendix III. Minimization results 

The same methodology than in paragraph 5.2 is applied for the other mechanical response. 

1. J(,) minimization results 

Synthetic experimental data are generated from the nominal trapezoidal law with a Gaussian 

noise of 7kg.m² (Figure 11a). A triangular TS law is fitted on these data (Figure 11b).and the 

residual between the synthetic experimental data and the optimisation results is computed 

(Figure 11c).  

  

(a) (b) 

 

(c) 

Figure 11: Integral J curves: (a) Synthetic measurements data for a trapezoidal TS law; (b) 

Synthetic measurements data with its optimisation result for a bilinear softening TS law; (c) 



Residuals between the minimized curve, the synthetic measurements and the nominal 

trapezoidal TS law. 

2. Gauges minimization results 

Synthetic experimental data are generated from the nominal trapezoidal law with a Gaussian 

noise of 10μm (Figure 12a). A triangular TS law is fitted on these data (Figure 12b).and the 

residual between the synthetic experimental data and the optimisation results is computed 

(Figure 12c). 

  

(a) (b) 

 

(c) 

Figure 12: Gauges measurements: (a) Synthetic measurements data for a trapezoidal TS law; 

(b) Synthetic measurements data with its optimisation result for a bilinear softening TS law; 



(c) Residuals between the minimized curve, the synthetic measurements and the nominal 

trapezoidal TS law. 

3. DIC – deflection minimization results 

Synthetic experimental data are generated from the nominal trapezoidal law with a Gaussian 

noise of 5μm (Figure 13a). A triangular TS law is fitted on these data (Figure 13b).and the 

residual surface between the synthetic experimental data and the optimisation results is 

computed (Figure 13c). The residual surface between the nominal trapezoidal data and the 

minimized triangular date is displayed in Figure 13d. 

  

(a) (b) 

  

(c) (d) 

Figure 13: DIC – deflection curves: (a) Synthetic measurements data for an trapezoidal TS 

law; (b) Synthetic measurements data with its optimisation result for a bilinear softening TS 



law at Δ = 2 mm; (c) Residuals between the minimized curve, the synthetic measurements and 

the nominal trapezoidal TS law; (d) Residuals between the minimized curve and the nominal 

trapezoidal TS law. 

4. DIC – rotation minimization results 

Synthetic experimental data are generated from the nominal trapezoidal law with a Gaussian 

noise of 5μm (Figure 14a). A triangular TS law is fitted on these data (Figure 14b).and the 

residual surface between the synthetic experimental data and the optimisation results is 

computed (Figure 14c). The residual surface between the nominal trapezoidal data and the 

minimized triangular date is displayed in Figure 14d. 
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(c) (d) 



Figure 14: DIC – rotation curves: (a) Synthetic measurements data for an trapezoidal TS law; 

(b) Synthetic measurements data with its optimisation result for a bilinear softening TS law at 

Δ = 2 mm; (c) Residuals between the minimized curve, the synthetic measurements and the 

nominal trapezoidal TS law; (d) Residuals between the minimized curve and the nominal 

trapezoidal law. 

 


