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Introduction

Adhesive bonding is becoming an assembly technique appealing for the transport sectors especially for the aeronautic. As the need for a drastic reduction of the structures weight has led to a reassessment of the materials repartition and junction strategies. This positions the adhesive bonding as a viable competitor to the traditional bolting and riveting technics. As it has the capacity to assemble different materials such as metals and composites while needing less industrial stages and still retaining a competitive strength-to-mass ratio. However, the aeronautical sector is very demanding and severe for the qualification of the process. Yet, testing protocols currently used such as the single lap joint are also introducing variability in the adhesive strength. As they are not only dependent on the adhesive interface properties but also on the test conditions (i.e. loading rate) as well as the specimen geometry such as adherends and adhesive thickness and overlap length. This raises the issue on the validity of the testing protocols and then the reliability of the parameters determined which are used in numerical simulations.

The modelling of adhesive bonding is most of the time realised using cohesive zone models (CZM). They were first developed by Barenblatt [START_REF] Barenblatt | The mathematical theory of equilibrium cracks in brittle fracture[END_REF] and Dugdale [START_REF] Dugdale | Yielding of steel sheets containing slits[END_REF] and are used to describe the interface behaviour. These phenomenological laws were used intensively for a wide range of materials such as concrete [START_REF] Elices | The cohesive zone model: advantages, limitations and challenges[END_REF], metals and especially for the simulation of delamination process in composite laminates [START_REF] Sørensen | Cohesive laws for assessment of materials failure: Theory, experimental methods and application[END_REF][START_REF] Turon | Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: definition of interlaminar strengths and elastic stiffness[END_REF]. These laws represent the cohesive stress versus the interface relative displacement evolution and have the advantage to enable the description of the interface irreversible phenomena such as damage and/or plasticity, while permitting a refined evaluation of the cohesive stress along the overlap during monotonous loading. It can also be used in more advanced models in order to describe the joint behaviour in fatigue [START_REF] Khoramishad | Characterizing cohesive zone model using a mixed-mode direct method[END_REF][START_REF] De Moura | Fatigue/fracture characterization of composite bonded joints under mode I, mode II and mixed-mode I+ II[END_REF], creep or aging damage [START_REF] Liljedahl | Modelling the environmental degradation of adhesively bonded aluminium and composite joints using a CZM approach[END_REF].

These models are extensively used in the literature in their theoretical and numerical aspects and many contributions have used then for pure mode as well as more complex loading solicitations [START_REF] Högberg | Constitutive behaviour of mixed mode loaded adhesive layer[END_REF]. For pure mode I loading, also known as peel solicitation, the cohesive zone models can also be designated as traction-separation (TS) laws. Their shape and corresponding parameters are usually determined empirically according to the expected behaviour of the adhesive. Indeed, it is widespread to use a bilinear softening (i.e. triangular) law shape for brittle adhesive and an elasto-plastic (i.e. trapezoidal) shape for ductile adhesive. Other law shapes has also been developed such as polynomial, exponential [START_REF] Scheider | The effect of the traction separation law on the results of cohesive zone crack propagation analyses[END_REF] or more sophisticated shapes such as polynomial [START_REF] Gheibi | Direct determination of a new mode-dependent cohesive zone model to simulate metal-to-metal adhesive joints[END_REF] or interpolation based CZM [START_REF] Xu | A unified cohesive zone model for simulating adhesive failure of ,Composite Structures and its parameter identification[END_REF]. The parameters are then identified using an iterative inverse identification method to obtain a good agreement between experimental data and analytical [START_REF] Škec | Identification of parameters of a bi-linear cohesive-zone model using analytical solutions for mode-I delamination[END_REF] or numerical model [START_REF] Kafkalidis | Deformation and fracture of adhesive layers constrained by plastically-deforming adherends[END_REF][START_REF] Shen | Direct extraction of cohesive fracture properties from digital image correlation: a hybrid inverse technique[END_REF][START_REF] Tsouvalis | Numerical prediction of the response of metal-tometal adhesive joints with ductile adhesives[END_REF].

Many contributions have been made on the influence of the TS law shape on the predicted value for different specimen geometries and materials. For instance Song et al. showed that CZM softening shape influences numerical results considerably in the case of asphalt concrete disk-shaped compact tension test [START_REF] Song | Influence of the cohesive zone model shape parameter on asphalt concrete fracture behavior[END_REF]. Similar results were obtained for butt-joints in shear [START_REF] Zhang | Effect of the cohesive law shape on the modelling of adhesive joints bonded with brittle and ductile adhesives[END_REF], block peel tests [START_REF] Volokh | Comparison between cohesive zone models[END_REF] and thick DCB [START_REF] Alfano | On the influence of the shape of the interface law on the application of cohesive-zone models[END_REF]. Moreover it was showed by Campilho et al. that the law shape also has an impact in SLJ test, especially for small overlap length [START_REF] Campilho | Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer[END_REF][START_REF] Fernández-Cañadas | Influence of the cohesive law shape on the composite adhesively-bonded patch repair behaviour[END_REF] and when the adhesive is highly ductile [START_REF] De Sousa | Overview of different strength prediction techniques for single-lap bonded joints[END_REF]. On the other hand, it appears that the DCB specimen with slim adherends is less sensitive to the TS law shape. Its global behaviour is mostly impacted by the critical energy release rate Gc [START_REF] Gustafson | The influence of adhesive constitutive parameters in cohesive zone finite element models of adhesively bonded joints[END_REF]. However, as it was concluded by Chandra et al., the appropriate TS law shape is needed in order to correctly describe the inelastic micromechanical process and thus to obtain meaningful simulation results [START_REF] Chandra | Some issues in the application of cohesive zone models for metal--ceramic interfaces[END_REF]. This is why many studies are now investigating the direct measurement of the CZM properties. The most widespread technic, initially developed by Sorensen et al. [START_REF] Sørensen | Determination of cohesive laws by the J integral approach[END_REF] in mode II testing, consists in the differentiation of the integral J [START_REF] Rice | A path independent integral and the approximate analysis of strain concentration by notches and cracks[END_REF]. This same method has been implemented for pure mode I testing [START_REF] Zhang | Effect of the cohesive law shape on the modelling of adhesive joints bonded with brittle and ductile adhesives[END_REF][START_REF] Volokh | Comparison between cohesive zone models[END_REF][START_REF] Alfano | On the influence of the shape of the interface law on the application of cohesive-zone models[END_REF][START_REF] Campilho | Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer[END_REF][START_REF] Fernández-Cañadas | Influence of the cohesive law shape on the composite adhesively-bonded patch repair behaviour[END_REF][START_REF] De Sousa | Overview of different strength prediction techniques for single-lap bonded joints[END_REF][START_REF] Gustafson | The influence of adhesive constitutive parameters in cohesive zone finite element models of adhesively bonded joints[END_REF][START_REF] Chandra | Some issues in the application of cohesive zone models for metal--ceramic interfaces[END_REF][START_REF] Sørensen | Determination of cohesive laws by the J integral approach[END_REF][START_REF] Rice | A path independent integral and the approximate analysis of strain concentration by notches and cracks[END_REF][START_REF] Andersson | On the effective constitutive properties of a thin adhesive layer loaded in peel[END_REF][START_REF] Andersson | The stress--elongation relation for an adhesive layer loaded in peel using equilibrium of energetic forces[END_REF][START_REF] De Moura | A straightforward method to obtain the cohesive laws of bonded joints under mode I loading[END_REF] and can be carried out with the measurement of the adhesive elongation at crack tip. The development of digital image correlation (DIC) has also brought out a new range of measurable mechanical data such as the adherends deflection and rotation along the overlap which can also be used to measure the CZM. However, the direct determination of the TS law leads to the identification of very complex law shapes [31; 32] that needs extensive data reduction scheme and that can then be difficult to implement and costly in computational time.

An alternative to the direct method to identify the correct law shape would be to find an inverse identification method that is robust to the law shape. That is to say that the parameters resulting from the minimisation would only give coherent results if the correct law shape has been implemented a priori. As a first step toward this direction, this contribution aims at determining if the application of the inverse method on five different DCB mechanical responses can give robust results. It is chosen to investigate the force versus displacement (P(Δ)), the energy release rate versus displacement (J(θ,Δ)), the adherends deformation with the use of gauges and the deflection and rotation of the whole adherends using DIC. For each of these mechanical responses a numerical test campaign has been carried out. In order to reduce calculation time, an analytical model is used to simulate a DCB test and its mechanical fields. Synthetic experimental data are generated using a trapezoidal CZM. The inverse method is applied on it with a bilinear softening TS law. The robustness to the law shape can then be evaluated for each mechanical response.

Parameter estimation and robustness to the law shape determination for a model require numerous model calculation that can become quite time costly. In order to avoid too much calculation time, it appeared wiser to implement an analytical model rather than using finite element (FE) model that can quickly become time consuming in pre and post processing as well. The purpose of this analytical model is to simulate the mechanical response that could be measured during an experimental DCB test. That is to say that it needs to give access to all the specimen mechanical response enabling the determination of the load, the opening at loading point, the rotation at loading point, the adherends' deformation along the overlap and the adherends' rotation along the overlap. These responses can be determined with the mechanical fields computed during the crack propagation along the overlap for an adhesive having a bilinear softening or a trapezoidal CZM. Their calculation methodology is detailed below and validated by comparing calculation with more complete simulation using the macro-element technique in Appendix I.

Model definition

An analytical model of a DCB specimen has been developed considering adherends modelled as Timoshenko beams. The specimen geometrical properties are represented in Figure 1. The adherends are considered to have a rectangular cross section (width: w, thickness: t). They are bonded over a length L and the initial crack tip where the adherends are left unbonded has a length equal to a. The adhesive has a nonlinear behaviour, either bilinear softening or trapezoidal. The adhesive layer has a thickness corresponding to ta. Where M, T and 𝜎 respectively corresponds to the local bending moment, the shear force and the local peel stress.

Timoshenko beam formulation leads to the following constitutive equations:

𝑀(𝑥) = 𝐸𝐼 𝑑𝜑(𝑥) 𝑑𝑥 (eq 3) (𝑥) = 𝜅𝐺𝑆 ( 𝑑𝑣(𝑥) 𝑑𝑥 -𝜑(𝑥)) (eq 4)
Where 𝜑 and 𝑣 are the cross section rotation and the beam deflection. The adherends'

material parameters E and G are respectively the Young's modulus and the shear modulus.

𝑆 = 𝑤𝑡 corresponds to the beam cross section area. In case of a rectangular cross section the quadratic moment is computed as 𝐼 = 𝑤𝑡 3 12 and the shear correction coefficient is

approximately 𝜅 = 5 6
. By combining (eq 1) to (eq 4), the following equation is found:

𝑑 4 𝑣(𝑥) 𝑑𝑥 4 - 1 𝜅𝐺𝑆 𝑑 2 𝜎(𝑥) 𝑑𝑥 2 + 𝜎(𝑥) 𝐸𝐼 = 0 (eq 5)
The solution of this differential equation depends on the adhesive behaviour. In the present case, it will be solved for two nonlinear behaviour, bilinear softening and trapezoidal. As illustrated in Figure 2, both behaviours can be divided in two parts. The first one corresponds to an elastic behaviour and is identical for both. The second one is either a linear softening or a plastic behaviour. Thus, the differential equation will be solved for those three evolutions separately.

Figure 2: Nonlinear traction-separation law: bilinear softening and perfectly plastic

Elastic behaviour

The elastic regime of the traction separation law is given by:

𝜎 = 2𝐸 𝑎 * 𝑡 𝑎 𝑣(𝑥) 𝑣 < 𝑡 𝑎 𝜀 𝑒 2 (eq 6)
Where 𝐸 𝑎 * corresponds to the apparent Young's Modulus of the adhesive. The differential equation (eq 5) which governs the evolution of the peel stress in the elastic regions then reduces to:

𝑑 4 𝜎(𝑥) 𝑑𝑥 4 - 𝑘 𝑒 𝜅𝐺𝑆 𝑑 2 𝜎(𝑥) 𝑑𝑥 2 + 𝑘 𝑒 𝐸𝐼 𝜎(𝑥) = 0 (eq 7)
With the tangent stiffness in the elastic bondline region given by:

𝑘 𝑒 = 𝑤 2𝐸 𝑎 * 𝑡 𝑎 ( eq 8) 
The general expression for the peel stress evolution in the elastic region along the bondline can then be expressed as:

𝜎(𝑥) = ∑ 𝐴 𝑖 𝑒 𝜆 𝑒,𝑖 𝑥 + 𝐵 𝑖 𝑒 -𝜆 𝑒,𝑖 (𝐿-𝑥) 2 𝑖=1
(eq 9)

with

𝜆 𝑒,𝑖 = 𝜆 𝑒 √ 𝜀 𝑒 ± √𝜀 𝑒 2 -1 = 𝜆 𝑒 𝛼 𝑖 i ∈ [1, 2] ( eq 10) 
where

𝜆 𝑒 = 1 4
𝑘 𝑒 EI (eq 11)

and

𝜀 𝑒 = √𝑘 𝑒 𝐸𝐼 2𝜅𝐺𝑆 (eq 12)
The 𝐴 𝑖 and 𝐵 𝑖 are constants determined .using the boundary and continuity conditions. The other cohesive forces in the elastic region can then be obtained by integrating (eq 1) to (eq 4) and using the following boundary conditions:

𝑀(𝑥 = 0) = 𝑎𝑃 (eq 13)
𝑇(𝑥 = 0) = 𝑃 (eq 14)

Bilinear softening behaviour

The linear softening region is solved similarly as the elastic one. Its traction-separation equation is defined as:

 = 𝜎 𝑚𝑎𝑥 𝑣 𝑒 -𝑣 𝑝 (𝑣 𝑝 -𝑣(𝑥)) 𝑡 𝑎 𝜀 𝑒 2 < 𝑣 < 𝑡 𝑎 𝜀 𝑝 2 (eq 15)
Where the peel stress depends on the maximal stress 𝜎 𝑚𝑎𝑥 and 𝑣 𝑒 -𝑣 𝑝 . Once the crack begins to propagate the peel stress becomes:

𝜎 = 0 𝑣 > 𝑡 𝑎 𝜀 𝑝 2 (eq 16)
The differential equation (eq 5) which governs the evolution of the peel stress in the elastic regions then reduces to:

𝑑 4 𝜎(𝑥) 𝑑𝑥 4 + 𝑘 𝑠 𝜅𝐺𝑆 𝑑 2 𝜎(𝑥) 𝑑𝑥 2 + 𝑘 𝑠 𝐸𝐼 𝜎(𝑥) = 0 (eq 17)
Where the tangent stiffness in the softening bondline is:

𝑘 𝑠 = 𝑤𝜎 𝑚𝑎𝑥 (𝑣 𝑝 -𝑣 𝑒 ) (eq 18)
The general expression of the peel stress evolution in the linear softening region along the bondline can then be expressed as:

𝜎(𝑥) = ∑ 𝐴 𝑖 𝑒 𝜆 𝑠,𝑖 𝑥 + 𝐵 𝑖 𝑒 -𝜆 𝑠,𝑖 (𝐿-𝑥) 2 𝑖=1 ( eq 19) 
with

𝜆 𝑠,𝑖 = 𝜆 𝑠 √ 𝜀 𝑠 ± √𝜀 𝑠 2 -1 = 𝜆 𝑠 𝛼 𝑖 i ∈ [1, 2] ( eq 20) 
where

𝜆 𝑠 = ( 𝑘 𝑠 𝐸𝐼 ) 1/4
(eq 21)

and

𝜀 𝑠 = √𝑘 𝑠 𝐸𝐼 2𝜅𝐺𝑆 (eq 22)
The 𝐴 𝑖 and 𝐵 𝑖 are constants determined using the boundary and continuity conditions.

All the other cohesive forces and displacement evolutions are obtained by integrating (eq 1) to

(eq 4) and considering continuity in between the elastic and softening region.

Plastic behaviour

Unlike the two precedent methods, the general expression for the peel stress evolution in the plastic region along the bondline is known and constant (eq 23). The other mechanical fields along the overlap can then be determined directly by injecting in (eq 2) the traction-separation law given by:

𝜎 = 𝜎 𝑚𝑎𝑥 𝑡 𝑎 𝜀 𝑒 2 < 𝑣 < 𝑡 𝑎 𝜀 𝑝 2 (eq 23)
which first gives the shear force

𝑇(𝑥) = 𝑤𝜎 𝑚𝑎𝑥 𝑥 + 𝑃 (eq 24)
The following boundary conditions permit the determination of the integration constant:

𝑇(-𝐿) = 0 (eq 25)

𝑇(0) = 𝑃 (eq 26)
The integration of (eq 24) in (eq 1) enables the determination of the bending moment along the bondline:

𝑀(𝑥) = 𝑎𝑃 -𝑃𝑥 - 1 2 𝑤𝜎 𝑚𝑎𝑥 𝑥 2 (eq 27)
Using the following boundary conditions to determine the integration constant:

𝑀(-𝐿) = 0 (eq 28)

𝑀(0) = 𝑎𝑃 (eq 29)
The cross section rotation along the bondline is obtained when integrating the bending moment in (eq 3) which results in:

𝜑(𝑥) = 1 𝐸𝐼 (𝑎𝑃𝑥 - 1 2 𝑃𝑥 2 - 1 6 𝑤𝜎 𝑚𝑎𝑥 𝑥 3 ) + 𝜑 0 (eq 30)
Where 𝜑 0 is an integration constants determined using the boundary and continuity conditions. Finally, the deflection along the bondline can be obtained when integrating the rotation and the bending moment as presented in (eq 4). It can then be expressed as:

𝑣(𝑥) = 1 𝐸𝐼 ( 1 2 𝑎𝑃𝑥 2 - 1 6 𝑃𝑥 3 - 1 24 𝑤𝜎 𝑚𝑎𝑥 𝑥 4 ) + 𝜑 0 𝑥 + 1 𝜅𝐺𝑆 (𝑃𝑥 + 1 2 𝑤𝜎 𝑚𝑎𝑥 𝑥 2 ) + 𝑣 0 (eq 31)
Where 𝑣 0 is an integration constants determined using the boundary and continuity conditions.

Resolution methodology

The simulation of crack initiation and propagation is a three-step process. In Figure 3(a) is represented the force versus opening displacement evolution, as predicted with the model. The initial specimen compliance is mainly governed by the flexibility of the cracked part of the adherend. The effect of the bondline compliance also leads to an increase of the overall compliance of the specimen. The crack propagation regime is governed by the interface critical strain energy release rate so that the force versus opening displacement evolution is given by relationship:

𝑃 = ( 4𝐸 𝐼 9 ) 1 4 (𝑤𝐺 𝑐 ) 3 4( Δ) -1 2 (eq 32)
The transition between this two regimes depends on the TS law shape and can be theoretically identified directly from the P() evolution. Other techniques use the other measurable evolutions represented in Figure 3. Indeed, beam deflection and cross section rotation can be measured using DIC during the whole propagation step. The cohesive stresses in the adherend can be detected using strain gages bonded to the upper side (Bending Moment) or lateral side (Shear force).

Direct and indirect TS law measurement technique.

To illustrate the influence of the TS law shape, analytical DCB test simulations are carried out for a bilinear softening and a trapezoidal TS law which were identified experimentally on DCB test made using a structural methacrylate adhesive. Their characteristics are presented in 

TS law evaluation from force versus displacement measurement

The first method proposed to evaluate TS law from DCB experiment is based on the analysis of the force, P, versus opening displacement evolution, Δ. Since the original analysis of DCB test [START_REF] Mostovoy | Fracture toughness of an epoxy system[END_REF], these data are systematically measured as it enables the evaluation of the interface critical SERR which is based on compliance measurement evolution. Figure 4 illustrates the mechanical response for both law shapes and their quantitative load differences. As both the bilinear softening (i.e. Triangular) and elasto-plastic (i.e. Trapezoidal) laws have the same elastic properties as well as the same critical energy release rate, a similar behaviour in these phases of the test is expected. Indeed, it appears in Figure 4 that for an opening displacement inferior to 1mm, both curves are superposed. Likewise, when Δ > 1.7 mm, both curves are identical. Then, the shape of the TS law has an impact between these 2 phases. The trapezoidal law shape presents a very little nonlinear behaviour as it reaches the propagation phase with almost no curvature. This phenomenon leads to an increased maximum force. On the other hand, the triangular TS law shows a higher nonlinearity with a clearly visible curvature and a maximum force peak appearing eroded, with a lower maximum force. The latter is also reached for a higher value of opening displacement which is due to the higher value of opening displacement at crack tip needed for crack propagation. Thus the presence of a softening behaviour rather than a constant one leads to a higher nonlinearity of the forcedisplacement curve previous to the crack propagation. This is due to a progressive diminution of the stress in the adhesive. 

TS law evaluation from the J(,) measurement technique

Gunderson and al. [START_REF] Gunderson | Alternative test method for interlaminar fracture toughness of composites[END_REF] proposed to evaluate the J integral evolution during the DCB test directly by measuring the specimen end rotation together with the applied load. In addition,

Anderson et al proposed a solution for adherends having an Euler-Bernoulli behaviour [START_REF] Andersson | On the effective constitutive properties of a thin adhesive layer loaded in peel[END_REF].

But it can be extended to adherends behaving as Timoshenko beams as well. If the integral J evaluation is made by using the full specimen boundary as the contour, it can be expressed as:

𝐽 = 1 𝑤 [𝑃𝜑 + 𝑃 2 2𝜅𝐺𝑆 ] ( eq 33) 
Where P and 𝜑 are respectively the load and the rotation at loading point. The integral J can then be plotted as a function of the opening at loading point. According to Sorensen's analysis [START_REF] Sørensen | Determination of cohesive laws by the J integral approach[END_REF], the J(,) evolution is related to the opening displacement at the crack tip through the relation:

𝜎(𝛿) = 𝜕𝐽(𝜃, 𝛿) 𝜕𝛿 (eq 34)
So that assuming the TS law is given by relationships (eq 6) to (eq 16) the J(,) evolution reduces to three different regions, the elastic ad softening ones showing parabolic evolutions but with opposite curvature and the third one being constant when J remains stationary.

These behaviours are illustrated in Figure 5.a where the J-integral is displayed for both law shapes. Figure 5.b represents the quantitative energy release rate differences between the laws. It appears that they are identical in the elastic and the propagation regions. In the nonlinear region, the response of the trapezoidal law reaches the propagation plateau faster than the other one. This is the result of a smaller process zone which is due to a smaller 𝑣 𝑝 .

TS law evaluation from backface strain monitoring technique -BSM

Resistive gauges can be placed on the adherend's upper face. The measurement of the slabs deformation gives insight on the stress state of the adhesive bond directly underneath the gauges. They measure the local longitudinal strain, 𝜀 𝑠 , which is proportional to the local bending moment M:

𝜀 𝑠 = 𝑀 𝐸 𝑠 𝐼 𝑛 𝑡 2 (eq 35)
It also depends on the adherends' Young modulus E, their quadratic moment I and their thickness t. The gauge evolution can also be used for a direct evaluation of cohesive stresses evolution along the bondline by using the relationship:

𝜎 = -2 𝐸𝐼 𝑤𝑡 𝜕 2 𝜀 𝑠 𝜕𝑥 2 (eq 36)
The gauges response is an indicator of the stress state of the adhesive directly underneath. It is worth noticing that the adherend deformation is maximal when the crack tip is close to the gauge. Figure 6.a illustrates the gauge response for a bilinear softening and a trapezoidal TS law. Their differences are presented in Figure 6.b. It appears that the variation between the two law shapes is quite small. Their maximal differences appear when the adherend begins to deform and when the crack tip is close to the gauge. 

TS law evaluation from DIC monitoring technique in deflection and rotation

During a DCB test digital image correlation (DIC) can be used to determine the deflection and rotation of the adherends along the bonded area. Experimentally, this requires the use of a speckle pattern and one or a couple of cameras. Numerically the adherends deflection and rotation are directly computed along the specimen. The latter has a different behaviour if the adhesive is in the elastic, the softening or the propagation phase of the CZM. In Figure 7, the deflection and rotation along the adherends are represented for an opening at loading point of 1mm. Their differences are then computed for the whole test, that is to say from Δ=0mm to Δ=1mm with 201 steps in-between. Here, it appears that the deflection of the adherend is not sensitive to the law shape as the differences between both curves is at most 10μm (Figure 7 5 Robustness analysis

Model's parameters

The analytical model, presented earlier, is used to simulate a DCB specimen. Its geometrical and material characteristics are summarized in Table 2.

Table 2: DCB specimen geometric and material characteristics

Adherends

Total length (mm) 180

Overlap length (mm) 130

Initial crack length (mm) 50

Thickness (mm) 10

Width (mm) 15

Young modulus (GPa) 70

Poisson ratio ( -) 0.3

The adhesive has a chosen thickness of 247µm and is implemented using a trapezoidal cohesive zone model. The parameters of interests are arbitrarily chosen: the initial modulus the maximum stress and the displacement jump at propagation: a = [E a , σ max , v p ]. Table 3 includes the chosen nominal parameters and the associated critical energy release rate in mode I and surface area under the linear part, respectively G c and Y 0 . The minimization of a bilinear softening TS law onto the synthetic data generated from the trapezoidal law was carried out for each mechanical response that can be obtained on a DCB test (i.e. P(Δ) , J(,), Gauges, DIC). However, for clarity purpose, the process will only be detailed for the force-displacement curve and the DIC.

Methodology application to the Force-displacement curve

The analytical model described in paragraph 2 is used to generate a nominal P(Δ) curves for the trapezoidal TS law. Synthetic experimental data which consists in the addition of a Gaussian noise as then generated and are illustrated in Figure 8.a. These data are then used for a minimization procedure using the χ² optimisation. Its general principle and equations are exposed in Appendix II. The objective is to apply the minimization to the parameters of the bilinear softening TS law. From this analysis, it appears that the minimization enables the determination of a parametertriplet that has a correlation to the synthetic data as good as the nominal trapezoidal TS law.

Figure 8 also illustrates the difference between the nominal triangular law (that has the same E a and σ max than the trapezoidal law). The variation of these two parameters enables a diminution of the highest peak at the cost of deviation in the elastic part.

The computation of the correlation coefficient, R², between the experimental data and either the nominal trapezoidal law or the optimized bilinear softening law, shows that they are equal. Therefore, the use of inverse analysis on the P(Δ) data does not appear to be robust to the TS law shape. Indeed, for this mechanical response, it is possible to identify a bilinear softening parameters triplet that has a correlation coefficient as good as the nominal trapezoidal one used to generate the data. This leads to an erroneous estimation of the parameters. Thus, this mechanical response does not enable the discrimination of the law shape and must only be used when the TS law shape is known beforehand.

Comparisons

The methodology presented above was carried out for each mechanical response. The individual results and figures are given in Appendix III. It appears that the results of each mechanical response are similar to P(Δ). Indeed, the minimized curves obtained for a bilinear softening have a correlation coefficient equal to the one obtained for the nominal trapezoidal which was used to generate the experimental data as illustrated in Table 7. Moreover, no mechanical response enables a good estimation of the TS law parameters as it can be seen in Table 8. However, the critical energy release rate is well predicted which corroborates the good correlation between the experimental data and the optimised ones. are robust to the adhesive traction-separation law shape. To do so, a bilinear softening CZM was optimised on experimental data generated from a trapezoidal using the χ² minimisation.

Their correlation coefficients as well as the parameters of the nominal and optimized TS law where then compared.

To conclude, it appears that the noisy experimental data cannot be uniquely described by one TS law shape. Indeed, the inverse analysis on experimental data generated from a trapezoidal TS law gives a good correlation when identified with a bilinear softening law shape. This means that none of the mechanical response investigated here enables discrimination to the law shape. Moreover, this inverse identification enables the determination of a TS law parameter-triplet that are not equal to the nominal ones. That is to say that when the inverse identification is made with one of the techniques described in this paper, it is possible to identify cohesive properties. But if the TS law shape has been chosen arbitrarily rather than being measured, this means that these properties are likely to be incorrect. The only reliable parameter which can be used is the critical energy release rate.

As a consequence the inverse identification method should be used with precautions concerning the mechanical phenomena arising within the adhesive bond. Indeed, it enables the determination of a law which will give correct macroscopic results and that could be sufficient when dimensioning parts. But, these results cannot be used as information on the inherent mechanical properties of the adhesive.
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Synthetic experimental data are generated from the nominal trapezoidal law with a Gaussian noise of 7kg.m² (Figure 11a). A triangular TS law is fitted on these data (Figure 11b).and the residual between the synthetic experimental data and the optimisation results is computed (Figure 11c). Residuals between the minimized curve, the synthetic measurements and the nominal trapezoidal TS law.

Gauges minimization results

Synthetic experimental data are generated from the nominal trapezoidal law with a Gaussian noise of 10μm (Figure 12a). A triangular TS law is fitted on these data (Figure 12b).and the residual between the synthetic experimental data and the optimisation results is computed (Figure 12c). (c) Residuals between the minimized curve, the synthetic measurements and the nominal trapezoidal TS law.

DICdeflection minimization results

Synthetic experimental data are generated from the nominal trapezoidal law with a Gaussian noise of 5μm (Figure 13a). A triangular TS law is fitted on these data (Figure 13b).and the residual surface between the synthetic experimental data and the optimisation results is computed (Figure 13c). The residual surface between the nominal trapezoidal data and the minimized triangular date is displayed in Figure 13d. 

DICrotation minimization results

Synthetic experimental data are generated from the nominal trapezoidal law with a Gaussian noise of 5μm (Figure 14a). A triangular TS law is fitted on these data (Figure 14b).and the residual surface between the synthetic experimental data and the optimisation results is computed (Figure 14c). The residual surface between the nominal trapezoidal data and the minimized triangular date is displayed in Figure 14d. 
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 1 Figure 1: DCB specimen geometrical data considered in the analytical model
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 3 Figure 3: DCB specimen mechanical fields determined with the analytical model for a bilinear
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 4 Figure 4: (a) Load-displacement curves for triangular and Trapezoidal CZM; (b) Residual
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 5 Figure 5: (a) Integral J function of the opening at loading point for triangular and Trapezoidal
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 6 Figure 6: (a) Gauges deformation function of the opening at loading point for triangular and
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 7 Figure 7: Digital image correlation results along the overlap during a DCB test (a) Impact of
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 88 Figure 8: Load-displacement curves: (a) Synthetic measurements data for an trapezoidal TS

Figure 11 :

 11 Figure 11: Integral J curves: (a) Synthetic measurements data for a trapezoidal TS law; (b)
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 12 Figure 12: Gauges measurements: (a) Synthetic measurements data for a trapezoidal TS law;

Figure 13 :

 13 Figure 13: DICdeflection curves: (a) Synthetic measurements data for an trapezoidal TS
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 14 Figure 14: DICrotation curves: (a) Synthetic measurements data for an trapezoidal TS law;

Table 1 .

 1 Both laws have the same adhesive effective modulus 𝐸 𝑎 * , maximum stress 𝜎 𝑚𝑎𝑥 , and the critical energy release rate 𝐺 𝑐 . This definition leads to a diminution of the propagation displacement jump at crack tip 𝒗 𝒑 which is also illustrated in Figure1.

Table 1 :

 1 Traction separation laws parameters

		𝒕 𝒂	𝑬 𝒂	𝝈 𝒎𝒂𝒙	𝒗 𝒆	𝒀 𝟎𝑻	𝑮 𝑰𝒄	𝒗 𝒑
		(mm)	(MPa)	(MPa)	(μm)	(N/mm)	(N/mm)	(μm)
	Bilinear-softening	0.247	146	14	11.84	0.6712	1.4178	101.27
	Trapezoidal	0.247	146	14	11.84	0.6712	1.4178	56.56

Table 3 :

 3 CZM propertiesExperimental data are generated from the known trapezoidal nominal response on which a normal noise is introduced. Every experimental curve comports 201 points taken for the same opening at loading point. This numerical noise represents the experimental data variations that are caused by errors in the measurement chain (i.e. Load captors, gauges, DIC...). For each mechanical response, a custom noise has been applied. It is generated as a normal distribution, the average of which is equal to zero and its standard deviation is approximately 0.5% of the maximal mechanical response. For each method, the tailored noise distributions are summed up in Table4.

	Adhesive TS law	
	𝐸 𝑎 (MPa)	146
	𝜎 𝑚𝑎𝑥 (MPa)	14
	𝑣 𝑝 (µm)	56.56
	𝑌 0 (N/mm)	0.67

Table 4 :

 4 Synthetic Noise normal distribution for each mechanical response

	Method	Units	𝝈 𝒏𝒐𝒊𝒔𝒆
	P(Δ)	N	3.3
	J(,)	kJ/m²	7
	Gauges	μdef	10
	DIC -deflection	mm	0.005
	DIC -rotation	rad	9.10 -5

Table 5 :

 5 Correlation coefficient obtained for the synthetic experimental data

		Nominal Trapezoidal	Optimized bilinear softening
	R²	1	0.9999
	However, this correlation quality is obtained at the cost of the TS law parameters. As
	illustrated in	

Table 6 ,

 6 the parameters obtained by the minimisation are deviating significantly from the nominal values especially for E a and σ max . Even so, the critical energy release rate computed is still close to the nominal one, which is coherent as the DCB test was originally made for its estimation.

Table 6 :

 6 Minimized bilinear softening TS law parameters compared to the nominal

		trapezoidal parameters.		
		𝑬 𝒂 (MPa)	𝝈 𝒎𝒂𝒙 (MPa)	𝒗 𝒑 (µm)	𝑮 𝒄 (N/mm)
	Nominal trapezoidal	146	14	56.56	1.4178
	Minimized bilinear softening	114	19.4	72.98	1.4181
	Variations (%)	22	39	29	0.01

Table 7 :

 7 R² evaluation between the experimental data and either the nominal trapezoidal or

	the minimized bilinear softening curve for each mechanical response
		Nominal trapezoidal	Optimized bilinear softening
	P(Δ)	1	0.9999
	J(,)	1	0.9999
	Gauges	0.9999	0.9999
	DIC -deflection	0.9999	0.9999
	DIC -rotation	0.9999	0.9999

Table 8 :

 8 Minimized parameters for the bilinear softening TS law An experimental campaign has been carried out based on an analytical model. It was used to determine whether or not the different mechanical fields measurable on a DCB test specimen

		𝑬 𝒂 (MPa)	𝝈 𝒎𝒂𝒙 (MPa)	𝒗 𝒑 (µm)	𝑮 𝒄 (N/mm)
	Nominal trapezoidal	146	14	56.56	1.4178
	P(Δ)	114	19.4	72.98	1.4181
	J(,)	98	20.46	69.33	1.4185
	Gauges	137	18.5	76.84	1.4211
	DIC -deflection	120	19.21	73.87	1.4189
	DIC -rotation	122	19.23	73.91	1.4214
	6 Conclusion				

J(,) minimization results

Appendix I.

Analytic model validation with the Macro-element model 1 Bilinear softening CZM

In order to validate the analytic solution, a comparison has been made with the macro-element (ME) model developed by Paroissien et al [START_REF] Paroissien | Simplified stress analysis of functionally graded single-lap joints subjected to combined thermal and mechanical loads[END_REF]. It is based on simplified hypotheses to model the joint behaviour and uses the minimization of the potential energy for solving. Both the adhesive layer and the adherends are gathered in 4-node elements. The upper and lower adherends' nodes at the extremity of the specimen are blocked in the normal and tangential direction as well as in rotation. The model dimensions are the same than the analytic ones.

Adherends are modelled with a linear elastic behaviour with aluminium mechanical properties (i.e. E=70 GPa, υ=0.3). The adhesive behaviour has been implemented with a bilinear cohesive zone model. The traction separation law is defined by the initial adhesive modulus (Yt=146 MPa), the tensile stress at crack propagation (σmax=14 MPa) and the fracture energy (Gc=1.4178 N/mm). The parameters used are listed in table 1.

A mesh convergence study has been realized in order to validate the model. The elements size is determined as a ratio of the process zone size 𝐿 𝑐 . Its size has been estimated using the Irwin equation:

(eq 37) In (eq 38) Y(ti), i={1,…,N} represent the N measured data used to identify the 𝑎 𝑘 k={1,…,p} parameters. 𝑌 ̂ are the corresponding theoretical data obtained with the model. In (eq 38), the term in the sum are weighted by the measurement error on the experimental data. This function is minimized using steepest gradient technique such as Levenberg-Marquart algorithm until the minimum 𝜒 2 value is found and the corresponding optimum set of parameters is determined. The quality of the optimization process can then be evaluated using the R²-value (eq 39) and (eq 40).

R² =

∑ (𝑌(𝑡 𝑖 ) -𝑌 ̂(𝑝, 𝑡 𝑖 )) (eq 40)

The fit quality is assessed when the R 2 value is as close to one as possible.

From a technical standpoint, the curve fitting is performed using the lsqnonlin function implemented in Matlab using the Levenberg-Marquardt algorithm. In order to obtain a more accurate optimization, the gradients were estimated with central finite differences.

Appendix III.

Minimization results

The same methodology than in paragraph 5.2 is applied for the other mechanical response.

1.