
HAL Id: hal-02882342
https://hal.science/hal-02882342

Submitted on 26 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data augmentation versus noise compensation for x-
vector speaker recognition systems in noisy

environments
Mohammad Mohammadamini, Driss Matrouf

To cite this version:
Mohammad Mohammadamini, Driss Matrouf. Data augmentation versus noise compensation for
x- vector speaker recognition systems in noisy environments. EUSIPCO, Jan 2021, Amsterdam,
Netherlands. �hal-02882342�

https://hal.science/hal-02882342
https://hal.archives-ouvertes.fr


Data augmentation versus noise compensation for x-

vector speaker recognition systems in noisy 

environments 
 

 

Mohammad MohammadAmini, Driss Matrouf 

Avignon University  

LIA (Laboratoire Informatique d’Avignon) 

{mohammad.mohammadamini , driss.matrouf}@univ-avignon.fr 

 

 

 

Abstract—The explosion of available speech data and new 

speaker modeling methods based on deep neural networks (DNN) 

have given the ability to develop more robust speaker recognition 

systems. Among DNN speaker modelling techniques, x-vector 

system has shown a degree of robustness in noisy environments. 

Previous studies suggest that by increasing the number of speakers 

in the training data and using data augmentation more robust 

speaker recognition systems are achievable in noisy environments. 

In this work, we want to know if explicit noise compensation 

techniques continue to be effective despite the general noise 

robustness of these systems. For this study, we will use two different 

x-vector networks: the first one is trained on Voxceleb1 (Protocol1), 

and the second one is trained on Voxceleb1+Voxveleb2 (Protocol2). 

We propose to add a denoising x-vector subsystem before scoring. 

Experimental results show that, the x-vector system used in 

Protocol2 is more robust than the other one used Protocol1. Despite 

this observation we will show that explicit noise compensation gives 

almost the same EER relative gain in both protocols. For example, 

in the Protocol2 we have 21% to 66% improvement of EER with 

denoising techniques. 

Keywords— speaker recognition, x-vector, data augmentation, 

noise compensation, denoising autoencoder, deep stacked denoising 

autoencoder 

I. Introduction 

In noisy environments the performance of speaker 
recognition systems dramatically drops. The state-of-the-art 
DNN based approaches for speaker modeling have made 
speaker recognition systems more robust. In noisy 
environments with different unseen noises, the performance of 
these approaches is more robust than their previous statistical 
generation (i-vector), but they still have poor performance 
compared to noise free situations. Among DNN speaker 
recognition systems, x-vectors are the most promising and 
successful approach. 

A number of studies [1, 2] emphasized on the importance 
of increasing the number of speakers and data augmentation in 

 

 

Fig 1. Adding a denoising subsystem to standard x-vector system 

 

training x-vector network to make the system more robust in 
noisy environments. In this research, besides the 
aforementioned solutions to extract more robust x-vectors, we 
propose to add a denoising subsystem before scoring the x-
vectors. The architecture of the proposed system is presented 
in Fig 1. 

Denoising techniques can be used in signal level, feature 
level, and speaker modeling level. The recent speaker 
modeling advances (i-vectors or x-vectors) make speaker 
modeling level suitable for noise compensation. In fact, the 
data in these spaces are almost Gaussian distributed. Previous 
studies show the effectiveness of denoising techniques in the i-
vector domain [3,4,5,6,7].  

Earlier studies in x-vector space mostly focused on x-vector 
network extractor or data augmentation to improve the 
performance of speaker recognition system. In [2], it is shown 
that increasing the number of speakers and using data 
augmentation makes the x-vector system more robust on noisy 
and far-field test data. In spite of this fact, the EER obtained 
with these systems in noisy environments is still much higher 
than EER obtained in clean conditions. Cycle GANs are 
another method that are used to transform reverberated log 
Mel-filter bank features to their clean pairs before training the 
x-vector network[8]. In [9] it has been shown that speaker 
embeddings are more robust in far-field test data. But like the 
additive noise and reverberation there is degradation in 
comparison to the baseline system. Correlation alignment (CA) 
algorithm is used for domain adaptation in x-vector space. The 
CA algorithm tries to minimize the distance between the 
covariance of the out-of-domain and in-domain x-vectors [10].  
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There are several attempts that focus on improving the x-
vector network. The original x-vector extractor classifies the 
speakers in the output layer [11]. In [12] a modified speaker 
embedding network was proposed that classifies the speakers 
and conditions jointly. The conditions can be continuous 
(SNR) or discrete (type of noise). This strategy makes the 
system more robust in different environments.  Using non-
linear activation function, feature normalization, using CNNs 
instead of TDNN are among other strategies proposed to 
improve the performance of x-vector system [13]. In [14] a 
Gaussian constrained training approach is proposed that 
impose on x-vectors to have a Gaussian distribution. Using 
gated convolutional layers instead of time delay layers and 
gated pooling layer has improved the performance of x-vector 
system [15]. In [16], a hybrid LSTM and CNN network used 
for frame level layers and by using multi-level pooling strategy 
and applying a regularization scheme on embedding layer, the 
performance of x-vector baseline system was improved. Lie et 
al, [17] used different variants of large margin SoftMax loss 
function in x-vector network system.   

The above-mentioned modifications of x-vector network 
don't focus on noise compensation and they try to improve the 
performance of x-vector system for both noisy and clean 
environments generally. In [24] we used the statistical i-MAP 
method to denoise x-vectors. Also, two combinations of i-MAP 
and denoising autoencoders introduced to deal with additive 
noise in x-vector space. In this paper we continue our 
exploration by adding a denoising subsystem to standard x-
vector system. This modification is illustrated in Fig.1 . We 
show that while data argumentation and increasing the number 
of speakers makes the x-vector system more robust, we can go 
further and achieve better results by noise compensation 
techniques. We show that even with large augmented data and 
a great number of speakers, the noise compensation techniques 
are effective. To do that, we train two x-vector systems. In the 
first one, the x-vector network is trained with Voxceleb1 and 
in the second one the network is trained with a combination of 
Voxceleb1 and Voxceleb2. In both cases, the train data is 
augmented with all branches of Musan corpus. We show that 
in both protocols the relative gain of EER after denoising x-
vectors is significant. Hence, denoising techniques even with 
the availability of huge data is a good solution to increase the 
robustness of speaker recognition systems. 

 We use two different denoising techniques. Firstly, we try 
to find the best denoising autoencoder for x-vector space. Then 

we propose a stacked denoising autoencoder that deeper 

autoencoders accepts two set of inputs are used in the input 

layer. The first one comes from the output of the previous 

denoising autoencoder and the second one is the difference 

between noisy x-vectors and the output of the previous 

denoising autoencoder. Our proposed denoising techniques try 

to do noise compensation generally, and do not consider a 

specific kind of noise.  

In the following, we introduce the denoising techniques on 

section II. In section III, the details of experiments setup and 
protocols are described. Section IV presents the result of the 

baseline system and denoising techniques. 

II. Denoising techniques 

In this section we describe the methods we used to denoise 

x-vectors. Firstly, we describe the architecture of denoising 

autoencoder. Then we propose a novel denoising autoencoder 

named deep stacked denoising autoencoder.  

A. Denoising autoencoder 

Denoising autoencoders are among the commonly used 

noise compensation techniques. The denoising autoencoder is 

a specific kind of autoencoder that takes the noisy x-vector in 

the input and creates the clean version at the output. Denoising 

autoencoder tries to minimize 𝐿(𝒙,𝑓(𝒚)),  in which L is the loss 

function,  x is the clean x-vector, 𝒚 is the corrupted x-vector 

and 𝑓(𝒚) is the denoised x-vector [18]. Finding a good 

architecture and its parameters depends on the application and 

the type of data. In our experiments, we achieved our better 

results with dense tanh layers in which the number of hidden 

neurons is greater than the size of x-vector dimensions. The 

details of parameters and hyperparameters are described in 

section IV.  

B. Deep stacked denoising autoencoder 

In this subsection, we introduce a novel denoising 

autoencoder named deep stacked denoising autoencoder. In 

this architecture we have several DAE blocks. The noisy x-

vectors fed to the first DAE. The next DAE block receives 𝑋𝑖 

(the output of the previous block) concatenated with 𝑍𝑖 = 𝑌 − 

𝑋𝑖−1 (the difference between noisy x-vectors and the output of 

the previous block). The stacked DAEs are trained jointly with 

the stochastic gradient descent optimization algorithm. The 
architecture of deep stacked DAE is presented in Fig 2. As we 

can see in the next section, in all cases the deep stacked 

architecture outperforms denoising autoencoder. 

The idea behind this architecture comes from conventional 

autoencoders that try to copy their input at the output layer. 

Autoencoders usually are used to create embeddings or they 

are used for dimensionality reduction. We assume that feeding 

the difference between noisy x-vectors and the output of the 

previous denoising autoencoder can find an estimation of the 

noise information. We did an experiment with autoencoders 

with Y (noisy x-vector) and Y-X (the exact information of the 
noise in the x-vectors) in the input to recreate the X in the 

output layer. We observed that recreated x-vectors are very 

close to clean x-vectors. So, we infer that feeding information 

about the noise is helpful in finding more exact denoised x-

vectors. 

 

 
Fig 2. Deep stacked denoising autoencoder 
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III. Experiments setup 

A. Corpus  

In this subsection the datasets are described briefly:  

Voxceleb: We used both Voxceleb1 and Voxceleb2. 
Voxceleb1 includes 100,000 speech files from 1,251 speakers. 
Voceleb2 has more than 1 million files from 6,000 speakers. 
The speakers are from different ethnicities with different ages, 
professions and accents. The utterances have different types of 
noises including background chatter, laughter, overlapping 
speech and room acoustics [19]. We used Voxceleb1 and 
Voxceleb2 in training the x-vector network and training the 
denoising techniques. 

Musan: The Musan corpus has 109 hours of speech data with 
60 hours of speech, 42 hours of music, and 929 noise files [20]. 
The Musan corpus is used for data augmentation in training x-
vector systems. 

BBC Noise: The BBC Noise corpus contains 16,000 sound 
effects [21]. The BBC noises are used as unseen noises and 
they are added to train and test x-vectors in denoising 
techniques. 

Fabiol: Fabiol is a French corpus consisting of 6882 
utterances. The length of files spans from very short utterances 
less than 2 seconds to very long utterances. The Faboil corpus 
is used for test and enrollment dataset. 

B. Train x-vector extractor 

In our experiments, we used the standard Kaldi x-vector 
network introduced in [11]. The training data is augmented 
with different branches of Musan corpus (music, babble, noise, 
reverberation). Then, we extracted MFCC features for the 
augmented data. The MFCC features are normalized by 
Cepstral Mean Variance Normalization (CMVN) and silent 
frames are removed by the VAD. To explore the reliance of the 
x-vector system on the number of speakers and utterances in 
noisy environments, we trained two different networks. The 
first one is trained with 500,000 augmented utterances from 
Voxceleb1. In the second one, 1,000,000 randomly chosen 
utterances from Voxceleb1 and Voxceleb2 were used. In each 
protocol the trained network used to extract train and test x-
vectors that used in denoising techniques.  

C. Train and test x-vectors used for denoising 
techniques 

In denoising techniques, we need the pairs of noisy-clean 
x-vectors. We use two protocols to see the effectiveness of 
denoising techniques on x-vectors extracted from a network 
trained with poor data (Voxceleb1) and the network trained 
with more rich data (Voxceleb1 + Voxceleb2). The details 
about training and test dataset used in denoising techniques are 
described in the following.  

Protocol1: In this protocol the x-vectors are extracted by the 
network trained with Voxceleb1. Firstly, the x-vectors for 
clean files in Voxceleb1 and Voxceleb2 are extracted. The 
BBC Noises and Musan were added to Voxceleb1 and 
Voxceleb2 with different SNRs from 0 to 15 to create the 
corresponding noisy x-vectors for each clean file. We used 

1638 noise files from BBC corpus. The train data consists of 
1.975 million pairs of noisy-clean x-vectors. It deserves to be 
mentioned that for some clean files there is more than one noisy 
version. For the test and enrollment dataset the Fabiol Corpus 
is used. The Fabiol corpus includes 6882 utterances that 3441 
files were used for enrollment and the remaining part used as 
the test dataset. The test utterances corrupted with 547 different 
noises from BBC corpus with different SNRs between 0 and 
15. Since the length of utterances in Fabiol is varied from very 
short (less than 2 seconds) to longer utterances (more than 12 
seconds), we separated utterances by their duration in 6 groups 
to see the results of denoising methods on each group and 
specially to observe the effectiveness of the denoising 
techniques on very short utterances. 

Protocol 2: In this protocol the x-vector network is trained 
with 1,000,000 from Voxceleb1 and Voxceleb2. The train 
dataset includes 1,200,000 pairs of noisy-clean vectors from 
Vxoceleb1 and Voxceleb2. The added noises are the same as 
protocol1. In this dataset for each noisy x-vector there is only 
one clean version. The test and enrollment files extracted by 
this network are the same as protocol 1. 

IV. Results 

In this section, we describe the results of experiments for 
baseline system and denoising techniques. The results are 
briefed in Table 1 and Table 2. In the experiments, the equal 
error rate (EER) metric is used to evaluate the performance of 
the speaker recognition system. In all experiments, the PLDA 
classifier is used for scoring. 

Clean: In this experiment the scoring is done on clean x-
vectors in the test dataset. We can see that the results are 
strongly dependent on the duration of test files.  

Noisy: To see the performance of x-vector system in noisy 
environments, the BBC noise files were added to the test data. 
In Table 1, we can see that there is a drastic degradation in our 
results. For example, in Protocol1 for utterances longer than 12 
seconds the EER increased from 0.833 to 5.131. From Table 2 
we can see that increasing the number of speakers and number 
of training data makes the system more robust but still there is 
a large drop in the performance of the system after adding the 
noise to the test data set. For example, in utterances longer than 
12 seconds the EER increased from 0.5% to 2.69%. 

Denoising autoencoder: Finding a good architecture and its 
parameters for a specific problem is the main challenge of 
using denoising autoencoders. In our experiments we used a 
denoising autoencoder with three layers. The input and output 
layers’ activation function are linear. The hidden layer has 
1024 neurons with tanh activation function. The network 
optimized by stochastic gradient descent algorithm. The 
learning rate was 0.02 that decays 0.0001 at each epoch. The 
network is trained in 100 epochs to reduce mean square error 
(MSE) loss function. We observed that in the case of using 
MSE loss, even the small improvement of MSE has a great 
impact on the results. In all experiments with conventional 
DAE and its modifications in the next experiments, we used 
Tensorflow [22] and Keras [23] frameworks. From Table 1 and 
Table 2 we can see that in all cases the denoising autoencoder 



improves the performance of the system in terms of EER. In 
Protocol1 we have 14% to 47% relative improvement of EER. 
This improvement in Protocol2 is from 19% for utterances less 
than 2 seconds to 58% for utterances between 8 and 10 
seconds. The improvement for utterance longer than 10 
seconds is 52%. 

Deep stacked denoising autoencoder: In this experiment, we 
used deep dtacked denoising autoencoder. This architecture is 
described in section II. We used two DAE blocks. In the first 
one we put three layers. The input and output layer are linear 
and a dense layer with 1024 neurons were used in the hidden 
layer with tanh activation function. The output of the first DAE 
block concatenated with the difference between noisy x-vector 
and the output layer from the first DAE. This concatenated 
vector is used in the input of the next DAE block. In the second 
DAE, we used two tanh layers with 1024 neurons and the 
output layer is linear. The number of neurons in the output 
layer is 512 that is equal to the size of the noisy vector. The 
stochastic gradient descent optimization method is used to train 
the network. The learning rate is 0.02 and the decay of learning 
rate is 0.0001. From Table 1 and Table 2, we can see that in all 
experiments the stacked denoising autoencoder outperforms 
the denoising autoencoder. In Protocol1, we have 18% relative 
improvement for utterances shorter than 2 seconds and 51% 
improvement for utterances longer than 12 seconds. In 
Protocol2, we have 21% improvement for utterances shorter 
than 2 second and 66% improvement for utterances between 8 
and 10 second. The results show that even with smaller number 
of training samples in denoising techniques the improvements 
in protocol 2 are higher. From this point we infer that training 
a good x-vector network results in more improvement by 
denoising techniques.  

 
TABLE 1. The results for x-vectors extractor trained with Voxceleb1 

(Protocol1) and denoising techniques 

Durati

on 

s<2 2<s<4 4<s<6 6<s<8 8<s<

10 

10<s<1

2 

12<s 

Clean 11.59 7.646 4.144 2.239 3.111 1.538 0.833

9 

Noisy 15.94 12.88 10.5 7.836 8.889 6.667 5.131 

DAE 13.62 10.87 8.287 5.597 5.778 4.103 2.694 

Stacke

d DAE 

13.04 10.46 8.011 5.224 5.333 3.59 2.502 

 
TABLE 2. The results for x-vector extractor trained with 

Voxceleb1+Voxceleb2 (Protocol2) and denoising techniques 

Duratio

n 

s<2 2<s<4 4<s<6 6<s<8 8<s<10 10<s<

12 

12<s 

Clean  10.43 4.628 1.934 1.119 0.888 1.026 0.577 

Noisy 13.62 9.658 7.182 5.224 5.333 3.077 2.694 

DAE 11.01 7.042 4.42 3.358 2.222 1.538 1.283 

Stacke

d DAE 

10.72 6.439 3.867 2.612 1.778 1.538 1.283 

 

 
 

Fig 3. The relative improvement of EER(%) by deep stacked denoising 

autoencoder in Protocol1 and Protocol2 

 

From the results in Table 1 and Table 2, we observed that, 

by increasing the number of speakers and using more data in 

training x-vector network, the system becomes more robust in 

deal with unseen noises. But the performance drops 

significantly in comparison to noise free environments. 

Applying noise compensation techniques brings notable 

improvement in both protocols. The relative improvement of 

EER for both protocols is presented in Fig 3. 

V. Conclusion 

In this paper we proposed a modification in standard x-
vector system to make the system more robust in noisy 
environments. The modification is adding a denoising 
subsystem before scoring x-vectors. As other studies showed, 
we conclude that the system's performance continue to 
improve by increasing the number of speakers and data 
argumentation. We showed also that even with this fact, 
applying compensation techniques are essential to approach 
free-noise test conditions. 
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